1
|
Rimmerman ET, Stacy MR. Applications of SPECT and PET Imaging for the Physiological Evaluation of Lower Extremity Peripheral Artery Disease. Int J Mol Sci 2024; 25:7474. [PMID: 39000580 PMCID: PMC11242786 DOI: 10.3390/ijms25137474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Peripheral artery disease (PAD) is classified as the narrowing or complete occlusion of the lower extremity arteries due to atherosclerosis. The risk of developing PAD increases with increased age and risk factors such as smoking, diabetes, hypertension, and hypercholesterolemia. Current treatment for PAD involves lifestyle and symptom management, statin and antiplatelet therapy, and/or surgical interventions to improve quality of life with varying efficacy. PAD affects approximately 5 to 6 percent of the global population, with this global burden continuing to increase. Despite the increase in disease prevalence, no gold standard functional diagnostic tool has been established for enabling early detection of the disease, appropriate medical management, and prediction of adverse outcomes for PAD patients. The visualization and quantification of the physiological consequences of PAD are possible by way of nuclear imaging: specifically, via scintigraphy, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) imaging. These non-invasive modalities, when combined with targeted radionuclides, possess utility for detecting functional perfusion deficits and provide unique insight into muscle tissue- and vascular-level characteristics of PAD patients. This review discusses the past, present, and emerging applications of hybrid nuclear imaging modalities in the evaluation and monitoring of patients with PAD.
Collapse
Affiliation(s)
- Eleanor T. Rimmerman
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Regenerative Medicine, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Mitchel R. Stacy
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Regenerative Medicine, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Callegari S, Feher A, Smolderen KG, Mena-Hurtado C, Sinusas AJ. Multi-modality imaging for assessment of the microcirculation in peripheral artery disease: Bench to clinical practice. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 42:100400. [PMID: 38779485 PMCID: PMC11108852 DOI: 10.1016/j.ahjo.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Peripheral artery disease (PAD) is a highly prevalent disorder with a high risk of mortality and amputation despite the introduction of novel medical and procedural treatments. Microvascular disease (MVD) is common among patients with PAD, and despite the established role as a predictor of amputations and mortality, MVD is not routinely assessed as part of current standard practice. Recent pre-clinical and clinical perfusion and molecular imaging studies have confirmed the important role of MVD in the pathogenesis and outcomes of PAD. The recent advancements in the imaging of the peripheral microcirculation could lead to a better understanding of the pathophysiology of PAD, and result in improved risk stratification, and our evaluation of response to therapies. In this review, we will discuss the current understanding of the anatomy and physiology of peripheral microcirculation, and the role of imaging for assessment of perfusion in PAD, and the latest advancements in molecular imaging. By highlighting the latest advancements in multi-modality imaging of the peripheral microcirculation, we aim to underscore the most promising imaging approaches and highlight potential research opportunities, with the goal of translating these approaches for improved and personalized management of PAD in the future.
Collapse
Affiliation(s)
- Santiago Callegari
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kim G. Smolderen
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Mena-Hurtado
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Farkasinszky G, Péliné JS, Károlyi P, Rácz S, Dénes N, Papp T, Király J, Szabo Z, Kertész I, Mező G, Halmos G, Képes Z, Trencsényi G. In Vivo Imaging of Acute Hindlimb Ischaemia in Rat Model: A Pre-Clinical PET Study. Pharmaceutics 2024; 16:542. [PMID: 38675203 PMCID: PMC11054801 DOI: 10.3390/pharmaceutics16040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND To better understand ischaemia-related molecular alterations, temporal changes in angiogenic Aminopeptidase N (APN/CD13) expression and glucose metabolism were assessed with PET using a rat model of peripheral arterial disease (PAD). METHODS The mechanical occlusion of the base of the left hindlimb triggered using a tourniquet was applied to establish the ischaemia/reperfusion injury model in Fischer-344 rats. 2-[18F]FDG and [68Ga]Ga-NOTA-c(NGR) PET imaging performed 1, 3, 5, 7, and 10 days post-ischaemia induction was followed by Western blotting and immunohistochemical staining for APN/CD13 in ischaemic and control muscle tissue extracts. RESULTS Due to a cellular adaptation to hypoxia, a gradual increase in [68Ga]Ga-NOTA-c(NGR) and 2-[18F]FDG uptake was observed from post-intervention day 1 to 7 in the ischaemic hindlimbs, which was followed by a drop on day 10. Conforming pronounced angiogenic recovery, the NGR accretion of the ischaemic extremities differed significantly from the controls 5, 7, and 10 days after ischaemia induction (p ≤ 0.05), which correlated with the Western blot and immunohistochemical results. No remarkable radioactivity was depicted between the normally perfused hindlimbs of either the ischaemic or the control groups. CONCLUSIONS The PET-based longitudinal assessment of angiogenesis-associated APN/CD13 expression and glucose metabolism during ischaemia may continue to broaden our knowledge on the pathophysiology of PAD.
Collapse
Affiliation(s)
- Gergely Farkasinszky
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Szabó Péliné
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
| | - Péter Károlyi
- Doctoral School of Neuroscience, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Szilvia Rácz
- Division of Radiology, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Noémi Dénes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
| | - Tamás Papp
- Doctoral School of Neuroscience, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - József Király
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsuzsanna Szabo
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Kertész
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
| | - Gábor Mező
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, H-1053 Budapest, Hungary
- MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, H-1053 Budapest, Hungary
| | - Gabor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Neelamegam R, Chaly T, Dileep Kumar J. Radiosynthesis and in vivo imaging of [11C]BTFP, a potent inhibitor of VEGFR2. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Tiwari A, Elgrably B, Saar G, Vandoorne K. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne) 2022; 8:754369. [PMID: 35071257 PMCID: PMC8766766 DOI: 10.3389/fmed.2021.754369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Betsalel Elgrably
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Shimotsu R, Hotta K, Ikegami R, Asamura T, Tabuchi A, Masamoto K, Yagishita K, Poole DC, Kano Y. Vascular permeability of skeletal muscle microvessels in rat arterial ligation model: in vivo analysis using two-photon laser scanning microscopy. Am J Physiol Regul Integr Comp Physiol 2021; 320:R972-R983. [PMID: 33949210 DOI: 10.1152/ajpregu.00135.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) in the lower limb compromises oxygen supply due to arterial occlusion. Ischemic skeletal muscle is accompanied by capillary structural deformation. Therefore, using novel microscopy techniques, we tested the hypothesis that endothelial cell swelling temporally and quantitatively corresponds to enhanced microvascular permeability. Hindlimb ischemia was created in male Wistar rat's by iliac artery ligation (AL). The tibialis anterior (TA) muscle microcirculation was imaged using intravenously infused rhodamine B isothiocyanate dextran fluorescent dye via two-photon laser scanning microscopy (TPLSM) and dye extravasation at 3 and 7 days post-AL quantified to assess microvascular permeability. The TA microvascular endothelial ultrastructure was analyzed by transmission electron microscopy (TEM). Compared with control (0.40 ± 0.15 μm3 × 106), using TPLSM, the volumetrically determined interstitial leakage of fluorescent dye measured at 3 (3.0 ± 0.40 μm3 × 106) and 7 (2.5 ± 0.8 μm3 × 106) days was increased (both P < 0.05). Capillary wall thickness was also elevated at 3 (0.21 ± 0.06 μm) and 7 (0.21 ± 0.08 μm) days versus control (0.11 ± 0.03 μm, both P < 0.05). Capillary endothelial cell swelling was temporally and quantitatively associated with elevated vascular permeability in the AL model of PAD but these changes occurred in the absence of elevations in protein levels of vascular endothelial growth factor (VEGF) its receptor (VEGFR2 which decreased by AL-7 day) or matrix metalloproteinase. The temporal coherence of endothelial cell swelling and increased vascular permeability supports a common upstream mediator. TPLSM, in combination with TEM, provides a sensitive and spatially discrete technique to assess the mechanistic bases for, and efficacy of, therapeutic countermeasures to the pernicious sequelae of compromised peripheral arterial function.
