1
|
Correale M, Chirivì F, Bevere EML, Tricarico L, D’Alto M, Badagliacca R, Brunetti ND, Vizza CD, Ghio S. Endothelial Function in Pulmonary Arterial Hypertension: From Bench to Bedside. J Clin Med 2024; 13:2444. [PMID: 38673717 PMCID: PMC11051060 DOI: 10.3390/jcm13082444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pulmonary arterial hypertension is a complex pathology whose etiology is still not completely well clarified. The pathogenesis of pulmonary arterial hypertension involves different molecular mechanisms, with endothelial dysfunction playing a central role in disease progression. Both individual genetic predispositions and environmental factors seem to contribute to its onset. To further understand the complex relationship between endothelial and pulmonary hypertension and try to contribute to the development of future therapies, we report a comprehensive and updated review on endothelial function in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Lucia Tricarico
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Michele D’Alto
- Department of Cardiology, A.O.R.N. dei Colli, Monaldi Hospital, University of Campania L. ‘Vanvitelli’, 80133 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Natale D. Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
2
|
Bhavana, Kohal R, Kumari P, Das Gupta G, Kumar Verma S. Druggable targets of protein tyrosine phosphatase Family, viz. PTP1B, SHP2, Cdc25, and LMW-PTP: Current scenario on medicinal Attributes, and SAR insights. Bioorg Chem 2024; 144:107121. [PMID: 38237392 DOI: 10.1016/j.bioorg.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Protein tyrosine phosphatases (PTPs) are the class of dephosphorylation enzymes that catalyze the removal of phosphate groups from tyrosine residues on proteins responsible for various cellular processes. Any disbalance in signal pathways mediated by PTPs leads to various disease conditions like diabetes, obesity, cancers, and autoimmune disorders. Amongst the PTP superfamily, PTP1B, SHP2, Cdc25, and LMW-PTP have been prioritized as druggable targets for developing medicinal agents. PTP1B is an intracellular PTP enzyme that downregulates insulin and leptin signaling pathways and is involved in insulin resistance and glucose homeostasis. SHP2 is involved in the RAS-MAPK pathway and T cell immunity. Cdk-cyclin complex activation occurs by Cdc25-PTPs involved in cell cycle regulation. LMW-PTPs are involved in PDGF/PDGFR, Eph/ephrin, and insulin signaling pathways, resulting in certain diseases like diabetes mellitus, obesity, and cancer. The signaling cascades of PTP1B, SHP2, Cdc25, and LMW-PTPs have been described to rationalize their medicinal importance in the pathophysiology of diabetes, obesity, and cancer. Their binding sites have been explored to overcome the hurdles in discovering target selective molecules with optimum potency. Recent developments in the synthetic molecules bearing heterocyclic moieties against these targets have been explored to gain insight into structural features. The elaborated SAR investigation revealed the effect of substituents on the potency and target selectivity, which can be implicated in the further discovery of newer medicinal agents targeting the druggable members of the PTP superfamily.
Collapse
Affiliation(s)
- Bhavana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Rupali Kohal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Preety Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India.
| |
Collapse
|
3
|
Larion S, Padgett CA, Mintz JD, Thompson JA, Butcher JT, Belin de Chantemèle EJ, Haigh S, Khurana S, Fulton DJ, Stepp DW. NADPH oxidase 1 promotes hepatic steatosis in obese mice and is abrogated by augmented skeletal muscle mass. Am J Physiol Gastrointest Liver Physiol 2024; 326:G264-G273. [PMID: 38258487 PMCID: PMC11211036 DOI: 10.1152/ajpgi.00153.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Exercise as a lifestyle modification is a frontline therapy for nonalcoholic fatty liver disease (NAFLD), but how components of exercise attenuate steatosis is unclear. To uncouple the effect of increased muscle mass from weight loss in obesity, myostatin knockout mice were bred on a lean and obese db/db background. Myostatin deletion increases gastrocnemius (Gastrocn.) mass and reduces hepatic steatosis and hepatic sterol regulatory element binding protein 1 (Srebp1) expression in obese mice, with no impact on adiposity or body weight. Interestingly, hypermuscularity reduces hepatic NADPH oxidase 1 (Nox1) expression but not NADPH oxidase 4 (Nox4) in db/db mice. To evaluate a deterministic function of Nox1 on steatosis, Nox1 knockout mice were bred on a lean and db/db background. NOX1 deletion significantly attenuates hepatic oxidant stress, steatosis, and Srebp1 programming in obese mice to parallel hypermuscularity, with no improvement in adiposity, glucose control, or hypertriglyceridemia to suggest off-target effects. Directly assessing the role of NOX1 on SREBP1, insulin (Ins)-mediated SREBP1 expression was significantly increased in either NOX1, NADPH oxidase organizer 1 (NOXO1), and NADPH oxidase activator 1 (NOXA1) or NOX5-transfected HepG2 cells versus ?-galactosidase control virus, indicating superoxide is the key mechanistic agent for the actions of NOX1 on SREBP1. Metabolic Nox1 regulators were evaluated using physiological, genetic, and diet-induced animal models that modulated upstream glucose and insulin signaling, identifying hyperinsulinemia as the key metabolic derangement explaining Nox1-induced steatosis in obesity. GEO data revealed that hepatic NOX1 predicts steatosis in obese humans with biopsy-proven NAFLD. Taken together, these data suggest that hypermuscularity attenuates Srebp1 expression in db/db mice through a NOX1-dependent mechanism.NEW & NOTEWORTHY This study documents a novel mechanism by which changes in body composition, notably increased muscle mass, protect against fatty liver disease. This mechanism involves NADPH oxidase 1 (NOX1), an enzyme that increases superoxide and increases insulin signaling, leading to increased fat accumulation in the liver. NOX1 may represent a new early target for preventing fatty liver to stave off later liver diseases such as cirrhosis or liver cancer.
Collapse
Affiliation(s)
- Sebastian Larion
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Caleb A Padgett
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - James D Mintz
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Joshua T Butcher
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Sandeep Khurana
- Division of Gastroenterology, Geisinger Health System, Danville, Pennsylvania, United States
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - David W Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
4
|
Atawia RT, Batori R, Jordan CR, Kennard S, Antonova G, Bruder-Nascimento T, Mehta V, Saeed MI, Patel VS, Fukai T, Ushio-Fukai M, Huo Y, Fulton DJR, de Chantemèle EJB. Type 1 Diabetes Impairs Endothelium-Dependent Relaxation Via Increasing Endothelial Cell Glycolysis Through Advanced Glycation End Products, PFKFB3, and Nox1-Mediated Mechanisms. Hypertension 2023; 80:2059-2071. [PMID: 37729634 PMCID: PMC10514399 DOI: 10.1161/hypertensionaha.123.21341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a major cause of endothelial dysfunction. Although cellular bioenergetics has been identified as a new regulator of vascular function, whether glycolysis, the primary bioenergetic pathway in endothelial cells (EC), regulates vascular tone and contributes to impaired endothelium-dependent relaxation (EDR) in T1D remains unknown. METHODS Experiments were conducted in Akita mice with intact or selective deficiency in EC PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), the main regulator of glycolysis. Seahorse analyzer and myography were employed to measure glycolysis and mitochondrial respiration, and EDR, respectively, in aortic explants. EC PFKFB3 (Ad-PFKFB3) and glycolysis (Ad-GlycoHi) were increased in situ via adenoviral transduction. RESULTS T1D increased EC glycolysis and elevated EC expression of PFKFB3 and NADPH oxidase Nox1 (NADPH oxidase homolog 1). Functionally, pharmacological and genetic inhibition of PFKFB3 restored EDR in T1D, while in situ aorta EC transduction with Ad-PFKFB3 or Ad-GlycoHi reproduced the impaired EDR associated with T1D. Nox1 inhibition restored EDR in aortic rings from Akita mice, as well as in Ad-PFKFB3-transduced aorta EC and lactate-treated wild-type aortas. T1D increased the expression of the advanced glycation end product precursor methylglyoxal in the aortas. Exposure of the aortas to methylglyoxal impaired EDR, which was prevented by PFKFB3 inhibition. T1D and exposure to methylglyoxal increased EC expression of HIF1α (hypoxia-inducible factor 1α), whose inhibition blunted methylglyoxal-mediated EC PFKFB3 upregulation. CONCLUSIONS EC bioenergetics, namely glycolysis, is a new regulator of vasomotion and excess glycolysis, a novel mechanism of endothelial dysfunction in T1D. We introduce excess methylglyoxal, HIF1α, and PFKFB3 as major effectors in T1D-mediated increased EC glycolysis.
Collapse
Affiliation(s)
- Reem T. Atawia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Robert Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Coleton R. Jordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Galina Antonova
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Vinay Mehta
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Muhammad I. Saeed
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vijay S Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David JR Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | |
Collapse
|
5
|
Williamson A, da Silva A, do Carmo JM, Le Maitre C, Hall JE, Aberdein N. Impact of leptin deficiency on male tibia and vertebral body 3D bone architecture independent of changes in body weight. Physiol Rep 2023; 11:10.14814/phy2.15832. [PMID: 37786973 PMCID: PMC10546263 DOI: 10.14814/phy2.15832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Leptin an adipokine with potent effects on energy balance and body weight plays an important role in defining bone architecture in growing mammals. However, major changes in body weight can also influence morphology of trabecular and cortical bone. Therefore, we examined the impact of leptin deficiency on tibia and vertebral body 3D bone architecture independent of changes in body weight. Furthermore, advances in computational 3D image analysis suggest that average morphological values may mask regional specific differences in trabecular bone thickness. The study utilized leptin-deficient Ob/Ob mice (n = 8) weight-paired to C57BL/6 (C57) control mice (n = 8) which were split into either lean or obese groups for 24 ± 2 weeks. Whole tibias and L3 vertebrae were fixed before high resolution microcomputed tomography (μCT) scanning was performed. Leptin deficiency independent of body weight reduced tibia cortical bone volume, trabecular bone volume/tissue volume, number, and mineral density. Mean tibia trabecular thickness showed no significant differences between all groups; however, significant changes in trabecular thickness were found when analyzed by region. This study demonstrates that leptin deficiency significantly impacts tibia and vertebral body trabecular and cortical bone 3D architecture independent of changes in body weight.
