1
|
Lotfinaghsh A, Imam A, Pompian A, Stitziel NO, Javaheri A. Clinical Insights from Proteomics in Heart Failure. Curr Heart Fail Rep 2025; 22:12. [PMID: 40063168 DOI: 10.1007/s11897-025-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 05/13/2025]
Abstract
PURPOSE OF REVIEW The pathophysiology of heart failure (HF), a complex and heterogenous condition, remains to be fully understood. Troponin and b-type natriuretic peptide are the only biomarkers that are utilized in clinical practice for HF clinical management. Recent advances in proteomics present a powerful tool to identify risk markers and ultimately, potential molecular mechanisms underlying HF pathogenesis. Herein, we explore traditional and novel heart biomarkers, highlighting their potential role in the pathogenesis of HF. RECENT FINDINGS Recent proteomic analyses have identified numerous proteins including Galectin-3, sST2, GDF-15, FGF21, Endotrophin, THSB-2, ADAMSTL, SVEP1, and anthracycline that are associated with clinical outcomes in HF. These biomarkers are not presently utilized in HF management but may be useful in the future for prediction of death or HF hospitalization. While traditional biomarkers remain essential, proteomic strategies have revealed additional targets that require further mechanistic exploration. Future research should focus on validating these biomarkers and translating proteomic insights into clinical practice to enhance HF management.
Collapse
Affiliation(s)
- Aynaz Lotfinaghsh
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adnan Imam
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander Pompian
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- John Cochran VA Hospital, St Louis, MO, USA.
| |
Collapse
|
2
|
Maxwell CB, Bhakta N, Denniff MJ, Sandhu JK, Kessler T, Ng LL, Jones DJ, Webb TR, Morris GE. Deep plasma and tissue proteome profiling of knockout mice reveals pathways associated with Svep1 deficiency. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100283. [PMID: 39895831 PMCID: PMC11782998 DOI: 10.1016/j.jmccpl.2025.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Despite strong causal associations with cardiovascular and metabolic disorders including coronary artery disease, hypertension, and type 2 diabetes, as well as a range of other diseases, the exact function of the protein SVEP1 remains largely unknown. Animal models have been employed to investigate how SVEP1 contributes to disease, with a focus on murine models exploring its role in development, cardiometabolic disease and platelet biology. In this study, we aimed to comprehensively phenotype the proteome of Svep1 +/- mice compared to wild-type (WT) littermates using liquid chromatography-tandem mass spectrometry (LC-MS/MS) bottom-up proteomics in plasma, heart, aorta, lung, and kidney to identify dysregulated pathways and biological functions associated with Svep1 deficiency. Our findings reveal that Svep1 deficiency leads to significant proteomic alterations across the mouse, with the highest number of dysregulated proteins observed in plasma and kidney. Key dysregulated proteins in plasma include upregulation of ADGRV1, CDH1, and MYH6, and downregulation of MTIF2 and AKAP13 which, alongside other proteins dysregulated across tissues, indicate disruption in cell adhesion, extracellular matrix organisation, platelet degranulation, and Rho GTPase pathways. Novel findings include significant enrichment of complement cascades in plasma, suggesting dysregulation of innate immune responses and hemostasis due to Svep1 deficiency. Pathways related to chylomicron assembly and lipid metabolism were also enriched. Additionally, we developed a high-throughput quantitative targeted LC-MS/MS assay to measure endogenous levels of murine SVEP1. SVEP1 was detectable in lung homogenate and showed a significant reduction in SVEP1 levels in Svep1 +/- vs. WT, but was not identified in plasma, heart, aorta, or kidney, likely due to expression levels below the assay's detection limit. Overall, this deep phenotyping study provides insight into the systemic impact of Svep1 deficiency.
Collapse
Affiliation(s)
- Colleen B. Maxwell
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Nikita Bhakta
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Matthew J. Denniff
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Jatinderpal K. Sandhu
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, 80636 Munich, Germany
| | - Leong L. Ng
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Donald J.L. Jones
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
- Leicester van Geest multiOMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
- Leicester Cancer Research Centre, RKCSB, University of Leicester, Leicester LE2 7LX, UK
| | - Tom R. Webb
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Gavin E. Morris
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
3
|
Elenbaas JS, Lee PC, Patel V, Stitziel NO. Decoding the Therapeutic Target SVEP1: Harnessing Molecular Trait GWASs to Unravel Mechanisms of Human Disease. Annu Rev Pharmacol Toxicol 2025; 65:131-148. [PMID: 39847464 DOI: 10.1146/annurev-pharmtox-061724-080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding SVEP1, a human coronary artery disease risk locus. Our analyses highlight SVEP1's causal link to cardiometabolic disease and glaucoma, as well as the surprising discovery of SVEP1 as the first known physiologic ligand for PEAR1, a critical receptor governing platelet reactivity. We further employ these techniques to dissect the interactions between SVEP1, PEAR1, and the Ang/Tie pathway, with therapeutic implications for a constellation of diseases. This review underscores the potential of molecular GWASs to guide drug discovery and unravel the complexities of human health and disease by demonstrating an integrative approach that grounds mechanistic research in human biology.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA;
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Paul C Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA;
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ved Patel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA;
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA;
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Tshilate TS, Ishengoma E, Rhode C. Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae). Anim Genet 2024; 55:744-760. [PMID: 38945682 DOI: 10.1111/age.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/23/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Haliotis midae is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for H. midae. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (r = 0.862-0.970; p < 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the H. midae draft genome and BLAST searches revealed the identity of candidate genes, such as egf-1, megf10, megf6, tnx, sevp1, kcp, notch1, and scube2 with possible functional roles in H. midae growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.
Collapse
Affiliation(s)
| | - Edson Ishengoma
- Department of Genetics, Stellenbosch University, Matieland, South Africa
- Mkwawa University College of Education, University of Dar es Salaam, Iringa, Tanzania
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
5
|
Morooka N, Gui N, Ando K, Sako K, Fukumoto M, Hasegawa U, Hußmann M, Schulte-Merker S, Mochizuki N, Nakajima H. Angpt1 binding to Tie1 regulates the signaling required for lymphatic vessel development in zebrafish. Development 2024; 151:dev202269. [PMID: 38742432 DOI: 10.1242/dev.202269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Development of the vascular system is regulated by multiple signaling pathways mediated by receptor tyrosine kinases. Among them, angiopoietin (Ang)/Tie signaling regulates lymphatic and blood vessel development in mammals. Of the two Tie receptors, Tie2 is well known as a key mediator of Ang/Tie signaling, but, unexpectedly, recent studies have revealed that the Tie2 locus has been lost in many vertebrate species, whereas the Tie1 gene is more commonly present. However, Tie1-driven signaling pathways, including ligands and cellular functions, are not well understood. Here, we performed comprehensive mutant analyses of angiopoietins and Tie receptors in zebrafish and found that only angpt1 and tie1 mutants show defects in trunk lymphatic vessel development. Among zebrafish angiopoietins, only Angpt1 binds to Tie1 as a ligand. We indirectly monitored Ang1/Tie1 signaling and detected Tie1 activation in sprouting endothelial cells, where Tie1 inhibits nuclear import of EGFP-Foxo1a. Angpt1/Tie1 signaling functions in endothelial cell migration and proliferation, and in lymphatic specification during early lymphangiogenesis, at least in part by modulating Vegfc/Vegfr3 signaling. Thus, we show that Angpt1/Tie1 signaling constitutes an essential signaling pathway for lymphatic development in zebrafish.
Collapse
Affiliation(s)
- Nanami Morooka
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ning Gui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Koji Ando
- Department of Cardiac Regeneration Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Urara Hasegawa
- Department of Materials Science and Engineering, The Pennsylvania State University, Steidle Building, University Park, Pennsylvania 16802, United States
| | - Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WU Münster, 48149 Münster, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WU Münster, 48149 Münster, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| |
Collapse
|
6
|
Jung IH, Stitziel NO. Integrin α9β1 deficiency does not impact the development of atherosclerosis in mice. Heliyon 2024; 10:e25760. [PMID: 38370227 PMCID: PMC10869861 DOI: 10.1016/j.heliyon.2024.e25760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1) is an extracellular matrix protein that causally promotes cardiovascular disease in humans and mice. However, the receptor mediating the effect of SVEP1 on the development of disease remains unclear. We previously demonstrated that depleting either vascular smooth muscle cell (VSMC)- or myeloid cell-derived integrin α9β1, the first receptor that was identified to interact with SVEP1, did not phenocopy the disease-abrogating effect of depleting SVEP1. Due to its wide expression in tissues and cell types, here we extend this line of investigation to definitively determine if integrin α9β1 impacts the development of atherosclerosis. In a mouse model of atherosclerosis, we found that depleting integrin α9β1 in all cells did not alter plaque size or characteristics of plaque complexity when compared to wild type mice. Further, the significant SVEP1-mediated effects on increase in macrophage content and VSMC proliferation within the atherosclerotic plaque were not altered in animals lacking integrin α9β1. Together, these findings strongly suggest that integrin α9β1 is not responsible for mediating the SVEP1-induced promotion of atherosclerosis and support further studies aimed at characterizing other receptors whose interaction with SVEP1 may represent a therapeutically targetable interaction.
Collapse
Affiliation(s)
- In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nathan O. Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
7
|
Veloso A, Bleuart A, Conrard L, Orban T, Bruyr J, Cabochette P, Germano RFV, Schevenels G, Bernard A, Zindy E, Demeyer S, Vanhollebeke B, Dequiedt F, Martin M. The cytoskeleton adaptor protein Sorbs1 controls the development of lymphatic and venous vessels in zebrafish. BMC Biol 2024; 22:51. [PMID: 38414014 PMCID: PMC10900589 DOI: 10.1186/s12915-024-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.
Collapse
Affiliation(s)
- Alexandra Veloso
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Anouk Bleuart
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Louise Conrard
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Tanguy Orban
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Jonathan Bruyr
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Pauline Cabochette
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
- Present Address: Laboratory of Developmental Genetics, ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041, Gosselies, Belgium
| | - Raoul F V Germano
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Giel Schevenels
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Alice Bernard
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, University of Liège (ULiège), Liège, Belgium
| | - Egor Zindy
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Benoit Vanhollebeke
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Franck Dequiedt
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Maud Martin
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium.
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium.