Collapse
Affiliation(s)
- Rie Shimotsu
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
| | - Kzuki Hotta
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryo Ikegami
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
- Department of Health Science, Health Science University, Yamanashi, Japan
| | - Tomoyo Asamura
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
| | - Ayaka Tabuchi
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
| | - Kazuto Masamoto
- Faculty of Informatics and Engineering, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| | - Kazuyoshi Yagishita
- Clinical Center for Sports Medicine and Sports Dentistry, Hyperbaric Medical Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| |
Collapse
|
7
|
The Role of VEGF Receptors as Molecular Target in Nuclear Medicine for Cancer Diagnosis and Combination Therapy. Cancers (Basel) 2021; 13:cancers13051072. [PMID: 33802353 PMCID: PMC7959315 DOI: 10.3390/cancers13051072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The rapid development of diagnostic and therapeutic methods of the cancer treatment causes that these diseases are becoming better known and the fight against them is more and more effective. Substantial contribution in this development has nuclear medicine that enables very early cancer diagnosis and early start of the so-called targeted therapy. This therapeutic concept compared to the currently used chemotherapy, causes much fewer undesirable side effects, due to targeting a specific lesion in the body. This review article discusses the possible applications of radionuclide-labelled tracers (peptides, antibodies or synthetic organic molecules) that can visualise cancer cells through pathological blood vessel system in close tumour microenvironment. Hence, at a very early step of oncological disease, targeted therapy can involve in tumour formation and growth. Abstract One approach to anticancer treatment is targeted anti-angiogenic therapy (AAT) based on prevention of blood vessel formation around the developing cancer cells. It is known that vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) play a pivotal role in angiogenesis process; hence, application of angiogenesis inhibitors can be an effective approach in anticancer combination therapeutic strategies. Currently, several types of molecules have been utilised in targeted VEGF/VEGFR anticancer therapy, including human VEGF ligands themselves and their derivatives, anti-VEGF or anti-VEGFR monoclonal antibodies, VEGF binding peptides and small molecular inhibitors of VEGFR tyrosine kinases. These molecules labelled with diagnostic or therapeutic radionuclides can become, respectively, diagnostic or therapeutic receptor radiopharmaceuticals. In targeted anti-angiogenic therapy, diagnostic radioagents play a unique role, allowing the determination of the emerging tumour, to monitor the course of treatment, to predict the treatment outcomes and, first of all, to refer patients for AAT. This review provides an overview of design, synthesis and study of radiolabelled VEGF/VEGFR targeting and imaging agents to date. Additionally, we will briefly discuss their physicochemical properties and possible application in combination targeted radionuclide tumour therapy.
Collapse
|
8
|
Impact of aerobic exercise type on blood flow, muscle energy metabolism, and mitochondrial biogenesis in experimental lower extremity artery disease. Sci Rep 2020; 10:14048. [PMID: 32820213 PMCID: PMC7441153 DOI: 10.1038/s41598-020-70961-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Exercise training (ET) is recommended for lower extremity artery disease (LEAD) management. However, there is still little information on the hemodynamic and metabolic adaptations by skeletal muscle with ET. We examined whether hindlimb perfusion/vascularization and muscle energy metabolism are altered differently by three types of aerobic ET. ApoE−/− mice with LEAD were assigned to one of four groups for 4 weeks: sedentary (SED), forced treadmill running (FTR), voluntary wheel running (VWR), or forced swimming (FS). Voluntary exercise capacity was improved and equally as efficient with FTR and VWR, but remained unchanged with FS. Neither ischemic hindlimb perfusion and oxygenation, nor arteriolar density and mRNA expression of arteriogenic-related genes differed between groups. 18FDG PET imaging revealed no difference in the steady-state levels of phosphorylated 18FDG in ischemic and non-ischemic hindlimb muscle between groups, nor was glycogen content or mRNA and protein expression of glucose metabolism-related genes in ischemic muscle modified. mRNA (but not protein) expression of lipid metabolism-related genes was upregulated across all exercise groups, particularly by non-ischemic muscle. Markers of mitochondrial content (mitochondrial DNA content and citrate synthase activity) as well as mRNA expression of mitochondrial biogenesis-related genes in muscle were not increased with ET. Contrary to FTR and VWR, swimming was ineffective in improving voluntary exercise capacity. The underlying hindlimb hemodynamics or muscle energy metabolism are unable to explain the benefits of running exercise.
Collapse
|
9
|
Divakaran S, Sobieszczyk PS, Di Carli MF. The Potential of PET in the Management of Peripheral Arterial Disease. JACC Cardiovasc Imaging 2020; 13:1018-1020. [PMID: 31422132 PMCID: PMC7384373 DOI: 10.1016/j.jcmg.2019.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sanjay Divakaran
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. https://twitter.com/SanjayDivakaran
| | - Piotr S Sobieszczyk
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Imaging VEGF Receptors and α vβ 3 Integrins in a Mouse Hindlimb Ischemia Model of Peripheral Arterial Disease. Mol Imaging Biol 2019; 20:963-972. [PMID: 29687324 DOI: 10.1007/s11307-018-1191-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To compare targeted imaging of vascular endothelial growth factor (VEGF) receptors vs. αvβ3 integrins in a mouse hindlimb ischemia model of peripheral artery disease. PROCEDURES Male wild-type (WT) C57BL/6 mice (8- to 10-week old) (n = 24) underwent left femoral artery ligation. The right leg served as control. Five days later, mice were injected with either VEGF receptor targeting [99mTc]DOTA-PEG-scVEGF ([99mTc]scV) (n = 8) or with αvβ3-targeting tracer [99mTc]HYNIC-cycloRGD ([99mTc]RGD) (n = 8) and underwent single photon emission computed tomography (SPECT) x-ray computed tomography imaging. To assess non-specific [99mTc]scV uptake, six additional mice received a mixture of [99mTc]scV and 30-fold excess of targeting protein, scVEGF. Tracer uptake as %ID was measured using volumetric regions encompassing the hindlimb muscles and as %ID/g from harvested limb muscles. Double and triple immunofluorescent analysis on tissue sections established localization of αvβ3, VEGFR-1, VEGFR-2, as well as certain cell lineage markers. RESULTS Tracer uptake, as %ID/g, was higher in ligated limbs of mice injected with [99mTc]scV compared to ligated hindlimbs in mice injected with [99mTc]RGD (p = 0.02). The ratio of tracer uptake for ligated/control hindlimb was borderline higher for [99mTc]scV than for [99mTc]RGD (p = 0.06). Immunofluorescent analysis showed higher prevalence of VEGFR-1, VEGFR-2, and αvβ3, in damaged vs. undamaged hindlimb tissue, but with little co-localization of these markers. Double immunofluorescent staining showed partial co-localization of VEGFR-1, VEGFR-2, and αvβ3, with endothelial cell marker FVIII, but not with CD31. Immunostaining for VEGFR-1 and VEGFR-2 additionally co-localized with lineage markers for endothelial progenitor cell and monocytes/macrophages, with a more diverse pattern of co-localization for VEGFR-2. CONCLUSION In a mouse hindlimb ischemia model of peripheral artery disease, [99mTc]scV SPECT tracer-targeting VEGF receptors showed a more robust signal than [99mTc]RGD tracer-targeting αvβ3. Immunofluorescent analysis suggests that uptake of [99mTc]scV and [99mTc]RGD in damaged tissue is due to non-overlapping cell populations and reflects different dynamic processes and that enhanced uptake of [99mTc]scV may be due to the presence of VEGF receptors on additional cell types.
Collapse
|
11
|
Haghighat L, Ionescu CN, Regan CJ, Altin SE, Attaran RR, Mena-Hurtado CI. Review of the Current Basic Science Strategies to Treat Critical Limb Ischemia. Vasc Endovascular Surg 2019; 53:316-324. [DOI: 10.1177/1538574419831489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Critical limb ischemia (CLI) is a highly morbid disease with many patients considered poor surgical candidates. The lack of treatment options for CLI has driven interest in developing molecular therapies within recent years. Through these translational medicine studies in CLI, much has been learned about the pathophysiology of the disease. Here, we present an overview of the macrovascular and microvascular changes that lead to the development of CLI, including impairment of angiogenesis, vasculogenesis, and arteriogenesis. We summarize the randomized clinical controlled trials that have used molecular therapies in CLI, and discuss the novel imaging modalities being developed to assess the efficacy of these therapies.
Collapse
Affiliation(s)
- Leila Haghighat
- Department of Internal Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Costin N. Ionescu
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher J. Regan
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sophia Elissa Altin
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Robert R. Attaran
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos I. Mena-Hurtado
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Moyon A, Garrigue P, Balasse L, Fernandez S, Brige P, Nollet M, Hache G, Blot-Chabaud M, Dignat-George F, Guillet B. Early prediction of revascularisation by angiomotin-targeting positron emission tomography. Theranostics 2018; 8:4985-4994. [PMID: 30429881 PMCID: PMC6217063 DOI: 10.7150/thno.27728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
This study aimed to develop a PET imaging agent of angiomotin (AMOT) expression, a potential biomarker of functional tissue regeneration in post-ischaemic conditions. Methods: Hindlimb ischaemia was induced by ligature and resection of the right femoral artery in mice, and clinical score and limb perfusion were evaluated up to 30 days after surgery. AMOT expression was evaluated by histology and Western blot analysis. NODAGA-conjugates of AMOT ligand, sCD146, were designed, synthesised and radiolabelled with gallium-68. 68Ga-sCD146 microPET/CT imaging was performed from day 1 to day 30 after ischaemia. 68Ga-sCD146 specificity for AMOT was evaluated by autoradiography. Results: Immunohistochemistry showed a significant endothelial overexpression of AMOT from day 5 up to day 10 in the ischaemic hindlimb. 68Ga-sCD146 PET signal intensity correlated significantly with AMOT immunohistochemistry evaluation. 68Ga-sCD146 PET imaging showed a significant uptake in the ischaemic hindlimb from day 2 to day 15, peaking on day 5 (ipsi/contralateral ratio = 2.4 ± 1.3, P = 0.0005) and significantly decreased after pharmacological blocking (62.57 ± 11% decrease in PET signal P = 0.032). Finally, we observed a significant correlation between day 5 68Ga-sCD146 PET signal intensity and clinical recovery (day 28) or hindlimb perfusion recovery (day 30). Conclusions: This work reports for the first time an early and sustained increase in AMOT expression after hindlimb ischaemia in mice. We therefore developed an AMOT-targeting imaging agent, 68Ga-sCD146, and showed its specific uptake up to 21 days after ischaemic hindlimb using microPET imaging. Correlation of early post-ischaemic PET signal with both delayed perfusion recovery and clinical outcome allows us to postulate that 68Ga-sCD146 represents a promising radiotracer for tissue angiogenesis assessment.
