1
|
Sun X, Li J, Dong P, Li L, Gu Z, Yuan J. Antioxidant and anti-apoptotic properties of heme oxygenase-1 in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110348. [PMID: 40254088 DOI: 10.1016/j.fsi.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/30/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Heme oxygenase-1 (HO-1), which is significantly induced in response to oxidative stress, plays a crucial role in mitigating oxidative damage. However, the function of HO-1 in crayfish remains unknown. In this study, HO-1 in Procambarus clarkii (PcHO-1) was identified, and its functional domain was conserved across different species based on sequence alignment and structural prediction. Through RT-qPCR analysis, PcHO-1 showed the highest expression level in the hepatopancreas. Under the stimulation of Aeromonas hydrophila or glufosinate ammonium (GLA), the crayfish showed oxidative stress damage, whereas the expression levels of PcHO-1 were increased. Knocking down of PcHO-1 with RNA interference significantly reduced the antioxidant capacity of crayfish compared to the control group under A. hydrophila or GLA stimulation. Furthermore, the expression level of PcHO-1 increased after induction with CoPPIX, which increased the antioxidant level of crayfish and reduced the apoptosis. These findings indicated that PcHO-1 manifests the antioxidant and anti-apoptotic capacity, thereby aiding in the repairing of damage caused by A. hydrophila or GLA in P. clarkii.
Collapse
Affiliation(s)
- Xingye Sun
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, China
| | - Jiahao Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Hubei Engineering Research Centre for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Peixiang Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, China; Hubei Engineering Research Centre for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, China; Hubei Engineering Research Centre for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, China; Hubei Engineering Research Centre for Aquatic Animal Diseases Control and Prevention, Wuhan, China.
| |
Collapse
|
2
|
Xian X, Zhao X, Zhou X, Liu H, Li C, Wu X, Chen Y, Ye K, Yang H, Li M, Yan J, Zhang X. Honokiol attenuates oxidative stress and vascular calcification via the upregulation of heme oxygenase-1 in chronic kidney disease. Toxicol Appl Pharmacol 2025; 499:117318. [PMID: 40194744 DOI: 10.1016/j.taap.2025.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD), with oxidative stress identified as a key contributor to VC progression. Honokiol (HKL), a biphenolic compound derived from plants, has been found to be effective in treating various models of cardiovascular disease through the mitigation of oxidative stress. However, its effects on VC remain unexplored. To elucidate the effects of HKL on VC, a CKD rat model, a vitamin D3-overload-induced mouse model of vascular calcification, and a high-phosphate-induced human vascular smooth muscle cell (VSMC) calcification model were established. Calcification levels were assessed using alizarin red staining, calcium quantification, and western blotting of osteogenic markers. Oxidative stress was assessed by measuring reactive oxygen species. Furthermore, transcriptome sequencing was employed to identify molecules and pathways affected by HKL. HKL was found to significantly reduce calcification in both in vivo and in vitro models. It also mitigated oxidative stress induced by high phosphate in human VSMCs. Mechanistically, HKL upregulated heme oxygenase-1 (HMOX-1), thereby inhibiting oxidative stress and reducing calcification. Pharmacological inhibition of HMOX-1 counteracted the protective effect of HKL against vascular calcification. In summary, the findings suggest that HKL ameliorates VC by upregulating HMOX-1 and decreasing oxidative stress.
Collapse
MESH Headings
- Oxidative Stress/drug effects
- Animals
- Vascular Calcification/drug therapy
- Vascular Calcification/enzymology
- Vascular Calcification/prevention & control
- Vascular Calcification/pathology
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Lignans/pharmacology
- Lignans/therapeutic use
- Humans
- Male
- Up-Regulation/drug effects
- Mice
- Rats
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Antioxidants/pharmacology
- Cells, Cultured
- Allyl Compounds
- Phenols
Collapse
Affiliation(s)
- Xuemin Xian
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xin Zhao
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xingchen Zhou
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Hanfang Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Changxi Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xinquan Wu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Yuhang Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Keyue Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Hongwei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Mingxi Li
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| |
Collapse
|
3
|
Ma T, Gan G, Cheng J, Shen Z, Zhang G, Liu S, Hu J. Engineered Probiotics Enable Targeted Gut Delivery of Dual Gasotransmitters for Inflammatory Bowel Disease Therapy. Angew Chem Int Ed Engl 2025; 64:e202502588. [PMID: 40091878 DOI: 10.1002/anie.202502588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Inflammatory bowel disease (IBD) remains an incurable condition, often accompanied by high rates of anxiety and depression, further diminishing the quality of life of patients. Endogenous gasotransmitters, such as carbon monoxide (CO) and hydrogen sulfide (H₂S), exhibit potent anti-inflammatory and immunomodulatory effects. However, their therapeutic application is limited by challenges in targeted delivery to affected tissues. Here, we propose a novel strategy for targeted gut delivery of CO/H2S through engineering Escherichia coli Nissle 1917 (EcN) with CO/H2S-releasing copolymer (POSR) loading. This engineered probiotic (POSR@EcN) enhances EcN colonization in the intestine and enables controlled, localized release of CO/H2S at inflamed sites. The release of CO/H2S modulates inflammation, restores intestinal barrier integrity, and reshapes gut microbiota by promoting beneficial bacteria and increasing short-chain fatty acids production, effectively alleviating IBD symptoms. Notably, targeted CO/H2S delivery also elevates neuroprotective metabolites like indoleacetic acid and γ-aminobutyric acid, reducing neuroinflammation via the gut-brain axis and mitigating anxiety- and depression-like behaviors in IBD mice. This approach highlights the potential of EcN as a probiotic carrier for the targeted delivery of gasotransmitters, offering a promising strategy for IBD treatment.
Collapse
Affiliation(s)
- Tengfei Ma
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, and State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guihai Gan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, and State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jian Cheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, and State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, and State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, and State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, and State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, and State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
4
|
Lucchesi M, Di Marsico L, Guidotti L, Lulli M, Filippi L, Marracci S, Dal Monte M. Hypoxia-Dependent Upregulation of VEGF Relies on β3-Adrenoceptor Signaling in Human Retinal Endothelial and Müller Cells. Int J Mol Sci 2025; 26:4043. [PMID: 40362282 PMCID: PMC12071845 DOI: 10.3390/ijms26094043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
β-adrenoceptors (BARs) are involved in vascular endothelial growth factor (VEGF) production during retinal neovascularization. Here, using human retinal endothelial and Müller cells (hRECs and MIO-M1, respectively), we evaluated the effects exerted by hypoxia on BARs, hypoxia-inducible factor-1α subunit (HIF-1α) and VEGF, as well as the involvement of BAR3 and nitric oxide synthase (NOS) enzymes in hypoxia-induced VEGF production. We altered oxygen availability through a hypoxic incubator. BARs, HIF-1 α and VEGF levels were evaluated. Cells were treated with the BAR3 antagonist SR59230A, different NOS inhibitors or the NO donor SNAP. The influence of the BAR3/NOS axis on hypoxic VEGF production was assessed. Hypoxia upregulated BAR3, HIF-1α and VEGF in hRECs and MIO-M1 cells. SR59230A counteracted hypoxia-dependent VEGF increase in both cell lines, exerting no effect on HIF-1α upregulation. Treatments with NOS inhibitors prevented the hypoxia-dependent VEGF increase, while SNAP abrogated the effect of SR59230A in reducing hypoxia-induced VEGF upregulation. The present results corroborate the hypothesis that in the hypoxic retina, BAR3 influence on VEGF production is mediated by NO and suggest that, at least in endothelial and Müller cells, BAR3 activity is necessary to allow the HIF-1-mediated VEGF upregulation.
Collapse
Affiliation(s)
- Martina Lucchesi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.L.); (L.D.M.); (L.G.); (S.M.)
| | - Lorenza Di Marsico
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.L.); (L.D.M.); (L.G.); (S.M.)
| | - Lorenzo Guidotti
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.L.); (L.D.M.); (L.G.); (S.M.)
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy;
| | - Luca Filippi
- Department of Clinical and Experimental Medicine, Division of Neonatology and NICU, University of Pisa, 56126 Pisa, Italy;
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.L.); (L.D.M.); (L.G.); (S.M.)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.L.); (L.D.M.); (L.G.); (S.M.)
| |
Collapse
|
5
|
Mahan VL. Heme oxygenase/carbon monoxide system and development of the heart. Med Gas Res 2025; 15:10-22. [PMID: 39324891 PMCID: PMC11515065 DOI: 10.4103/mgr.medgasres-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 09/27/2024] Open
Abstract
Progressive differentiation controlled by intercellular signaling between pharyngeal mesoderm, foregut endoderm, and neural crest-derived mesenchyme is required for normal embryonic and fetal development. Gasotransmitters (criteria: 1) a small gas molecule; 2) freely permeable across membranes; 3) endogenously and enzymatically produced and its production regulated; 4) well-defined and specific functions at physiologically relevant concentrations; 5) functions can be mimicked by exogenously applied counterpart; and 6) cellular effects may or may not be second messenger-mediated, but should have specific cellular and molecular targets) are integral to gametogenesis and subsequent embryogenesis, fetal development, and normal heart maturation. Important for in utero development, the heme oxygenase/carbon monoxide system is expressed during gametogenesis, by the placenta, during embryonic development, and by the fetus. Complex sequences of biochemical pathways result in the progressive maturation of the human heart in utero . The resulting myocardial architecture, consisting of working myocardium, coronary arteries and veins, epicardium, valves and cardiac skeleton, endocardial lining, and cardiac conduction system, determines function. Oxygen metabolism in normal and maldeveloping hearts, which develop under reduced and fluctuating oxygen concentrations, is poorly understood. "Normal" hypoxia is critical for heart formation, but "abnormal" hypoxia in utero affects cardiogenesis. The heme oxygenase/carbon monoxide system is important for in utero cardiac development, and other factors also result in alterations of the heme oxygenase/carbon monoxide system during in utero cardiac development. This review will address the role of the heme oxygenase/carbon monoxide system during cardiac development in embryo and fetal development.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Drexel University Medical School, Phildelphia, PA, USA
| |
Collapse
|
6
|
Ng C, Kim M, Yanti, Kwak MK. Oxidative stress and NRF2 signaling in kidney injury. Toxicol Res 2025; 41:131-147. [PMID: 40013079 PMCID: PMC11850685 DOI: 10.1007/s43188-024-00272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 02/28/2025] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and the AKI-to-CKD transition. This review examines the intricate relationship between oxidative stress and kidney pathophysiology, emphasizing the potential therapeutic role of nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of cellular redox homeostasis. In diverse AKI and CKD models, diminished NRF2 activity exacerbates oxidative stress, whereas genetic and pharmacological NRF2 activation alleviates kidney damage induced by nephrotoxic agents, ischemia-reperfusion injury, fibrotic stimuli, and diabetic nephropathy. The renoprotective effects of NRF2 extend beyond antioxidant defense, encompassing its anti-inflammatory and anti-fibrotic properties. The significance of NRF2 in renal fibrosis is further underscored by its interaction with the transforming growth factor-β signaling cascade. Clinical trials using bardoxolone methyl, a potent NRF2 activator, have yielded both encouraging and challenging outcomes, illustrating the intricacy of modulating NRF2 in human subjects. In summary, this overview suggests the therapeutic potential of targeting NRF2 in kidney disorders and highlights the necessity for continued research to refine treatment approaches.