Collapse
Affiliation(s)
- Alexander Williamson
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - Alexandre da Silva
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Jussara M. do Carmo
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Christine L. Le Maitre
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - John E. Hall
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nicola Aberdein
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| |
Collapse
|
6
|
Ali MK, Tian X, Zhao L, Schimmel K, Rhodes CJ, Wilkins MR, Nicolls MR, Spiekerkoetter EF. PTPN1 Deficiency Modulates BMPR2 Signaling and Induces Endothelial Dysfunction in Pulmonary Arterial Hypertension. Cells 2023; 12:316. [PMID: 36672250 PMCID: PMC9857213 DOI: 10.3390/cells12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Bone morphogenic protein receptor 2 (BMPR2) expression and signaling are impaired in pulmonary arterial hypertension (PAH). How BMPR2 signaling is decreased in PAH is poorly understood. Protein tyrosine phosphatases (PTPs) play important roles in vascular remodeling in PAH. To identify whether PTPs modify BMPR2 signaling, we used a siRNA-mediated high-throughput screening of 22,124 murine genes in mouse myoblastoma reporter cells using ID1 expression as readout for BMPR2 signaling. We further experimentally validated the top hit, PTPN1 (PTP1B), in healthy human pulmonary arterial endothelial cells (PAECs) either silenced by siRNA or exposed to hypoxia and confirmed its relevance to PAH by measuring PTPN1 levels in blood and PAECs collected from PAH patients. We identified PTPN1 as a novel regulator of BMPR2 signaling in PAECs, which is downregulated in the blood of PAH patients, and documented that downregulation of PTPN1 is linked to endothelial dysfunction in PAECs. These findings point to a potential involvement for PTPN1 in PAH and will aid in our understanding of the molecular mechanisms involved in the disease.
Collapse
Affiliation(s)
- Md Khadem Ali
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Xuefei Tian
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Lan Zhao
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Katharina Schimmel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher J. Rhodes
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, London W12 0NN, UK
| | - Martin R. Wilkins
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, London W12 0NN, UK
| | - Mark R. Nicolls
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Edda F. Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Galley JC, Singh S, Awata WMC, Alves JV, Bruder-Nascimento T. Adipokines: Deciphering the cardiovascular signature of adipose tissue. Biochem Pharmacol 2022; 206:115324. [PMID: 36309078 PMCID: PMC10509780 DOI: 10.1016/j.bcp.2022.115324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
Abstract
Obesity and hypertension are intimately linked due to the various ways that the important cell types such as vascular smooth muscle cells (VSMC), endothelial cells (EC), immune cells, and adipocytes, communicate with one another to contribute to these two pathologies. Adipose tissue is a very dynamic organ comprised primarily of adipocytes, which are well known for their role in energy storage. More recently adipose tissue has been recognized as the largest endocrine organ because of its ability to produce a vast number of signaling molecules called adipokines. These signaling molecules stimulate specific types of cells or tissues with many adipokines acting as indicators of adipocyte healthy function, such as adiponectin, omentin, and FGF21, which show anti-inflammatory or cardioprotective effects, acting as regulators of healthy physiological function. Others, like visfatin, chemerin, resistin, and leptin are often altered during pathophysiological circumstances like obesity and lipodystrophy, demonstrating negative cardiovascular outcomes when produced in excess. This review aims to explore the role of adipocytes and their derived products as well as the impacts of these adipokines on blood pressure regulation and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Joseph C. Galley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Wanessa M. C. Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliano V. Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Han D, Lu D, Huang S, Pang J, Wu Y, Hu J, Zhang X, Pi Y, Zhang G, Wang J. Small extracellular vesicles from Ptpn1-deficient macrophages alleviate intestinal inflammation by reprogramming macrophage polarization via lactadherin enrichment. Redox Biol 2022; 58:102558. [PMID: 36462232 PMCID: PMC9712762 DOI: 10.1016/j.redox.2022.102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 1 (Ptpn1) is known to be involved in macrophage polarization. However, whether and how Ptpn1 regulates macrophage phenotype to affect intestinal epithelial barrier function remains largely unexplored. Herein, we investigated the impact of Ptpn1 and macrophage-derived small extracellular vesicles (sEVs) on macrophage-intestinal epithelial cell (IEC) interactions in the context of intestinal inflammation. We found that Ptpn1 knockdown shifts macrophages toward the anti-inflammatory M2 phenotype, thereby promoting intestinal barrier integrity and suppressing inflammatory response in the macrophage-IEC co-culture model. We further revealed that conditioned medium or sEVs isolated from Ptp1b knockdown macrophages are the primary factor driving the beneficial outcomes. Consistently, administration of the sEVs from Ptpn1-knockdown macrophages reduced disease severity and ameliorated intestinal inflammation in LPS-challenged mice. Furthermore, depletion of macrophages in mice abrogated the protective effect of Ptpn1-knockdown macrophage sEVs against Salmonella Typhimurium infection. Importantly, we found lactadherin to be highly enriched in the sEVs of Ptpn1-knockdown macrophages. Administration of recombinant lactadherin alleviated intestinal inflammation and barrier dysfunction by inducing macrophage M2 polarization. Interestingly, sEVs lactadherin was also internalized by macrophages and IECs, leading to macrophage M2 polarization and enhanced intestinal barrier integrity. Mechanistically, the anti-inflammatory and barrier-enhancing effect of lactadherin was achieved by reducing TNF-α and NF-κB activation. Thus, we demonstrated that sEVs from Ptpn1-knockdown macrophages mediate the communication between IECs and macrophages through enrichment of lactadherin. The outcome could potentially lead to the development of novel therapies for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Atawia RT, Faulkner JL, Mehta V, Austin A, Jordan CR, Kennard S, Belin de Chantemèle EJ. Endothelial leptin receptor is dispensable for leptin-induced sympatho-activation and hypertension in male mice. Vascul Pharmacol 2022; 146:107093. [PMID: 35914636 PMCID: PMC9561021 DOI: 10.1016/j.vph.2022.107093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Leptin plays a crucial role in blood pressure (BP) regulation, notably in the context of obesity through central sympatho-mediated pressor effects. Leptin also relaxes arteries via endothelial (EC) leptin receptor (LepREC)-mediated increases in nitric oxide (NO) bioavailability. Herein, we investigated whether leptin-mediated increases in NO bioavailability represent a buffering mechanism against leptin-induced sympatho-activation. We tested the direct contribution of LepREC to BP regulation in physiological conditions and in response to chronic leptin infusion using mice deficient in LepREC. LepREC deficiency did not alter baseline metabolic profile nor leptin-induced reduction in adiposity and increases in energy expenditure. LepREC-/- mice demonstrated no increase in baseline BP and heart rate (HR) (MAP: LepREC+/+:94.7 ± 1.6, LepREC-/-:95.1 ± 1.8 mmHg; HR:LepREC+/+:492.4 ± 11.7, LepREC-/-:509.5 ± 13.4 bpm) nor in response to leptin (MAP, LepREC+/+:101.1 ± 1.7, LepREC-/-:101.7 ± 1.8 mmHg; HR, LepREC+/+:535.6 ± 11.1, LepREC-/-:539.3 ± 14.2 bpm). Moreover, baseline neurogenic control of BP and HR was preserved in LepREC-/- mice as well as leptin-mediated increases in sympathetic control of BP and HR and decreases in vagal tone. Remarkably, LepREC deficiency did not alter endothelium-dependent relaxation in resistance vessels, nor NO contribution to vasodilatation. Lastly, leptin induced similar increases in adrenergic contractility in mesenteric arteries from both LepREC+/+ and LepREC-/- mice. Collectively, these results demonstrate that the NO buffering effects of leptin are absent in resistance arteries and do not contribute to BP regulation. We provide further evidence that leptin-mediated hypertension involves increased vascular sympatho-activation and extend these findings by demonstrating for the first time that increased cardiac sympatho-activation and reduced vagal tone also contribute to leptin-mediated hypertension.
Collapse
Affiliation(s)
- Reem T Atawia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Jessica L Faulkner
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Vinay Mehta
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Andrew Austin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Coleton R Jordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia; Departments of Medicine (Cardiology), Medical College of Georgia, Augusta University, Augusta, GA, Georgia.
| |
Collapse
|
10
|
Friend or foe? Unraveling the complex roles of protein tyrosine phosphatases in cardiac disease and development. Cell Signal 2022; 93:110297. [PMID: 35259455 PMCID: PMC9038168 DOI: 10.1016/j.cellsig.2022.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Abstract
Regulation of protein tyrosine phosphorylation is critical for most, if not all, fundamental cellular processes. However, we still do not fully understand the complex and tissue-specific roles of protein tyrosine phosphatases in the normal heart or in cardiac pathology. This review compares and contrasts the various roles of protein tyrosine phosphatases known to date in the context of cardiac disease and development. In particular, it will be considered how specific protein tyrosine phosphatases control cardiac hypertrophy and cardiomyocyte contractility, how protein tyrosine phosphatases contribute to or ameliorate injury induced by ischaemia / reperfusion or hypoxia / reoxygenation, and how protein tyrosine phosphatases are involved in normal heart development and congenital heart disease. This review delves into the newest developments and current challenges in the field, and highlights knowledge gaps and emerging opportunities for future research.