Collapse
|
13
|
Ferreira CA, Hernandez R, Yang Y, Valdovinos HF, Engle JW, Cai W. ImmunoPET of CD146 in a Murine Hindlimb Ischemia Model. Mol Pharm 2018; 15:3434-3441. [PMID: 29889530 DOI: 10.1021/acs.molpharmaceut.8b00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral arterial disease (PAD) consists of a persistent obstruction of lower-extremity arteries further from the aortic bifurcation attributable to atherosclerosis. PAD is correlated with an elevated risk of morbidity and mortality as well as of deterioration of the quality of life with claudication and chronic leg ischemia being the most frequent complications. Therapeutic angiogenesis is a promising therapeutic strategy that aims to restore the blood flow to the ischemic limb. In this context, assessing the efficacy of pro-angiogenic treatment using a reliable noninvasive imaging technique would greatly benefit the implementation of this therapeutic approach. Herein, we describe the angiogenesis and perfusion recovery characteristics of a mouse model of PAD via in vivo positron emission tomography (PET) imaging of CD146 expression. For that, ischemia was generated by ligation and excision of the right femoral artery of Balb/C mice and confirmed through laser Doppler imaging. The angiogenic process, induced by ischemia, was noninvasively monitored and quantified through PET imaging of CD146 expression in the injured leg using a 64Cu-labeled anti-CD146 monoclonal antibody, 64Cu-NOTA-YY146, at post-operative days 3, 10, and 17. The CD146-specific character of 64Cu-NOTA-YY146 was verified via a blocking study performed in another cohort at day 10 after surgery. Tracer uptake was correlated with in situ CD146 expression by histological analysis. PET scan results indicated that 64Cu-NOTA-YY146 uptake in the injured leg was significantly higher, with the highest uptake with a value of 14.1 ± 2.0 %ID/g at post-operative day 3, compared to the normal contralateral hindlimb, at all time points (maximum uptake of 2.2 ± 0.2 %ID/g). The pre-injection of a blocking dose resulted in a significantly lower tracer uptake in the ischemic hindlimb on day 10 after surgery, confirming tracer specificity. CD146/CD31 immunofluorescent co-staining showed an excellent correlation between the high uptake of the tracer with in situ CD146 expression levels and a marked co-localization of CD146 and CD31 signals. In conclusion, persistent and CD146-specific tracer accumulation in the ischemic hindlimb was observed, confirming the feasibility of 64Cu-NOTA-YY146 to be used as an imaging agent to monitor the progression of angiogenesis and recovery in future PAD research.
Collapse
Affiliation(s)
- Carolina A Ferreira
- Department of Biomedical Engineering , University of Wisconsin-Madison , Madison , Wisconsin , 53706 , United States
| | - Reinier Hernandez
- Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin , 53792 , United States
| | - Yunan Yang
- Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin , 53792 , United States
| | - Hector F Valdovinos
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin , 53705 , United States
| | - Jonathan W Engle
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin , 53705 , United States
| | - Weibo Cai
- Department of Biomedical Engineering , University of Wisconsin-Madison , Madison , Wisconsin , 53706 , United States.,Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin , 53792 , United States.,Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin , 53705 , United States.,University of Wisconsin Carbone Cancer Center , Madison , Wisconsin , 53792 , United States
| |
Collapse
|
14
|
Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound. Sci Rep 2017; 7:41550. [PMID: 28169278 PMCID: PMC5294408 DOI: 10.1038/srep41550] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) are promising therapeutics for critical limb ischemia (CLI). Mechanotransduction from pulsed focused ultrasound (pFUS) upregulates local chemoattractants to enhance homing of intravenously (IV)-infused MSC and improve outcomes. This study investigated whether pFUS exposures to skeletal muscle would improve local homing of iv-infused MSCs and their therapeutic efficacy compared to iv-infused MSCs alone. CLI was induced by external iliac arterial cauterization in 10–12-month-old mice. pFUS/MSC treatments were delayed 14 days, when surgical inflammation subsided. Mice were treated with iv-saline, pFUS alone, IV-MSC, or pFUS and IV-MSC. Proteomic analyses revealed pFUS upregulated local chemoattractants and increased MSC tropism to CLI muscle. By 7 weeks post-treatment, pFUS + MSC significantly increased perfusion and CD31 expression, while reducing fibrosis compared to saline. pFUS or MSC alone reduced fibrosis, but did not increase perfusion or CD31. Furthermore, MSCs homing to pFUS-treated CLI muscle expressed more vascular endothelial growth factor (VEGF) and interleukin-10 (IL-10) than MSCs homing to non-pFUS-treated muscle. pFUS + MSC improved perfusion and vascular density in this clinically-relevant CLI model. The molecular effects of pFUS increased both MSC homing and MSC production of VEGF and IL-10, suggesting microenvironmental changes from pFUS also increased potency of MSCs in situ to further enhance their efficacy.
Collapse
|
15
|
Hsieh MJ, Liu HT, Wang CN, Huang HY, Lin Y, Ko YS, Wang JS, Chang VHS, Pang JHS. Therapeutic potential of pro-angiogenic BPC157 is associated with VEGFR2 activation and up-regulation. J Mol Med (Berl) 2016; 95:323-333. [PMID: 27847966 DOI: 10.1007/s00109-016-1488-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
BPC 157, a pentadecapeptide with extensive healing effects, has recently been suggested to contribute to angiogenesis. However, the underlying mechanism is not yet clear. The present study aimed to explore the potential therapeutic effect and pro-angiogenic mechanism of BPC 157. As demonstrated by the chick chorioallantoic membrane (CAM) assay and endothelial tube formation assay, BPC 157 could increase the vessel density both in vivo and in vitro, respectively. BPC 157 could also accelerate the recovery of blood flow in the ischemic muscle of the rat hind limb as detected by laser Doppler scanning, indicating the promotion of angiogenesis. Histological analysis of the hind limb muscle confirmed the increased number of vessels and the enhanced vascular expression of vascular endothelial growth factor receptor 2 (VEGFR2) in rat with BPC 157 treatment. In vitro study using human vascular endothelial cells further confirmed the increased mRNA and protein expressions of VEGFR2 but not VEGF-A by BPC 157. In addition, BPC 157 could promote VEGFR2 internalization in vascular endothelial cells which was blocked in the presence of dynasore, an inhibitor of endocytosis. BPC 157 time dependently activated the VEGFR2-Akt-eNOS signaling pathway which could also be suppressed by dynasore. The increase of endothelial tube formation induced by BPC 157 was also inhibited by dynasore. This study demonstrates the pro-angiogenic effects of BPC 157 that is associated with the increased expression, internalization of VEGFR2, and the activation of VEGFR2-Akt-eNOS signaling pathway. BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation. KEY MESSAGE BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Lin-kou, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Hsien-Ta Liu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China.,Division of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, Republic Of China.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Nin Wang
- Department of Obstetrics and Gynecology, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, Republic Of China
| | - Hsiu-Yun Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China
| | - Yuling Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China
| | - Yu-Shien Ko
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Lin-kou, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Vincent Hung-Shu Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic Of China
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China. .,Department of Physical Medicine and Rehabilitation, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, Republic Of China.
| |
Collapse
|
16
|
Chakravarty R, Chakraborty S, Dash A. 64Cu2+ Ions as PET Probe: An Emerging Paradigm in Molecular Imaging of Cancer. Mol Pharm 2016; 13:3601-3612. [DOI: 10.1021/acs.molpharmaceut.6b00582] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
17
|
SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease. Eur J Nucl Med Mol Imaging 2016; 43:2433-2447. [PMID: 27517840 PMCID: PMC5095166 DOI: 10.1007/s00259-016-3480-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023]
Abstract
Purpose The extent of neovascularization determines the clinical outcome of coronary artery disease and other occlusive cardiovascular disorders. Monitoring of neovascularization is therefore highly important. This review article will elaborately discuss preclinical studies aimed at validating new nuclear angiogenesis and arteriogenesis tracers. Additionally, we will briefly address possible obstacles that should be considered when designing an arteriogenesis radiotracer. Methods A structured medline search was the base of this review, which gives an overview on different radiopharmaceuticals that have been evaluated in preclinical models. Results Neovascularization is a collective term used to indicate different processes such as angiogenesis and arteriogenesis. However, while it is assumed that sensitive detection through nuclear imaging will facilitate translation of successful therapeutic interventions in preclinical models to the bedside, we still lack specific tracers for neovascularization imaging. Most nuclear imaging research to date has focused on angiogenesis, leaving nuclear arteriogenesis imaging largely overlooked. Conclusion Although angiogenesis is the process which is best understood, there is no scarcity in theoretical targets for arteriogenesis imaging.