Collapse
Affiliation(s)
- Cherry Ng
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
| | - Maxine Kim
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
| | - Yanti
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930 Indonesia
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-Ro, Bucheon, Gyeonggi-do 14662 Republic of Korea
| |
Collapse
|
7
|
Song H, Li Q, Gui X, Fang Z, Zhou W, Wang M, Jiang Y, Geng A, Shen X, Liu Y, Zhang H, Nie Z, Zhang L, Zhu H, Zhang F, Li X, Luo F, Zhang H, Shen W, Sun X. Endothelial protein C receptor promotes retinal neovascularization through heme catabolism. Nat Commun 2025; 16:1603. [PMID: 39948347 PMCID: PMC11825934 DOI: 10.1038/s41467-025-56810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Pathological retinal neovascularization (RNV) is one of the leading causes of blindness worldwide; however, its underlying mechanism remains unclear. Here, we found that the expression of endothelial protein C receptor (Epcr) was increased during RNV, and its ligand was elevated in the serum or vitreous body of patients with proliferative diabetic retinopathy. Deleting endothelial Epcr or using an EPCR-neutralizing antibody ameliorated pathological retinal angiogenesis. EPCR promoted endothelial heme catabolism and carbon monoxide release through heme oxygenase 1 (HO-1). Inhibition of heme catabolism by deleting endothelial Ho-1 or using an HO-1 inhibitor suppressed pathological angiogenesis in retinopathy. Conversely, supplementation with carbon monoxide rescued the angiogenic defects after endothelial Epcr or Ho-1 deletion. Our results identified EPCR-dependent endothelial heme catabolism as an important contributor to pathological angiogenesis, which may serve as a potential target for treating vasoproliferative retinopathy.
Collapse
Affiliation(s)
- Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
- Department of Ophthalmology, Yuanwang Hospital, Wuxi, China
| | - Ziyu Fang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Wen Zhou
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Mengzhu Wang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Yuxin Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Ajun Geng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxuan Liu
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Lin Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Huimin Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongjian Zhang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China.
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, 999 Shiguang Road, Shanghai, China.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
| |
Collapse
|
8
|
Wang C, Lv J, Yang M, Fu Y, Wang W, Li X, Yang Z, Lu J. Recent advances in surface functionalization of cardiovascular stents. Bioact Mater 2025; 44:389-410. [PMID: 39539518 PMCID: PMC11558551 DOI: 10.1016/j.bioactmat.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading global threat to human health. The clinical application of vascular stents improved the survival rates and quality of life for patients with cardiovascular diseases. However, despite the benefits stents bring to patients, there are still notable complications such as thrombosis and in-stent restenosis (ISR). Surface modification techniques represent an effective strategy to enhance the clinical efficacy of vascular stents and reduce complications. This paper reviews the development strategies of vascular stents based on surface functional coating technologies aimed at addressing the limitations in clinical application, including the inhibition of intimal hyperplasia, promotion of re-endothelialization. These strategies have improved endothelial repair and inhibited vascular remodeling, thereby promoting vascular healing post-stent implantation. However, the pathological microenvironment of target vessels and the lipid plaques are key pathological factors in the development of atherosclerosis (AS) and impaired vascular repair after percutaneous coronary intervention (PCI). Therefore, restoring normal physiological environment and removing the plaques are also treatment focuses after PCI for promoting vascular repair. Unfortunately, research in this area is limited. This paper reviews the advancements in vascular stents based on surface engineering technologies over the past decade, providing guidance for the development of stents.
Collapse
Affiliation(s)
- Chuanzhe Wang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jie Lv
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Mengyi Yang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yan Fu
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Wenxuan Wang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xin Li
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, 610072, Chengdu, Sichuan, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jing Lu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Wang L, Zhao Z, Shu K, Ma M. MPCD Index for Hepatocellular Carcinoma Patients Based on Mitochondrial Function and Cell Death Patterns. Int J Mol Sci 2024; 26:118. [PMID: 39795978 PMCID: PMC11719604 DOI: 10.3390/ijms26010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with a poor prognosis. During the development of cancer cells, mitochondria influence various cell death patterns by regulating metabolic pathways such as oxidative phosphorylation. However, the relationship between mitochondrial function and cell death patterns in HCC remains unclear. In this study, we used a comprehensive machine learning framework to construct a mitochondrial functional activity-associated programmed cell death index (MPCDI) based on scRNA-seq and RNA-seq data from TCGA, GEO, and ICGC datasets. The index signature was used to classify HCC patients, and studied the multi-omics features, immune microenvironment, and drug sensitivity of the subtypes. Finally, we constructed the MPCDI signature consisting of four genes (S100A9, FYN, LGALS3, and HMOX1), which was one of the independent risk factors for the prognosis of HCC patients. The HCC patients were divided into high- and low-MPCDI groups, and the immune status was different between the two groups. Patients with a high MPCDI had higher TIDE scores and poorer responses to immunotherapy, suggesting that high-MPCDI patients might not be suitable for immunotherapy. By analyzing the drug sensitivity data of CTRP, GDSC, and PRISM databases, it was found that staurosporine has potential therapeutic significance for patients with a high MPCDI. In summary, based on the characteristics of mitochondria function and PCD patterns, we used single-cell and transcriptome data to identify four genes and construct the MPCDI signature, which provided new perspectives and directions for the clinical diagnosis and personalized treatment of HCC patients.
Collapse
Affiliation(s)
- Longxing Wang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (L.W.); (Z.Z.); (K.S.)
| | - Zhiming Zhao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (L.W.); (Z.Z.); (K.S.)
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (L.W.); (Z.Z.); (K.S.)
| | - Mingyue Ma
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (L.W.); (Z.Z.); (K.S.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Zhang W, Yuan C, An X, Guo T, Wei C, Lu Z, Liu J. Genomic Insights into Tibetan Sheep Adaptation to Different Altitude Environments. Int J Mol Sci 2024; 25:12394. [PMID: 39596459 PMCID: PMC11594602 DOI: 10.3390/ijms252212394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, research has gradually uncovered the mechanisms of animal adaptation to hypoxic conditions in different altitude environments, particularly at the genomic level. However, past genomic studies on high-altitude adaptation have often not delved deeply into the differences between varying altitude levels. This study conducted whole-genome sequencing on 60 Tibetan sheep (Medium Altitude Group (MA): 20 Tao sheep (TS) at 2887 m, High Altitude Group (HA): 20 OuLa sheep (OL) at 3501 m, and Ultra-High Altitude Group (UA): 20 AWang sheep (AW) at 4643 m) from different regions of the Tibetan Plateau in China to assess their responses under varying conditions. Population genetic structure analysis revealed that the three groups are genetically independent, but the TS and OL groups have experienced gene flow with other northern Chinese sheep due to geographical factors. Selection signal analysis identified FGF10, MMP14, SLC25A51, NDUFB8, ALAS1, PRMT1, PRMT5, and HIF1AN as genes associated with ultra-high-altitude hypoxia adaptation, while HMOX2, SEMA4G, SLC16A2, SLC22A17, and BCL2L2 were linked to high-altitude hypoxia adaptation. Functional analysis showed that ultra-high-altitude adaptation genes tend to influence physiological mechanisms directly affecting oxygen uptake, such as lung development, angiogenesis, and red blood cell formation. In contrast, high-altitude adaptation genes are more inclined to regulate mitochondrial DNA replication, iron homeostasis, and calcium signaling pathways to maintain cellular function. Additionally, the functions of shared genes further support the adaptive capacity of Tibetan sheep across a broad geographic range, indicating that these genes offer significant selective advantages in coping with oxygen scarcity. In summary, this study not only reveals the genetic basis of Tibetan sheep adaptation to different altitudinal conditions but also highlights the differences in gene regulation between ultra-high- and high-altitude adaptations. These findings offer new insights into the adaptive evolution of animals in extreme environments and provide a reference for exploring adaptation mechanisms in other species under hypoxic conditions.
Collapse
Affiliation(s)
- Wentao Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
11
|
Chudy P, Kochan J, Wawro M, Nguyen P, Gorczyca M, Varanko A, Retka A, Ghadei SS, Napieralska E, Grochot-Przęczek A, Szade K, Berendes LS, Park J, Sokołowski G, Yu Q, Józkowicz A, Nowak WN, Krzeptowski W. Heme oxygenase-1 protects cells from replication stress. Redox Biol 2024; 75:103247. [PMID: 39047636 PMCID: PMC11321372 DOI: 10.1016/j.redox.2024.103247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.