Collapse
|
11
|
Reduced Endothelial Leptin Signaling Increases Vascular Adrenergic Reactivity in a Mouse Model of Congenital Generalized Lipodystrophy. Int J Mol Sci 2021; 22:ijms221910596. [PMID: 34638939 PMCID: PMC8508873 DOI: 10.3390/ijms221910596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
The adipokine leptin, which is best-known for its role in the control of metabolic function, is also a master regulator of cardiovascular function. While leptin has been approved for the treatment of metabolic disorders in patients with congenital generalized lipodystrophy (CGL), the effects of chronic leptin deficiency and the treatment on vascular contractility remain unknown. Herein, we investigated the effects of leptin deficiency and treatment (0.3 mg/day/7 days) on aortic contractility in male Berardinelli-Seip 2 gene deficient mice (gBscl2-/-, model of CGL) and their wild-type control (gBscl2+/+), as well as in mice with selective deficiency in endothelial leptin receptor (LepREC-/-). Lipodystrophy selectively increased vascular adrenergic contractility via NO-independent mechanisms and induced hypertrophic vascular remodeling. Leptin treatment and Nox1 inhibition blunted adrenergic hypercontractility in gBscl2-/- mice, however, leptin failed to rescue vascular media thickness. Selective deficiency in endothelial leptin receptor did not alter baseline adrenergic contractility but abolished leptin-mediated reduction in adrenergic contractility, supporting the contribution of endothelium-dependent mechanisms. These data reveal a new direct role for endothelial leptin receptors in the control of vascular contractility and homeostasis, and present leptin as a safe therapy for the treatment of vascular disease in CGL.
Collapse
|
12
|
Sánchez-Alonso P, Griera M, García-Marín J, Rodríguez-Puyol M, Alajarín R, Vaquero JJ, Rodríguez-Puyol D. Pyrrolo[1,2-a]quinoxal-5-inium salts and 4,5-dihydropyrrolo[1,2-a]quinoxalines: Synthesis, activity and computational docking for protein tyrosine phosphatase 1B. Bioorg Med Chem 2021; 44:116295. [PMID: 34246920 DOI: 10.1016/j.bmc.2021.116295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022]
Abstract
Protein tyrosine phosphatase (PTP1B) is an interesting therapeutical target for diabetes, obesity, heart disease and cancer. As such, inhibition of PTP1B using orally administered drugs is still being pursued by academia and pharmaceutical companies. The failure of catalytic-site inhibitors led to the focus in this field being switched to allosteric inhibitors. To date, the non-competitive inhibitors that have reached clinical trials target the site formed by the α3/α6/α7 tunnel or the site found in a disordered C-terminal non-catalytic segment. Herein, pyrrolo[1,2-a]quinoxal-5-inium salts and 4,5-dihydropyrrolo[1,2-a]quinoxalines are synthesized from pyrrolo[1,2-a]quinoxalines by alkylation and reduction, respectively. These compounds showed no toxicity in HepG2 cells and exhibited inhibitory activity against PTP1B, with inhibition percentages of between 37% and 53% at 1 μM and activities (IC50) of between 0.25 and 1.90 μM. The inhibitory activity against T-cell protein tyrosine phosphatase (TC-TPT) was also assayed, with 4,5-dihydropyrrolo[1,2-a]quinoxalines being found to be slightly more active and selective. Compounds from the two series behave as insulin mimetics since they exhibit enhancement of glucose uptake in C2C12 cells. Computational docking studies provide information about the putative binding mode for both series and the preference for the α3/α6/α7 allosteric tunnel.
Collapse
Affiliation(s)
- Patricia Sánchez-Alonso
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | | | - Javier García-Marín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034 Madrid, Spain; Instituto de Investigación Química Andrés M. del Río (IQAR), Facultad de Farmacia, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Manuel Rodríguez-Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034 Madrid, Spain; Departamento de Biología de Sistemas, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y REDinREN del Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034 Madrid, Spain; Instituto de Investigación Química Andrés M. del Río (IQAR), Facultad de Farmacia, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.
| | - Juan J Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034 Madrid, Spain; Instituto de Investigación Química Andrés M. del Río (IQAR), Facultad de Farmacia, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Diego Rodríguez-Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034 Madrid, Spain; Departamento de Biología de Sistemas, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y REDinREN del Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Kim LJ, Shin MK, Pho H, Otvos L, Tufik S, Andersen ML, Pham LV, Polotsky VY. Leptin Receptor Blockade Attenuates Hypertension, but Does Not Affect Ventilatory Response to Hypoxia in a Model of Polygenic Obesity. Front Physiol 2021; 12:688375. [PMID: 34276408 PMCID: PMC8283021 DOI: 10.3389/fphys.2021.688375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. Methods Male NZO mice, 12–13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. Results Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. Conclusion Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.,Arrevus, Inc., Raleigh, NC, United States.,OLPE, LLC, Audubon, PA, United States
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Bruder-Nascimento T, Kress TC, Kennard S, Belin de Chantemèle EJ. HIV Protease Inhibitor Ritonavir Impairs Endothelial Function Via Reduction in Adipose Mass and Endothelial Leptin Receptor-Dependent Increases in NADPH Oxidase 1 (Nox1), C-C Chemokine Receptor Type 5 (CCR5), and Inflammation. J Am Heart Assoc 2020; 9:e018074. [PMID: 33003981 PMCID: PMC7792423 DOI: 10.1161/jaha.120.018074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Cardiovascular disease is currently the leading cause of death in patients with human immunodeficiency virus on combination antiretroviral therapy. Although the use of the protease inhibitor ritonavir has been associated with increased prevalence of cardiovascular disease, the underlying mechanisms remain ill-defined. Herein, we tested the hypothesis that ritonavir-mediated lipoatrophy causes endothelial dysfunction via reducing endothelial leptin signaling. Methods and Results Long-term (4 weeks) but not short-term (3 days) treatment with ritonavir reduced body weight, fat mass, and leptin levels and induced endothelial dysfunction in mice. Moreover, ritonavir increased vascular NADPH oxidase 1, aortic H2O2 levels as well as interleukin-1β, GATA3 (GATA binding protein 3), the macrophage marker (F4/80), and C-C chemokine receptor type 5 (CCR5) expression. Reactive oxygen species scavenging with tempol restored endothelial function, and both NADPH oxidase 1 and CCR5 deletion in mice protected from ritonavir-mediated endothelial dysfunction and vascular inflammation. Remarkably, leptin infusion markedly improved endothelial function and significantly reduced vascular NADPH oxidase 1, interleukin-1β, GATA3, F4/80, and CCR5 levels in ritonavir-treated animals. Selective deficiency in endothelial leptin receptor abolished the protective effects of leptin infusion on endothelial function. Conversely, selective increases in endothelial leptin signaling with protein tyrosine phosphatase deletion blunted ritonavir-induced endothelial dysfunction. Conclusions All together, these data indicate that ritonavir-associated endothelial dysfunction is a direct consequence of a reduction in adiposity and leptin secretion, which decreases endothelial leptin signaling and leads to a NADPH oxidase 1-induced, CCR5-mediated reduction in NO bioavailability. These latter data also introduce leptin deficiency as an additional contributor to cardiovascular disease and leptin as a negative regulator of CCR5 expression, which may provide beneficial avenues for limiting human immunodeficiency virus infection.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Vascular Biology Center Medical College of Georgia at Augusta University Augusta GA.,Division of Endocrinology Department of Pediatrics Center for Pediatric Research in Obesity and Metabolism (CPROM) Pittsburg PA.,Vascular Medicine Institute (VMI) University of Pittsburgh PA
| | - Taylor C Kress
- Vascular Biology Center Medical College of Georgia at Augusta University Augusta GA
| | - Simone Kennard
- Vascular Biology Center Medical College of Georgia at Augusta University Augusta GA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center Medical College of Georgia at Augusta University Augusta GA.,Division of Cardiology Department of Medicine Medical College of Georgia at Augusta University Augusta GA
| |
Collapse
|
15
|
Selective deficiency in endothelial PTP1B protects from diabetes and endoplasmic reticulum stress-associated endothelial dysfunction via preventing endothelial cell apoptosis. Biomed Pharmacother 2020; 127:110200. [PMID: 32417688 PMCID: PMC7685223 DOI: 10.1016/j.biopha.2020.110200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Diabetes notably increases the risk for endothelial dysfunction, a main precursor for microvascular complications. While endoplasmic reticulum stress (ERS) and protein tyrosine phosphatase 1B (PTP1B) have been associated with endothelial dysfunction in resistance vessels, whether these mechanisms also contribute to diabetes-mediated endothelial dysfunction in conduit arteries remains unknown. Herein, we tested the hypothesis that diabetes induces macrovascular endothelial dysfunction via endothelial ERS-induced, PTP1B-mediated apoptosis. We showed that diabetes concomitantly increased the expression of PTP1B and of markers of ERS, including GRP78, XBP1, splXBP1 and CHOP in human vessels. Exposure of aortic rings from wild-type mice to the ERS inducers tunicamycin and thapsigargin markedly reduced endothelium-dependent relaxation. Global and endothelial-specific deletion of PTP1B as well as pharmacological inhibition protected aortic rings from ERS-mediated endothelial dysfunction. Nitric oxide synthase inhibition with l-NAME abolished relaxation in the presence and absence of ERS, but neither reactive oxygen species scavenging with tempol or peg-catalase, nor cyclooxygenase inhibition with indomethacin prevented ERS-mediated endothelial dysfunction. However, both p38-MAPK and JNK inhibition protected aortic rings from ERS-mediated endothelial dysfunction. In HUVECs, PTP1B deletion prevented ERS-induced PARP cleavage and apoptosis. Lastly, acute ERS inhibition in aortic rings and selective deficiency of endothelial PTP1B in mice protected mice from diabetes-induced endothelial dysfunction. Altogether, these data support the contribution of the p38/JNK-apoptosis pathway in ERS-mediated endothelial dysfunction and present endothelial PTP1B as a major regulator of endothelial cell viability in conduit vessels and a potential target for the management of macrovascular diseases in diabetes.