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
- WEL Research Institute (WELBIO Department), Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
8
|
Shah AM, Myhre PL, Arthur V, Dorbala P, Rasheed H, Buckley LF, Claggett B, Liu G, Ma J, Nguyen NQ, Matsushita K, Ndumele C, Tin A, Hveem K, Jonasson C, Dalen H, Boerwinkle E, Hoogeveen RC, Ballantyne C, Coresh J, Omland T, Yu B. Large scale plasma proteomics identifies novel proteins and protein networks associated with heart failure development. Nat Commun 2024; 15:528. [PMID: 38225249 PMCID: PMC10789789 DOI: 10.1038/s41467-023-44680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Heart failure (HF) causes substantial morbidity and mortality but its pathobiology is incompletely understood. The proteome is a promising intermediate phenotype for discovery of novel mechanisms. We measured 4877 plasma proteins in 13,900 HF-free individuals across three analysis sets with diverse age, geography, and HF ascertainment to identify circulating proteins and protein networks associated with HF development. Parallel analyses in Atherosclerosis Risk in Communities study participants in mid-life and late-life and in Trøndelag Health Study participants identified 37 proteins consistently associated with incident HF independent of traditional risk factors. Mendelian randomization supported causal effects of 10 on HF, HF risk factors, or left ventricular size and function, including matricellular (e.g. SPON1, MFAP4), senescence-associated (FSTL3, IGFBP7), and inflammatory (SVEP1, CCL15, ITIH3) proteins. Protein co-regulation network analyses identified 5 modules associated with HF risk, two of which were influenced by genetic variants that implicated trans hotspots within the VTN and CFH genes.
Collapse
Affiliation(s)
- Amil M Shah
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Peder L Myhre
- Akershus University Hospital and K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Victoria Arthur
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pranav Dorbala
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Humaira Rasheed
- Akershus University Hospital and K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian Claggett
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Guning Liu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Jianzhong Ma
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Ngoc Quynh Nguyen
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Chiadi Ndumele
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adrienne Tin
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristian Hveem
- Department of Public Health and Nursing, HUNT Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Jonasson
- Department of Public Health and Nursing, HUNT Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard Dalen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Cardiology, St Olavs University Hospital, Trondheim, Norway
- Department of Internal Medicine, Levanger Hospital, Levanger, Norway
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Ron C Hoogeveen
- Division of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Josef Coresh
- Departments of Medicine and Population Health, NYU Langone Health, New York, NY, USA
| | - Torbjørn Omland
- Akershus University Hospital and K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| |
Collapse
|
9
|
Liu H, Shi H, Sun Y. Identification of a novel lymphangiogenesis signature associated with immune cell infiltration in colorectal cancer based on bioinformatics analysis. BMC Med Genomics 2024; 17:2. [PMID: 38167072 PMCID: PMC10763205 DOI: 10.1186/s12920-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lymphangiogenesis plays an important role in tumor progression and is significantly associated with tumor immune infiltration. However, the role and mechanisms of lymphangiogenesis in colorectal cancer (CRC) are still unknown. Thus, the objective is to identify the lymphangiogenesis-related genes associated with immune infiltration and investigation of their prognosis value. METHODS mRNA expression profiles and corresponding clinical information of CRC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The lymphangiogenesis-related genes (LymRGs) were collected from the Molecular Signatures database (MSigDB). Lymphangiogenesis score (LymScore) and immune cell infiltrating levels were quantified using ssGSEA. LymScore) and immune cell infiltrating levels-related hub genes were identified using weighted gene co-expression network analysis (WGCNA). Univariate Cox and LASSO regression analyses were performed to identify the prognostic gene signature and construct a risk model. Furthermore, a predictive nomogram was constructed based on the independent risk factor generated from a multivariate Cox model. RESULTS A total of 1076 LymScore and immune cell infiltrating levels-related hub genes from three key modules were identified by WGCNA. Lymscore is positively associated with natural killer cells as well as regulator T cells infiltrating. These modular genes were enriched in extracellular matrix and structure, collagen fibril organization, cell-substrate adhesion, etc. NUMBL, TSPAN11, PHF21A, PDGFRA, ZNF385A, and RIMKLB were eventually identified as the prognostic gene signature in CRC. And patients were divided into high-risk and low-risk groups based on the median risk score, the patients in the high-risk group indicated poor survival and were predisposed to metastasis and advanced stages. NUMBL and PHF21A were upregulated but PDGFRA was downregulated in tumor samples compared with normal samples in the Human Protein Atlas (HPA) database. CONCLUSION Our finding highlights the critical role of lymphangiogenesis in CRC progression and metastasis and provides a novel gene signature for CRC and novel therapeutic strategies for anti-lymphangiogenic therapies in CRC.
Collapse
Affiliation(s)
- Hong Liu
- Department of General Surgery, Wuxi Fifth People's Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Huiwen Shi
- Department of General Surgery, No.971 Hospital of PLA Navy, Qingdao, China
| | - Yinggang Sun
- Department of General Surgery, The 960th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Jinan, China.
| |
Collapse
|
10
|
Agarwal R, Iezhitsa I. Genetic rodent models of glaucoma in representing disease phenotype and insights into the pathogenesis. Mol Aspects Med 2023; 94:101228. [PMID: 38016252 DOI: 10.1016/j.mam.2023.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Malaysia.
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Malaysia
| |
Collapse
|
11
|
Elenbaas JS, Jung IH, Coler-Reilly A, Lee PC, Alisio A, Stitziel NO. The emerging Janus face of SVEP1 in development and disease. Trends Mol Med 2023; 29:939-950. [PMID: 37673700 PMCID: PMC10592172 DOI: 10.1016/j.molmed.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Sushi, von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) is a large extracellular matrix protein that is also detected in circulation. Recent plasma proteomic and genomic studies have revealed a large number of associations between SVEP1 and human traits, particularly chronic disease. These include associations with cardiac death and disease, diabetes, platelet traits, glaucoma, dementia, and aging; many of these are causal. Animal models demonstrate that SVEP1 is critical in vascular development and disease, but its molecular and cellular mechanisms remain poorly defined. Future studies should aim to characterize these mechanisms and determine the diagnostic, prognostic, and therapeutic value of measuring or intervening on this enigmatic protein.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ariella Coler-Reilly
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Paul C Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
12
|
Sato-Nishiuchi R, Doiguchi M, Morooka N, Sekiguchi K. Polydom/SVEP1 binds to Tie1 and promotes migration of lymphatic endothelial cells. J Cell Biol 2023; 222:e202208047. [PMID: 37338522 PMCID: PMC10281526 DOI: 10.1083/jcb.202208047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Polydom is an extracellular matrix protein involved in lymphatic vessel development. Polydom-deficient mice die immediately after birth due to defects in lymphatic vessel remodeling, but the mechanism involved is poorly understood. Here, we report that Polydom directly binds to Tie1, an orphan receptor in the Angiopoietin-Tie axis, and facilitates migration of lymphatic endothelial cells (LECs) in a Tie1-dependent manner. Polydom-induced LEC migration is diminished by PI3K inhibitors but not by an ERK inhibitor, suggesting that the PI3K/Akt signaling pathway is involved in Polydom-induced LEC migration. In line with this possibility, Akt phosphorylation in LECs is enhanced by Polydom although no significant Tie1 phosphorylation is induced by Polydom. LECs also exhibited nuclear exclusion of Foxo1, a signaling event downstream of Akt activation, which was impaired in Polydom-deficient mice. These findings indicate that Polydom is a physiological ligand for Tie1 and participates in lymphatic vessel development through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| | - Masamichi Doiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| | - Nanami Morooka
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| |
Collapse
|
13
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Hußmann M, Schulte D, Weischer S, Carlantoni C, Nakajima H, Mochizuki N, Stainier DYR, Zobel T, Koch M, Schulte-Merker S. Svep1 is a binding ligand of Tie1 and affects specific aspects of facial lymphatic development in a Vegfc-independent manner. eLife 2023; 12:82969. [PMID: 37097004 PMCID: PMC10129328 DOI: 10.7554/elife.82969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Multiple factors are required to form functional lymphatic vessels. Here, we uncover an essential role for the secreted protein Svep1 and the transmembrane receptor Tie1 during the development of subpopulations of the zebrafish facial lymphatic network. This specific aspect of the facial network forms independently of Vascular endothelial growth factor C (Vegfc) signalling, which otherwise is the most prominent signalling axis in all other lymphatic beds. Additionally, we find that multiple specific and newly uncovered phenotypic hallmarks of svep1 mutants are also present in tie1, but not in tie2 or vegfc mutants. These phenotypes are observed in the lymphatic vasculature of both head and trunk, as well as in the development of the dorsal longitudinal anastomotic vessel under reduced flow conditions. Therefore, our study demonstrates an important function for Tie1 signalling during lymphangiogenesis as well as blood vessel development in zebrafish. Furthermore, we show genetic interaction between svep1 and tie1 in vivo, during early steps of lymphangiogenesis, and demonstrate that zebrafish as well as human Svep1/SVEP1 protein bind to the respective Tie1/TIE1 receptors in vitro. Since compound heterozygous mutations for SVEP1 and TIE2 have recently been reported in human glaucoma patients, our data have clinical relevance in demonstrating a role for SVEP1 in TIE signalling in an in vivo setting.
Collapse
Affiliation(s)
- Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Dörte Schulte
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Sarah Weischer
- Münster Imaging Network, Cells in Motion Interfaculty Centre, Faculty of Biology, WWU Münster, Münster, Germany
| | - Claudia Carlantoni
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Thomas Zobel
- Münster Imaging Network, Cells in Motion Interfaculty Centre, WWU Münster, Münster, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| |
Collapse
|
15
|
Wang P, Meng X, Xue J, Fan C, Wang J. Genome-wide analysis for nanofiber induced global gene expression profile: A study in MC3T3-E1 cells by RNA-Seq. Colloids Surf B Biointerfaces 2023; 223:113143. [PMID: 36682297 DOI: 10.1016/j.colsurfb.2023.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Nanofibers are one of the attractive biomaterials that can provide unique environments to direct cell behaviors. However, how nanofiber structure affects the global gene expression of laden cells remains unclear. Herein, high-throughput mRNA sequencing (RNA-seq) is applied to analyze the transcriptome of the MC3T3-E1 cells (a model osteoblast cell line) cultured on electrospun nanofibers. The cell-adhesive poly(L-lactide) nanofibers and membranes are developed by the mussel-inspired coating of gelatin-dopamine conjugate under H2O2-mediated oxidation. The MC3T3-E1 cells cultured on nanofibers exhibit elongated morphology and increased proliferation compared with those on membranes. The differences in global gene expression profiles are determined by RNA-seq, in which 905 differentially expressed genes (DEGs) are identified. Significantly, the DEGs related to cytoskeleton, promotion of cell cycle progression, cell adhesion, and cell proliferation, are higher expressed in the cells on nanofibers, while the DEGs involved in cell-cycle arrest and osteoblast mineralization are up-regulated in the cells on membranes. This study elucidates the roles of nanofiber structure in affecting gene expression of laden cells at the whole transcriptome level, and it will lay the foundation for understanding nanofiber-guided cell behaviors.