Collapse
Affiliation(s)
- Patryk Chudy
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Phu Nguyen
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gorczyca
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aliaksandra Varanko
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Retka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Swati Sweta Ghadei
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Emilija Napieralska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lea-Sophie Berendes
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Julien Park
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Grzegorz Sokołowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold N Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; August Chełkowski Institute of Physics, Faculty of Science and Technology, University of Silesia, Chorzów, Poland.
| | - Wojciech Krzeptowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
12
|
Florczyk-Soluch U, Polak K, Jelinkova S, Bronisz-Budzyńska I, Sabo R, Bolisetty S, Agarwal A, Werner E, Józkowicz A, Stępniewski J, Szade K, Dulak J. Targeted expression of heme oxygenase-1 in satellite cells improves skeletal muscle pathology in dystrophic mice. Skelet Muscle 2024; 14:13. [PMID: 38867250 PMCID: PMC11167827 DOI: 10.1186/s13395-024-00346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD. METHODS We generated double-transgenic mouse model (mdx;HMOX1Pax7Ind) that allows tamoxifen (TX)-inducible HMOX1 expression in Pax7 positive cells of dystrophic muscles. Mdx;HMOX1Pax7Ind and control mdx mice were subjected to 5-day TX injections (75 mg/kg b.w.) followed by acute exercise protocol with high-speed treadmill (12 m/min, 45 min) and downhill running to worsen skeletal muscle phenotype and reveal immediate effects of HO-1 on muscle pathology and SC function. RESULTS HMOX1 induction caused a drop in SC pool in mdx;HMOX1Pax7Ind mice (vs. mdx counterparts), while not exaggerating the effect of physical exercise. Upon physical exercise, the proliferation of SCs and activated CD34- SC subpopulation, was impaired in mdx mice, an effect that was reversed in mdx;HMOX1Pax7Ind mice, however, both in vehicle- and TX-treated animals. This corresponded to the pattern of HO-1 expression in skeletal muscles. At the tissue level, necrotic events of selective skeletal muscles of mdx mice and associated increase in circulating levels of muscle damage markers were blunted in HO-1 transgenic animals which showed also anti-inflammatory cytokine profile (vs. mdx). CONCLUSIONS Targeted expression of HMOX1 plays protective role in DMD and alleviates dystrophic muscle pathology.
Collapse
MESH Headings
- Animals
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Satellite Cells, Skeletal Muscle/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mice
- PAX7 Transcription Factor/genetics
- PAX7 Transcription Factor/metabolism
- Male
- Mice, Inbred C57BL
- Physical Conditioning, Animal
- Membrane Proteins
Collapse
Affiliation(s)
- Urszula Florczyk-Soluch
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Polak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Sarka Jelinkova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Iwona Bronisz-Budzyńska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Reece Sabo
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Laboratory of Stem Cells Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
13
|
Alla SSM, Agarwal P, Shah DJ, Shajahan WA, Ramsundar R, Alla D, Ravulapalli M, Bora S, Pillai S, Bayeh RG, Repalle UK, Suhani F. A rare case of heme oxygenase deficiency: A case report and literature review. Clin Case Rep 2024; 12:e8986. [PMID: 38799538 PMCID: PMC11116474 DOI: 10.1002/ccr3.8986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Heme oxygenase deficiency, a rare condition disrupting heme metabolism, has only nine reported cases. We present a 3-year-old boy with dysmorphic facies, asplenia, and normal bilirubin levels despite ongoing hemolysis. Blood transfusions sustained hemoglobin while IV steroids managed inflammation.
Collapse
Affiliation(s)
| | | | - Dhruv J. Shah
- Massachusetts College of Pharmacy and Health SciencesBostonMassachusettsUSA
| | | | - Rakshna Ramsundar
- Sri Ramachandra Institute of Higher Education and Research (Deemed to be University)ChennaiIndia
| | | | | | - Satya Bora
- Dr Pinnamaneni Siddhartha Institute of Medical Sciences and Research FoundationChinna AvutapalleIndia
| | | | - Ruth G. Bayeh
- Adama General Hospital and Medical CollegeNazretEthiopia
| | - Uday Kumar Repalle
- Dr Pinnamaneni Siddhartha Institute of Medical Sciences and Research FoundationChinna AvutapalleIndia
| | - Fnu Suhani
- Dayanand Medical College and HospitalLudhianaIndia
| |
Collapse
|
14
|
D’Amico AG, Maugeri G, Vanella L, Consoli V, Sorrenti V, Bruno F, Federico C, Fallica AN, Pittalà V, D’Agata V. Novel Acetamide-Based HO-1 Inhibitor Counteracts Glioblastoma Progression by Interfering with the Hypoxic-Angiogenic Pathway. Int J Mol Sci 2024; 25:5389. [PMID: 38791428 PMCID: PMC11121434 DOI: 10.3390/ijms25105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers many signaling cascades responsible for cancer progression and aggressiveness, including enhanced expression of vascular endothelial growth factor (VEGF) or antioxidant enzymes, such as heme oxygenase-1 (HO-1). The present work aimed to investigate the link between HO-1 expression and the hypoxic microenvironment of GBM by culturing two human glioblastoma cell lines (U87MG and A172) in the presence of a hypoxic mimetic agent, deferoxamine (DFX). By targeting hypoxia-induced HO-1, we have tested the effect of a novel acetamide-based HO-1 inhibitor (VP18/58) on GBM progression. Results have demonstrated that hypoxic conditions induced upregulation and nuclear expression of HO-1 in a cell-dependent manner related to malignant phenotype. Moreover, our data demonstrated that the HO-1 inhibitor counteracted GBM progression by modulating the HIFα/HO-1/VEGF signaling cascade in cancer cells bearing more malignant phenotypes.
Collapse
Affiliation(s)
- Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy (C.F.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy (C.F.)
| | - Antonino Nicolò Fallica
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama 329, Bahrain
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| |
Collapse
|
15
|
Kim RJ, Park HB. Protective and Regenerative Effects of Reconstituted HDL on Human Rotator Cuff Fibroblasts under Hypoxia: An In Vitro Study. Antioxidants (Basel) 2024; 13:497. [PMID: 38671944 PMCID: PMC11047627 DOI: 10.3390/antiox13040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia and hypo-high-density lipoproteinemia (hypo-HDLemia) are proposed risk factors for rotator cuff tear. HDL is recognized for its potential benefits in ischemia-driven angiogenesis and wound healing. Nevertheless, research on the potential benefits of reconstituted HDL (rHDL) on human rotator cuff fibroblasts (RCFs) under hypoxia is limited. This study investigates the cytoprotective and regenerative effects of rHDL, as well as N-acetylcysteine (NAC), vitamin C (Vit C), and HDL on human RCFs under hypoxic conditions. Sixth-passage human RCFs were divided into normoxia, hypoxia, and hypoxia groups pretreated with antioxidants (NAC, Vit C, rHDL, HDL). Hypoxia was induced by 1000 µM CoCl2. In the hypoxia group compared to the normoxia group, there were significant increases in hypoxia-inducible factor-1α (HIF-1α), heme oxygenase-1 (HO-1), and Bcl-2/E1B-19kDa interacting protein 3 (BNIP3) expressions, along with reduced cell viability, elevated reactive oxygen species (ROS) production, apoptosis rate, expressions of cleaved caspase-3, cleaved poly ADP-ribose polymerase-1 (PARP-1), vascular endothelial growth factors (VEGF), and matrix metalloproteinase-2 (MMP-2), as well as decreased collagen I and III production, and markedly lower cell proliferative activity (p ≤ 0.039). These responses were significantly mitigated by pretreatment with rHDL (p ≤ 0.046). This study suggests that rHDL can enhance cell proliferation and collagen I and III production while reducing apoptosis in human RCFs under hypoxic conditions.
Collapse
Affiliation(s)
- Ra Jeong Kim
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Hyung Bin Park
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Orthopaedic Surgery, School of Medicine, Gyengsang National University, Jinju 52727, Republic of Korea
- Department of Orthopaedic Surgery, Gyengsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| |
Collapse
|
16
|
He X, Cantrell AC, Williams QA, Gu W, Chen Y, Chen JX, Zeng H. p53 Acetylation Exerts Critical Roles in Pressure Overload-Induced Coronary Microvascular Dysfunction and Heart Failure in Mice. Arterioscler Thromb Vasc Biol 2024; 44:826-842. [PMID: 38328937 PMCID: PMC10978286 DOI: 10.1161/atvbaha.123.319601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Aubrey C Cantrell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Quinesha A Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Wei Gu
- Department of Pathology & Cell Biology, Columbia University, Institute for Cancer Genetics, New York, NY 10032, USA
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Heng Zeng
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
17
|
Rahimi S, Rezvani N, Khazayel S, Jalilian N, Shakiba E, Khadir F, Yari K, Rahimi Z. The study of HMOX1 DNA methylation and gene expression and the diagnostic potential of miR-153-3p in preeclampsia. Epigenomics 2024; 16:389-401. [PMID: 38410927 DOI: 10.2217/epi-2023-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Background: The objective was to elucidate the potential epigenetic regulatory mechanism in HMOX1 expression in preeclampsia. Materials & methods: HMOX1 promoter DNA methylation was evaluated in the placental tissue and blood of preeclamptic and normotensive pregnant women. HMOX1 and miR-153-3p gene expression were assessed in placental tissue and peripheral blood mononuclear cells (PBMCs). Related microarray datasets in the Gene Expression Omnibus database were also analyzed. Results: In placental tissue, despite HMOX1 expression downregulation, there was no significant change in HMOX1 methylation. In PBMCs, there was no significant alteration in HMOX1 expression, while hypomethylation was observed in blood. The miR-153-3p expression increased in the placental tissue and in the PBMCs of preeclampsia. Conclusion: DNA methylation does not affect HMOX1 expression, while miR-153-3p might be a biomarker for preeclampsia.