Collapse
|
18
|
Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology. J Clin Med 2016; 5:jcm5060057. [PMID: 27275836 PMCID: PMC4929412 DOI: 10.3390/jcm5060057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation.
Collapse
|
19
|
England CG, Im HJ, Feng L, Chen F, Graves SA, Hernandez R, Orbay H, Xu C, Cho SY, Nickles RJ, Liu Z, Lee DS, Cai W. Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials 2016; 100:101-9. [PMID: 27254470 DOI: 10.1016/j.biomaterials.2016.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
As peripheral arterial disease (PAD) results in muscle ischemia and neovascularization, it has been claimed that nanoparticles can passively accumulate in ischemic tissues through the enhanced permeability and retention (EPR) effect. At this time, a quantitative evaluation of the passive targeting capabilities of nanoparticles has not been reported in PAD. Using a murine model of hindlimb ischemia, we quantitatively assessed the passive targeting capabilities of (64)Cu-labeled PEGylated reduced graphene oxide - iron oxide nanoparticles ((64)Cu-RGO-IONP-PEG) through the EPR effect using positron emission tomography (PET) imaging. Serial laser Doppler imaging was performed to monitor changes in blood perfusion upon surgical induction of ischemia. Nanoparticle accumulation was assessed at 3, 10, and 17 days post-surgery and found to be highest at 3 days post-surgery, with the ischemic hindlimb displaying an accumulation of 14.7 ± 0.5% injected dose per gram (%ID/g). Accumulation of (64)Cu-RGO-IONP-PEG was lowest at 17 days post-surgery, with the ischemic hindlimb displaying only 5.1 ± 0.5%ID/g. Furthermore, nanoparticle accumulation was confirmed by photoacoustic imaging (PA). The combination of PET and serial Doppler imaging showed that nanoparticle accumulation in the ischemic hindlimb negatively correlated with blood perfusion. Thus, we quantitatively confirmed that (64)Cu-RGO-IONP-PEG passively accumulated in ischemic tissue via the EPR effect, which is reduced as the perfusion normalizes. As (64)Cu-RGO-IONP-PEG displayed substantial accumulation in the ischemic tissue, this nanoparticle platform may function as a future theranostic agent, providing both imaging and therapeutic applications.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Hyung-Jun Im
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA; Department of Molecular Medicine and Biopharmaceutical Sciences, Department of Nuclear Medicine, Seoul National University, Seoul 110-744, South Korea
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Laboratory, Soochow University Suzhou, Jiangsu 215123, China
| | - Feng Chen
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Hakan Orbay
- Department of Surgery, University of California-Davis, Sacramento, CA 95817, USA
| | - Cheng Xu
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Steve Y Cho
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Laboratory, Soochow University Suzhou, Jiangsu 215123, China
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Department of Nuclear Medicine, Seoul National University, Seoul 110-744, South Korea
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin - Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA.
| |
Collapse
|
20
|
Park S, Lee J, Jo MH, Na JH, Park SG, Jang HK, Kang SW, Kim JH, Kim BS, Park JH, Kwon IC, Ryu JH, Kim K. In vivo monitoring of angiogenesis in a mouse hindlimb ischemia model using fluorescent peptide-based probes. Amino Acids 2016; 48:1641-54. [DOI: 10.1007/s00726-016-2225-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/25/2016] [Indexed: 12/13/2022]
|
21
|
Abstract
Peripheral vascular disease (PVD) is a progressive atherosclerotic disease that leads to stenosis or occlusion of blood vessels supplying the lower extremities. Current diagnostic imaging techniques commonly focus on evaluation of anatomy or blood flow at the macrovascular level and do not permit assessment of the underlying pathophysiology associated with disease progression or treatment response. Molecular imaging with radionuclide-based approaches can offer novel insight into PVD by providing noninvasive assessment of biological processes such as angiogenesis and atherosclerosis. This article discusses emerging radionuclide-based imaging approaches that have potential clinical applications in the evaluation of PVD progression and treatment.
Collapse
Affiliation(s)
- Mitchel R Stacy
- Department of Internal Medicine, Yale University School of Medicine, PO Box 208017, Dana-3, New Haven, CT 06520, USA.
| | - Albert J Sinusas
- Department of Internal Medicine, Yale University School of Medicine, PO Box 208017, Dana-3, New Haven, CT 06520, USA; Department of Diagnostic Radiology, Yale University School of Medicine, PO Box 208042, New Haven, CT 06520, USA
| |
Collapse
|
22
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S. State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. Circ Res 2015; 116:e99-132. [PMID: 25931450 DOI: 10.1161/res.0000000000000054] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Stacy MR, Paeng JC, Sinusas AJ. The role of molecular imaging in the evaluation of myocardial and peripheral angiogenesis. Ann Nucl Med 2015; 29:217-23. [PMID: 25750124 PMCID: PMC4661208 DOI: 10.1007/s12149-015-0961-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 11/28/2022]
Abstract
Angiogenesis, or the formation of new microvasculature, is a physiological process that may occur in the setting of chronic tissue ischemia and can play an important role in improving tissue perfusion and blood flow following myocardial infarction or in the presence of peripheral vascular disease (PVD). Molecular imaging of angiogenesis within the cardiovascular system is a developing field of study. Targeted imaging of angiogenesis has the potential for non-invasive assessment of the underlying molecular signaling events associated with the angiogenic process and, when applied in conjunction with physiological perfusion imaging, may be utilized to predict and evaluate clinical outcomes in the setting of ischemic heart disease or PVD. This review discusses the developing radiotracer-based imaging techniques and technology currently in use that possess potential for clinical translation, with specific focus on PET and SPECT imaging of myocardial and peripheral angiogenesis.
Collapse
Affiliation(s)
- Mitchel R Stacy
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, Dana-3, P.O. Box 208017, New Haven, CT, 06520, USA
| | | | | |
Collapse
|
25
|
Benitez E, Sumpio BJ, Chin J, Sumpio BE. Contemporary assessment of foot perfusion in patients with critical limb ischemia. Semin Vasc Surg 2014; 27:3-15. [PMID: 25812754 DOI: 10.1053/j.semvascsurg.2014.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Significant progress in limb salvage for patients with peripheral arterial disease and critical limb ischemia has occurred in the past 2 decades. Improved patient outcomes have resulted from increased knowledge and understanding of the disease processes, as well as efforts to improve revascularization techniques and enhance patient care after open and endovascular procedures. An imaging modality that is noninvasive, fast, and safe would be a useful tool for clinicians in assessing lower-extremity perfusion when planning interventions. Among the current and emerging regional perfusion imaging modalities are transcutaneous oxygen monitoring, hyperspectral imaging, indocyanine green dye-based fluorescent angiography, nuclear diagnostic imaging, and laser Doppler. These tests endeavor to delineate regional foot perfusion to guide directed revascularization therapy in patients with critical limb ischemia and foot ulceration.
Collapse
Affiliation(s)
- Erik Benitez
- Department of Vascular Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Brandon J Sumpio
- Department of Vascular Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Jason Chin
- Department of Vascular Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Bauer E Sumpio
- Department of Vascular Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510.
| |
Collapse
|
26
|
Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 2014; 76:2-20. [PMID: 25086372 DOI: 10.1016/j.addr.2014.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients.
Collapse
|
27
|
Abstract
Peripheral vascular disease (PVD) is an atherosclerotic disease affecting the lower extremities, resulting in skeletal muscle ischemia, intermittent claudication, and, in more severe stages of disease, limb amputation and death. The evaluation of therapy in this patient population can be challenging, as the standard clinical indices are insensitive to assessment of regional alterations in skeletal muscle physiology. Radiotracer imaging of the lower extremities with techniques such as PET and SPECT can provide a noninvasive quantitative technique for the evaluation of the pathophysiology associated with PVD and may complement clinical indices and other imaging approaches. This review discusses the progress in radiotracer-based evaluation of PVD and highlights recent advancements in molecular imaging with potential for clinical application.