Collapse
Affiliation(s)
- Peiyan Wang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China
| | - Xinyue Meng
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, PR China
| | - Changjiang Fan
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China.
| | - Jianxun Wang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China.
| |
Collapse
|
16
|
Elenbaas JS, Pudupakkam U, Ashworth KJ, Kang CJ, Patel V, Santana K, Jung IH, Lee PC, Burks KH, Amrute JM, Mecham RP, Halabi CM, Alisio A, Di Paola J, Stitziel NO. SVEP1 is an endogenous ligand for the orphan receptor PEAR1. Nat Commun 2023; 14:850. [PMID: 36792666 PMCID: PMC9932102 DOI: 10.1038/s41467-023-36486-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1) is an extracellular matrix protein that causally promotes vascular disease and associates with platelet reactivity in humans. Here, using a human genomic and proteomic approach, we identify a high affinity, disease-relevant, and potentially targetable interaction between SVEP1 and the orphan receptor Platelet and Endothelial Aggregation Receptor 1 (PEAR1). This interaction promotes PEAR1 phosphorylation and disease associated AKT/mTOR signaling in vascular cells and platelets. Mice lacking SVEP1 have reduced platelet activation, and exogenous SVEP1 induces PEAR1-dependent activation of platelets. SVEP1 and PEAR1 causally and concordantly relate to platelet phenotypes and cardiovascular disease in humans, as determined by Mendelian Randomization. Targeting this receptor-ligand interaction may be a viable therapeutic strategy to treat or prevent cardiovascular and thrombotic disease.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - Upasana Pudupakkam
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Katrina J Ashworth
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ved Patel
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Katherine Santana
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - In-Hyuk Jung
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Paul C Lee
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kendall H Burks
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Junedh M Amrute
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Carmen M Halabi
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jorge Di Paola
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
17
|
Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, Rosenblatt MI, Azar DT. Lymphangiogenesis Guidance Mechanisms and Therapeutic Implications in Pathological States of the Cornea. Cells 2023; 12:319. [PMID: 36672254 PMCID: PMC9856498 DOI: 10.3390/cells12020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Corneal lymphangiogenesis is one component of the neovascularization observed in several inflammatory pathologies of the cornea including dry eye disease and corneal graft rejection. Following injury, corneal (lymph)angiogenic privilege is impaired, allowing ingrowth of blood and lymphatic vessels into the previously avascular cornea. While the mechanisms underlying pathological corneal hemangiogenesis have been well described, knowledge of the lymphangiogenesis guidance mechanisms in the cornea is relatively scarce. Various signaling pathways are involved in lymphangiogenesis guidance in general, each influencing one or multiple stages of lymphatic vessel development. Most endogenous factors that guide corneal lymphatic vessel growth or regression act via the vascular endothelial growth factor C signaling pathway, a central regulator of lymphangiogenesis. Several exogenous factors have recently been repurposed and shown to regulate corneal lymphangiogenesis, uncovering unique signaling pathways not previously known to influence lymphatic vessel guidance. A strong understanding of the relevant lymphangiogenesis guidance mechanisms can facilitate the development of targeted anti-lymphangiogenic therapeutics for corneal pathologies. In this review, we examine the current knowledge of lymphatic guidance cues, their regulation of inflammatory states in the cornea, and recently discovered anti-lymphangiogenic therapeutic modalities.
Collapse
Affiliation(s)
- Mehul Patnam
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil R. Dommaraju
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Chen L, He Y, Han Z, Gong W, Tian X, Guo L, Guo H, Song T, Chen L. The impact of decreased expression of SVEP1 on abnormal neovascularization and poor prognosis in patients with intrahepatic cholangiocarcinoma. Front Genet 2023; 13:1127753. [PMID: 36699464 PMCID: PMC9870246 DOI: 10.3389/fgene.2022.1127753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Intrahepatic cholangiocarcinoma (ICC) is one of the most highly heterogeneous malignant solid tumors; it is generally insensitive to clinical treatment and has a poor prognosis. Evidence suggests that abnormal neovascularization in the tumor microenvironment is an important cause of treatment resistance as well as recurrence and metastasis, but the key regulatory molecules are still largely unknown and should be identified. Method: We assessed the novel extracellular matrix protein (ECM) Sushi, von Willebrand factor type A, EGF and pentraxin containing 1 (SVEP1) expression pattern in the ICC by using immunohistochemistry. Multiplex immunofluorescence and Kaplan-Meier analysis were applied to explore the correlation between the low expression of SVEP1 and abnormal blood vessels and the clinical prognosis of ICC. Results: Our study showed that the expression of SVEP1 in most ICC samples was relatively lower than in the adjacent tissues. Statistical analysis suggested that patients with decreased SVEP1 expression always had shorter overall survival (OS) and disease-free survival (DFS). Moreover, the expression of SVEP1 was negatively correlated with the proportion of abnormal neovascularization in the tumor microenvironment of the ICC. Consistently, the key molecule of promoting vascular normalization, Ang-1, is positively correlated with the SVEP1 expression and prognosis in the ICC. In addition, the proportion of high Ki-67 expression was higher in the ICC samples with low SVEP1 expression, suggesting that the SVEP1 low expressed sample is in a malignant phenotype with high proliferation. Conclusion: This study reveals that SVEP1 is a promising prognostic biomarker for ICC and provides fresh insight into the role and potential new mechanism of abnormal neovascularization in ICC progression.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Han
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wenchen Gong
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiangdong Tian
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lin Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Lu Chen, ; Tianqiang Song,
| | - Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Lu Chen, ; Tianqiang Song,
| |
Collapse
|
19
|
Tarca AL, Romero R, Bhatti G, Gotsch F, Done B, Gudicha DW, Gallo DM, Jung E, Pique-Regi R, Berry SM, Chaiworapongsa T, Gomez-Lopez N. Human Plasma Proteome During Normal Pregnancy. J Proteome Res 2022; 21:2687-2702. [PMID: 36154181 PMCID: PMC10445406 DOI: 10.1021/acs.jproteome.2c00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human plasma proteome is underexplored despite its potential value for monitoring health and disease. Herein, using a recently developed aptamer-based platform, we profiled 7288 proteins in 528 plasma samples from 91 normal pregnancies (Gene Expression Omnibus identifier GSE206454). The coefficient of variation was <20% for 93% of analytes (median 7%), and a cross-platform correlation for selected key angiogenic and anti-angiogenic proteins was significant. Gestational age was associated with changes in 953 proteins, including highly modulated placenta- and decidua-specific proteins, and they were enriched in biological processes including regulation of growth, angiogenesis, immunity, and inflammation. The abundance of proteins corresponding to RNAs specific to populations of cells previously described by single-cell RNA-Seq analysis of the placenta was highly modulated throughout gestation. Furthermore, machine learning-based prediction of gestational age and of time from sampling to term delivery compared favorably with transcriptomic models (mean absolute error of 2 weeks). These results suggested that the plasma proteome may provide a non-invasive readout of placental cellular dynamics and serve as a blueprint for investigating obstetrical disease.
Collapse
Affiliation(s)
- Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan48202, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan48103, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan48824, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan48202, United States
- Detroit Medical Center, Detroit, Michigan48201, United States
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, University of Valle 13, Cali, Valle del Cauca100-00, Colombia
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan48202, United States
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| |
Collapse
|
20
|
Morris GE, Denniff MJ, Karamanavi E, Andrews SA, Kostogrys RB, Bountziouka V, Ghaderi‐Najafabadi M, Shamkhi N, McConnell G, Kaiser MA, Carleton L, Schofield C, Kessler T, Rainbow RD, Samani NJ, Webb TR. The integrin ligand SVEP1 regulates GPCR-mediated vasoconstriction via integrins α9β1 and α4β1. Br J Pharmacol 2022; 179:4958-4973. [PMID: 35802072 PMCID: PMC9805129 DOI: 10.1111/bph.15921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L-type voltage-gated Ca2+ channels (VGCCs). Genetic variants in ITGA9, which encodes the α9 subunit of integrin α9β1, and SVEP1, a ligand for integrin α9β1, associate with elevated blood pressure; however, neither SVEP1 nor integrin α9β1 has reported roles in vasoregulation. We determined whether SVEP1 and integrin α9β1 can regulate VSMC contraction. EXPERIMENTAL APPROACH SVEP1 and integrin binding were confirmed by immunoprecipitation and cell binding assays. Human induced pluripotent stem cell-derived VSMCs were used in in vitro [Ca2+ ]i studies, and aortas from a Svep1+/- knockout mouse model were used in wire myography to measure vessel contraction. KEY RESULTS We confirmed the ligation of SVEP1 to integrin α9β1 and additionally found SVEP1 to directly bind to integrin α4β1. Inhibition of SVEP1, integrin α4β1 or α9β1 significantly enhanced [Ca2+ ]i levels in isolated VSMCs to Gαq/11 -vasoconstrictors. This response was confirmed in whole vessels where a greater contraction to U46619 was seen in vessels from Svep1+/- mice compared to littermate controls or when integrin α4β1 or α9β1 was inhibited. Inhibition studies suggested that this effect was mediated via VGCCs, PKC and Rho A/Rho kinase dependent mechanisms. CONCLUSIONS AND IMPLICATIONS Our studies reveal a novel role for SVEP1 and the integrins α4β1 and α9β1 in reducing VSMC contractility. This could provide an explanation for the genetic associations with blood pressure risk at the SVEP1 and ITGA9 loci.
Collapse
Affiliation(s)
- Gavin E. Morris
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Matthew J. Denniff
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Elisavet Karamanavi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Sarah A. Andrews
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Renata B. Kostogrys
- Department of Human Nutrition, Faculty of Food TechnologyUniversity of Agriculture in KrakowKrakowPoland
| | - Vasiliki Bountziouka
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Maryam Ghaderi‐Najafabadi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Noor Shamkhi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - George McConnell
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Michael A. Kaiser
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | | | | | - Thorsten Kessler
- Department of Cardiology, German Heart Centre MunichTechnical University of MunichMunichGermany,German Centre of Cardiovascular Research (DZHK e. V.), Partner Site Munich Heart AllianceMunichGermany
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular ScienceUniversity of LiverpoolLiverpoolUK
| | - Nilesh J. Samani
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Thomas R. Webb
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| |
Collapse
|
21
|
He JN, Ng TK, Lu SY, Tam POS, Chan PP, Tham CC, Pang CP, Chen LJ, Chu WK. Genetic association of ANGPT2 with primary open-angle glaucoma. EYE AND VISION (LONDON, ENGLAND) 2022; 9:37. [PMID: 36199153 PMCID: PMC9535884 DOI: 10.1186/s40662-022-00309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To determine the association of the ANGPT2 gene with primary open-angle glaucoma (POAG) in Chinese. METHODS Six single-nucleotide polymorphisms (SNPs) in ANGPT2 (rs2515487, rs2922869, rs13255574, rs4455855, rs13269021, and rs11775442) were genotyped in a total of 2601 study subjects from two cohorts. One is a Hong Kong Chinese cohort of 484 high tension glaucoma (HTG) and 537 normal tension glaucoma (NTG) patients, and 496 non-glaucoma control subjects. Another cohort is a Shantou Chinese cohort of 403 HTG and 135 NTG patients, and 543 non-glaucoma control subjects. Subgroup analysis by sex was conducted. Outcomes from different cohorts were combined for meta-analysis. RESULTS The association of SNP rs11775442 with NTG in the Hong Kong cohort [P = 0.0498, OR = 1.24, 95% confidence interval (CI) 1.00-1.55] after adjusting for age and sex did not reach statistical significance after Bonferroni correction. Other SNPs were not significantly associated with NTG, HTG and POAG in individual cohort or in the combined analyses (P > 0.05). In the subgroup analysis by sex, SNP rs13269021 in the Shantou cohort, but not in the Hong Kong cohort, was significantly associated with NTG in males (P = 0.0081, OR = 1.67, 95% CI: 1.14-2.43) but not in females (P = 0.874). In the combined analyses by sex, no SNPs were significantly associated with NTG, HTG and POAG. CONCLUSIONS In the subgroup analysis by sex, a significant association was shown in SNP rs13269021 with NTG in Shantou males, but not in Hong Kong males. Further studies are needed to verify the association between ANGPT2 locus (rs13269021) and NTG in Chinese males.