Collapse
Affiliation(s)
- Somayeh Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, 67148-69914, Iran
| | - Nayebali Rezvani
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, 67148-69914, Iran
| | - Saeed Khazayel
- Deputy of Research & Technology, Kermanshah University of Medical Sciences, Kermanshah, 67146-73159, Iran
| | - Nazanin Jalilian
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, 67148-69914, Iran
| | - Ebrahim Shakiba
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, 67148-69914, Iran
| | - Fatemeh Khadir
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, 67148-69914, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 67155-1616, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, 67148-69914, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 67155-1616, Iran
| |
Collapse
|
18
|
Stein AP, Harder J, Holmes HR, Merz CNB, Pepine CJ, Keeley EC. Single Nucleotide Polymorphisms in Coronary Microvascular Dysfunction. J Am Heart Assoc 2024; 13:e032137. [PMID: 38348798 PMCID: PMC11010085 DOI: 10.1161/jaha.123.032137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Coronary microvascular dysfunction is an underdiagnosed pathologic process that is associated with adverse clinical outcomes. There are data to suggest that coronary microvascular dysfunction, in some cases, may be genetically determined. We present an updated review of single nucleotide polymorphisms in coronary microvascular dysfunction.
Collapse
Affiliation(s)
| | | | | | - C. Noel Bairey Merz
- Barbra Streisand Women’s Heart CenterSmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Carl J. Pepine
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
- Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFLUSA
| | - Ellen C. Keeley
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
- Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
19
|
Quintard C, Tubbs E, Jonsson G, Jiao J, Wang J, Werschler N, Laporte C, Pitaval A, Bah TS, Pomeranz G, Bissardon C, Kaal J, Leopoldi A, Long DA, Blandin P, Achard JL, Battail C, Hagelkruys A, Navarro F, Fouillet Y, Penninger JM, Gidrol X. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun 2024; 15:1452. [PMID: 38365780 PMCID: PMC10873332 DOI: 10.1038/s41467-024-45710-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids, organoids, tumoroids, or tissue explants. Despite rapid advancement in microvascular network systems and organoid technologies, vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups. Considering these constraints, we develop a platform to establish and monitor the formation of endothelial networks around mesenchymal and pancreatic islet spheroids, as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 30 days on-chip. We show that these networks establish functional connections with the endothelium-rich spheroids and vascular organoids, as they successfully provide intravascular perfusion to these structures. We find that organoid growth, maturation, and function are enhanced when cultured on-chip using our vascularization method. This microphysiological system represents a viable organ-on-chip model to vascularize diverse biological 3D tissues and sets the stage to establish organoid perfusions using advanced microfluidics.
Collapse
Affiliation(s)
- Clément Quintard
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, IMBA, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jie Jiao
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Jun Wang
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Nicolas Werschler
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Camille Laporte
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Amandine Pitaval
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France
| | - Thierno-Sidy Bah
- Univ. Grenoble Alpes, CEA, IRIG, BGE, Gen&Chem, 38000, Grenoble, France
| | - Gideon Pomeranz
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Joris Kaal
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Alexandra Leopoldi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, IMBA, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Pierre Blandin
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Jean-Luc Achard
- Université Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000, Grenoble, France
| | | | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, IMBA, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fabrice Navarro
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Yves Fouillet
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (BC), Canada.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, IMBA, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Xavier Gidrol
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France.
| |
Collapse
|
20
|
Zhang Y, Jiang C, Meng N. Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis. Mini Rev Med Chem 2024; 24:1262-1276. [PMID: 38284727 DOI: 10.2174/0113895575273164231130070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
21
|
Kiliç Y, Guzel Erdogan D, Baykul M, Nas K. Examining the functions of the vascular endothelial growth factor/hypoxia-inducible factor signaling pathway in psoriatic arthritis. Arch Rheumatol 2023; 38:579-589. [PMID: 38125055 PMCID: PMC10728743 DOI: 10.46497/archrheumatol.2023.9898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives The present study aimed to examine the roles of the vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF), and heme oxygenase-1 (HO-1) in psoriatic arthritis (PsA). Patients and methods In this cross-sectional study conducted between November 2020 and May 2021, 64 patients (43 female, 21 male; mean age: 43.2±10.4 years; range, 22 to 60 years) with active PsA were included in the patient group, and 64 healthy volunteers (43 female, 21 male; mean age: 42.8±10.5 years; range, 23 to 61 years) were included in the control group. The demographic features of all cases were recorded. The following indices were used to assess the activity of PsA: Bath Ankylosing Spondylitis Disease Activity Index, Disease Activity Score in 28 joints (DAS28), and Visual Analog Scale. Additionally, Disease Activity in Psoriatic Arthritis (DAPSA) and Psoriasis Area and Severity Index (PASI) were used to evaluate the patients. The biochemical parameters of the patients were calculated. The serum levels of VEGF, HIF, and HO-1 were determined using an enzyme-linked immunosorbent assay. Results When the molecule levels and clinical features of the groups were evaluated, it was found that the VEGF and HIF-1 levels were higher in the patient group compared to the control group (p<0.05). No difference was observed in the comparison of the HO-1 levels of the patient group and the control group (p<0.05). A positive correlation was found between VEGF, HIF-1, and HO-1 (p<0.05). A positive relationship was found between VEGF and HIF-1 and erythrocyte sedimentation rate, C-reactive protein, DAPSA score, and PASI score (p<0.05). It was also determined that there was a positive relationship between the HIF molecule and DAS28 (p<0.05). Conclusion According to the results obtained in the present study, VEGF and HIF play a role in the etiology of PsA, and the observation of intermolecular correlation suggests that these molecules move together in pathogenesis.
Collapse
Affiliation(s)
- Yavuz Kiliç
- Department of Physiotherapy and Rehabilitation, Sakarya University of Applied Sciences, Vocational School of Health Services, Sakarya, Türkiye
| | - Derya Guzel Erdogan
- Department of Physiology, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| | - Merve Baykul
- Department of Physical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| | - Kemal Nas
- Department of Physical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| |
Collapse
|
22
|
Rana M, Choubey P, Nandi G, Jain S, Bajaj D, Sharma S, Basu-Modak S. Expression of angiogenic factors in the placenta of heme oxygenase-1 deficient mouse embryo. Reprod Biol 2023; 23:100822. [PMID: 37979494 DOI: 10.1016/j.repbio.2023.100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Heme oxygenase 1 (Hmox1), the inducible form of heme degrading enzymes Hmoxs, is important for establishment and maintenance of pregnancy. A growing body of evidence suggests an association between Hmox1 and angiogenesis, including placental angiogenesis. In this study, we examined the expression of two angiogenic factors in the placentas of Hmox1 deficient mouse embryos, whose expression was found to be related to that of Hmox1. Relative protein levels and localization of Hmoxs and two angiogenic factors [Vegf and Prolactin along with their receptors, and Cd31/Pecam1] were compared in the placentas of Hmox1 wildtype and knockout mouse embryos using western blotting and immunohistochemistry along with histological analysis. The results revealed tissue disorganisation, reduced area of labyrinth and smaller nuclear size of trophoblast giant cell in the placentas of knockout embryos. The levels of Hmox2, prolactin, and Cd31/Pecam1 were found to be altered in knockout placentas, whereas Vegf and its receptors seem to be unaltered in our samples. Overall, our findings imply that Hmox2 is unlikely to compensate for Hmox1 deficiency in knockout placentas, and altered levels of prolactin and Cd31/Pecam1 hint towards impaired angiogenesis in these placentas. Further investigation would be needed to understand the molecular mechanism of defective angiogenesis in the placentas of Hmox1 knockout mouse embryos.
Collapse
Affiliation(s)
- Meenakshi Rana
- Department of Zoology, University of Delhi, India; Department of Zoology, Dyal Singh College, University of Delhi, India.
| | | | - Gouri Nandi
- Department of Zoology, University of Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, India
| | - Sidhant Jain
- Department of Zoology, University of Delhi, India; Institute for Globally Distributed Open Research and Education, India
| | - Divya Bajaj
- Department of Zoology, University of Delhi, India; Department of Zoology, Hindu College, University of Delhi, India
| | - Sonika Sharma
- Department of Zoology, University of Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, India
| | | |
Collapse
|
23
|
Luo J, Huang Y, Chen Y, Yuan Y, Li G, Cai S, Jian J, Yang S. Heme Oxygenase-1 Is Involved in the Repair of Oxidative Damage Induced by Oxidized Fish Oil in Litopenaeus vannamei by Sulforaphane. Mar Drugs 2023; 21:548. [PMID: 37888483 PMCID: PMC10607972 DOI: 10.3390/md21100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Heme oxygenase-1 (HO-1), which could be highly induced under the stimulation of oxidative stress, functions in reducing the damage caused by oxidative stress, and sulforaphane (SFN) is an antioxidant. This study aims to investigate whether HO-1 is involved in the repair of oxidative damage induced by oxidized fish oil (OFO) in Litopenaeus vannamei by sulforaphane (SFN). The oxidative stress model of L. vannamei was established by feeding OFO feed (OFO accounts for 6%), and they were divided into the following four groups: control group (injected with dsRNA-EGFP and fed with common feed), dsRNA-HO-1 group (dsRNA-HO-1, common feed), dsRNA-HO-1 + SFN group (dsRNA-HO-1, supplement 50 mg kg-1 SFN feed), and SFN group (dsRNA-EGFP, supplement 50 mg kg-1 SFN feed). The results showed that the expression level of HO-1 in the dsRNA-HO-1 + SFN group was significantly increased compared with the dsRNA-HO-1 group (p < 0.05). The activities of SOD in muscle and GPX in hepatopancreas and serum of the dsRNA-HO-1 group were significantly lower than those of the control group, and MDA content in the dsRNA-HO-1 group was the highest among the four groups. However, SFN treatment increased the activities of GPX and SOD in hepatopancreas, muscle, and serum and significantly reduced the content of MDA (p < 0.05). SFN activated HO-1, upregulated the expression of antioxidant-related genes (CAT, SOD, GST, GPX, Trx, HIF-1α, Nrf2, prx 2, Hsp 70), and autophagy genes (ATG 3, ATG 5), and stabilized the expression of apoptosis genes (caspase 2, caspase 3) in the hepatopancreas (p < 0.05). In addition, knocking down HO-1 aggravated the vacuolation of hepatopancreas and increased the apoptosis of hepatopancreas, while the supplement of SFN could repair the vacuolation of hepatopancreas and reduce the apoptosis signal. In summary, HO-1 is involved in the repair of the oxidative damage induced by OFO in L. vannamei by SFN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shiping Yang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals, Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (Y.H.); (Y.C.); (Y.Y.); (G.L.); (S.C.); (J.J.)