Collapse
Affiliation(s)
- Mitchel R. Stacy
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wunan Zhou
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Albert J. Sinusas
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
Orbay H, Hong H, Koch JM, Valdovinos HF, Hacker TA, Theuer CP, Barnhart TE, Cai W. Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with (64)Cu-NOTA-TRC105. Am J Transl Res 2013; 6:54-63. [PMID: 24349621 PMCID: PMC3853424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/18/2013] [Indexed: 06/03/2023]
Abstract
In this study, (64)Cu-NOTA-TRC105 (TRC105 is an anti-CD105 monoclonal antibody that binds to both human and murine CD105) positron emission tomography (PET) was used to assess the response to pravastatin treatment in a murine model of peripheral artery disease (PAD). Hindlimb ischemia was induced by ligation of the right femoral arteries in BALB/c mice under anesthesia, and the left hindlimb served as an internal control. Mice in the treatment group were given intraperitoneal pravastatin daily until the end of the study, whereas the animals in the control group were injected with 0.9% sodium chloride solution. Laser Doppler imaging showed that blood flow in the ischemic hindlimb plummeted to ~20% of the normal level after surgery, and gradually recovered to near normal level on day 10 in the treatment group and on day 20 in the control group. Angiogenesis was non-invasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 3, 10, 17, and 24. Tracer uptake at 48 h post-injection in the ischemic hindlimb in the treatment group was significantly higher than that of the control group on day 10 (20.5 ± 1.9 %ID/g vs 11.4 ± 1.5 %ID/g), suggesting increased CD105 expression and higher level of angiogenesis upon pravastatin treatment, and gradually decreased to background levels in both groups (4.9 ± 0.8 %ID/g vs 3.4 ± 1.9 %ID/g on day 24). The in vivo PET data correlated well with ex vivo biodistribution studies performed on day 24. Increased CD105 expression on days 3 and 10 following ischemia was further confirmed by immunofluorescence staining. Taken together, our results indicated that (64)Cu-NOTA-TRC105 PET is a suitable and non-invasive method to monitor the angiogenesis and therapeutic response in PAD, which can also be utilized for non-invasive evaluation of other pro-angiogenic/anti-angiogenic drugs in other cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Hakan Orbay
- Department of Radiology, University of Wisconsin - MadisonWI, USA
| | - Hao Hong
- Department of Radiology, University of Wisconsin - MadisonWI, USA
| | - Jill M Koch
- Department of Medicine, University of Wisconsin - MadisonWI, USA
| | | | - Timothy A Hacker
- Department of Medicine, University of Wisconsin - MadisonWI, USA
| | | | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin - MadisonWI, USA
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - MadisonWI, USA
- Department of Medical Physics, University of Wisconsin - MadisonWI, USA
- University of Wisconsin Carbone Cancer CenterMadison, WI, USA
| |
Collapse
|
29
|
Abstract
Techniques for in vivo assessment of disease-related molecular changes are being developed for all forms of non-invasive cardiovascular imaging. The ability to evaluate tissue molecular or cellular phenotype in patients has the potential to not only improve diagnostic capabilities but to enhance clinical care either by detecting disease at an earlier stage when it is more amenable to therapy, or by guiding most appropriate therapies. These new techniques also can be used in research programs in order to characterize pathophysiology and as a surrogate endpoint for therapeutic efficacy. The most common approach for molecular imaging involves the creation of novel-targeted contrast agents that are designed so that their kinetic properties are different in disease tissues. The main focus of this review is not to describe all the different molecular imaging approaches that have been developed, but rather to describe the status of the field and highlight some of the clinical and research applications that molecular imaging will likely provide meaningful benefit. Specific target areas include assessment of atherosclerotic disease, tissue ischemia, and ventricular and vascular remodeling.
Collapse
Affiliation(s)
- Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, UHN-62, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA,
| | | |
Collapse
|
30
|
Kang CM, Koo HJ, Choe YS, Choi JY, Lee KH, Kim BT. ⁶⁸Ga-NODAGA-VEGF₁₂₁ for in vivo imaging of VEGF receptor expression. Nucl Med Biol 2013; 41:51-7. [PMID: 24183611 DOI: 10.1016/j.nucmedbio.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE Vascular endothelial growth factor (VEGF) is a crucial regulator of angiogenesis. In this study, we labeled VEGF₁₂₁ with (68)Ga using a hydrophilic chelating agent, NODAGA and evaluated the resulting (68)Ga-NODAGA-VEGF₁₂₁ for in vivo imaging of VEGF receptor (VEGFR) expression. METHODS NODAGA-VEGF₁₂₁ was prepared and its binding affinity for VEGFR2 was measured using (125)I-VEGF₁₂₁. (68)Ga-NODAGA-VEGF₁₂₁ was prepared by labeling NODAGA-VEGF₁₂₁ with (68)GaCl3 followed by purification using a PD-10 column. Human aortic endothelial cell (HAEC) binding studies of (68)Ga-NODAGA-VEGF₁₂₁ were performed at 37°C for 4 h. MicroPET imaging followed by biodistribution studies were performed in U87MG tumor-bearing mice injected with (68)Ga-NODAGA-VEGF₁₂₁. Immunofluorescence staining of the tumor tissues was performed to verify VEGFR2 expression. RESULTS Binding affinity of NODAGA-VEGF₁₂₁ for VEGFR2 was found to be comparable to that of VEGF₁₂₁. (68)Ga-NODAGA-VEGF₁₂₁ was prepared in 47.8% yield with specific activity of 3.4 GBq/mg. (68)Ga-NODAGA-VEGF₁₂₁ was avidly taken up by HAECs with a time-dependent increase from 9.88 %ID at 1 h to 20.86 %ID at 4h. MicroPET imaging of mice demonstrated high liver and spleen uptake with clear visualization of tumor at 1h after injection. ROI analysis of tumors revealed 2.53 ± 0.11 %ID/g at 4 h after injection. In the blocking study, tumor uptake was inhibited by 29% at 4 h. Subsequent biodistribution studies demonstrated tumor uptake of 2.38 ± 0.15 %ID/g. Immunofluorescence staining of the tumor tissues displayed high level of VEGFR2 expression. CONCLUSIONS These results demonstrate that (68)Ga-NODAGA-VEGF₁₂₁ led to VEGFR-specific distribution in U87MG tumor-bearing mice. This study also suggests that altered physicochemical properties of VEGF₁₂₁ after radiolabeling may affect biodistribution of the radiolabeled VEGF₁₂₁.
Collapse
Affiliation(s)
- Choong Mo Kang
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 135-710, Korea
| | | | | | | | | | | |
Collapse
|
31
|
A vascular endothelial growth factor 121 (VEGF121)-based dual PET/optical probe for in vivo imaging of VEGF receptor expression. Biomaterials 2013; 34:6839-45. [DOI: 10.1016/j.biomaterials.2013.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022]
|
32
|
Orbay H, Zhang Y, Hong H, Hacker TA, Valdovinos HF, Zagzebski JA, Theuer CP, Barnhart TE, Cai W. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105. Mol Pharm 2013; 10:2749-56. [PMID: 23738915 DOI: 10.1021/mp400191w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.
Collapse
Affiliation(s)
- Hakan Orbay
- Department of Radiology, ‡Department of Medical Physics, and §Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Imoukhuede PI, Dokun AO, Annex BH, Popel AS. Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol 2013; 304:H1085-93. [PMID: 23376830 PMCID: PMC3625905 DOI: 10.1152/ajpheart.00514.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
Abstract
VEGF receptor (VEGFR) cell surface localization plays a critical role in transducing VEGF signaling toward angiogenic outcomes, and quantitative characterization of these parameters is critical to advancing computational models for predictive medicine. However, studies to this point have largely examined intact muscle; thus, essential data on the cellular localization of the receptors within the tissue are currently unknown. Therefore, our aims were to quantitatively analyze VEGFR localization on endothelial cells (ECs) from mouse hindlimb skeletal muscles after the induction of hindlimb ischemia, an established model for human peripheral artery disease. Flow cytometry was used to measure and compare the ex vivo surface localization of VEGFR1 and VEGFR2 on CD31(+)/CD34(+) ECs 3 and 10 days after unilateral ligation of the femoral artery. We determined that 3 days after hindlimb ischemia, VEGFR2 surface levels were decreased by 80% compared with ECs from the nonischemic limb; 10 days after ischemia, we observed a twofold increase in surface levels of the modulatory receptor, VEGFR1, along with increased proliferating cell nuclear antigen, urokinase plasminogen activator, and urokinase plasminogen activator receptor mRNA expression compared with the nonischemic limb. The significant upregulation of VEGFR1 surface levels indicates that VEGFR1 indeed plays a critical role in the ischemia-induced perfusion recovery process, a process that includes both angiogenesis and arteriogenesis. The quantification of these dissimilarities, for the first time ex vivo, provides insights into the balance of modulatory (VEGFR1) and proangiogenic (VEGFR2) receptors in ischemia and lays the foundation for systems biology approaches toward therapeutic angiogenesis.