Collapse
|
16
|
Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 2020; 15:367-385. [PMID: 31015582 DOI: 10.1038/s41581-019-0145-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive adiposity raises blood pressure and accounts for 65-75% of primary hypertension, which is a major driver of cardiovascular and kidney diseases. In obesity, abnormal kidney function and associated increases in tubular sodium reabsorption initiate hypertension, which is often mild before the development of target organ injury. Factors that contribute to increased sodium reabsorption in obesity include kidney compression by visceral, perirenal and renal sinus fat; increased renal sympathetic nerve activity (RSNA); increased levels of anti-natriuretic hormones, such as angiotensin II and aldosterone; and adipokines, particularly leptin. The renal and neurohormonal pathways of obesity and hypertension are intertwined. For example, leptin increases RSNA by stimulating the central nervous system proopiomelanocortin-melanocortin 4 receptor pathway, and kidney compression and RSNA contribute to renin-angiotensin-aldosterone system activation. Glucocorticoids and/or oxidative stress may also contribute to mineralocorticoid receptor activation in obesity. Prolonged obesity and progressive renal injury often lead to the development of treatment-resistant hypertension. Patient management therefore often requires multiple antihypertensive drugs and concurrent treatment of dyslipidaemia, insulin resistance, diabetes and inflammation. If more effective strategies for the prevention and control of obesity are not developed, cardiorenal, metabolic and other obesity-associated diseases could overwhelm health-care systems in the future.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. .,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
17
|
Lagunin AA, Ivanov SM, Gloriozova TA, Pogodin PV, Filimonov DA, Kumar S, Goel RK. Combined network pharmacology and virtual reverse pharmacology approaches for identification of potential targets to treat vascular dementia. Sci Rep 2020; 10:257. [PMID: 31937840 PMCID: PMC6959222 DOI: 10.1038/s41598-019-57199-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Dementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia. This traditional knowledge can be transformed into novel targets through robust interplay of network pharmacology (NetP) with reverse pharmacology (RevP), without ignoring cutting edge biomedical data. This work demonstrates interaction between recent and traditional data, and aimed at selection of most promising targets for guiding wet lab validations. PROTEOME, DisGeNE, DISEASES and DrugBank databases were used for selection of genes associated with pathogenesis and treatment of vascular dementia (VaD). The selection of new potential drug targets was made by methods of NetP (DIAMOnD algorithm, enrichment analysis of KEGG pathways and biological processes of Gene Ontology) and manual expert analysis. The structures of 1976 phytomolecules from the 573 Indian medicinal plants traditionally used for the treatment of dementia and vascular diseases were used for computational estimation of their interactions with new predicted VaD-related drug targets by RevP approach based on PASS (Prediction of Activity Spectra for Substances) software. We found 147 known genes associated with vascular dementia based on the analysis of the databases with gene-disease associations. Six hundred novel targets were selected by NetP methods based on 147 gene associations. The analysis of the predicted interactions between 1976 phytomolecules and 600 NetP predicted targets leaded to the selection of 10 potential drug targets for the treatment of VaD. The translational value of these targets is discussed herewith. Twenty four drugs interacting with 10 selected targets were identified from DrugBank. These drugs have not been yet studied for the treatment of VaD and may be investigated in this field for their repositioning. The relation between inhibition of two selected targets (GSK-3, PTP1B) and the treatment of VaD was confirmed by the experimental studies on animals and reported separately in our recent publications.
Collapse
Affiliation(s)
- Alexey A Lagunin
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia.
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia.
| | - Sergey M Ivanov
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Tatyana A Gloriozova
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Pavel V Pogodin
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Dmitry A Filimonov
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Sandeep Kumar
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India
| | - Rajesh K Goel
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India.
| |
Collapse
|
18
|
Bruder-Nascimento T, Faulkner JL, Haigh S, Kennard S, Antonova G, Patel VS, Fulton DJR, Chen W, Belin de Chantemèle EJ. Leptin Restores Endothelial Function via Endothelial PPARγ-Nox1-Mediated Mechanisms in a Mouse Model of Congenital Generalized Lipodystrophy. Hypertension 2019; 74:1399-1408. [PMID: 31656096 DOI: 10.1161/hypertensionaha.119.13398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptin is the current treatment for metabolic disorders associated with acquired and congenital generalized lipodystrophy (CGL). Although excess leptin levels have been associated with vascular inflammation and cardiovascular disease in the context of obesity, the effects of chronic leptin treatment on vascular function remain unknown in CGL. Here, we hypothesized that leptin treatment will improve endothelial function via direct vascular mechanisms. We investigated the cardiovascular consequences of leptin deficiency and supplementation in male gBscl2-/- (Berardinelli-Seip 2 gene-deficient) mice-a mouse model of CGL. CGL mice exhibited reduced adipose mass and leptin levels, as well as impaired endothelium-dependent relaxation. Blood vessels from CGL mice had increased NADPH Oxidase 1 (Nox1) expression and reactive oxygen species production, and selective Nox1 inhibition restored endothelial function. Remarkably, chronic and acute leptin supplementation restored endothelial function via a PPARγ-dependent mechanism that decreased Nox1 expression and reactive oxygen species production. Selective ablation of leptin receptors in endothelial cells promoted endothelial dysfunction, which was restored by Nox1 inhibition. Lastly, we confirmed in aortic tissue from older patients undergoing cardiac bypass surgery that acute leptin can promote signaling in human blood vessels. In conclusion, in gBscl2-/- mice, leptin restores endothelial function via peroxisome proliferator activated receptor gamma-dependent decreases in Nox1. Furthermore, we provide the first evidence that vessels from aged patients remain leptin sensitive. These data reveal a new direct role of leptin receptors in the control of vascular homeostasis and present leptin as a potential therapy for the treatment of vascular disease associated with low leptin levels.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University.,Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, PA (T.B.-N.)
| | - Jessica L Faulkner
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Stephen Haigh
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Simone Kennard
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Galina Antonova
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Vijay S Patel
- Section of Cardiothoracic Surgery, Department of Surgery (V.S.P.), Medical College of Georgia, Augusta University
| | - David J R Fulton
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Weiqin Chen
- Department of Physiology (W.C.), Medical College of Georgia, Augusta University
| | - Eric J Belin de Chantemèle
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University.,Department of Medicine, Division of Cardiology (E.J.B.), Medical College of Georgia, Augusta University
| |
Collapse
|
19
|
Bruder-Nascimento T, Kress TC, Belin de Chantemele EJ. Recent advances in understanding lipodystrophy: a focus on lipodystrophy-associated cardiovascular disease and potential effects of leptin therapy on cardiovascular function. F1000Res 2019; 8:F1000 Faculty Rev-1756. [PMID: 31656583 PMCID: PMC6798323 DOI: 10.12688/f1000research.20150.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Lipodystrophy is a disease characterized by a partial or total absence of adipose tissue leading to severe metabolic derangements including marked insulin resistance, type 2 diabetes, hypertriglyceridemia, and steatohepatitis. Lipodystrophy is also a source of major cardiovascular disorders which, in addition to hepatic failure and infection, contribute to a significant reduction in life expectancy. Metreleptin, the synthetic analog of the adipocyte-derived hormone leptin and current therapy of choice for patients with lipodystrophy, successfully improves metabolic function. However, while leptin has been associated with hypertension, vascular diseases, and inflammation in the context of obesity, it remains unknown whether its daily administration could further impair cardiovascular function in patients with lipodystrophy. The goal of this short review is to describe the cardiovascular phenotype of patients with lipodystrophy, speculate on the etiology of the disorders, and discuss how the use of murine models of lipodystrophy could be beneficial to address the question of the contribution of leptin to lipodystrophy-associated cardiovascular disease.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J. Belin de Chantemele
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Medicine, Section of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
20
|
Jäger M, Hubert A, Gogiraju R, Bochenek ML, Münzel T, Schäfer K. Inducible Knockdown of Endothelial Protein Tyrosine Phosphatase-1B Promotes Neointima Formation in Obese Mice by Enhancing Endothelial Senescence. Antioxid Redox Signal 2019; 30:927-944. [PMID: 29390191 DOI: 10.1089/ars.2017.7169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of receptor tyrosine kinase signaling. In this study, we determined the importance of PTP1B expressed in endothelial cells for the vascular response to arterial injury in obesity. RESULTS Morphometric analysis of vascular lesions generated by 10% ferric chloride (FeCl3) revealed that tamoxifen-inducible endothelial PTP1B deletion (Tie2.ERT2-Cre × PTP1Bfl/fl; End.PTP1B knockout, KO) significantly increased neointima formation, and reduced numbers of (endothelial lectin-positive) luminal cells in End.PTP1B-KO mice suggested impaired lesion re-endothelialization. Significantly higher numbers of proliferating cell nuclear antigen (PCNA)-positive proliferating cells as well as smooth muscle actin (SMA)-positive or vascular cell adhesion molecule-1 (VCAM1)-positive activated smooth muscle cells or vimentin-positive myofibroblasts were detected in neointimal lesions of End.PTP1B-KO mice, whereas F4/80-positive macrophage numbers did not differ. Activated receptor tyrosine kinase and transforming growth factor-beta (TGFβ) signaling and oxidative stress markers were also significantly more abundant in End.PTP1B-KO mouse lesions. Genetic knockdown or pharmacological inhibition of PTP1B in endothelial cells resulted in increased expression of caveolin-1 and oxidative stress, and distinct morphological changes, elevated numbers of senescence-associated β-galactosidase-positive cells, and increased expression of tumor suppressor protein 53 (p53) or the cell cycle inhibitor cyclin-dependent kinase inhibitor-2A (p16INK4A) suggested senescence, all of which could be attenuated by small interfering RNA (siRNA)-mediated downregulation of caveolin-1. In vitro, senescence could be prevented and impaired re-endothelialization restored by preincubation with the antioxidant Trolox. INNOVATION Our results reveal a previously unknown role of PTP1B in endothelial cells and provide mechanistic insights how PTP1B deletion or inhibition may promote endothelial senescence. CONCLUSION Absence of PTP1B in endothelial cells impairs re-endothelialization, and the failure to induce smooth muscle cell quiescence or to protect from circulating growth factors may result in neointimal hyperplasia.