| |
Collapse
|
24
|
Yin Y, Luo Y, He K. Landscape of immunocytes infiltration and prognostic immune-related genes in hepatocellular carcinoma. Asian J Surg 2023; 46:4251-4260. [PMID: 36746728 DOI: 10.1016/j.asjsur.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/04/2022] [Accepted: 01/10/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND /Objective: The therapeutic efficacy and prognosis of patients with hepatocellular carcinoma (HCC) remain unsatisfactory, and further studies are supposed to provide more effective treatment strategies. Immune cells in extracellular matrix play an important role in the therapeutic effect and prognosis of hepatocellular carcinoma. METHOD To explore the mechanism of immune cells, we analysed the relationship between immune infiltration and gene expression profile through public databases. Patients were divided into high and low groups according to immune score by the ESTIMATE algorithm. It was found that the prognosis and clinical data of patients with liver cancer were correlated with immune scores. RESULTS Using the CIBERSORT method, we identified 21 types of immunocytes infiltration in HCC and demonstrated that these immune cells have clinical and prognostic implications. According to immune score, 590 differentially expressed genes were identified, and 6 key immune-related genes were screened by univariate COX analysis and lasso regression. In addition, the expression of EGLN3, KLRB1, MSC and HMOX1 was found to be correlated with immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells) in HCC by the TIMER algorithm. CONCLUSIONS These findings provide new clues to understanding the mechanisms of immune cells in HCC and lay the foundation for the development of new prognostic strategies in HCC.
Collapse
Affiliation(s)
- Yanze Yin
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| |
Collapse
|
25
|
Cao Y, Xu Y, Fang N, Jiao Q, Zhu HL, Li Z. In situ imaging of signaling molecule carbon monoxide in plants with a fluorescent probe. PLANT PHYSIOLOGY 2023; 193:1597-1604. [PMID: 37335930 DOI: 10.1093/plphys/kiad354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Carbon monoxide (CO) is a recently discovered gasotransmitter. In animals, it has been found that endogenously produced CO participates in the regulation of various metabolic processes. Recent research has indicated that CO, acting as a signaling molecule, plays a crucial regulatory role in plant development and their response to abiotic stress. In this work, we developed a fluorescent probe, named COP (carbonic oxide Probe), for the in situ imaging of CO in Arabidopsis thaliana plant tissues. The probe was designed by combining malononitrile-naphthalene as the fluorophore and a typical palladium-mediated reaction mechanism. When reacted with the released CO, COP showed an obvious fluorescence enhancement at 575 nm, which could be observed in naked-eye conditions. With a linear range of 0-10 μM, the limit of detection of COP was determined as 0.38 μM. The detection system based on COP indicated several advantages including relatively rapid response within 20 min, steadiness in a wide pH range of 5.0-10.0, high selectivity, and applicative anti-interference. Moreover, with a penetration depth of 30 μm, COP enabled 3D imaging of CO dynamics in plant samples, whether it was caused by agent release, heavy metal stress, or inner oxidation. This work provides a fluorescent probe for monitoring CO levels in plant samples, and it expands the application field of CO-detection technology, assisting researchers in understanding the dynamic changes in plant physiological processes, making it an important tool for studying plant physiology and biological processes.
Collapse
Affiliation(s)
- Yuyao Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Yinxiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Ning Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Zhen Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
26
|
Liu H, Liu J, Liu C, Niu X, Liu J. Transplantation of endothelial progenitor cells improves myocardial hypertrophy in spontaneously hypertensive rats through HO-1/CREB3/AKT axis. Arch Biochem Biophys 2023; 746:109739. [PMID: 37678424 DOI: 10.1016/j.abb.2023.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Hypertensive myocardial hypertrophy produces a hostile microenvironment characterized by cardiomyocyte hypertrophy, inflammation and oxidative stress, which also leads to endothelial progenitor cells (EPCs) dysfunction, preventing EPC migration, adhesion and angiogenesis. Heme oxygenase-1 (HO-1) is an intracellular protein that plays an important role in angiogenesis and cell survival. The upregulation of cAMP response element-binding protein 3 (CREB3) is closely related to the formation of endothelial cells. The purpose of this study was to evaluate the role of HO-1 and CREB3 in EPCs and their effects on hypertensive myocardial hypertrophy. EPCs were transfected with HO-1 adenoviral overexpression vector (Ad-HO-1) or together with CREB3 siRNA (si-CREB3), or transfected with CREB3 adenoviral overexpression vector (Ad-CREB3) or together with HO-1 siRNA, and then treated with 100 nM Ang Ⅱ for 12 h. Overexpressing HO-1 or CREB3 promoted adhesion to extracellular matrix, cell migration, and angiogenesis, inhibited the secretion of inflammatory factors TNF-α and IL-6, and reduced ROS level, ICAM-1 and MCP-1 mRNA expression levels in EPCs treated with Ang Ⅱ. Online prediction and Co-IP assay showed that HO-1 interacts with CREB3, and they promote expression of each other. EPC-conditioned medium supplemented with CREB3 recombinant protein decreased the levels of ANP and BNP mRNA in H9C2 cells treated with Ang Ⅱ and alleviated oxidative stress. Ad-CREB3 transfected EPCs promoted the phosphorylation of AKT in vivo and in vitro, thereby improving myocardial swelling and dysfunction in SHR rats. Taken together, transplantation of CREB3 overexpressing EPCs alleviates myocardial hypertrophy in spontaneously hypertensive rats by promoting HO-1 protein expression and AKT phosphorylation.
Collapse
Affiliation(s)
- Hui Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jing Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Cong Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Jun Liu
- Military Personnel Medical Care Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
27
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
28
|
Arrigo E, Comità S, Pagliaro P, Penna C, Mancardi D. Clinical Applications for Gasotransmitters in the Cardiovascular System: Are We There Yet? Int J Mol Sci 2023; 24:12480. [PMID: 37569855 PMCID: PMC10419417 DOI: 10.3390/ijms241512480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ischemia is the underlying mechanism in a wide variety of acute and persistent pathologies. As such, understanding the fine intracellular events occurring during (and after) the restriction of blood supply is pivotal to improving the outcomes in clinical settings. Among others, gaseous signaling molecules constitutively produced by mammalian cells (gasotransmitters) have been shown to be of potential interest for clinical treatment of ischemia/reperfusion injury. Nitric oxide (NO and its sibling, HNO), hydrogen sulfide (H2S), and carbon monoxide (CO) have long been proven to be cytoprotective in basic science experiments, and they are now awaiting confirmation with clinical trials. The aim of this work is to review the literature and the clinical trials database to address the state of development of potential therapeutic applications for NO, H2S, and CO and the clinical scenarios where they are more promising.
Collapse
|
29
|
Luh HT, Chen KW, Yang LY, Chen YT, Lin SH, Wang KC, Lai DM, Hsieh ST. Does a negative correlation of heme oxygenase-1 with hematoma thickness in chronic subdural hematomas affect neovascularization and microvascular leakage? A retrospective study with preliminary validation. J Neurosurg 2023; 139:536-543. [PMID: 36609367 DOI: 10.3171/2022.11.jns221790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Chronic subdural hematoma (CSDH) is a common neurological disease among elderly adults. The progression of CSDH is an angiogenic process, involving inflammatory mediators that affect vascular permeability, microvascular leakage, and hematoma thickness. The authors aimed to identify biomarkers associated with angiogenesis and vascular permeability that might influence midline shift and hematoma thickness. METHODS Medical records and laboratory data of consecutive patients who underwent surgery for CSDH were analyzed. Collected data were basic demographic data, CSDH classification, CSDH thickness, midline shift, heme oxygenase-1 (HO-1) levels in hematomas, and common laboratory markers. Linear regression analysis was used to evaluate the relationship of CSDH thickness with characteristic variables. The chick chorioallantoic membrane (CAM) assay was used to test the angiogenic potency of identified variables in ex ovo culture of chick embryos. RESULTS In total, 93 patients with CSDH (71.0% male) with a mean age of 71.0 years were included. The mean CSDH thickness and midline shift were 19.7 and 9.8 mm, respectively. The mean levels of HO-1, ferritin, total bilirubin, white blood cells, segmented neutrophils, lymphocytes, platelets, international normalized ratio, and partial thromboplastin time were 36 ng/mL, 14.8 μg/mL, 10.5 mg/dL, 10.3 × 103 cells/μL, 69%, 21.7%, 221.1 × 109 cells/μL, 1.0, and 27.8 seconds, respectively. Pearson correlation analysis revealed that CSDH thickness was positively correlated with midline shift distance (r = 0.218, p < 0.05) but negatively correlated with HO-1 concentration (r = -0.364, p < 0.01) and ferritin level (r = -0.222, p < 0.05). Multivariate linear regression analysis revealed that HO-1 was an independent predictor of CSDH thickness (β = -0.084, p = 0.006). The angiogenic potency of HO-1 in hematoma fluid was tested with the chick CAM assay; topical addition of CSDH fluid with low HO-1 levels promoted neovascularization and microvascular leakage. Addition of HO-1 in a rescue experiment inhibited CSDH fluid-mediated angiogenesis and microvascular leakage. CONCLUSIONS HO-1 is an independent risk factor in CSDH hematomas and is negatively correlated with CSDH thickness. HO-1 may play a role in the pathophysiology and development of CSDH, possibly by preventing neovascularization and reducing capillary fragility and hyperpermeability.