Collapse
Affiliation(s)
- P I Imoukhuede
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
34
|
Liu S, Hassink M, Selvaraj R, Yap LP, Park R, Wang H, Chen X, Fox JM, Li Z, Conti PS. Efficient
18
F Labeling of Cysteine-Containing Peptides and Proteins Using Tetrazine–
Trans
-Cyclooctene Ligation. Mol Imaging 2013. [DOI: 10.2310/7290.2012.00013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shuanglong Liu
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Matthew Hassink
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Ramajeyam Selvaraj
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Li-Peng Yap
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Ryan Park
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Hui Wang
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Xiaoyuan Chen
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Joseph M. Fox
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Zibo Li
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Peter S. Conti
- From the Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA; Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE; and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| |
Collapse
|
35
|
Liu S, Hassink M, Selvaraj R, Yap LP, Park R, Wang H, Chen X, Fox JM, Li Z, Conti PS. Efficient 18F labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation. Mol Imaging 2013; 12:121-128. [PMID: 23415400 PMCID: PMC4027965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
18F positron emission tomography (PET) has a number of attributes that make it clinically attractive, including nearly 100% positron efficiency, very high specific radioactivity, and a short half-life of ≈ 110 minutes. However, the short half-life of 18F and the poor nucleophilicity of fluoride introduce challenges for the incorporation of 18F into complex molecules. Recently, the tetrazine-trans-cyclooctene ligation was introduced as a novel 18F labeling method that proceeds with fast reaction rates without catalysis. Herein we report an efficient method for 18F labeling of free cysteines of peptides and proteins based on sequential ligation with a bifunctional tetrazinyl-maleimide and an 18F-labeled trans-cyclooctene. The newly developed method was tested for site-specific labeling of both c(RGDyC) peptide and vascular endothelial growth factor (VEGF)-SH protein. Starting with 4 mCi of 18F-trans-cyclooctene and only 10 μg of tetrazine-RGD (80-100 μM) or 15 μg of tetrazine-VEGF (6.0 μM), 18F-labeled RGD peptide and VEGF protein could be obtained within 5 minutes in 95% yield and 75% yield, respectively. The obtained tracers were then evaluated in mice. In conclusion, a highly efficient method has been developed for site-specific 18F labeling of cysteine-containing peptides and proteins. The special characteristics of the tetrazine-trans-cyclooctene ligation provide unprecedented opportunities to synthesize 18F-labeled probes with high specific activity for PET applications.
Collapse
Affiliation(s)
- Shuanglong Liu
- Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA 90033, USA. Fax: +1 323 442 3253; Tel: +1 323 442 3253
| | - Matthew Hassink
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19803, USA. Fax: +1 302 831 6335; Tel: +1 302 831 0191
| | - Ramajeyam Selvaraj
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19803, USA. Fax: +1 302 831 6335; Tel: +1 302 831 0191
| | - Li-Peng Yap
- Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA 90033, USA. Fax: +1 323 442 3253; Tel: +1 323 442 3253
| | - Ryan Park
- Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA 90033, USA. Fax: +1 323 442 3253; Tel: +1 323 442 3253
| | - Hui Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Joseph M. Fox
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19803, USA. Fax: +1 302 831 6335; Tel: +1 302 831 0191
| | - Zibo Li
- Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA 90033, USA. Fax: +1 323 442 3253; Tel: +1 323 442 3253
| | - Peter S. Conti
- Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA 90033, USA. Fax: +1 323 442 3253; Tel: +1 323 442 3253
| |
Collapse
|
36
|
Orbay H, Hong H, Zhang Y, Cai W. PET/SPECT imaging of hindlimb ischemia: focusing on angiogenesis and blood flow. Angiogenesis 2012; 16:279-87. [PMID: 23117521 DOI: 10.1007/s10456-012-9319-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/22/2012] [Indexed: 12/12/2022]
Abstract
Peripheral artery disease (PAD) is a result of the atherosclerotic narrowing of blood vessels to the extremities, and the subsequent tissue ischemia can lead to the up-regulation of angiogenic growth factors and formation of new vessels as a recovery mechanism. Such formation of new vessels can be evaluated with various non-invasive molecular imaging techniques, where serial images from the same subjects can be obtained to allow the documentation of disease progression and therapeutic response. The most commonly used animal model for preclinical studies of PAD is the murine hindlimb ischemia model, and a number of radiotracers have been investigated for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of PAD. In this review article, we summarize the PET/SPECT tracers that have been tested in the murine hindlimb ischemia model as well as those used clinically to assess the extremity blood flow.
Collapse
Affiliation(s)
- Hakan Orbay
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, 1111 Highland Ave, Room 7137, Madison, WI 53705-2275, USA
| | | | | | | |
Collapse
|
37
|
Kang CM, Kim SM, Koo HJ, Yim MS, Lee KH, Ryu EK, Choe YS. In vivo characterization of 68Ga-NOTA-VEGF 121 for the imaging of VEGF receptor expression in U87MG tumor xenograft models. Eur J Nucl Med Mol Imaging 2012; 40:198-206. [PMID: 23096079 DOI: 10.1007/s00259-012-2266-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/26/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE Vascular endothelial growth factor receptors (VEGFRs) are associated with tumor growth and induction of tumor angiogenesis and are known to be overexpressed in various human tumors. In the present study, we prepared and evaluated (68)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-benzyl (NOTA)-VEGF(121) as a positron emission tomography (PET) radioligand for the in vivo imaging of VEGFR expression. METHODS (68)Ga-NOTA-VEGF(121) was prepared by conjugation of VEGF(121) and p-SCN-NOTA, followed by radiolabeling with (68)GaCl(3) and then purification using a PD-10 column. Human aortic endothelial cell (HAEC) binding of (68)Ga-NOTA-VEGF(121) was measured as a function of time. MicroPET and biodistribution studies of U87MG tumor xenografted mice were performed at 1, 2, and 4 h after injection of (68)Ga-NOTA-VEGF(121). The tumor tissues were then sectioned and subjected to immunostaining. RESULTS The decay-corrected radiochemical yield of (68)Ga-NOTA-VEGF(121) was 40 ± 4.5 % and specific activity was 243.1 ± 104.6 GBq/μmol (8.6 ± 3.7 GBq/mg). (68)Ga-NOTA-VEGF(121) was avidly taken up by HAECs in a time-dependent manner, and the uptake was blocked either by 32 % with VEGF(121) or by 49 % with VEGFR2 antibody at 4 h post-incubation. In microPET images of U87MG tumor xenografted mice, radioactivity was accumulated in tumors (2.73±0.32 %ID/g at 2 h), and the uptake was blocked by 40 % in the presence of VEGF(121). In biodistribution studies, tumor uptake (1.84±0.14 %ID/g at 2 h) was blocked with VEGF(121) at a similar level (52 %) to that of microPET images. Immunostaining analysis of U87MG tumor tissues obtained after the microPET imaging showed high levels of VEGFR2 expression. CONCLUSION These results demonstrate that (68)Ga-NOTA-VEGF(121) has potential for the in vivo imaging of VEGFR expression. In addition, our results also suggest that the in vivo characteristics of radiolabeled VEGF depend on the properties of the radioisotope and the chelator used.
Collapse
Affiliation(s)
- Choong Mo Kang
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, South Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Prabhakaran J, Arango V, Majo VJ, Simpson NR, Kassir SA, Underwood MD, Polavarapu H, Bruce JN, Canoll P, Mann JJ, Kumar JSD. Synthesis and in vitro evaluation of [18F](R)-FEPAQ: a potential PET ligand for VEGFR2. Bioorg Med Chem Lett 2012; 22:5104-7. [PMID: 22749281 PMCID: PMC4818572 DOI: 10.1016/j.bmcl.2012.05.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 12/19/2022]
Abstract
Synthesis and in vitro evaluation of [(18)F](R)-N-(4-bromo-2-fluorophenyl)-7-((1-(2-fluoroethyl)piperidin-3-yl)methoxy)-6-methoxyquinazolin-4-amine ((R)-[(18)F]FEPAQ or [(18)F]1), a potential imaging agent for the VEGFR2, using phosphor image autoradiography are described. Synthesis of 2, the desfluoroethyl precursor for (R)-FEPAQ was achieved from t-butyl 3-(hydroxymethyl)piperidine-1-carboxylate (3) in five steps and in 50% yield. [(18)F]1 was synthesized by reaction of sodium salt of compound 2 with [(18)F]fluoroethyl tosylate in DMSO. The yield of [(18)F]1 was 20% (EOS based on [(18)F]F(-)) with >99% radiochemical purity and specific activity of 1-2 Ci/μmol (n=10). The total synthesis time was 75 min. The radiotracer selectively labeled VEGFR2 in slide-mounted sections of human brain and higher binding was found in surgically removed human glioblastoma sections as demonstrated by in vitro phosphor imager studies. These findings suggest [(18)F]1 may be a promising radiotracer for imaging VEGFR2 in brain using PET.