Collapse
Affiliation(s)
- Marianne Jäger
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,2 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Berlin, Germany
| | - Astrid Hubert
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Rajinikanth Gogiraju
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Magdalena L Bochenek
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,2 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Berlin, Germany.,3 Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,2 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Berlin, Germany
| | - Katrin Schäfer
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,2 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Berlin, Germany
| |
Collapse
|
21
|
Abstract
More than any other organ, the heart is particularly sensitive to gene expression deregulation, often leading in the long run to impaired contractile performances and excessive fibrosis deposition progressing to heart failure. Recent investigations provide evidences that the protein phosphatases (PPs), as their counterpart protein kinases, are important regulators of cardiac physiology and development. Two main groups, the protein serine/threonine phosphatases and the protein tyrosine phosphatases (PTPs), constitute the PPs family. Here, we provide an overview of the role of PTP subfamily in the development of the heart and in cardiac pathophysiology. Based on recent in silico studies, we highlight the importance of PTPs as therapeutic targets for the development of new drugs to restore PTPs signaling in the early and late events of heart failure.
Collapse
Affiliation(s)
- Fallou Wade
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Karim Belhaj
- College of Medicine and Health Sciences, Al-Faisal University, Riyadh, 11211, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia. .,Biology Department, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
22
|
Davel AP, Jaffe IZ, Tostes RC, Jaisser F, Belin de Chantemèle EJ. New roles of aldosterone and mineralocorticoid receptors in cardiovascular disease: translational and sex-specific effects. Am J Physiol Heart Circ Physiol 2018; 315:H989-H999. [PMID: 29957022 DOI: 10.1152/ajpheart.00073.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in the field of mineralocorticoid receptor (MR) and its ligand aldosterone expanded the role of this hormone and its receptor far beyond their initial function as a regulator of Na+ and K+ homeostasis in epithelial cells. The symposium "New Roles of Aldosterone and Mineralocorticoid Receptors in Cardiovascular Disease: Translational and Sex-Specific Effects" presented at the 38th World Congress of the International Union of Physiological Sciences (Rio de Janeiro, Brazil) highlighted the contribution of extrarenal MRs to cardiovascular disease. This symposium showcased how MRs expressed in endothelial, vascular smooth muscle, and immune cells plays a critical role in the development of vascular disease associated with aging, obesity, and chronic aldosterone stimulation and demonstrated that MR antagonism prevents the acute renal dysfunction and tubular injury induced by ischemia-reperfusion injury. It was also shown that the adipocyte-derived hormone leptin is a new direct regulator of aldosterone secretion and that leptin-mediated aldosterone production is a major contributor to obesity-associated hypertension in women. Sex differences in the role of aldosterone and of endothelial MR in the cardiovascular outcomes of obesity were highlighted. This review summarizes these important emerging concepts regarding the contribution of aldosterone and cell-specific MR to cardiovascular disease in male and female subjects and further supports sex-specific benefits of MR antagonist drugs to be tested in additional populations.
Collapse
Affiliation(s)
- Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas , Campinas, Sâo Paulo , Brazil
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute Tufts Medical Center , Boston, Massachusetts
| | - Rita C Tostes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo , Ribeirao Preto, Sâo Paulo , Brazil
| | - Frederic Jaisser
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University , Paris , France
| | | |
Collapse
|
23
|
Battault S, Meziat C, Nascimento A, Braud L, Gayrard S, Legros C, De Nardi F, Drai J, Cazorla O, Thireau J, Meyer G, Reboul C. Vascular endothelial function masks increased sympathetic vasopressor activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2018; 314:H497-H507. [DOI: 10.1152/ajpheart.00217.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sylvain Battault
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Cindy Meziat
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | | | - Laura Braud
- EB2M-PROTEE, Université de Toulon, La Garde, France
| | - Sandrine Gayrard
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Christian Legros
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, Université d'Angers, Angers, France
| | - Frederic De Nardi
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, Université d'Angers, Angers, France
| | - Jocelyne Drai
- Fédération de Biochimie, Unité de Biochimie Métabolique et Moléculaire, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Jérôme Thireau
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Gregory Meyer
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Cyril Reboul
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| |
Collapse
|
24
|
Aberdein N, Dambrino RJ, do Carmo JM, Wang Z, Mitchell LE, Drummond HA, Hall JE. Role of PTP1B in POMC neurons during chronic high-fat diet: sex differences in regulation of liver lipids and glucose tolerance. Am J Physiol Regul Integr Comp Physiol 2017; 314:R478-R488. [PMID: 29351427 DOI: 10.1152/ajpregu.00287.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of leptin receptor signaling and may contribute to leptin resistance in diet-induced obesity. Although PTP1B inhibition has been suggested as a potential weight loss therapy, the role of specific neuronal PTP1B signaling in cardiovascular and metabolic regulation and the importance of sex differences in this regulation are still unclear. In this study, we investigated the impact of proopiomelanocortin (POMC) neuronal PTP1B deficiency in cardiometabolic regulation in male and female mice fed a high-fat diet (HFD). When compared with control mice (PTP1B flox/flox), male and female mice deficient in POMC neuronal PTP1B (PTP1B flox/flox/POMC-Cre) had attenuated body weight gain (males: -18%; females: -16%) and fat mass (males: -33%; female: -29%) in response to HFD. Glucose tolerance was improved by 40%, and liver lipid accumulation was reduced by 40% in PTP1B/POMC-Cre males but not in females. When compared with control mice, deficiency of POMC neuronal PTP1B did not alter mean arterial pressure (MAP) in male or female mice (males: 112 ± 1 vs. 112 ± 1 mmHg in controls; females: 106 ± 3 vs. 109 ± 3 mmHg in controls). Deficiency of POMC neuronal PTP1B also did not alter MAP response to acute stress in males or females compared with control mice (males: Δ32 ± 0 vs. Δ29 ± 4 mmHg; females: Δ22 ± 2 vs. Δ27 ± 4 mmHg). These data demonstrate that POMC-specific PTP1B deficiency improved glucose tolerance and attenuated diet-induced fatty liver only in male mice and attenuated weight gain in males and females but did not enhance the MAP and HR responses to a HFD or to acute stress.
Collapse
Affiliation(s)
- Nicola Aberdein
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi.,Biomedical Research Center, Department of Health and Wellbeing, Sheffield Hallam University , Sheffield , United Kingdom
| | - Robert J Dambrino
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Zhen Wang
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Laura E Mitchell
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Heather A Drummond
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
25
|
Faulkner JL, Belin de Chantemèle EJ. Sex Differences in Mechanisms of Hypertension Associated With Obesity. Hypertension 2017; 71:15-21. [PMID: 29133358 DOI: 10.1161/hypertensionaha.117.09980] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica L Faulkner
- From the Vascular Biology Center, Medical College of Georgia at Augusta University, GA
| | | |
Collapse
|
26
|
Zhang Q, Yu H, Qi J, Tang D, Chen X, Wan JB, Li P, Hu H, Wang YT, Hu Y. Natural formulas and the nature of formulas: Exploring potential therapeutic targets based on traditional Chinese herbal formulas. PLoS One 2017; 12:e0171628. [PMID: 28182702 PMCID: PMC5300118 DOI: 10.1371/journal.pone.0171628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
By comparing the target proteins (TPs) of classic traditional Chinese medicine (TCM) herbal formulas and modern drugs used for treating coronary artery disease (CAD), this study aimed to identify potential therapeutic TPs for treating CAD. Based on the theory of TCM, the Xuefu-Zhuyu decoction (XZD) and Gualou-Xiebai-Banxia decoction (GXBD), both of which are classic herbal formulas, were selected for treating CAD. Data on the chemical ingredients and corresponding TPs of the herbs in these two formulas and data on modern drugs approved for treating CAD and related TPs were retrieved from professional TCM and bioinformatics databases. Based on the associations between the drugs or ingredients and their TPs, the TP networks of XZD, GXBD, and modern drugs approved for treating CAD were constructed separately and then integrated to create a complex master network in which the vertices represent the TPs and the edges, the ingredients or drugs that are linked to the TPs. The reliability of this master network was validated through statistical tests. The common TPs of the two herbal formulas have a higher possibility of being targeted by modern drugs in comparison with the formula-specific TPs. A total of 114 common XZD and GXBD TPs that are not yet the target of modern drugs used for treating CAD should be experimentally investigated as potential therapeutic targets for treating CAD. Among these TPs, the top 10 are NOS3, PTPN1, GABRA1, PRKACA, CDK2, MAOB, ESR1, ADH1C, ADH1B, and AKR1B1. The results of this study provide a valuable reference for further experimental investigations of therapeutic targets for CAD. The established method shows promise for searching for potential therapeutic TPs based on herbal formulas. It is crucial for this work to select beneficial therapeutic targets of TCM, typical TCM syndromes, and corresponding classic formulas.