Collapse
Affiliation(s)
- Hui-Tzung Luh
- 1Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- 2Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Kuo-Wei Chen
- 1Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- 2Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Ling-Yu Yang
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Tzu Chen
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hsuan Lin
- 4Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Kuo-Chuan Wang
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Dar-Ming Lai
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- 5Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; and
- 6Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Rahman SO, Khan T, Iqubal A, Agarwal S, Akhtar M, Parvez S, Shah ZA, Najmi AK. Association between insulin and Nrf2 signalling pathway in Alzheimer's disease: A molecular landscape. Life Sci 2023:121899. [PMID: 37394097 DOI: 10.1016/j.lfs.2023.121899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Insulin, a well-known hormone, has been implicated as a regulator of blood glucose levels for almost a century now. Over the past few decades, the non-glycemic actions of insulin i.e. neuronal growth and proliferation have been extensively studied. In 2005, Dr. Suzanne de La Monte and her team reported that insulin might be involved in the pathogenesis of Alzheimer's Disease (AD) and thus coined a term "Type-3 diabetes" This hypothesis was supported by several subsequent studies. The nuclear factor erythroid 2- related factor 2 (Nrf2) triggers a cascade of events under the regulation of distinct mechanisms including protein stability, phosphorylation and nuclear cytoplasmic shuttling, finally leading to the protection against oxidative damage. The Nrf2 pathway has been investigated extensively in relevance to neurodegenerative disorders, particularly AD. Many studies have indicated a strong correlation between insulin and Nrf2 signalling pathways both in the periphery and the brainbut merely few of them have focused on elucidating their inter-connective role in AD. The present review emphasizes key molecular pathways that correlate the role of insulin with Nrf2 during AD. The review has also identified key unexplored areas that could be investigated in future to further establish the insulin and Nrf2 influence in AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Agarwal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Neurobehavioral Pharmacology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Zahoor Ahmad Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
31
|
Ma W, Liu X, Yang M, Hong Q, Meng L, Zhang Q, Chen J, Pan C. Fabrication of CO-releasing surface to enhance the blood compatibility and endothelialization of TiO 2 nanotubes on titanium surface. BIOMATERIALS ADVANCES 2023; 149:213393. [PMID: 36966654 DOI: 10.1016/j.bioadv.2023.213393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Although the construction of nanotube arrays with the micro-nano structures on the titanium surfaces has demonstrated a great promise in the field of blood-contacting materials and devices, the limited surface hemocompatibility and delayed endothelial healing should be further improved. Carbon monoxide (CO) gas signaling molecule within the physiological concentrations has excellent anticoagulation and the ability to promote endothelial growth, exhibiting the great potential for the blood-contact biomaterials, especially the cardiovascular devices. In this study, the regular titanium dioxide nanotube arrays were firstly prepared in situ on the titanium surface by anodic oxidation, followed by the immobilization of the complex of sodium alginate/carboxymethyl chitosan (SA/CS) on the self-assembled modified nanotube surface, the CO-releasing molecule (CORM-401) was finally grafted onto the surface to create a CO-releasing bioactive surface to enhance the biocompatibility. The results of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) revealed that the CO-releasing molecules were successfully immobilized on the surface. The modified nanotube arrays not only exhibited excellent hydrophilicity but also could slowly release CO gas molecules, and the amount of CO release increased when cysteine was added. Furthermore, the nanotube array can promote albumin adsorption while inhibit fibrinogen adsorption to some extent, demonstrating its selective albumin adsorption; although this effect was somewhat reduced by the introduction of CORM-401, it can be significantly enhanced by the catalytic release of CO. The results of hemocompatibility and endothelial cell growth behaviors showed that, as compared with the CORM-401 modified sample, although the SA/CS-modified sample had better biocompatibility, in the case of cysteine-catalyzed CO release, the released CO could not only reduce the platelet adhesion and activation as well as hemolysis rate, but also promote endothelial cell adhesion and proliferation as well as vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression. As a result, the research of the present study demonstrated that the releasing CO from TiO2 nanotubes can simultaneously enhance the surface hemocompatibility and endothelialization, which could open a new route to enhance the biocompatibility of the blood-contacting materials and devices, such as the artificial heart valve and cardiovascular stents.
Collapse
Affiliation(s)
- Wenfu Ma
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xuhui Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lingjie Meng
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
32
|
Ghareghomi S, Moosavi-Movahedi F, Saso L, Habibi-Rezaei M, Khatibi A, Hong J, Moosavi-Movahedi AA. Modulation of Nrf2/HO-1 by Natural Compounds in Lung Cancer. Antioxidants (Basel) 2023; 12:antiox12030735. [PMID: 36978983 PMCID: PMC10044870 DOI: 10.3390/antiox12030735] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Oxidative stresses (OSs) are considered a pivotal factor in creating various pathophysiological conditions. Cells have been able to move forward by modulating numerous signaling pathways to moderate the defects of these stresses during their evolution. The company of Kelch-like ECH-associated protein 1 (Keap1) as a molecular sensing element of the oxidative and electrophilic stress and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) as a master transcriptional regulator of the antioxidant response makes a master cytoprotective antioxidant pathway known as the Keap1/Nrf2 pathway. This pathway is considered a dual-edged sword with beneficial features for both normal and cancer cells by regulating the gene expression of the array of endogenous antioxidant enzymes. Heme oxygenase-1 (HO-1), a critical enzyme in toxic heme removal, is one of the clear state indicators for the duality of this pathway. Therefore, Nrf2/HO-1 axis targeting is known as a novel strategy for cancer treatment. In this review, the molecular mechanism of action of natural antioxidants on lung cancer cells has been investigated by relying on the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Faezeh Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran;
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| |
Collapse
|
33
|
He X, Cantrell AC, Williams QA, Gu W, Chen Y, Chen JX, Zeng H. P53 Acetylation Exerts Critical Roles In Pressure Overload Induced Coronary Microvascular Dysfunction and Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527691. [PMID: 36798200 PMCID: PMC9934706 DOI: 10.1101/2023.02.08.527691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure with preserved ejection fraction. At this point, there are no proven treatments for CMD. We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98/117/161/162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve coronary microvascular dysfunction and prevent the progression of hypertensive cardiac hypertrophy and heart failure. Wild-type (WT) and p534KR mice were subjected to pressure overload (PO) by transverse aortic constriction to induce cardiac hypertrophy and heart failure (HF). Echocardiography measurements revealed improved cardiac function together with reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve (CFR) were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and glucose transporters, as well as the level of fructose-2,6-biphosphate; increased PFK-1 activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice as well as in p534KR mice after TAC. In vitro, p534KR significantly improved endothelial cell (EC) glycolytic function and mitochondrial respiration, and enhanced EC proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved CFR and rescued cardiac dysfunction in SIRT3 KO mice. Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling, and may provide a promising approach to improve hypertension-induced coronary microvascular dysfunction (CMD) and to prevent the transition of cardiac hypertrophy to heart failure.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Aubrey C Cantrell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Quinesha A Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Wei Gu
- Department of Pathology & Cell Biology, Columbia University, Institute for Cancer Genetics, New York, NY 10032, USA
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Heng Zeng
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
34
|
Generation of human induced pluripotent stem cell lines with HMOX1 promoter polymorphism and CRISPR/Cas9-mediated deletion of exon 50 of DMD gene. Stem Cell Res 2023; 66:103004. [PMID: 36565681 DOI: 10.1016/j.scr.2022.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), originating from the lack of functional dystrophin, clinically manifests as devastating disease of skeletal muscles with progressive cardiac involvement. HMOX1 promoter polymorphism may reflect different activity of heme oxygenase-1 (HO-1) that may be critical for DMD progression. Here we generated human induced pluripotent stem cell (hiPSC) lines from healthy donors-derived peripheral blood mononuclear cells with different variants of HMOX1 promoter (GT repeats), and engineered by CRISPR/Cas9-mediated deletion of exon 50 of DMD gene. Such in vitro model could add to molecular understanding of DMD and verify the prognostic value of HMOX1 promoter polymorphism.
Collapse
|
35
|
Robert B, Subramaniam S. Gasotransmitter-Induced Therapeutic Angiogenesis: A Biomaterial Prospective. ACS OMEGA 2022; 7:45849-45866. [PMID: 36570231 PMCID: PMC9773187 DOI: 10.1021/acsomega.2c05599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Gasotransmitters such as NO, H2S, and CO have emerged as key players in the regulation of various pathophysiological functions, prompting the development of gas therapy for various pathogeneses. Deficient production of gasotransmitters has been linked to various diseases such as hypertension, endothelial dysfunction, myocardial infarction, ischemia, and impaired wound healing, as they are involved in the regulatory action of angiogenesis. A better understanding of the regulatory mechanisms has given new hope to address the vascular impairment caused by the breakthroughs in gasotransmitters as therapeutics. However, the unstable nature and poor target specificity of gas donors limit the full efficacy of drugs. In this regard, biomaterials that possess excellent biocompatibility and porosity are ideal drug carriers to deliver the gas transmitters in a tunable manner for therapeutic angiogenesis. This review article provides a comprehensive discussion of biomaterial-based gasotransmitter delivery approaches for therapeutic angiogenesis. The critical role of gasotransmitters in modulating angiogenesis during tissue repair as well as their challenges and future directions are demonstrated.