Collapse
Affiliation(s)
- Jaya Prabhakaran
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee I, Yoon KY, Kang CM, Lin X, Chen X, Kim JY, Kim SM, Ryu EK, Choe YS. Evaluation of the angiogenesis inhibitor KR-31831 in SKOV-3 tumor-bearing mice using (64)Cu-DOTA-VEGF(121) and microPET. Nucl Med Biol 2012; 39:840-6. [PMID: 22406249 PMCID: PMC3629961 DOI: 10.1016/j.nucmedbio.2012.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 01/20/2023]
Abstract
KR-31831 ((2R,3R,4S)-6-amino-4-[N-(4-chloropheyl)-N-(1H-imidazol-2ylmethyl)amino]-3-hydroxyl-2-methyl-2-dimethoxymethyl-3,4-dihydro-2H-1-benzopyran), an angiogenesis inhibitor, was evaluated in tumor-bearing mice using molecular imaging technology. Pre-treatment microPET images were acquired on SKOV-3 cell-implanted nude mice after injection with (64)Cu-DOTA-VEGF(121). KR-31831 (50 mg/kg) was then injected intraperitoneally into the treatment group (n=3), while injection vehicle was injected into the control (n=4) and blocking (n=3) groups. After injections occurred daily for 28 days, all groups of mice underwent post-treatment microPET imaging after injection with (64)Cu-DOTA-VEGF(121). The post-treatment images showed high tumor uptake in the control group and reduced tumor uptake in both the blocking and treatment groups. ROI analysis of the tumor images revealed 6.25%±1.18% ID/g at 1 h, 6.55%±0.69% ID/g at 2 h, and 4.68%±0.63% ID/g at 16 h in the control group; 3.87%±0.45% ID/g at 1 h, 4.50%±0.44% ID/g at 2 h, and 3.63%±0.25% ID/g at 16 h in the blocking group; and 4.03%±0.74% ID/g at 1 h, 4.37%±0.67% ID/g at 2 h, and 3.83%±0.90% ID/g at 16 h in the treatment group. Biodistribution obtained after the post-treatment microPET imaging also demonstrated high tumor uptake (3.74%±0.27% ID/g) in the control group and reduced uptakes in both the blocking group (2.69%±0.73% ID/g, P<.05) and the treatment group (3.11%±0.25% ID/g, P<.05), which correlated well with microPET imaging data. Immunofluorescence analysis showed higher levels of VEGFR2 and CD31 expressions in tumor tissues of the control and blocking groups than in tumor tissues of the treatment group. These results suggest that the antiangiogenic activity of KR-31831 is mediated through VEGFR2 and microPET serves as a useful molecular imaging tool for evaluation of a newly developed angiogenesis inhibitor, KR-31831.
Collapse
Affiliation(s)
- Iljung Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | - Kwang Yup Yoon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | - Choong Mo Kang
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | - Xin Lin
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892-2281, U.S.A
| | - Xiaoyuan Chen
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892-2281, U.S.A
| | - Jung Young Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Sung-Min Kim
- Division of Magnetic Resonance Research, Korea Basic Science Institute, 804-1 Ochang, Chungbuk 363-883, Korea
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance Research, Korea Basic Science Institute, 804-1 Ochang, Chungbuk 363-883, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| |
Collapse
|
40
|
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92:897-965. [PMID: 22535898 DOI: 10.1152/physrev.00049.2010] [Citation(s) in RCA: 742] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Collapse
Affiliation(s)
- Michelle L James
- Molecular Imaging Program, Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
41
|
Ransohoff JD, Wu JC. Imaging stem cell therapy for the treatment of peripheral arterial disease. Curr Vasc Pharmacol 2012; 10:361-73. [PMID: 22239638 PMCID: PMC3683543 DOI: 10.2174/157016112799959404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/28/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
Arteriosclerotic cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Therapeutic angiogenesis aims to treat ischemic myocardial and peripheral tissues by delivery of recombinant proteins, genes, or cells to promote neoangiogenesis. Concerns regarding the safety, side effects, and efficacy of protein and gene transfer studies have led to the development of cell-based therapies as alternative approaches to induce vascular regeneration and to improve function of damaged tissue. Cell-based therapies may be improved by the application of imaging technologies that allow investigators to track the location, engraftment, and survival of the administered cell population. The past decade of investigations has produced promising clinical data regarding cell therapy, but design of trials and evaluation of treatments stand to be improved by emerging insight from imaging studies. Here, we provide an overview of pre-clinical and clinical experience using cell-based therapies to promote vascular regeneration in the treatment of peripheral arterial disease. We also review four major imaging modalities and underscore the importance of in vivo analysis of cell fate for a full understanding of functional outcomes.
Collapse
Affiliation(s)
- Julia D. Ransohoff
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C. Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Regenerative Medicine and Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT: a review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2012; 85:75-86. [PMID: 22461745 PMCID: PMC3313541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past few decades, there have been significant advancements in the imaging techniques of positron emission tomography (PET) and single photon emission tomography (SPECT). These changes have allowed for the targeted imaging of cellular processes and the development of hybrid imaging systems (e.g., SPECT/CT and PET/CT), which provide both functional and structural images of biological systems. One area that has garnered particular attention is angiogenesis as it relates to ischemic heart disease and limb ischemia. Though the aforementioned techniques have benefits and consequences, they enable scientists and clinicians to identify regions that are vulnerable to or have been exposed to ischemic injury via non-invasive means. This literature review highlights the advancements in molecular imaging techniques and specific probes as they pertain to the process of angiogenesis in cardiovascular disease.
Collapse
Affiliation(s)
- Mitchel R. Stacy
- Section of Cardiovascular Medicine, Department of
Internal Medicine, Yale School of Medicine, New Haven, Connecticut,To whom all correspondence should be
addressed: Mitchel R. Stacy, Nuclear Cardiology, 3 FMP, PO Box 208017, New
Haven, CT 06520-8017, Tel: 203-737-5917; Fax: 203-737-1030;
| | - Mark W. Maxfield
- Department of Surgery, Yale School of Medicine, New
Haven, Connecticut
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of
Internal Medicine, Yale School of Medicine, New Haven, Connecticut,Department of Diagnostic Radiology, Yale School of
Medicine, New Haven, Connecticut
| |
Collapse
|
43
|
Zhang Y, Hong H, Engle JW, Yang Y, Barnhart TE, Cai W. Positron Emission Tomography and Near-Infrared Fluorescence Imaging of Vascular Endothelial Growth Factor with Dual-Labeled Bevacizumab. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2012; 2:1-13. [PMID: 22229128 PMCID: PMC3249831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/12/2011] [Indexed: 05/31/2023]
Abstract
The pivotal role of vascular endothelial growth factor (VEGF) in cancer is underscored by the approval of bevacizumab (Bev, a humanized anti-VEGF monoclonal antibody) for first line treatment of cancer patients. The aim of this study was to develop a dual-labeled Bev for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of VEGF. Bev was conjugated to a NIRF dye (i.e. 800CW) and 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) before (64)Cu-labeling. Flow cytometry analysis of U87MG human glioblastoma cells revealed no difference in VEGF binding affinity/specificity between Bev and NOTA-Bev-800CW. (64)Cu-labeling of NOTA-Bev-800CW was achieved with high yield. Serial PET imaging of U87MG tumor-bearing female nude mice revealed that tumor uptake of (64)Cu-NOTA-Bev-800CW was 4.6 ± 0.7, 16.3 ± 1.6, 18.1 ± 1.4 and 20.7 ± 3.7 %ID/g at 4, 24, 48 and 72 h post-injection respectively (n = 4), corroborated by in vivo/ex vivo NIRF imaging and biodistribution studies. Tumor uptake as measured by ex vivo NIRF imaging had a good linear correlation with the %ID/g values obtained from PET (R(2) = 0.93). Blocking experiments and histology both confirmed the VEGF specificity of (64)Cu-NOTA-Bev-800CW. The persistent, prominent, and VEGF-specific uptake of (64)Cu-NOTA-Bev-800CW in the tumor, observed by both PET and NIRF imaging, warrants further investigation and future clinical translation of such Bev-based imaging agents.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Medical Physics, University of Wisconsin - MadisonMadison, WI, USA
| | - Hao Hong
- Department of Radiology, University of Wisconsin - MadisonMadison, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin - MadisonMadison, WI, USA
| | - Yunan Yang
- Department of Radiology, University of Wisconsin - MadisonMadison, WI, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin - MadisonMadison, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - MadisonMadison, WI, USA
- Department of Radiology, University of Wisconsin - MadisonMadison, WI, USA
- University of Wisconsin Carbone Cancer CenterMadison, WI, USA
| |
Collapse
|
44
|
Kurdziel KA, Lindenberg L, Choyke PL. Oncologic Angiogenesis Imaging in the clinic---how and why. IMAGING IN MEDICINE 2011; 3:445-457. [PMID: 22132017 PMCID: PMC3224985 DOI: 10.2217/iim.11.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability to control the growth of new blood vessels would be an extraordinary therapeutic tool for many disease processes. Too often, the promises of discoveries in the basic science arena fail to translate to clinical success. While several anti angiogenic therapeutics are now FDA approved, the envisioned clinical benefits have yet to be seen. The ability to clinically non-invasively image angiogenesis would potentially be used to identify patients who may benefit from anti-angiogenic treatments, prognostication/risk stratification and therapy monitoring. This article reviews the current and future prospects of implementing angiogenesis imaging in the clinic.