Collapse
Affiliation(s)
- Jing Na He
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Kin Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shi Yao Lu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pancy Oi Sin Tam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Poemen P Chan
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
22
|
Kapiainen E, Elamaa H, Miinalainen I, Izzi V, Eklund L. Cooperation of Angiopoietin-2 and Angiopoietin-4 in Schlemm's Canal Maintenance. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 36190459 PMCID: PMC9547357 DOI: 10.1167/iovs.63.11.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Defects in the iridocorneal angle tissues, including the trabecular meshwork (TM) and Schlemm's canal (SC), impair aqueous humor flow and increase the intraocular pressure (IOP), eventually resulting in glaucoma. Activation of endothelial tyrosine kinase receptor Tie2 by angiopoietin-1 (Angpt1) has been demonstrated to be essential for SC formation, but roles of the other two Tie2 ligands, Angpt2 and Angpt4, have been controversial or not yet characterized, respectively. Methods Angpt4 expression was investigated using genetic cell fate mapping and reporter mice. Congenital deletion of Angpt2 and Angpt4 and tamoxifen-inducible deletion of Angpt1 in mice were used to study the effects of Angpt4 deletion alone and in combination with the other angiopoietins. SC morphology was examined with immunofluorescent staining. IOP measurements, electron microscopy, and histologic evaluation were used to study glaucomatous changes. Results Angpt4 was postnatally expressed in the TM. While Angpt4 deletion alone did not affect SC and Angpt4 deletion did not aggravate Angpt1 deletion phenotype, absence of Angpt4 combined with Angpt2 deletion had detrimental effects on SC morphology in adult mice. Consequently, Angpt2−/−;Angpt4−/− mice displayed glaucomatous changes in the eye. Mice with Angpt2 deletion alone showed only moderate SC defects, but Angpt2 was necessary for proper limbal vasculature development. Mechanistically, analysis of Tie2 phosphorylation suggested that Angpt2 and Angpt4 cooperate as agonistic Tie2 ligands in maintaining SC integrity. Conclusions Our results indicated an additive effect of Angpt4 in SC maintenance and Tie2 activation and a spatiotemporally regulated interplay between the angiopoietins in the mouse iridocorneal angle.
Collapse
Affiliation(s)
- Emmi Kapiainen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Harri Elamaa
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilkka Miinalainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Valerio Izzi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Faculty of Medicine, University of Oulu, Oulu, Finland.,Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
23
|
Sugiyama A, Hirashima M. Fetal nuchal edema and developmental anomalies caused by gene mutations in mice. Front Cell Dev Biol 2022; 10:949013. [PMID: 36111337 PMCID: PMC9468611 DOI: 10.3389/fcell.2022.949013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Fetal nuchal edema, a subcutaneous accumulation of extracellular fluid in the fetal neck, is detected as increased nuchal translucency (NT) by ultrasonography in the first trimester of pregnancy. It has been demonstrated that increased NT is associated with chromosomal anomalies and genetic syndromes accompanied with fetal malformations such as defective lymphatic vascular development, cardiac anomalies, anemia, and a wide range of other fetal anomalies. However, in many clinical cases of increased NT, causative genes, pathogenesis and prognosis have not been elucidated in humans. On the other hand, a large number of gene mutations have been reported to induce fetal nuchal edema in mouse models. Here, we review the relationship between the gene mutants causing fetal nuchal edema with defective lymphatic vascular development, cardiac anomalies, anemia and blood vascular endothelial barrier anomalies in mice. Moreover, we discuss how studies using gene mutant mouse models will be useful in developing diagnostic method and predicting prognosis.
Collapse
|
24
|
Villatoro AJ, Martín-Astorga MDC, Alcoholado C, Kazantseva L, Cárdenas C, Fariñas F, Becerra J, Visser R. Secretory Profile of Adipose-Tissue-Derived Mesenchymal Stem Cells from Cats with Calicivirus-Positive Severe Chronic Gingivostomatitis. Viruses 2022; 14:v14061146. [PMID: 35746618 PMCID: PMC9228153 DOI: 10.3390/v14061146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
The feline calicivirus (FCV) causes infections in cats all over the world and seems to be related to a broad variety of clinical presentations, such as feline chronic gingivostomatitis (FCGS), a severe oral pathology in cats. Although its etiopathogeny is largely unknown, FCV infection is likely to be a main predisposing factor for developing this pathology. During recent years, new strategies for treating FCGS have been proposed, based on the use of mesenchymal stem cells (MSC) and their regenerative and immunomodulatory properties. The main mechanism of action of MSC seems to be paracrine, due to the secretion of many biomolecules with different biological functions (secretome). Currently, several pathologies in humans have been shown to be related to functional alterations of the patient’s MSCs. However, the possible roles that altered MSCs might have in different diseases, including virus-mediated diseases, remain unknown. We have recently demonstrated that the exosomes produced by the adipose-tissue-derived MSCs (fAd-MSCs) from cats suffering from FCV-positive severe and refractory FCGS showed altered protein contents. Based on these findings, the goal of this work was to analyze the proteomic profile of the secretome produced by feline adipose-tissue-derived MSCs (fAd-MSCs) from FCV-positive patients with FCGS, in order to identify differences between them and to increase our knowledge of the etiopathogenesis of this disease. We used high-resolution mass spectrometry and functional enrichment analysis with Gene Ontology to compare the secretomes produced by the fAd-MSCs of healthy and calicivirus-positive FCGS cats. We found that the fAd-MSCs from cats with FCGS had an increased expression of pro-inflammatory cytokines and an altered proteomic profile compared to the secretome produced by cells from healthy cats. These findings help us gain insight on the roles of MSCs and their possible relation to FCGS, and may be useful for selecting specific biomarkers and for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Antonio J. Villatoro
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
- Grupo Ynmun, Inmunología Clínica y Terapia Celular (IMMUNESTEM), 29071 Málaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
| | - Liliya Kazantseva
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
| | - Casimiro Cárdenas
- Research Support Central Services (SCAI) of the University of Málaga, 29071 Málaga, Spain;
| | - Fernando Fariñas
- Grupo Ynmun, Spanish Association for the Research in Immunological and Infectious Diseases, 29071 Málaga, Spain;
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rick Visser
- Laboratory of Bioengineering and Tissue Regeneration, Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), University of Málaga, 29071 Málaga, Spain; (A.J.V.); (M.d.C.M.-A.); (C.A.); (L.K.); (J.B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-952-131-858
| |
Collapse
|
25
|
Handel AE, Cheuk S, Dhalla F, Maio S, Hübscher T, Rota I, Deadman ME, Ekwall O, Lütolf M, Weinberg K, Holländer G. Developmental dynamics of the neural crest-mesenchymal axis in creating the thymic microenvironment. SCIENCE ADVANCES 2022; 8:eabm9844. [PMID: 35559672 PMCID: PMC9106291 DOI: 10.1126/sciadv.abm9844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The thymic stroma is composed of epithelial and nonepithelial cells providing separate microenvironments controlling homing, differentiation, and selection of hematopoietic precursor cells to functional T cells. Here, we explore at single-cell resolution the complex composition and dynamic changes of the nonepithelial stromal compartment across different developmental stages in the human and mouse thymus, and in an experimental model of the DiGeorge syndrome, the most common form of human thymic hypoplasia. The detected gene expression signatures identify previously unknown stromal subtypes and relate their individual molecular profiles to separate differentiation trajectories and functions, revealing an unprecedented heterogeneity of different cell types that emerge at discrete developmental stages and vary in their expression of key regulatory signaling circuits and extracellular matrix components. Together, these findings highlight the dynamic complexity of the nonepithelial thymus stroma and link this to separate instructive roles essential for normal thymus organogenesis and tissue maintenance.
Collapse
Affiliation(s)
- Adam E. Handel
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Fatima Dhalla
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Ioanna Rota
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Lütolf
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Kenneth Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Georg Holländer
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
26
|
Effect of FLOT2 Gene Expression on Invasion and Metastasis of Colorectal Cancer and Its Molecular Mechanism under Nanotechnology and RNA Interference. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2897338. [PMID: 35419458 PMCID: PMC9001092 DOI: 10.1155/2022/2897338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
The study is aimed at investigating the effect of the FLOT2 gene on invasion and metastasis of colorectal cancer (CRC) cells and the corresponding molecular mechanism by preparing polylysine-silicon nanoparticles. Specifically, polylysine was used to modify the silica nanoparticles prepared by the emulsification method to obtain polylysine-silicon nanoparticles. The characterization of polylysine-silicon nanoparticles was completed by nanoparticle size analyzer, laser particle size potentiometer, and transmission microscope. The influence of polylysine-silicon nanoparticles on the survival rate of CRC cell line HT-29 was detected using the method of 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT). The FLOT2-siRNA expression vector was constructed and transfected with HT-29. The HT-29 transfected with empty plasmid was used as the negative control (NC). Western Blot (WB) and reverse transcription-polymerase chain reaction (RT-PCR) were used to detect expression levels of FLOT2 gene and epithelial-mesenchymal transition- (EMT-) related genes. Transwell invasion assay, Transwell migration assay, and CCK8 assay were used to detect the cell invasion, migration, and proliferation. The results showed that the average particle size of polylysine-silicon nanoparticles was 30 nm, the potential was 19.65 mV, the particle size was 65.8 nm, and the dispersion coefficient was 0.103. At the same concentration, the toxicity of silicon nanoparticles to HT-29 was significantly lower than that of liposome reagent, and the transfection efficiency was 60%, higher than that of liposome reagent (40%). The mRNA level and protein expression of the FLOT2 gene in the FLOT2-siRNA group were significantly lower than those in the NC group (P < 0.01). The optical density (OD) value of the NC group and the blank control (CK) group were significantly higher than that of FLOT2-siRNA cells (P < 0.01). The OD value of FLOT2-siRNA cells was lower than that of NC cells at 48 h, 72 h, and 96 h (P < 0.01). The mRNA levels and protein expressions of MMP2 and vimentin in the FLOT2-siRNA group were significantly lower than those in the NC group and CK group (P < 0.01). The mRNA level and protein expression of the E-cadherin gene in the FLOT2-siRNA group were significantly higher than those in the NC group and CK group (P < 0.01). In conclusion, an RNA interference plasmid with high transfection efficiency and low cytotoxicity was established based on nanotechnology. siRNA-mediated FLOT2 protein inhibits the invasion, migration, and proliferation of CRC cells by regulating the expression changes of EMT-related genes, which provides a scientific basis for clinical treatment of CRC.