Collapse
Affiliation(s)
- Qianru Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, the People’s Republic of China
- Pharmacy School, Zunyi Medical College, Zunyi, Guizhou, the People’s Republic of China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, the People’s Republic of China
| | - Jin Qi
- Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, the People’s Republic of China
| | - Daisheng Tang
- Beijing Jiaotong University, Beijing, the People’s Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, the People’s Republic of China
| | - Jian-bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, the People’s Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, the People’s Republic of China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, the People’s Republic of China
| | - Yi-tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, the People’s Republic of China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, the People’s Republic of China
- * E-mail:
| |
Collapse
|
27
|
Bruder-Nascimento T, Ekeledo OJ, Anderson R, Le HB, Belin de Chantemèle EJ. Long Term High Fat Diet Treatment: An Appropriate Approach to Study the Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in Mice. Front Physiol 2017; 8:32. [PMID: 28184201 PMCID: PMC5266729 DOI: 10.3389/fphys.2017.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
Obesity-related cardiovascular disease (CVD) involves increased sympathetic activity in men and male animals. Although women exhibit increased visceral fat, metabolic disorders, inflammation and CVD with obesity, whether body weight gain affects autonomic control of cardiovascular function in females remain unknown. Due to the lack of adequate model to mimic the human pathology, this study aimed to develop a murine model, which would allow studying the sex-specificity of the response of the autonomic nervous system to obesity and identifying the origin of potential sex-differences. We tested the hypothesis that sexual dimorphisms in the autonomic response to obesity disappear in mice matched for changes in body weight, metabolic and inflammatory disorders. Male and female C57Bl/6 mice were submitted to control (CD) or high fat diet (HFD) for 24 weeks. Female mice gained more adipose mass and lost more lean mass than males but reached similar visceral adipose mass and body weight, as males, at the end of the diet. 24 weeks of HFD matched male and female mice for visceral adiposity, glycaemia, plasma insulin, lipids, and inflammatory cytokines levels, demonstrating the suitability of the model to study human pathology. HFD did not elevate BP, but similarly increased heart rate (HR) in males (CD: 571 ± 9 vs. HFD: 631 ± 14 bpm, P < 0.05) and females (CD: 589 ± 19 vs. HFD: 642 ± 6 bpm, P < 0.05). Indices of autonomic control of BP and HR were obtained by measuring BP and HR response to ganglionic blockade, β-adrenergic, and muscarinic receptors antagonists. HFD increased vascular but reduced cardiac sympathetic drive in males (CD: -43 ± 4 and HFD: -60 ± 7% drop in BP, P < 0.05). HFD did not alter females' vascular or cardiac sympathetic drive. HFD specifically reduced aortic α-adrenergic constriction in males and lowered HR response to muscarinic receptor antagonism in females. These data suggest that obesity-associated increases in HR could be caused by a reduced cardiac vagal tone in females, while HR increases in males may compensate for the reduced vascular adrenergic contractility to preserve baseline BP. These data suggest that obesity impairs autonomic control of cardiovascular function in males and females, via sex-specific mechanisms and independent of fat distribution, metabolic disorder or inflammation.
Collapse
|
28
|
Belin de Chantemèle EJ. Sex Differences in Leptin Control of Cardiovascular Function in Health and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:87-111. [DOI: 10.1007/978-3-319-70178-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Abstract
Hypertension and associated cardiovascular diseases represent the most common health complication of obesity and the leading cause of morbidity and mortality in overweight and obese patients. Emerging evidence suggests a critical role for the central nervous system particularly the brain action of the adipocyte-derived hormone leptin in linking obesity and hypertension. The preserved ability of leptin to cause cardiovascular sympathetic nerve activation despite the resistance to the metabolic actions of the hormone appears essential in this pathological process. This review describes the evidence supporting the neurogenic bases for obesity-associated hypertension with a particular focus on the neuronal and molecular signaling pathways underlying leptin's effects on sympathetic nerve activity and blood pressure.
Collapse
Affiliation(s)
- Balyssa B Bell
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
30
|
Liu X, Duan P, Hu X, Li R, Zhu Q. Altered KATP Channel Subunits Expression and Vascular Reactivity in Spontaneously Hypertensive Rats With Age. J Cardiovasc Pharmacol 2016; 68:143-9. [PMID: 27035370 PMCID: PMC4979625 DOI: 10.1097/fjc.0000000000000394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels link membrane excitability to metabolic state to regulate a series of biological activities including the vascular tone. However, their ability to influence hypertension is controversial. Here we aim to investigate possible alteration of KATP channel in vascular smooth muscles (VSMs) during hypertension development process. In this study, we used 16-week-old spontaneously hypertensive rats (SHRs), 49-week-old SHRs, and their age-matched Wistar-Kyoto rats to study the expression of VSM KATP subunits at the mRNA and protein level and the function of VSM KATP by observing the relaxation reactivity of isolated aorta rings to KATP modulators. We found that the expression of VSM KATP subunits Kir6.1 and sulfonylurea receptor (SUR2B) decreased during hypertension. Moreover, the expression of SUR2B and Kir6.1 in 49-week-old SHRs decreased much more than that in 16-week-old SHRs. Furthermore, the aorta rings of 49-week-old SHRs showed lower reactivity to diazoxide than 16-week-old SHRs. This study suggests that KATP channels in VSM subunits Kir6.1 and SUR2B contribute to modify the functionality of this channel in hypertension with age.
Collapse
MESH Headings
- Age Factors
- Aging/metabolism
- Animals
- Aorta/metabolism
- Aorta/physiopathology
- Blood Pressure/drug effects
- Diazoxide/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Down-Regulation
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- KATP Channels/genetics
- KATP Channels/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Potassium Channel Blockers/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Inbred SHR
- Rats, Inbred WKY
- Sulfonylurea Receptors/genetics
- Sulfonylurea Receptors/metabolism
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Peng Duan
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Xingxing Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Ruisheng Li
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China
| | - Qinglei Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| |
Collapse
|
31
|
Bruder-Nascimento T, Kennard S, Antonova G, Mintz J, Bence K, de Chantemèle EJ. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms. Clin Sci (Lond) 2016; 130:881-893. [DOI: 10.1042/cs20160073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b−/− mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b−/− mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b−/− mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b−/− mice. Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b−/− mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b−/− mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair endothelial function via COX-2 and ROS-dependent mechanisms.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, U.S.A
| | - Simone Kennard
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, U.S.A
| | - Galina Antonova
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, U.S.A
| | - James D. Mintz
- Vascular Biology Center, Georgia Regents University, Augusta, GA 30912, U.S.A
| | - Kendra K. Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | | |
Collapse
|
32
|
Aerobic exercise training increases nitrergic innervation function and decreases sympathetic innervation function in mesenteric artery from rats fed a high-fat diet. J Hypertens 2016; 33:1819-30; discussion 1830. [PMID: 26103124 DOI: 10.1097/hjh.0000000000000627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We investigated whether high-fat diet (HFD)-induced obesity was associated with modifications in mesenteric innervation function, the mechanisms involved, and the possible effects of aerobic exercise training on these changes. MATERIALS AND METHODS Male Wistar rats were divided into three groups: rats fed a standard diet (control group); rats fed a HFD (35% fat) for 8 weeks; and HFD rats submitted to aerobic exercise training (8 weeks, 5 times per week for 50 min). Segments of isolated mesenteric arteries were exposed to electric field stimulation (EFS) with or without phentolamine, suramin, or Nω nitro-L-arginine methyl ester. Noradrenaline, ATP, and nitric oxide release, and total and phosphorylated neuronal nitric oxide synthase (nNOS, P-nNOS) expression were also measured. RESULTS EFS contraction was greater in sedentary HFD than in control rats. Phentolamine reduced EFS contractions more markedly in HFD rats. Suramin decreased EFS contractions only in control rats. Phentolamine + suramin practically abolished EFS-induced contraction in control rats, whereas it did not modify it in the HFD rats. Noradrenaline release was greater and ATP was lower in HFD rats. Nω nitro-L-arginine methyl ester increased contractions to EFS only in segments from control rats. Nitric oxide release and nNOS and P-nNOS expressions were lower in arterial segments from HFD rats than from control rats. None of these changes in sedentary HFD rats was present in the trained HFD rats. CONCLUSIONS Enhanced sympathetic and diminished nitrergic components contributed to increased vasoconstrictor responses to EFS in sedentary HFD rats. All these changes were avoided by aerobic exercise training, suggesting that aerobic exercise could reduce peripheral vascular resistance in obesity.
Collapse
|
33
|
BK channel β1-subunit deficiency exacerbates vascular fibrosis and remodelling but does not promote hypertension in high-fat fed obesity in mice. J Hypertens 2016; 33:1611-23. [PMID: 26049174 DOI: 10.1097/hjh.0000000000000590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Reduced expression or increased degradation of BK (large conductance Ca-activated K) channel β1-subunits has been associated with increased vascular tone and hypertension in some metabolic diseases. The contribution of BK channel function to control of blood pressure (BP), heart rate (HR) and vascular function/structure was determined in wild-type and BK channel β1-subunit knockout mice fed a high-fat or control diet. METHODS AND RESULTS After 24 weeks of high-fat diet, wild-type and BK β1-knockout mice were obese, diabetic, but normotensive. High-fat-BK β1-knockout mice had decreased HR, while high-fat-wild-type mice had increased HR compared with mice on the control diet. Ganglion blockade caused a greater fall in BP and HR in mice on a high-fat diet than in mice on the control diet. β1-adrenergic receptor blockade reduced BP and HR equally in all groups. α1-adrenergic receptor blockade decreased BP in high-fat-BK β1-knockout mice only. Echocardiographic evaluation revealed left ventricular hypertrophy in high-fat-BK β1-knockout mice. Although under anaesthesia, mice on a high-fat diet had higher absolute stroke volume and cardiac output, these measures were similar to control mice when adjusted for body weight. Mesenteric arteries from high-fat-BK β1-knockout mice had higher norepinephrine reactivity, greater wall thickness and collagen accumulation than high-fat-wild-type mesenteric arteries. Compared with control-wild-type mesenteric arteries, high-fat-wild-type mesenteric arteries had blunted contractile responses to a BK channel blocker, although BK α-subunit (protein) and β1-subunit (mRNA) expression were unchanged. CONCLUSION BK channel deficiency promotes increased sympathetic control of BP, and vascular dysfunction, remodelling and fibrosis, but does not cause hypertension in high-fat fed mice.
Collapse
|
34
|
Huby AC, Otvos L, Belin de Chantemèle EJ. Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice. Hypertension 2016; 67:1020-8. [PMID: 26953321 DOI: 10.1161/hypertensionaha.115.06642] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/11/2016] [Indexed: 12/27/2022]
Abstract
Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympathetic tone with obesity. Nevertheless, females show inappropriately high aldosterone levels that positively correlate with adiposity and blood pressure (BP). We hypothesized that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in females. Leptin control of the cardiovascular function was analyzed in female mice sensitized to leptin via the deletion of protein tyrosine phosphatase 1b (knockout) and in agouti yellow obese hyperleptinemic mice (Ay). Hypersensitivity to leptin (wild-type, 115 ± 2; protein tyrosine phosphatase 1b knockout, 124 ± 2 mm Hg; P<0.05) and obesity elevated BP (a/a, 113 ± 1; Ay, 128 ± 7 mm Hg; P<0.05) and impaired endothelial function. Chronic leptin receptor antagonism restored BP and endothelial function in protein tyrosine phosphatase 1b knockout and Ay mice. Hypersensitivity to leptin and obesity reduced BP response to ganglionic blockade in both strains and plasma catecholamine levels in protein tyrosine phosphatase 1b knockout mice. Hypersensitivity to leptin and obesity significantly increased plasma aldosterone levels and adrenal CYP11B2 expression. Chronic leptin receptor antagonism reduced aldosterone levels. Furthermore, chronic leptin and mineralocorticoid receptor blockade reduced BP and improved endothelial function in both leptin-sensitized and obese hyperleptinemic female mice. Together, these data demonstrate that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in female mice and suggest that obesity leads to cardiovascular disease via sex-specific mechanisms.