Collapse
|
45
|
Angst E, Chen M, Mojadidi M, Hines OJ, Reber HA, Eibl G. Bioluminescence imaging of angiogenesis in a murine orthotopic pancreatic cancer model. Mol Imaging Biol 2011; 12:570-5. [PMID: 20376570 PMCID: PMC2917614 DOI: 10.1007/s11307-010-0310-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Angiogenesis is essential for physiological processes as well as for carcinogenesis. New approaches to cancer therapy include targeting angiogenesis. One target is VEGF-A and its receptor VEGFR2. In this study, we sought to investigate pancreatic cancer angiogenesis in a genetically modified VEGFR2-luc-KI mouse. PROCEDURES Live in vivo bioluminescence imaging of angiogenesis was performed continuously until sacrifice in subcutaneous tumors as well as in orthotopically transplanted tumors. Tumor tissue was immunostained for CD-31 and VEGFR2. RESULTS Peritumoral angiogenesis measured by light emission was detected beginning at week 3 following subcutaneous injection. In the orthotopic model, light emission began at day 4, which likely corresponds to wound healing, and continued throughout the experimental period during tumor growth. Peritumoral CD-31 vessel- and VEGFR2-staining were positive. CONCLUSIONS The VEGFR2-luc-KI mouse is a valuable tool to demonstrate tumor angiogenesis and seems to be suitable to evaluate anti-angiogenic approaches in pancreatic cancer.
Collapse
Affiliation(s)
- Eliane Angst
- Hirshberg Laboratory for Pancreatic Cancer Research, Department of Surgery, UCLA Center for Excellence in Pancreatic Diseases, David Geffen School of Medicine, University of California-Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Winter PM, Caruthers SD, Allen JS, Cai K, Williams TA, Lanza GM, Wickline SA. Molecular imaging of angiogenic therapy in peripheral vascular disease with alphanubeta3-integrin-targeted nanoparticles. Magn Reson Med 2011; 64:369-76. [PMID: 20665780 DOI: 10.1002/mrm.22447] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Noninvasive molecular imaging of angiogenesis could play a critical role in the clinical management of peripheral vascular disease patients. The alpha(nu)beta(3)-integrin, a well-established biomarker of neovascular proliferation, is an ideal target for molecular imaging of angiogenesis. This study investigates whether MR molecular imaging with alpha(nu)beta(3)-integrin-targeted perfluorocarbon nanoparticles can detect the neovascular response to angiogenic therapy. Hypercholesterolemic rabbits underwent femoral artery ligation followed by no treatment or angiogenic therapy with dietary L-arginine. MR molecular imaging performed 10 days after vessel ligation revealed increased signal enhancement in L-arginine-treated animals compared to controls. Furthermore, specifically targeted nanoparticles produced two times higher MRI signal enhancement compared to nontargeted particles, demonstrating improved identification of angiogenic vasculature with biomarker targeting. X-ray angiography performed 40 days postligation revealed that L-arginine treatment increased the development of collateral vessels. Histologic staining of muscle capillaries revealed a denser pattern of microvasculature in L-arginine-treated animals, confirming the MR and X-ray imaging results. The clinical application of noninvasive molecular imaging of angiogenesis could lead to earlier and more accurate detection of therapeutic response in peripheral vascular disease patients, enabling individualized optimization for a variety of treatment strategies.
Collapse
|
47
|
D'Andrea LD, Romanelli A, Di Stasi R, Pedone C. Bioinorganic aspects of angiogenesis. Dalton Trans 2010; 39:7625-36. [PMID: 20535417 DOI: 10.1039/c002439b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis is a physiologic process characterized by the sprouting of a new blood vessel from a pre-existing one. In mammalians the angiogenesis process is dormant, except for few physiological conditions such as wound healing and ovulation. In healthy individuals angiogenesis is finely tuned by pro- and anti-angiogenic factors. The shift from this equilibrium, under pathological conditions (pathological angiogenesis) is associated with several human diseases of high social impact. An efficient angiogenesis also requires that angiogenic factors cooperate with microenvironment derived co-factors, including metals. In this Perspective we describe the bioinorganic aspects of angiogenesis which contribute to a better understanding of the molecular mechanisms and regulation of angiogenesis. In particular, the role of metals, especially copper, metalloproteinases, and the current status on the imaging of angiogenesis targeting VEGF or VEGF receptors will be discussed.
Collapse
|
48
|
Lee CM, Kim EM, Cheong SJ, Kim DW, Lim ST, Sohn MH, Jeong HJ. Targeted molecular imaging of VEGF receptors overexpressed in ischemic microvasculature using chitosan-DC101 conjugates. J Biomed Mater Res A 2010; 92:1510-7. [PMID: 19425046 DOI: 10.1002/jbm.a.32470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of vascular endothelial growth factor receptors (VEGFRs) increases in ischemic muscles, and thus, VEGFR could potentially be used as marker to detect ischemia. Here, we investigated whether (99m)Tc or Cy5.5-labeled chitosan-DC101 conjugates could identify VEGFR-2 overexpressed in ischemia. To this end, chitosan was conjugated with the DC101 antibody and Cy5.5, FITC, or the HYNIC chelator for (99m)Tc-labeling. Targeting of the conjugate was evaluated in vitro and in vivo through cell-binding studies and gamma/optical imaging, respectively. A hindlimb ischemic mouse model was surgically created by femoral artery occlusion. The chitosan-DC101 conjugates exhibited VEGFR-selective cell binding properties as determined by both confocal microscopy and flow cytometry. At postoperative times of 2, 12, and 24 h, (99m)Tc or Cy5.5-labeled chitosan-DC101 conjugates were intravenously injected into the mice, and gamma/optical imaging studies were conducted at 1 or 3 h. Both the gamma and optical imaging results indicated a significantly higher uptake in ischemic muscles when compared with the contralateral nonischemic muscle. Further, semiquantitative analysis of scintigraphic imaging data revealed that the ischemic to contralateral limb ratio was 4.5 +/- 0.25 at 24 h postoperation. Western blotting analysis confirmed VEGFR expression in the ischemic muscle. In conclusion, we believe that (99m)Tc or Cy5.5-labeled chitosan-DC101 conjugates have the potential to be useful as VEGFR-2-targeted imaging agents for monitoring ischemia.
Collapse
Affiliation(s)
- Chang-Moon Lee
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Molecular imaging is a new and evolving field that employs a targeted approach to noninvasively assess biologic processes in vivo. By assessing key elements in specific cellular processes prior to irreversible end-organ damage, molecular tools will allow for earlier detection and intervention, improving management and outcomes associated with cardiovascular diseases. The goal of those working to expand this field is not just to provide diagnostic and prognostic information, but rather to guide an individual's pharmacological, cell-based, or genetic therapeutic regimen. This article will review molecular imaging tools in the context of our current understanding of biological processes of the myocardium, including angiogenesis, ventricular remodeling, inflammation, and apoptosis. The focus will be on radiotracer-based molecular imaging modalities with an emphasis on clinical application. Though this field is still in its infancy and may not be fully ready for widespread use, molecular imaging of myocardial biology has begun to show promise of clinical utility in acute and chronic ischemia, acute myocardial infarction, congestive heart failure, as well as in more global inflammatory and immune-mediated responses in the heart-like myocarditis and allogeneic cardiac transplant rejection. With continued research and development, molecular imaging promises to be an important tool for the optimization of cardiovascular care.
Collapse
Affiliation(s)
- Alan R. Morrison
- Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
50
|
Wang H, Chen K, Niu G, Chen X. Site-specifically biotinylated VEGF(121) for near-infrared fluorescence imaging of tumor angiogenesis. Mol Pharm 2009; 6:285-94. [PMID: 19099493 DOI: 10.1021/mp800185h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway is considered to be one of the most important regulators of angiogenesis and a key target in anticancer treatment. Imaging VEGFR expression can serve as a new paradigm for assessing the efficacy of antiangiogenic cancer therapy, improving cancer management, and elucidating the role and modulation of VEGF/VEGFR signaling during cancer development and intervention. In this study we developed an Avi-tagged VEGF(121) protein, which is site-specifically biotinylated in the presence of bacterial BirA biotin ligase. BirA biotinylated VEGF(121)-Avi (VEGF(121)-Avib) forms a stable complex with streptavidin-IRDye800 (SA800) that retains high affinity for VEGFR in vitro and allows receptor specific targeting in vivo in a 67NR murine xenograft model. In contrast, chemical coupling of IRDye800 abrogated the VEGFR binding ability of the modified protein both in vitro and in vivo. The VEGF(121)-Avib/SA800 complex (VEGF-Avib/SA800) may be used for quantitative and repetitive near-infrared fluorescence imaging of VEGFR expression and translated into clinic for evaluating cancer and other angiogenesis related diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305-5484, USA
| | | | | | | |
Collapse
|