Collapse
|
27
|
Coxam B, Collins RT, Hußmann M, Huisman Y, Meier K, Jung S, Bartels-Klein E, Szymborska A, Finotto L, Helker CSM, Stainier DYR, Schulte-Merker S, Gerhardt H. Svep1 stabilises developmental vascular anastomosis in reduced flow conditions. Development 2022; 149:274823. [PMID: 35312765 PMCID: PMC8977097 DOI: 10.1242/dev.199858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
Molecular mechanisms controlling the formation, stabilisation and maintenance of blood vessel connections remain poorly defined. Here, we identify blood flow and the large extracellular protein Svep1 as co-modulators of vessel anastomosis during developmental angiogenesis in zebrafish embryos. Both loss of Svep1 and blood flow reduction contribute to defective anastomosis of intersegmental vessels. The reduced formation and lumenisation of the dorsal longitudinal anastomotic vessel (DLAV) is associated with a compensatory increase in Vegfa/Vegfr pERK signalling, concomittant expansion of apelin-positive tip cells, but reduced expression of klf2a. Experimentally, further increasing Vegfa/Vegfr signalling can rescue the DLAV formation and lumenisation defects, whereas its inhibition dramatically exacerbates the loss of connectivity. Mechanistically, our results suggest that flow and Svep1 co-regulate the stabilisation of vascular connections, in part by modulating the Vegfa/Vegfr signalling pathway. Summary: Blood flow and the large extracellular matrix protein Svep1 jointly regulate vessel anastomosis during developmental angiogenesis in zebrafish embryos partly by modulating the Vegfa/Vegfr signalling pathway.
Collapse
Affiliation(s)
- Baptiste Coxam
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
| | - Russell T. Collins
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
| | - Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Yvonne Huisman
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Katja Meier
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Simone Jung
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Eireen Bartels-Klein
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Anna Szymborska
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Lise Finotto
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Vascular Patterning Laboratory, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Christian S. M. Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| |
Collapse
|
28
|
Kawaratani H, Sawai H, Onishi M, Kogiso T, Shimada N, Uojima H, Nakajima T, Matsumoto N, Ikejima K, Ishikawa T, Terai S, Motoyama H, Komori A, Hirashima N, Saito S, Eguchi Y, Nojima M, Kawai Y, Tateyama M, Yoshiji H, Tanaka Y. A genome-wide association study identifying SVEP1 variant as a predictor of response to tolvaptan for cirrhotic ascites. Liver Int 2021; 41:2944-2953. [PMID: 34309184 DOI: 10.1111/liv.15022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Tolvaptan, vasopressin V2-receptor antagonist, has been used for patients with difficult-to-treat ascites in Japan. In this study, we conducted a genome-wide association study (GWAS) in the Japanese population to identify genetic variants associated with tolvaptan's efficacy for patients with hepatic ascites. METHODS From 2014 through 2018, genomic DNA samples were obtained from 550 patients who were treated with tolvaptan. Of those, 80 cases (non-responder; increase of body weight [BW]) and 333 controls (responder; >1.5 kg decrease of BW) were included in the GWAS and replication study. RESULTS Genome-wide association study showed 5 candidate SNPs around the miR818, KIAA1109, and SVEP1 genes. After validation and performing a replication study, an SNP (rs2991364) located in the SVEP1 gene was found to have a significant genome-wide association (OR = 3.55, P = 2.01 × 10-8 ). Multivariate analyses showed that serum sodium (Na), blood urea nitrogen (BUN) and SVEP1 SNP were significantly associated with the response (OR = 0.92, P = .003; OR = 1.02, P = .02 and OR = 3.98, P = .000008, respectively). Based on a prediction model of logistic regression analysis in a population with the rs2991364 risk allele, the failure probability (=exp (score: 22.234 + BUN*0.077 + Na*-0.179) (1 + exp (score)) was determined for the detection of non-responders. Assuming a cutoff of failure probability at 38.6%, sensitivity was 84.4%, specificity was 70% and AUC was 0.774. CONCLUSION SVEP1 rs2991364 was identified as the specific SNP for the tolvaptan response. The prediction score (>38.6%) can identify tolvaptan non-responders and help to avoid a lengthy period of futile treatment.
Collapse
Affiliation(s)
- Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaya Onishi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tomomi Kogiso
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Ootakanomori Hospital, Kashiwa, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomoaki Nakajima
- Department of Hepatology, Sapporo Kosei General Hospital, Hokkaido, Japan
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toru Ishikawa
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Motoyama
- Department of Hepatology, Graduate School of Medicine, Osaka City University Osaka, Japan
| | - Atsumasa Komori
- Clinical Research Center, Nagasaki Medical Center, Nagasaki, Japan
| | - Noboru Hirashima
- Department of Gastroenterology, National Hospital Organization, Nagoya Medical Center, Nagoya, Japan
| | - Satoru Saito
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Masanori Nojima
- Center for Translational Research, The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yosuke Kawai
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Masakuni Tateyama
- Department of Gastroenterology and Hepatology, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
29
|
Brouillard P, Witte MH, Erickson RP, Damstra RJ, Becker C, Quéré I, Vikkula M. Primary lymphoedema. Nat Rev Dis Primers 2021; 7:77. [PMID: 34675250 DOI: 10.1038/s41572-021-00309-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Lymphoedema is the swelling of one or several parts of the body owing to lymph accumulation in the extracellular space. It is often chronic, worsens if untreated, predisposes to infections and causes an important reduction in quality of life. Primary lymphoedema (PLE) is thought to result from abnormal development and/or functioning of the lymphatic system, can present in isolation or as part of a syndrome, and can be present at birth or develop later in life. Mutations in numerous genes involved in the initial formation of lymphatic vessels (including valves) as well as in the growth and expansion of the lymphatic system and associated pathways have been identified in syndromic and non-syndromic forms of PLE. Thus, the current hypothesis is that most cases of PLE have a genetic origin, although a causative mutation is identified in only about one-third of affected individuals. Diagnosis relies on clinical presentation, imaging of the structure and functionality of the lymphatics, and in genetic analyses. Management aims at reducing or preventing swelling by compression therapy (with manual drainage, exercise and compressive garments) and, in carefully selected cases, by various surgical techniques. Individuals with PLE often have a reduced quality of life owing to the psychosocial and lifelong management burden associated with their chronic condition. Improved understanding of the underlying genetic origins of PLE will translate into more accurate diagnosis and prognosis and personalized treatment.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Marlys H Witte
- Department of Surgery, Neurosurgery, and Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert J Damstra
- VASCERN PPL European Reference Centre; Department of Dermatology, Phlebology and Lymphology, Nij Smellinghe Hospital, Drachten, Netherlands
| | | | - Isabelle Quéré
- Department of Vascular Medicine, Centre de référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium. .,VASCERN VASCA European Reference Centre; Center for Vascular Anomalies, Division of Plastic Surgery, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
30
|
Thomson BR, Liu P, Onay T, Du J, Tompson SW, Misener S, Purohit RR, Young TL, Jin J, Quaggin SE. Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies. Nat Commun 2021; 12:6072. [PMID: 34663817 PMCID: PMC8523664 DOI: 10.1038/s41467-021-26346-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Primary congenital glaucoma (PCG) is a severe disease characterized by developmental defects in the trabecular meshwork (TM) and Schlemm's canal (SC), comprising the conventional aqueous humor outflow pathway of the eye. Recently, heterozygous loss of function variants in TEK and ANGPT1 or compound variants in TEK/SVEP1 were identified in children with PCG. Moreover, common variants in ANGPT1and SVEP1 have been identified as risk alleles for primary open angle glaucoma (POAG) in GWAS studies. Here, we show tissue-specific deletion of Angpt1 or Svep1 from the TM causes PCG in mice with severe defects in the adjacent SC. Single-cell transcriptomic analysis of normal and glaucomatous Angpt1 deficient eyes allowed us to identify distinct TM and SC cell populations and discover additional TM-SC signaling pathways. Furthermore, confirming the importance of angiopoietin signaling in SC, delivery of a recombinant ANGPT1-mimetic promotes developmental SC expansion in healthy and Angpt1 deficient eyes, blunts intraocular pressure (IOP) elevation and RGC loss in a mouse model of PCG and lowers IOP in healthy adult mice. Our data highlight the central role of ANGPT1-TEK signaling and TM-SC crosstalk in IOP homeostasis and provide new candidates for SC-targeted glaucoma therapy.
Collapse
Affiliation(s)
- Benjamin R Thomson
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Pan Liu
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Tuncer Onay
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jing Du
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Stuart W Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sol Misener
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Raj R Purohit
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Jin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Susan E Quaggin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA.
| |
Collapse
|
31
|
Keramati AR, Chen MH, Rodriguez BAT, Yanek LR, Bhan A, Gaynor BJ, Ryan K, Brody JA, Zhong X, Wei Q, Kammers K, Kanchan K, Iyer K, Kowalski MH, Pitsillides AN, Cupples LA, Li B, Schlaeger TM, Shuldiner AR, O'Connell JR, Ruczinski I, Mitchell BD, Faraday N, Taub MA, Becker LC, Lewis JP, Mathias RA, Johnson AD. Genome sequencing unveils a regulatory landscape of platelet reactivity. Nat Commun 2021; 12:3626. [PMID: 34131117 PMCID: PMC8206369 DOI: 10.1038/s41467-021-23470-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Platelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.