Collapse
Affiliation(s)
- Anne-Cécile Huby
- From the Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., E.J.B.d.C.); Biology Department, Temple University, Philadelphia, PA (L.O.); and Department of Medical Microbiology, Semmelweis University, Budapest, Hungary (L.O.)
| | - Laszlo Otvos
- From the Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., E.J.B.d.C.); Biology Department, Temple University, Philadelphia, PA (L.O.); and Department of Medical Microbiology, Semmelweis University, Budapest, Hungary (L.O.)
| | - Eric J Belin de Chantemèle
- From the Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., E.J.B.d.C.); Biology Department, Temple University, Philadelphia, PA (L.O.); and Department of Medical Microbiology, Semmelweis University, Budapest, Hungary (L.O.).
| |
Collapse
|
35
|
Bruder-Nascimento T, Butler BR, Herren DJ, Brands MW, Bence KK, Belin de Chantemèle EJ. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension. Pharmacol Res 2015; 102:235-44. [PMID: 26523876 DOI: 10.1016/j.phrs.2015.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022]
Abstract
Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States
| | - Benjamin R Butler
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States
| | - David J Herren
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States
| | - Kendra K Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Eric J Belin de Chantemèle
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States.
| |
Collapse
|
36
|
Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, Belin de Chantemèle EJ. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis. Circulation 2015; 132:2134-45. [PMID: 26362633 DOI: 10.1161/circulationaha.115.018226] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. METHODS AND RESULTS Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. CONCLUSIONS Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart.
Collapse
Affiliation(s)
- Anne-Cécile Huby
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Galina Antonova
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Jake Groenendyk
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Celso E Gomez-Sanchez
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Wendy B Bollag
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Jessica A Filosa
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Eric J Belin de Chantemèle
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.).
| |
Collapse
|
37
|
Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 2015; 116:991-1006. [PMID: 25767285 DOI: 10.1161/circresaha.116.305697] [Citation(s) in RCA: 768] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excess weight gain, especially when associated with increased visceral adiposity, is a major cause of hypertension, accounting for 65% to 75% of the risk for human primary (essential) hypertension. Increased renal tubular sodium reabsorption impairs pressure natriuresis and plays an important role in initiating obesity hypertension. The mediators of abnormal kidney function and increased blood pressure during development of obesity hypertension include (1) physical compression of the kidneys by fat in and around the kidneys, (2) activation of the renin-angiotensin-aldosterone system, and (3) increased sympathetic nervous system activity. Activation of the renin-angiotensin-aldosterone system is likely due, in part, to renal compression, as well as sympathetic nervous system activation. However, obesity also causes mineralocorticoid receptor activation independent of aldosterone or angiotensin II. The mechanisms for sympathetic nervous system activation in obesity have not been fully elucidated but may require leptin and activation of the brain melanocortin system. With prolonged obesity and development of target organ injury, especially renal injury, obesity-associated hypertension becomes more difficult to control, often requiring multiple antihypertensive drugs and treatment of other risk factors, including dyslipidemia, insulin resistance and diabetes mellitus, and inflammation. Unless effective antiobesity drugs are developed, the effect of obesity on hypertension and related cardiovascular, renal and metabolic disorders is likely to become even more important in the future as the prevalence of obesity continues to increase.
Collapse
Affiliation(s)
- John E Hall
- From the Departments of Physiology and Biophysics (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), Medicine (M.E.H.), Mississippi Center for Obesity Research (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), and Cardiovascular-Renal Research Center (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), University of Mississippi Medical Center, Jackson.
| | - Jussara M do Carmo
- From the Departments of Physiology and Biophysics (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), Medicine (M.E.H.), Mississippi Center for Obesity Research (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), and Cardiovascular-Renal Research Center (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), University of Mississippi Medical Center, Jackson
| | - Alexandre A da Silva
- From the Departments of Physiology and Biophysics (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), Medicine (M.E.H.), Mississippi Center for Obesity Research (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), and Cardiovascular-Renal Research Center (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), University of Mississippi Medical Center, Jackson
| | - Zhen Wang
- From the Departments of Physiology and Biophysics (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), Medicine (M.E.H.), Mississippi Center for Obesity Research (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), and Cardiovascular-Renal Research Center (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), University of Mississippi Medical Center, Jackson
| | - Michael E Hall
- From the Departments of Physiology and Biophysics (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), Medicine (M.E.H.), Mississippi Center for Obesity Research (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), and Cardiovascular-Renal Research Center (J.E.H., J.M.d.C., A.A.d.S., Z.W., M.E.H.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
38
|
Herre DJ, Norman JB, Anderson R, Tremblay ML, Huby AC, Belin de Chantemèle EJ. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B) Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction. PLoS One 2015; 10:e0126866. [PMID: 25974252 PMCID: PMC4431674 DOI: 10.1371/journal.pone.0126866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/08/2015] [Indexed: 01/13/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM) was induced in wild-type (WT) and PTP1B-deficient mice (KO) with streptozotocin (STZ) injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384±20 vs. Ko: 432±29 mg/dL), cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.
Collapse
Affiliation(s)
- David J. Herre
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
| | - J. Blake Norman
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
| | - Ruchi Anderson
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
| | - Michel L. Tremblay
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anne-Cecile Huby
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
| | - Eric J. Belin de Chantemèle
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
- * E-mail:
| |
Collapse
|
39
|
do Carmo JM, da Silva AA, Ebaady SE, Sessums PO, Abraham RS, Elmquist JK, Lowell BB, Hall JE. Shp2 signaling in POMC neurons is important for leptin's actions on blood pressure, energy balance, and glucose regulation. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1438-47. [PMID: 25339680 DOI: 10.1152/ajpregu.00131.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous studies showed that Src homology-2 tyrosine phosphatase (Shp2) is an important regulator of body weight. In this study, we examined the impact of Shp2 deficiency specifically in proopiomelanocortin (POMC) neurons on metabolic and cardiovascular function and on chronic blood pressure (BP) and metabolic responses to leptin. Mice with Shp2 deleted in POMC neurons (Shp2/Pomc-cre) and control mice (Shp2(flox/flox)) were implanted with telemetry probes and venous catheters for measurement of mean arterial pressure (MAP) and leptin infusion. After at least 5 days of stable control measurements, mice received leptin infusion (2 μg·kg(-1)·day(-1) iv) for 7 days. Compared with Shp2(flox/flox) controls, Shp2/Pomc-cre mice at 22 wk of age were slightly heavier (34 ± 1 vs. 31 ± 1 g) but consumed a similar amount of food (3.9 ± 0.3 vs. 3.8 ± 0.2 g/day). Leptin infusion reduced food intake in Shp2(flox/flox) mice (2.6 ± 0.5 g) and Shp2/Pomc-cre mice (3.2 ± 0.3 g). Despite decreasing food intake, leptin infusion increased MAP in control mice, whereas no significant change in MAP was observed in Shp2/Pomc-cre mice. Leptin infusion also decreased plasma glucose and insulin levels in controls (12 ± 1 to 6 ± 1 μU/ml and 142 ± 12 to 81 ± 8 mg/100 ml) but not in Shp2/Pomc-cre mice. Leptin increased V̇o2 by 16 ± 2% in controls and 7 ± 1% in Shp2/Pomc-cre mice. These results indicate that Shp2 signaling in POMC neurons contributes to the long-term BP and antidiabetic actions of leptin and may play a modest role in normal regulation of body weight.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi;
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sabira E Ebaady
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Price O Sessums
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ralph S Abraham
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joel K Elmquist
- Department of Pharmacology and Division of Hypothalamic Research, Department of Internal Medicine, Utah Southwestern Medical Center, Dallas, Texas; and
| | - Bradford B Lowell
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
40
|
Qiu S, Mintz JD, Salet CD, Han W, Giannis A, Chen F, Yu Y, Su Y, Fulton DJ, Stepp DW. Increasing muscle mass improves vascular function in obese (db/db) mice. J Am Heart Assoc 2014; 3:e000854. [PMID: 24965025 PMCID: PMC4309080 DOI: 10.1161/jaha.114.000854] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of myostatin improves NO‐, but not PGI2‐ or EDHF‐mediated vasodilation in obese mice; this vasodilation improvement is mediated by down‐regulation of superoxide.