Collapse
Affiliation(s)
- Becky Robert
- Biomaterials
and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Sadhasivam Subramaniam
- Biomaterials
and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
- Department
of Extension and Career Guidance, Bharathiar
University, Coimbatore 641046, India
| |
Collapse
|
36
|
Leal EC, Carvalho E. Heme Oxygenase-1 as Therapeutic Target for Diabetic Foot Ulcers. Int J Mol Sci 2022; 23:ijms231912043. [PMID: 36233341 PMCID: PMC9569859 DOI: 10.3390/ijms231912043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site. As a result of these multifactorial impaired healing pathways, it has been difficult to develop effective therapeutic strategies for DFU. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation generating carbon monoxide (CO), biliverdin (BV) which is converted into bilirubin (BR), and iron. HO-1 is a potent antioxidant. It can act as an anti-inflammatory, proliferative, angiogenic and cytoprotective enzyme. Due to its biological functions, HO-1 plays a very important role in wound healing, in part mediated through the biologically active end products generated by its enzymatic activity, particularly CO, BV, and BR. Therapeutic strategies involving the activation of HO-1, or the topical application of its biologically active end products are important in diabetic wound healing. Therefore, HO-1 is an attractive therapeutic target for DFU treatment. This review will provide an overview and discussion of the importance of HO-1 as a therapeutic target for diabetic wound healing.
Collapse
Affiliation(s)
- Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| |
Collapse
|
37
|
Kang X, Li Y, Yin S, Li W, Qi J. Reactive Species-Activatable AIEgens for Biomedical Applications. BIOSENSORS 2022; 12:646. [PMID: 36005044 PMCID: PMC9406055 DOI: 10.3390/bios12080646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 05/27/2023]
Abstract
Precision medicine requires highly sensitive and specific diagnostic strategies with high spatiotemporal resolution. Accurate detection and monitoring of endogenously generated biomarkers at the very early disease stage is of extensive importance for precise diagnosis and treatment. Aggregation-induced emission luminogens (AIEgens) have emerged as a new type of excellent optical agents, which show great promise for numerous biomedical applications. In this review, we highlight the recent advances of AIE-based probes for detecting reactive species (including reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive sulfur species (RSS), and reactive carbonyl species (RCS)) and related biomedical applications. The molecular design strategies for increasing the sensitivity, tuning the response wavelength, and realizing afterglow imaging are summarized, and theranostic applications in reactive species-related major diseases such as cancer, inflammation, and vascular diseases are reviewed. The challenges and outlooks for the reactive species-activatable AIE systems for disease diagnostics and therapeutics are also discussed. This review aims to offer guidance for designing AIE-based specifically activatable optical agents for biomedical applications, as well as providing a comprehensive understanding about the structure-property application relationships. We hope it will inspire more interesting researches about reactive species-activatable probes and advance clinical translations.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuai Yin
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Jin S, Wu C, Chen M, Sun D, Zhang H. The pathological and therapeutic roles of mesenchymal stem cells in preeclampsia. Front Med (Lausanne) 2022; 9:923334. [PMID: 35966876 PMCID: PMC9370554 DOI: 10.3389/fmed.2022.923334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have made progress in the treatment of ischemic and inflammatory diseases. Preeclampsia (PE) is characterized by placenta ischemic and inflammatory injury. Our paper summarized the new role of MSCs in PE pathology and its potency in PE therapy and analyzed its current limitations. Intravenously administered MSCs dominantly distributed in perinatal tissues. There may be additional advantages to using MSCs-based therapies for reproductive disorders. It will provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Sanshan Jin
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Canrong Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Chen
- Department of Rehabilitation Physiotherapy, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Dongyan Sun
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Hua Zhang
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
- *Correspondence: Hua Zhang,
| |
Collapse
|
39
|
Krukowska K, Magierowski M. Carbon monoxide (CO)/heme oxygenase (HO)-1 in gastrointestinal tumors pathophysiology and pharmacology - possible anti- and pro-cancer activities. Biochem Pharmacol 2022; 201:115058. [PMID: 35490732 DOI: 10.1016/j.bcp.2022.115058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Gastrointestinal (GI) tract cancers pose a significant pharmacological challenge for researchers in terms of the discovery of molecular agents and the development of targeted therapies. Although many ongoing clinical trials have brought new perspectives, there is still a lack of successful long-term treatment. Several novel pharmacological and molecular agents are being studied in the prevention and treatment of GI cancers. On the other hand, pharmacological tools designed to release an endogenous gaseous mediator, carbon monoxide (CO), were shown to prevent the gastric mucosa against various types of injuries and exert therapeutic properties in the treatment of GI pathologies. In this review, we summarized the current evidence on the role of CO and heme oxygenase 1 (HO-1) as a CO producing enzyme in the pathophysiology of GI tumors. We focused on a beneficial role of HO-1 and CO in biological systems and common pathological conditions. We further discussed the complex and ambiguous function of the HO-1/CO pathway in cancer cells with a special emphasis on molecular and cellular pro-cancerous and anti-cancer mechanisms. We also focused on the role that HO-1/CO plays in GI cancers, especially within upper parts such as esophagus or stomach.
Collapse
Affiliation(s)
- Kinga Krukowska
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland.
| |
Collapse
|
40
|
Moayeri A, Mehdizadeh R, Karimi E, Aidy A, Ghaneialvar H, Abbasi N. Thymol Nanopolymer Synthesis and Its Effects on Morphine Withdrawal Syndrome in Comparison With Clonidine in Rats. Front Behav Neurosci 2022; 16:843951. [PMID: 35846786 PMCID: PMC9277302 DOI: 10.3389/fnbeh.2022.843951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
The drug delivery system is valuable in the treatment of the disease. A nanopolymer as a thymol and Thymbra spicata release system was synthesized and its effects on morphine withdrawal syndrome in comparison with clonidine in rats were studied. The nanopolymer was characterized by different methods, namely, IR, HNMR, CNMR, GPC, DLS, and AFM. Thymol in T. spicata extract was assessed. The loading and release rate of thymol and T. spicata extract on the nanopolymer were evaluated by HPLC. The median lethal dose (LD50) of the T. spicata extract, thymol, extract nanopolymer, and thymol nanopolymer was studied. The frequency of jumping, rearing, and teeth chattering in naloxone-induced morphine withdrawal syndrome was studied. Synthesized nanopolymer was desirable as a carrier for the drug. The loaded amount of extract and thymol on nanopolymer was estimated 55 ± 3.2% and 48 ± 2.6% and the drug released was 71 and 68%, respectively. LD50 of the T. spicata extract, thymol, extract nanopolymer, and thymol nanopolymer was 975, 580, 1,250, and 650 mg/kg, respectively. This study showed that thymol nanopolymer was more effective than clonidine to reduce the frequency of morphine withdrawal symptoms. Our results suggest that T. spicata extract, thymol, extract nanopolymer, and thymol nanopolymer are mighty in reducing the narcotic withdrawal signs. The mechanism of action and therapeutic potential is maybe similar to clonidine.
Collapse
Affiliation(s)
- Ardeshir Moayeri
- Department of Anatomy, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Mehdizadeh
- Department of Anatomy, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Elahe Karimi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Aidy
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
41
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Jagadeesh ASV, Fang X, Kim SH, Guillen-Quispe YN, Zheng J, Surh YJ, Kim SJ. Non-canonical vs. Canonical Functions of Heme Oxygenase-1 in Cancer. J Cancer Prev 2022; 27:7-15. [PMID: 35419301 PMCID: PMC8984652 DOI: 10.15430/jcp.2022.27.1.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is a critical stress-responsive enzyme that has antioxidant and anti-inflammatory functions. HO-1 catalyzes heme degradation, which gives rise to the formation of carbon monoxide (CO), biliverdin, and iron. The upregulation of HO-1 under pathological conditions associated with cellular stress represents an important cytoprotective defense mechanism by virtue of the anti-oxidant properties of the bilirubin and the anti-inflammatory effect of the CO produced. The same mechanism is hijacked by premalignant and cancerous cells. In recent years, however, there has been accumulating evidence supporting that the upregulation of HO-1 promotes cancer progression, independently of its catalytic activity. Such non-canonical functions of HO-1 are associated with its interaction with other proteins, particularly transcription factors. HO-1 also undergoes post-translational modifications that influence its stability, functional activity, cellular translocation, etc. HO-1 is normally present in the endoplasmic reticulum, but distinct subcellular localizations, especially in the nucleus, are observed in multiple cancers. The nuclear HO-1 modulates the activation of various transcription factors, which does not appear to be mediated by carbon monoxide and iron. This commentary summarizes the non-canonical functions of HO-1 in the context of cancer growth and progression and underlying regulatory mechanisms.
Collapse
Affiliation(s)
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yanymee N. Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jie Zheng
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
43
|
Jagadeesh ASV, Fang X, Kim SH, Guillen-Quispe YN, Zheng J, Surh YJ, Kim SJ. Non-canonical vs. Canonical Functions of Heme Oxygenase-1 in Cancer. J Cancer Prev 2022. [PMID: 35419301 DOI: 10.15430/jcp.2022.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is a critical stress-responsive enzyme that has antioxidant and anti-inflammatory functions. HO-1 catalyzes heme degradation, which gives rise to the formation of carbon monoxide (CO), biliverdin, and iron. The upregulation of HO-1 under pathological conditions associated with cellular stress represents an important cytoprotective defense mechanism by virtue of the anti-oxidant properties of the bilirubin and the anti-inflammatory effect of the CO produced. The same mechanism is hijacked by premalignant and cancerous cells. In recent years, however, there has been accumulating evidence supporting that the upregulation of HO-1 promotes cancer progression, independently of its catalytic activity. Such non-canonical functions of HO-1 are associated with its interaction with other proteins, particularly transcription factors. HO-1 also undergoes post-translational modifications that influence its stability, functional activity, cellular translocation, etc. HO-1 is normally present in the endoplasmic reticulum, but distinct subcellular localizations, especially in the nucleus, are observed in multiple cancers. The nuclear HO-1 modulates the activation of various transcription factors, which does not appear to be mediated by carbon monoxide and iron. This commentary summarizes the non-canonical functions of HO-1 in the context of cancer growth and progression and underlying regulatory mechanisms.