Collapse
Affiliation(s)
- Ali R Keramati
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming-Huei Chen
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Benjamin A T Rodriguez
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
- Valo Health, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Brady J Gaynor
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Kathleen Ryan
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, University of Washington School of Medicine, Seattle, WA, USA
| | - Xue Zhong
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiang Wei
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kai Kammers
- Biostatistics and Bioinformatics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kanika Kanchan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kruthika Iyer
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madeline H Kowalski
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Achilleas N Pitsillides
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - L Adrienne Cupples
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Bingshan Li
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Alan R Shuldiner
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Ingo Ruczinski
- Bloomberg School of Public Health, Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Nauder Faraday
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Margaret A Taub
- Bloomberg School of Public Health, Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lewis C Becker
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua P Lewis
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA.
| | - Rasika A Mathias
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andrew D Johnson
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
- The Framingham Heart Study, Framingham, MA, USA.
| |
Collapse
|
32
|
Young TL, Whisenhunt KN, Jin J, LaMartina SM, Martin SM, Souma T, Limviphuvadh V, Suri F, Souzeau E, Zhang X, Dan Y, Anagnos E, Carmona S, Jody NM, Stangel N, Higuchi EC, Huang SJ, Siggs OM, Simões MJ, Lawson BM, Martin JS, Elahi E, Narooie-Nejad M, Motlagh BF, Quaggin SE, Potter HD, Silva ED, Craig JE, Egas C, Maroofian R, Maurer-Stroh S, Bradfield YS, Tompson SW. SVEP1 as a Genetic Modifier of TEK-Related Primary Congenital Glaucoma. Invest Ophthalmol Vis Sci 2021; 61:6. [PMID: 33027505 PMCID: PMC7545080 DOI: 10.1167/iovs.61.12.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Affecting children by age 3, primary congenital glaucoma (PCG) can cause debilitating vision loss by the developmental impairment of aqueous drainage resulting in high intraocular pressure (IOP), globe enlargement, and optic neuropathy. TEK haploinsufficiency accounts for 5% of PCG in diverse populations, with low penetrance explained by variable dysgenesis of Schlemm's canal (SC) in mice. We report eight families with TEK-related PCG, and provide evidence for SVEP1 as a disease modifier in family 8 with a higher penetrance and severity. Methods Exome sequencing identified coding/splice site variants with an allele frequency less than 0.0001 (gnomAD). TEK variant effects were assayed in construct-transfected HEK293 cells via detection of autophosphorylated (active) TEK protein. An enucleated eye from an affected member of family 8 was examined via histology. SVEP1 expression in developing outflow tissues was detected by immunofluorescent staining of 7-day mouse anterior segments. SVEP1 stimulation of TEK expression in human umbilical vascular endothelial cells (HUVECs) was measured by TaqMan quantitative PCR. Results Heterozygous TEK loss-of-function alleles were identified in eight PCG families, with parent–child disease transmission observed in two pedigrees. Family 8 exhibited greater disease penetrance and severity, histology revealed absence of SC in one eye, and SVEP1:p.R997C was identified in four of the five affected individuals. During SC development, SVEP1 is secreted by surrounding tissues. SVEP1:p.R997C abrogates stimulation of TEK expression by HUVECs. Conclusions We provide further evidence for PCG caused by TEK haploinsufficiency, affirm autosomal dominant inheritance in two pedigrees, and propose SVEP1 as a modifier of TEK expression during SC development, affecting disease penetrance and severity.
Collapse
Affiliation(s)
- Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kristina N Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jing Jin
- Feinberg Cardiovascular Research Institute and Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Sarah M LaMartina
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sean M Martin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Tomokazu Souma
- Feinberg Cardiovascular Research Institute and Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore.,Innovations in Food & Chemical Safety Programme (IFCS), A*STAR, Singapore
| | - Fatemeh Suri
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Xue Zhang
- Feinberg Cardiovascular Research Institute and Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Yongwook Dan
- Feinberg Cardiovascular Research Institute and Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Evie Anagnos
- Feinberg Cardiovascular Research Institute and Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Susana Carmona
- Biocant, Transfer Technology Association, Cantanhede, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nicole M Jody
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nickie Stangel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Emily C Higuchi
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Samuel J Huang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Owen M Siggs
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | | | - Brendan M Lawson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jacob S Martin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Elahe Elahi
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Mehrnaz Narooie-Nejad
- Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Science, Zahedan, Iran
| | | | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Heather D Potter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Eduardo D Silva
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Conceição Egas
- Biocant, Transfer Technology Association, Cantanhede, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Reza Maroofian
- Genetics Research Center, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore.,Innovations in Food & Chemical Safety Programme (IFCS), A*STAR, Singapore.,Department of Biological Sciences, National University of Singapore (NUS), Singapore
| | - Yasmin S Bradfield
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart W Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
33
|
Dysregulation of Amphiregulin stimulates the pathogenesis of cystic lymphangioma. Proc Natl Acad Sci U S A 2021; 118:2019580118. [PMID: 33941693 DOI: 10.1073/pnas.2019580118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Along with blood vessels, lymphatic vessels play an important role in the circulation of body fluid and recruitment of immune cells. Postnatal lymphangiogenesis commonly occurs from preexisting lymphatic vessels by sprouting, which is induced by lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C). However, the key signals and cell types that stimulate pathological lymphangiogenesis, such as human cystic lymphangioma, are less well known. Here, we found that mouse dermal fibroblasts that infiltrate to sponges subcutaneously implanted express VEGF-D and sushi, Von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) in response to PDGFRβ signal. In vitro, Pdgfrb knockout (β-KO) fibroblasts had reduced expression of VEGF-D and SVEP1 and overproduced Amphiregulin. Dysregulation of these three factors was involved in the cyst-like and uneven distribution of lymphatic vessels observed in the β-KO mice. Similarly, in human cystic lymphangioma, which is one of the intractable diseases and mostly occurs in childhood, fibroblasts surrounding cystic lymphatics highly expressed Amphiregulin. Moreover, fibroblast-derived Amphiregulin could induce the expression of Amphiregulin in lymphatic endothelial cells. The dual source of Amphiregulin activated EGFR expressed on the lymphatic endothelial cells. This exacerbation cascade induced proliferation of lymphatic endothelial cells to form cystic lymphangioma. Ultimately, excessive Amphiregulin produced by fibroblasts surrounding lymphatics and by lymphatic endothelial cells per se results in pathogenesis of cystic lymphangioma and will be a fascinating therapeutic target of cystic lymphangioma.
Collapse
|
34
|
Jung IH, Elenbaas JS, Alisio A, Santana K, Young EP, Kang CJ, Kachroo P, Lavine KJ, Razani B, Mecham RP, Stitziel NO. SVEP1 is a human coronary artery disease locus that promotes atherosclerosis. Sci Transl Med 2021; 13:eabe0357. [PMID: 33762433 PMCID: PMC8109261 DOI: 10.1126/scitranslmed.abe0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023]
Abstract
A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1), an extracellular matrix protein, is associated with risk of coronary disease in humans independent of plasma lipids. Despite a robust statistical association, if and how SVEP1 might contribute to atherosclerosis remained unclear. Here, using Mendelian randomization and complementary mouse models, we provide evidence that SVEP1 promotes atherosclerosis in humans and mice and is expressed by vascular smooth muscle cells (VSMCs) within the atherosclerotic plaque. VSMCs also interact with SVEP1, causing proliferation and dysregulation of key differentiation pathways, including integrin and Notch signaling. Fibroblast growth factor receptor transcription increases in VSMCs interacting with SVEP1 and is further increased by the coronary disease-associated SVEP1 variant p.D2702G. These effects ultimately drive inflammation and promote atherosclerosis. Together, our results suggest that VSMC-derived SVEP1 is a proatherogenic factor and support the concept that pharmacological inhibition of SVEP1 should protect against atherosclerosis in humans.
Collapse
Affiliation(s)
- In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine Santana
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Erica P Young
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Puja Kachroo
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Babak Razani
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- John Cochran VA Medical Center, Saint Louis, MO 63106, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
35
|
Gharahkhani P, Jorgenson E, Hysi P, Khawaja AP, Pendergrass S, Han X, Ong JS, Hewitt AW, Segrè AV, Rouhana JM, Hamel AR, Igo RP, Choquet H, Qassim A, Josyula NS, Cooke Bailey JN, Bonnemaijer PWM, Iglesias A, Siggs OM, Young TL, Vitart V, Thiadens AAHJ, Karjalainen J, Uebe S, Melles RB, Nair KS, Luben R, Simcoe M, Amersinghe N, Cree AJ, Hohn R, Poplawski A, Chen LJ, Rong SS, Aung T, Vithana EN, Tamiya G, Shiga Y, Yamamoto M, Nakazawa T, Currant H, Birney E, Wang X, Auton A, Lupton MK, Martin NG, Ashaye A, Olawoye O, Williams SE, Akafo S, Ramsay M, Hashimoto K, Kamatani Y, Akiyama M, Momozawa Y, Foster PJ, Khaw PT, Morgan JE, Strouthidis NG, Kraft P, Kang JH, Pang CP, Pasutto F, Mitchell P, Lotery AJ, Palotie A, van Duijn C, Haines JL, Hammond C, Pasquale LR, Klaver CCW, Hauser M, Khor CC, Mackey DA, Kubo M, Cheng CY, Craig JE, MacGregor S, Wiggs JL. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun 2021; 12:1258. [PMID: 33627673 PMCID: PMC7904932 DOI: 10.1038/s41467-020-20851-4] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Primary open-angle glaucoma (POAG), is a heritable common cause of blindness world-wide. To identify risk loci, we conduct a large multi-ethnic meta-analysis of genome-wide association studies on a total of 34,179 cases and 349,321 controls, identifying 44 previously unreported risk loci and confirming 83 loci that were previously known. The majority of loci have broadly consistent effects across European, Asian and African ancestries. Cross-ancestry data improve fine-mapping of causal variants for several loci. Integration of multiple lines of genetic evidence support the functional relevance of the identified POAG risk loci and highlight potential contributions of several genes to POAG pathogenesis, including SVEP1, RERE, VCAM1, ZNF638, CLIC5, SLC2A12, YAP1, MXRA5, and SMAD6. Several drug compounds targeting POAG risk genes may be potential glaucoma therapeutic candidates.
Collapse
Affiliation(s)
- Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Pirro Hysi
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sarah Pendergrass
- Geisinger Research, Biomedical and Translational Informatics Institute, Danville, PA, USA
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jue Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, VIC, Australia
| | - Ayellet V Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - John M Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrew R Hamel
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Helene Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Ayub Qassim
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Navya S Josyula
- Geisinger Research, Biomedical and Translational Informatics Institute, Rockville, MD, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pieter W M Bonnemaijer
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Adriana Iglesias
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Owen M Siggs
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alberta A H J Thiadens
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | | | - K Saidas Nair
- Department of Ophthalmology, School of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Robert Luben
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mark Simcoe
- Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, Kings College London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, UK
| | | | - Angela J Cree
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rene Hohn
- Department of Ophthalmology, Inselspital, University Hospital Bern, University of Bern, Bern, Germany
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Mainz, Germany
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Song Rong
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eranga Nishanthie Vithana
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Republic of Singapore
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Hannah Currant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xin Wang
- 23 and Me Inc., San Francisco, CA, USA
| | | | | | | | - Adeyinka Ashaye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Olusola Olawoye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Akafo
- Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Paul J Foster
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - James E Morgan
- Cardiff Centre for Vision Sciences, College of Biomedical and Life Sciences, Maindy Road, Cardiff University, Cardiff, UK
| | - Nicholas G Strouthidis
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jae H Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Francesca Pasutto
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Andrew J Lotery
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chris Hammond
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Caroline C W Klaver
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Michael Hauser
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University, Durham, NC, USA
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, VIC, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Nedlands, WA, Australia
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Inflammation-Related Risk Loci in Genome-Wide Association Studies of Coronary Artery Disease. Cells 2021; 10:cells10020440. [PMID: 33669721 PMCID: PMC7921935 DOI: 10.3390/cells10020440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Although the importance of inflammation in atherosclerosis is now well established, the exact molecular processes linking inflammation to the development and course of the disease are not sufficiently understood. In this context, modern genetics—as applied by genome-wide association studies (GWAS)—can serve as a comprehensive and unbiased tool for the screening of potentially involved pathways. Indeed, a considerable proportion of loci discovered by GWAS is assumed to affect inflammatory processes. Despite many well-replicated association findings, however, translating genomic hits to specific molecular mechanisms remains challenging. This review provides an overview of the currently most relevant inflammation-related GWAS findings in coronary artery disease and explores their potential clinical perspectives.
Collapse
|
37
|
González-Loyola A, Petrova TV. Development and aging of the lymphatic vascular system. Adv Drug Deliv Rev 2021; 169:63-78. [PMID: 33316347 DOI: 10.1016/j.addr.2020.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature has a pivotal role in regulating body fluid homeostasis, immune surveillance and dietary fat absorption. The increasing number of in vitro and in vivo studies in the last decades has shed light on the processes of lymphatic vascular development and function. Here, we will discuss the current progress in lymphatic vascular biology such as the mechanisms of lymphangiogenesis, lymphatic vascular maturation and maintenance and the emerging mechanisms of lymphatic vascular aging.
Collapse
Affiliation(s)
- Alejandra González-Loyola
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Switzerland.
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Switzerland.
| |
Collapse
|
38
|
Ortiz-Fernández L, Saruhan-Direskeneli G, Alibaz-Oner F, Kaymaz-Tahra S, Coit P, Kong X, Kiprianos AP, Maughan RT, Aydin SZ, Aksu K, Keser G, Kamali S, Inanc M, Springer J, Akar S, Onen F, Akkoc N, Khalidi NA, Koening C, Karadag O, Kiraz S, Forbess L, Langford CA, McAlear CA, Ozbalkan Z, Yavuz S, Çetin GY, Alpay-Kanitez N, Chung S, Ates A, Karaaslan Y, McKinnon-Maksimowicz K, Monach PA, Ozer HT, Seyahi E, Fresko I, Cefle A, Seo P, Warrington KJ, Ozturk MA, Ytterberg SR, Cobankara V, Onat AM, Duzgun N, Bıcakcıgil M, Yentür SP, Lally L, Manfredi AA, Baldissera E, Erken E, Yazici A, Kısacık B, Kaşifoğlu T, Dalkilic E, Cuthbertson D, Pagnoux C, Sreih A, Reales G, Wallace C, Wren JD, Cunninghame-Graham DS, Vyse TJ, Sun Y, Chen H, Grayson PC, Tombetti E, Jiang L, Mason JC, Merkel PA, Direskeneli H, Sawalha AH. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. Am J Hum Genet 2021; 108:84-99. [PMID: 33308445 DOI: 10.1016/j.ajhg.2020.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Takayasu arteritis is a rare inflammatory disease of large arteries. We performed a genetic study in Takayasu arteritis comprising 6,670 individuals (1,226 affected individuals) from five different populations. We discovered HLA risk factors and four non-HLA susceptibility loci in VPS8, SVEP1, CFL2, and chr13q21 and reinforced IL12B, PTK2B, and chr21q22 as robust susceptibility loci shared across ancestries. Functional analysis proposed plausible underlying disease mechanisms and pinpointed ETS2 as a potential causal gene for chr21q22 association. We also identified >60 candidate loci with suggestive association (p < 5 × 10-5) and devised a genetic risk score for Takayasu arteritis. Takayasu arteritis was compared to hundreds of other traits, revealing the closest genetic relatedness to inflammatory bowel disease. Epigenetic patterns within risk loci suggest roles for monocytes and B cells in Takayasu arteritis. This work enhances understanding of the genetic basis and pathophysiology of Takayasu arteritis and provides clues for potential new therapeutic targets.
Collapse
|
39
|
Abstract
The lymphatic vasculature is a vital component of the vertebrate vascular system that mediates tissue fluid homeostasis, lipid uptake and immune surveillance. The development of the lymphatic vasculature starts in the early vertebrate embryo, when a subset of blood vascular endothelial cells of the cardinal veins acquires lymphatic endothelial cell fate. These cells sprout from the veins, migrate, proliferate and organize to give rise to a highly structured and unique vascular network. Cellular cross-talk, cell-cell communication and the interpretation of signals from surrounding tissues are all essential for coordinating these processes. In this chapter, we highlight new findings and review research progress with a particular focus on LEC migration and guidance, expansion of the LEC lineage, network remodeling and morphogenesis of the lymphatic vasculature.
Collapse
|
40
|
Winkler MJ, Müller P, Sharifi AM, Wobst J, Winter H, Mokry M, Ma L, van der Laan SW, Pang S, Miritsch B, Hinterdobler J, Werner J, Stiller B, Güldener U, Webb TR, Asselbergs FW, Björkegren JLM, Maegdefessel L, Schunkert H, Sager HB, Kessler T. Functional investigation of the coronary artery disease gene SVEP1. Basic Res Cardiol 2020; 115:67. [PMID: 33185739 PMCID: PMC7666586 DOI: 10.1007/s00395-020-00828-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE-/-Svep1+/-) compared to Svep1 wild-type mice (ApoE-/-Svep1+/+) and ApoE-/-Svep1+/- mice displayed elevated plaque neutrophil, Ly6Chigh monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE-/-Svep1+/- mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE-/-Svep1+/- mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Calcium-Binding Proteins/deficiency
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Chemokine CXCL1/genetics
- Chemokine CXCL1/metabolism
- Chemotaxis, Leukocyte
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Genetic Association Studies
- Genetic Predisposition to Disease
- Haploinsufficiency
- Humans
- Macrophages/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neutrophil Infiltration
- Neutrophils/pathology
- Plaque, Atherosclerotic
- Polymorphism, Single Nucleotide
- Proteins/genetics
- Proteins/metabolism
Collapse
Affiliation(s)
- Michael J Winkler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp Müller
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Amin M Sharifi
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jana Wobst
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hanna Winter
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
- Vascular Biology and Experimental Vascular Medicine Unit, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Michal Mokry
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sander W van der Laan
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shichao Pang
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Benedikt Miritsch
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Werner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Barbara Stiller
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Ulrich Güldener
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Tom R Webb
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Centre, Leicester, UK
| | - Folkert W Asselbergs
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, and Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Lars Maegdefessel
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
- Vascular Biology and Experimental Vascular Medicine Unit, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B Sager
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
41
|
Effect of Hypoxia Preconditioned Secretomes on Lymphangiogenic and Angiogenic Sprouting: An in Vitro Analysis. Biomedicines 2020; 8:biomedicines8090365. [PMID: 32962277 PMCID: PMC7555444 DOI: 10.3390/biomedicines8090365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia Preconditioned Plasma (HPP) and Serum (HPS) are two blood-derived autologous growth factor compositions that are being clinically employed as tools for promoting tissue regeneration, and have been extensively examined for their angiogenic activity. As yet, their ability to stimulate/support lymphangiogenesis remains unknown, although this is an important but often-neglected process in wound healing and tissue repair. Here we set out to characterize the potential of hypoxia preconditioned secretomes as promoters of angiogenic and lymphangiogenic sprouting in vitro. We first analysed HPP/HPS in terms of pro- (VEGF-C) and anti- (TSP-1, PF-4) angiogenic/lymphangiogenic growth factor concentration, before testing their ability to stimulate microvessel sprouting in the mouse aortic ring assay and lymphatic sprouting in the thoracic duct ring assay. The origin of lymphatic structures was validated with lymph-specific immunohistochemical staining (Anti-LYVE-1) and lymphatic vessel-associated protein (polydom) quantification in culture supernatants. HPP/HPS induced greater angiogenic and lymphatic sprouting compared to non-hypoxia preconditioned samples (normal plasma/serum), a response that was compatible with their higher VEGF-C concentration. These findings demonstrate that hypoxia preconditioned blood-derived secretomes have the ability to not only support sprouting angiogenesis, but also lymphangiogenesis, which underlines their multimodal regenerative potential.
Collapse
|
42
|
Chaudhury S, Okuda KS, Koltowska K, Lagendijk AK, Paterson S, Baillie GJ, Simons C, Smith KA, Hogan BM, Bower NI. Localised Collagen2a1 secretion supports lymphatic endothelial cell migration in the zebrafish embryo. Development 2020; 147:dev.190983. [PMID: 32839180 DOI: 10.1242/dev.190983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
Abstract
The lymphatic vasculature develops primarily from pre-existing veins. A pool of lymphatic endothelial cells (LECs) first sprouts from cardinal veins followed by migration and proliferation to colonise embryonic tissues. Although much is known about the molecular regulation of LEC fate and sprouting during early lymphangiogenesis, we know far less about the instructive and permissive signals that support LEC migration through the embryo. Using a forward genetic screen, we identified mbtps1 and sec23a, components of the COP-II protein secretory pathway, as essential for developmental lymphangiogenesis. In both mutants, LECs initially depart the cardinal vein but then fail in their ongoing migration. A key cargo that failed to be secreted in both mutants was a type II collagen (Col2a1). Col2a1 is normally secreted by notochord sheath cells, alongside which LECs migrate. col2a1a mutants displayed defects in the migratory behaviour of LECs and failed lymphangiogenesis. These studies thus identify Col2a1 as a key cargo secreted by notochord sheath cells and required for the migration of LECs. These findings combine with our current understanding to suggest that successive cell-to-cell and cell-matrix interactions regulate the migration of LECs through the embryonic environment during development.
Collapse
Affiliation(s)
- Smrita Chaudhury
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Peter MacCallum Cancer Centre, Organogenesis and Cancer Program, Melbourne, Victoria 3000, Australia
| | - Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Peter MacCallum Cancer Centre, Organogenesis and Cancer Program, Melbourne, Victoria 3000, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia .,Peter MacCallum Cancer Centre, Organogenesis and Cancer Program, Melbourne, Victoria 3000, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
43
|
Michelini S, Gasbarro V, Izzo M, Albergati FG. Study on the Therapeutic Efficacy of a Polyphitho Therapeutic Compound in Primary and Secondary Lymphedema. Lymphat Res Biol 2020; 19:66-72. [PMID: 32780622 DOI: 10.1089/lrb.2019.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role of the interstitial matrix in regulating exchanges and interactions at the level of the microvascular units, between the corpuscular component and the vascular and nerve structures, has long been known. Equally known are the objective and subjective clinical manifestations that these pathologies trigger in the patient, both in primary and secondary forms: embarrassment, asthenia, alterations of exteroceptive and proprioceptive sensitivity, pain, reduced capacity, and functional autonomy, affecting both the lower and the upper limbs. The authors studied 136 patients with I and II clinical stage lymphedema according to the International Society of Lymphology stadiation. Patients were treated with Lymdiaral, 20 drops three times a day for 90 consecutive days. The following parameters were examined in basal conditions and after treatment: ultrasound measurement of suprafascial thickness, short form healthy survey version 12 (SF12), body mass index, and limb circumferences in specific points of reference. The results demonstrate the effectiveness of the therapeutic principle both in the reduction of limb circumferences and in the improvement of the parameters related to the quality of life expressed by the SF12 items. There were no substantial differences in the results between primary and secondary forms.