Collapse
Affiliation(s)
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yanymee N Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jie Zheng
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
44
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
45
|
Liu R, Peng Y, Lu L, Peng S, Chen T, Zhan M. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J Nanobiotechnology 2021; 19:443. [PMID: 34949202 PMCID: PMC8697457 DOI: 10.1186/s12951-021-01078-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gas therapy (GT) has attracted increasing attention in recent years as a new cancer treatment method with favorable therapeutic efficacy and reduced side effects. Several gas molecules, such as nitric oxide (NO), carbon monoxide (CO), hydrogen (H2), hydrogen sulfide (H2S) and sulfur dioxide (SO2), have been employed to treat cancers by directly killing tumor cells, enhancing drug accumulation in tumors or sensitizing tumor cells to chemotherapy, photodynamic therapy or radiotherapy. Despite the great progress of gas therapy, most gas molecules are prone to nonspecific distribution when administered systemically, resulting in strong toxicity to normal tissues. Therefore, how to deliver and release gas molecules to targeted tissues on demand is the main issue to be considered before clinical applications of gas therapy. As a specific and noninvasive stimulus with deep penetration, near-infrared (NIR) light has been widely used to trigger the cleavage and release of gas from nano-prodrugs via photothermal or photodynamic effects, achieving the on-demand release of gas molecules with high controllability. In this review, we will summarize the recent progress in cancer gas therapy triggered by NIR light. Furthermore, the prospects and challenges in this field are presented, with the hope for ongoing development.
Collapse
Affiliation(s)
- Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Yongjun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Shaojun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
46
|
Liang S, Zhao J, Wang Q, Yang M, Wang X, Chen S, Chen M, Sun C. Carbon monoxide enhances calcium transients and glucose-stimulated insulin secretion from pancreatic β-cells by activating Phospholipase C signal pathway in diabetic mice. Biochem Biophys Res Commun 2021; 582:1-7. [PMID: 34678590 DOI: 10.1016/j.bbrc.2021.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
In early stage of diabetes, insulin secretion from pancreatic β-cells is increased to deal with the elevated blood glucose. Previous studies have reported that islet-produced carbon monoxide (CO) is associated with increased glucose-stimulated insulin secretion from β-cells. However, this compensatory mechanism by which CO may act to enhance β-cell function remain unclear. In this study, we revealed that CO promoted intracellular calcium ([Ca2+]i) elevation and glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells in leptin receptor deficient db/db mice but not in C57 mice. The stimulatory effects of CO on β-cell function in db/db mice was blocked by inhibition of Phospholipase C (PLC) signaling pathway. We further demonstrated that CO triggered [Ca2+]i transients and enhanced GSIS in C57 islets when β-cells overexpressed with PLCγ1 and PLCδ1, but not PLCβ1. On the other hand, reducing PLCγ1 and PLCδ1 expressions in db/db islets dramatically attenuated the stimulatory effects of CO on β-cell function, whereas interfering PLCβ1 expression had no effects on CO-induced β-cell function enhancement. Our findings showing that CO elevated [Ca2+]i and enhanced GSIS by activating PLC signaling through PLCγ1 and PLCδ1 isoforms in db/db pancreatic β-cells may suggest an important mechanism by which CO promotes β-cell function to prevent hyperglycemia. Our study may also provide new insights into the therapy for type II diabetes and offer a potential target for therapeutic applications of CO.
Collapse
Affiliation(s)
- Shenghui Liang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| | - Jia Zhao
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Quanyi Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China; Department of Biopharmaceutics, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Min Yang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China; The Key Laboratory of Invertebrate Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xiaozhi Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China; Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Chao Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
47
|
Kim M, Kim J, Moon S, Choi BY, Kim S, Jeon HS, Suh SW, Kim YM, Choi YK. Korean Red Ginseng Improves Astrocytic Mitochondrial Function by Upregulating HO-1-Mediated AMPKα-PGC-1α-ERRα Circuit after Traumatic Brain Injury. Int J Mol Sci 2021; 22:13081. [PMID: 34884886 PMCID: PMC8657744 DOI: 10.3390/ijms222313081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Heme oxygenase-1 (HO-1) exerts beneficial effects, including angiogenesis and energy metabolism via the peroxisome proliferator-activating receptor-γ coactivator-1α (PGC-1α)-estrogen-related receptor α (ERRα) pathway in astrocytes. However, the role of Korean red ginseng extract (KRGE) in HO-1-mediated mitochondrial function in traumatic brain injury (TBI) is not well-elucidated. We found that HO-1 was upregulated in astrocytes located in peri-injured brain regions after a TBI, following exposure to KRGE. Experiments with pharmacological inhibitors and target-specific siRNAs revealed that HO-1 levels highly correlated with increased AMP-activated protein kinase α (AMPKα) activation, which led to the PGC-1α-ERRα axis-induced increases in mitochondrial functions (detected based on expression of cytochrome c oxidase subunit 2 (MTCO2) and cytochrome c as well as O2 consumption and ATP production). Knockdown of ERRα significantly reduced the p-AMPKα/AMPKα ratio and PGC-1α expression, leading to AMPKα-PGC-1α-ERRα circuit formation. Inactivation of HO by injecting the HO inhibitor Sn(IV) protoporphyrin IX dichloride diminished the expression of p-AMPKα, PGC-1α, ERRα, MTCO2, and cytochrome c in the KRGE-administered peri-injured region of a brain subjected to TBI. These data suggest that KRGE enhanced astrocytic mitochondrial function via a HO-1-mediated AMPKα-PGC-1α-ERRα circuit and consequent oxidative phosphorylation, O2 consumption, and ATP production. This circuit may play an important role in repairing neurovascular function after TBI in the peri-injured region by stimulating astrocytic mitochondrial biogenesis.
Collapse
Affiliation(s)
- Minsu Kim
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (S.K.); (H.S.J.)
| | - Joohwan Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (J.K.); (Y.-M.K.)
| | - Sunhong Moon
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (S.K.); (H.S.J.)
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Gangwon-do, Korea; (B.Y.C.); (S.W.S.)
| | - Sueun Kim
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (S.K.); (H.S.J.)
| | - Hui Su Jeon
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (S.K.); (H.S.J.)
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Gangwon-do, Korea; (B.Y.C.); (S.W.S.)
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (J.K.); (Y.-M.K.)
| | - Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (S.K.); (H.S.J.)
| |
Collapse
|
48
|
Costa Silva RCM, Correa LHT. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochem Biophys 2021; 80:97-113. [PMID: 34800278 DOI: 10.1007/s12013-021-01047-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
HO-1 is the inducible form of the enzyme heme-oxygenase. HO-1 catalyzes heme breakdown, reducing the levels of this important oxidant molecule and generating antioxidant, anti-inflammatory, and anti-apoptotic byproducts. Thus, HO-1 has been described as an important stress response mechanism during both physiologic and pathological processes. Interestingly, some findings are demonstrating that uncontrolled levels of HO-1 byproducts can be associated with cell death and tissue destruction as well. Furthermore, HO-1 can be located in the nucleus, influencing gene transcription, cellular proliferation, and DNA repair. Here, we will discuss several studies that approach HO-1 effects as a protective or detrimental mechanism in different pathological conditions. In this sense, as the major organs of vertebrates will deal specifically with distinct types of stresses, we discuss the HO-1 role in each of them, exposing the contradictions associated with HO-1 expression after different insults and circumstances.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Leonardo Holanda Travassos Correa
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Plicosepalus acacia Extract and Its Major Constituents, Methyl Gallate and Quercetin, Potentiate Therapeutic Angiogenesis in Diabetic Hind Limb Ischemia: HPTLC Quantification and LC-MS/MS Metabolic Profiling. Antioxidants (Basel) 2021; 10:antiox10111701. [PMID: 34829572 PMCID: PMC8614836 DOI: 10.3390/antiox10111701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Plicosepalus acacia (Fam. Loranthaceae) has been reported to possess hypoglycemic, antioxidant, antimicrobial, and anti-inflammatory effects. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) analysis revealed the presence of a high content of polyphenolic compounds that are attributed to the therapeutic effects of the crude extract. In addition, methyl gallate and quercetin were detected as major phytomedicinal agents at concentrations of 1.7% and 0.062 g%, respectively, using high-performance thin layer chromatography (HPTLC). The present study investigated the effect of the P. acacia extract and its isolated compounds, methyl gallate and quercetin, on hind limb ischemia induced in type 1 diabetic rats. Histopathological examination revealed that treatment with P. acacia extract, methyl gallate, and quercetin decreased degenerative changes and inflammation in the ischemic muscle. Further biochemical assessment of the hind limb tissue showed decreased oxidative stress, increased levels of nitric oxide and endothelial nitric oxide synthase (eNOS), and enhancement of the levels of heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) in the groups treated with methyl gallate and quercetin. Expression levels of hypoxia inducible factor-1 alpha (HIF-1α), VEGF, fibroblast growth factor-2 (FGF-2), and miR-146a were upregulated in the muscle tissue of methyl gallate- and quercetin-treated groups along with downregulation of nuclear factor kappa B (NF-κB). In conclusion, P. acacia extract and its isolated compounds, methyl gallate and quercetin, mediated therapeutic angiogenesis in diabetic hind limb ischemia.
Collapse
|
50
|
Jing YZ, Li SJ, Sun ZJ. Gas and gas-generating nanoplatforms in cancer therapy. J Mater Chem B 2021; 9:8541-8557. [PMID: 34608920 DOI: 10.1039/d1tb01661j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H2), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H2S and H2 in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Collapse
Affiliation(s)
- Yuan-Zhe Jing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|