Collapse
Affiliation(s)
- Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, Rome, Italy
| | | | - Marcello Izzo
- Department of Vascular Surgery, Ferrara University, Ferrara, Italy
| | - Francesco G Albergati
- Center of Microcirculation and Microangiology-High Speciality Care and Research Medical Institute, Monza Policlinic, Monza, Italy
| |
Collapse
|
44
|
Soloyan H, Thornton M, Villani V, Khatchadourian P, Cravedi P, Angeletti A, Grubbs B, De Filippo R, Perin L, Sedrakyan S. Glomerular endothelial cell heterogeneity in Alport syndrome. Sci Rep 2020; 10:11414. [PMID: 32651395 PMCID: PMC7351764 DOI: 10.1038/s41598-020-67588-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/09/2020] [Indexed: 11/09/2022] Open
Abstract
Glomerular endothelial cells (GEC) are a crucial component of the glomerular physiology and their damage contributes to the progression of chronic kidney diseases. How GEC affect the pathology of Alport syndrome (AS) however, is unclear. We characterized GEC from wild type (WT) and col4α5 knockout AS mice, a hereditary disorder characterized by progressive renal failure. We used endothelial-specific Tek-tdTomato reporter mice to isolate GEC by FACS and performed transcriptome analysis on them from WT and AS mice, followed by in vitro functional assays and confocal and intravital imaging studies. Biopsies from patients with chronic kidney disease, including AS were compared with our findings in mice. We identified two subpopulations of GEC (dimtdT and brighttdT) based on the fluorescence intensity of the TektdT signal. In AS mice, the brighttdT cell number increased and presented differential expression of endothelial markers compared to WT. RNA-seq analysis revealed differences in the immune and metabolic signaling pathways. In AS mice, dimtdT and brighttdT cells had different expression profiles of matrix-associated genes (Svep1, Itgβ6), metabolic activity (Apom, Pgc1α) and immune modulation (Apelin, Icam1) compared to WT mice. We confirmed a new pro-inflammatory role of Apelin in AS mice and in cultured human GEC. Gene modulations were identified comparable to the biopsies from patients with AS and focal segmental glomerulosclerosis, possibly indicating that the same mechanisms apply to humans. We report the presence of two GEC subpopulations that differ between AS and healthy mice or humans. This finding paves the way to a better understanding of the pathogenic role of GEC in AS progression and could lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Hasmik Soloyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, 4661 Sunset Boulevard MS #35, Los Angeles, CA, 90027, USA
| | - Matthew Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, USA
| | - Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, 4661 Sunset Boulevard MS #35, Los Angeles, CA, 90027, USA
| | - Patrick Khatchadourian
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, 4661 Sunset Boulevard MS #35, Los Angeles, CA, 90027, USA
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Andrea Angeletti
- Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, USA
| | - Roger De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, 4661 Sunset Boulevard MS #35, Los Angeles, CA, 90027, USA.,Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, 4661 Sunset Boulevard MS #35, Los Angeles, CA, 90027, USA.,Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, 4661 Sunset Boulevard MS #35, Los Angeles, CA, 90027, USA. .,Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
45
|
Wang G, Muhl L, Padberg Y, Dupont L, Peterson-Maduro J, Stehling M, le Noble F, Colige A, Betsholtz C, Schulte-Merker S, van Impel A. Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis. Nat Commun 2020; 11:2724. [PMID: 32483144 PMCID: PMC7264274 DOI: 10.1038/s41467-020-16552-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis.
Collapse
Affiliation(s)
- Guangxia Wang
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Lars Muhl
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yvonne Padberg
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Laura Dupont
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Liege, Belgium
| | | | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Zoological Institute and Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) partner site, Heidelberg/Mannheim, Germany
| | - Alain Colige
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Liege, Belgium
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany. .,Faculty of Medicine, WWU Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany.
| | - Andreas van Impel
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany. .,Faculty of Medicine, WWU Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany.
| |
Collapse
|
46
|
The novel miR-1269b-regulated protein SVEP1 induces hepatocellular carcinoma proliferation and metastasis likely through the PI3K/Akt pathway. Cell Death Dis 2020; 11:320. [PMID: 32371982 PMCID: PMC7200779 DOI: 10.1038/s41419-020-2535-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/05/2022]
Abstract
Decreased intercellular adhesion is a key step in the metastasis and recurrence of many cancers, including hepatocellular carcinoma (HCC). SVEP1 is an important cell adhesion molecule that plays a key role in regulating intercellular adhesion and embryonic lymphatic development. However, the expression patterns and roles of SVEP1 in HCC are still largely unknown. We identified SVEP1 expression by analyzing 220 HCC samples from our cancer center. TCGA and GEO online-databases were used for data calibration and validation. SVEP1 was differentially expressed in two groups of HCCs with different risks of recurrence and was deemed as an independent risk factor for the prognosis of HCC. The expression of SVEP1 is negatively related to the proliferation and metastasis of HCC. Downregulation of SVEP1 expression promoted in vitro HCC cell migration, chemotaxis, invasion and proliferation, as well as in vivo tumor growth, local invasion and metastasis in a mouse model. Bioinformatic analysis and RT-PCR results showed that miR-1269b expression is negatively correlated with the SVEP1 expression and the prognosis of HCC patients. Further experiments showed that miR-1269b directly targets and downregulates the expression of SVEP1, which further induces the phosphorylation of Akt at thr308. These regulatory effects ultimately mediate the proliferation and metastasis of HCC cells. SVEP1 could serve as a promising prognostic marker of HCC. MiR-1269b downregulates SVEP1 expression and promotes HCC proliferation and metastasis likely through the PI3k/Akt signaling pathway.
Collapse
|
47
|
Genetic Polymorphisms in Sepsis and Cardiovascular Disease: Do Similar Risk Genes Suggest Similar Drug Targets? Chest 2019; 155:1260-1271. [PMID: 30660782 DOI: 10.1016/j.chest.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic variants are associated with altered clinical outcome of patients with sepsis and cardiovascular diseases. Common gene signaling pathways may be involved in the pathophysiology of these diseases. A better understanding of genetic commonality among these diseases may enable the discovery of important genes, signaling pathways, and therapeutic targets for these diseases. We investigated the common genetic factors by a systematic search of the literature. Twenty-four genes (ADRB2, CD14, FGB, FV, HMOX1, IL1B, IL1RN, IL6, IL10, IL17A, IRAK1, MASP2, MBL, MIR608, MIF, NOD2, PCSK9, PPARG, PROC, SERPINE1, SOD2, SVEP1, TF, TIRAP, TLR1) were extracted as reported genetic variations associated with altered outcome of both sepsis and cardiovascular diseases. Of these genes, the adverse allele (or combinations) was same in nine (ADRB2, FV, HMOX1, IL6, MBL, MIF, NOD2, PCSK9, SERPINE1), and the effect appears to be in the same direction in both sepsis and cardiovascular disease. Shared gene signaling pathways suggest that these are true biological results and could point to overlapping drug targets in sepsis and cardiovascular disease.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Zebrafish has provided a powerful platform to study vascular biology over the past 25 years, owing to their distinct advantages for imaging and genetic manipulation. In this review, we summarize recent progress in vascular biology with particular emphasis on vascular development in zebrafish. RECENT FINDINGS The advent of transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome-editing technologies has dramatically facilitated reverse genetic approaches in zebrafish, as in other models. Here, we highlight recent studies on vascular development in zebrafish which mainly employed forward or reverse genetics combined with high-resolution imaging. These studies have advanced our understanding of diverse areas in vascular biology, including transcriptional regulation of endothelial cell differentiation, endothelial cell signaling during angiogenesis and lymphangiogenesis, vascular bed-specific developmental mechanisms, and perivascular cell recruitment. SUMMARY The unique attributes of the zebrafish model have allowed critical cellular and molecular insights into fundamental mechanisms of vascular development. Knowledge acquired through recent zebrafish work further advances our understanding of basic mechanisms underlying vascular morphogenesis, maintenance, and homeostasis. Ultimately, insights provided by the zebrafish model will help to understand the genetic, cellular, and molecular underpinnings of human vascular malformations and diseases.
Collapse
|
49
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
50
|
Capuano A, Pivetta E, Baldissera F, Bosisio G, Wassermann B, Bucciotti F, Colombatti A, Sabatelli P, Doliana R, Spessotto P. Integrin binding site within the gC1q domain orchestrates EMILIN-1-induced lymphangiogenesis. Matrix Biol 2018; 81:34-49. [PMID: 30408617 DOI: 10.1016/j.matbio.2018.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/10/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
Lymphatic vessels (LVs) play a pivotal role in the control of tissue homeostasis and also have emerged as important regulators of immunity, inflammation and tumor metastasis. EMILIN-1 is the first ECM protein identified as a structural modulator of the growth and maintenance of LV; accordingly, Emilin1-/- mice display lymphatic morphological alterations leading to functional defects as mild lymphedema, leakage and compromised lymph drainage. Many EMILIN-1 functions are exerted by the binding of its gC1q domain with the E933 residue of α4 and α9β1 integrins. To investigate the specific regulatory role of this domain on lymphangiogenesis, we generated a transgenic mouse model expressing an E933A-mutated EMILIN-1 (E1-E933A), unable to interact with α4 or α9 integrin. The mutant resulted in abnormal LV architecture with dense, tortuous and irregular networks; moreover, the number of anchoring filaments was reduced and collector valves had aberrant narrowed structures. E933A mutation also affected lymphatic function in lymphangiography assays and made the transgenic mice more prone to lymph node metastases. The finding that the gC1q/integrin interaction is crucial for a correct lymphangiogenesis response was confirmed and reinforced by functional in vitro tubulogenesis assays. In addition, ex vivo thoracic-duct ring assays revealed that E1-E933A-derived lymphatic endothelial cells had a severe reduction in sprouting capacity and were unable to organize into capillary-like structures. All these data provide evidence that the novel "regulatory structural" role of EMILIN-1 in the lymphangiogenic process is played by the integrin binding site within its gC1q domain.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Baldissera
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giulia Bosisio
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Bruna Wassermann
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesco Bucciotti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Alfonso Colombatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | - Roberto Doliana
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Paola Spessotto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|