Collapse
Affiliation(s)
- Shuiqing Qiu
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.)
| | - James D Mintz
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.)
| | - Christina D Salet
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.)
| | - Weihong Han
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.) Department of Physiology, Georgia Regents University, Augusta, GA, Germany (W.H., Y.S.)
| | - Athanassios Giannis
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.) Institute of Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.)
| | - Feng Chen
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.)
| | - Yanfang Yu
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.)
| | - Yunchao Su
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.) Department of Physiology, Georgia Regents University, Augusta, GA, Germany (W.H., Y.S.)
| | - David J Fulton
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.)
| | - David W Stepp
- Vascular Biology Center and Department of Physiology, Georgia Regents University, Augusta, GA, Germany (S.Q., J.D.M., C.D.S., W.H., A.G., F.C., Y.Y., Y.S., D.J.F., D.W.S.)
| |
Collapse
|
41
|
Fernandez-Ruiz R, Vieira E, Garcia-Roves PM, Gomis R. Protein tyrosine phosphatase-1B modulates pancreatic β-cell mass. PLoS One 2014; 9:e90344. [PMID: 24587334 PMCID: PMC3938680 DOI: 10.1371/journal.pone.0090344] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/02/2014] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signalling pathway. It has been demonstrated that PTP1B deletion protects against the development of obesity and Type 2 Diabetes, mainly through its action on peripheral tissues. However, little attention has been paid to the role of PTP1B in β-cells. Therefore, our aim was to study the role of PTP1B in pancreatic β-cells. Silencing of PTP1B expression in a pancreatic β-cell line (MIN6 cells) reveals the significance of this endoplasmic reticulum bound phosphatase in the regulation of cell proliferation and apoptosis. Furthermore, the ablation of PTP1B is able to regulate key proteins involved in the proliferation and/or apoptosis pathways, such as STAT3, AKT, ERK1/2 and p53 in isolated islets from PTP1B knockout (PTP1B −/−) mice. Morphometric analysis of pancreatic islets from PTP1B −/− mice showed a higher β-cell area, concomitantly with higher β-cell proliferation and a lower β-cell apoptosis when compared to islets from their respective wild type (WT) littermates. At a functional level, isolated islets from 8 weeks old PTP1B −/− mice exhibit enhanced glucose-stimulated insulin secretion. Moreover, PTP1B −/− mice were able to partially reverse streptozotocin-induced β-cell loss. Together, our data highlight for the first time the involvement of PTP1B in β-cell physiology, reinforcing the potential of this phosphatase as a therapeutical target for the treatment of β-cell failure, a central aspect in the pathogenesis of Type 2 Diabetes.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Count
- Cell Line
- Cell Proliferation
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Endoplasmic Reticulum/chemistry
- Endoplasmic Reticulum/enzymology
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/pathology
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Streptozocin
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Elaine Vieira
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Pablo M. Garcia-Roves
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Clinic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
42
|
Coquerel D, Neviere R, Delile E, Mulder P, Marechal X, Montaigne D, Renet S, Remy-Jouet I, Gomez E, Henry JP, do Rego JC, Richard V, Tamion F. Gene deletion of protein tyrosine phosphatase 1B protects against sepsis-induced cardiovascular dysfunction and mortality. Arterioscler Thromb Vasc Biol 2014; 34:1032-44. [PMID: 24578383 DOI: 10.1161/atvbaha.114.303450] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cardiovascular dysfunction is a major cause of mortality in patients with sepsis. Recently, we showed that gene deletion or pharmacological inhibition of protein tyrosine phosphatase 1B (PTP1B) improves endothelial dysfunction and reduces the severity of experimental heart failure. However, the cardiovascular effect of PTP1B invalidation in sepsis is unknown. Thus, we explored the beneficial therapeutic effect of PTP1B gene deletion on lipopolysaccharide (LPS)-induced cardiovascular dysfunction, inflammation, and mortality. APPROACH AND RESULTS PTP1B(-/-) or wild-type mice received LPS (15 mg/kg) or vehicle followed by subcutaneous fluid resuscitation (saline, 30 mL/kg). α-1-dependent constriction and endothelium-dependent dilatation, assessed on isolated perfused mesenteric arteries, were impaired 8 hours after LPS and significantly improved in PTP1B(-/-) mice. This was associated with reduced vascular expression of interleukin1-β, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, cyclooxygenase-2, and inducible nitric oxide synthase mRNA. PTP1B gene deletion also limited LPS-induced cardiac dysfunction assessed by echocardiography, left ventricular pressure-volume curves, and in isolated perfused hearts. PTP1B(-/-) mice also displayed reduced LPS-induced cardiac expression of tumor necrosis factor-α, interleukin1-β, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and Gp91phox, as well as of several markers of cellular infiltration. PTP1B deficiency also reduced cardiac P38 and extracellular signal-regulated protein kinase 1 and 2 phosphorylation and increased phospholamban phosphorylation. Finally, PTP1B(-/-) mice displayed a markedly reduced LPS-induced mortality, an effect also observed using a pharmacological PTP1B inhibitor. PTP1B deletion also improved survival in a cecal ligation puncture model of sepsis. CONCLUSIONS PTP1B gene deletion protects against septic shock-induced cardiovascular dysfunction and mortality, and this may be the result of the profound reduction of cardiovascular inflammation. PTP1B is an attractive target for the treatment of sepsis.
Collapse
Affiliation(s)
- David Coquerel
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (D.C., E.D., P.M., S.R., I.R.-J., E.G., J.-P.H., V.R., F.T.); University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France (D.C., E.D., P.M., S.R., I.R.-J., E.G., J.-P.H., J.-C.d.R., V.R., F.T.); EA 4484 and Department of Physiology, Faculty of Medicine, University of Lille, Lille, France (R.N., X.M., D.M.); Intensive Care Unit, University Hospital, Rouen, France (F.T.); and Platform of Behavioural Analysis (SCAC), Faculty of Medicine, Rouen, France (J.-C.d.R.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nemoto S, Matsumoto T, Taguchi K, Kobayashi T. Relationships among protein tyrosine phosphatase 1B, angiotensin II, and insulin-mediated aortic responses in type 2 diabetic Goto-Kakizaki rats. Atherosclerosis 2014; 233:64-71. [PMID: 24529124 DOI: 10.1016/j.atherosclerosis.2013.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We investigated the relationships among protein tyrosine phosphatase 1B (PTP1B), angiotensin II (Ang II), and insulin signaling in the presence of endothelial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rat aortas. METHODS AND RESULTS Aortas isolated from GK or control Wistar rats were examined in the presence or absence of Ang II with or without a selective antagonist of the Ang II type 1 (AT1) receptor or a PTP1B inhibitor to evaluate vascular functional and molecular mechanisms, such as insulin-induced relaxation, nitric oxide (NO) production, phosphorylation of insulin receptor substrate (IRS)-1, endothelial NO synthase (eNOS), and phosphorylation, and the subcellular localization of PTP1B. GK aortas exhibited reductions of: 1) insulin-induced relaxation, 2) NO production, 3) Ser(1177)-p-eNOS, and 4) Tyr(612)-p-IRS-1. Pre-incubation with a PTP1B inhibitor normalized these reductions. In Wistar aortas, the four above-mentioned parameters were reduced by Ang II, but were completely inhibited by co-treatment with the PTP1B inhibitor. The membrane expression of PTP1B was greater in GK than in Wistar aortas, and it was increased by Ang II in Wistar rats. The membrane PTP1B expression in the presence of insulin + Ang II was reduced by the PTP1B inhibitor or AT1-receptor antagonist. CONCLUSIONS These results suggest that the membrane PTP1B suppressed insulin-mediated aortic relaxation, and this was due to the Ang II-AT1-receptor signaling pathway. The inhibition of PTP1B warrants further investigation as a potential therapeutic target for endothelial dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Shingo Nemoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
44
|
Stepp DW, Osakwe CC, Belin de Chantemele EJ, Mintz JD. Vascular effects of deletion of melanocortin-4 receptors in rats. Physiol Rep 2013; 1:e00146. [PMID: 24400148 PMCID: PMC3871461 DOI: 10.1002/phy2.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 11/11/2022] Open
Abstract
Obesity is a major cause of hypertension, but links between the obese and hypertensive states remain incompletely understood. A major component of cardiovascular function in obese individuals is a state of sympathoactivation. A postulated mechanism of this sympathoactivation is the activation of specific classes of neurons commonly associated with metabolic control, which also affect sympathetic outflow to cardiovascular targets. One class of neurons is characterized by expression of melanocortin-4 receptors (MC4R) which are activated by metabolic signals such as leptin and insulin. In this study, we examined the effects of deletion of MC4R in a novel rat model. MC4R knockout (KO) rats are obese and profoundly insulin resistant without frank diabetes. Despite these conditions, MC4R KO rats are normotensive. Moderate bradycardia and significant increases in peripheral resistance were evident in MC4R KO rats. To determine if the dissociation between hypertension and obesity was associated with changes in vascular function, in vitro reactivity to vasoactive agents and in vivo reactivity to sympathetic blockade were examined. Vasodilator function was not affected by obesity in MC4R KO rats. Reactivity to phenylephrine was reduced, suggesting desensitization of adrenergic signaling. In response to ganglionic blockade with mecamylamine, blood pressure and hindlimb resistance fell more in MC4R KO rats, suggesting that sympathoactivation of the vascular was still evident, despite the absence of hypertension. These findings suggest that obesity causes sympathoactivation of the vasculature despite the absence of MC4R. Dissociation of obesity from hypertension in this model may reflect more renal mechanisms of blood pressure control.
Collapse
Affiliation(s)
- David W Stepp
- Vascular Biology Center, Georgia Regents University Augusta, Georgia ; Department of Physiology, Georgia Regents University Augusta, Georgia
| | | | | | - James D Mintz
- Vascular Biology Center, Georgia Regents University Augusta, Georgia
| |
Collapse
|
45
|
Abstract
In addition to effects on appetite and metabolism, leptin influences many neuroendocrine and physiological systems, including the sympathetic nervous system. Building on my Carl Ludwig Lecture of the American Physiological Society, I review the sympathetic and cardiovascular actions of leptin. The review focuses on a critical analysis of the concept of selective leptin resistance (SLR) and the role of leptin in the pathogenesis of obesity-induced hypertension in both experimental animals and humans. We introduced the concept of SLR in 2002 to explain how leptin might increase blood pressure (BP) in obese states, such as diet-induced obesity (DIO), that are accompanied by partial leptin resistance. This concept, analogous to selective insulin resistance in the metabolic syndrome, holds that in several genetic and acquired models of obesity, there is preservation of the renal sympathetic and pressor actions of leptin despite attenuation of the appetite and weight-reducing actions. Two potential overlapping mechanisms of SLR are reviewed: 1) differential leptin molecular signaling pathways that mediate selective as opposed to universal leptin action and 2) brain site-specific leptin action and resistance. Although the phenomenon of SLR in DIO has so far focused on preservation of sympathetic and BP actions of leptin, consideration should be given to the possibility that this concept may extend to preservation of other actions of leptin. Finally, I review perplexing data on the effects of leptin on sympathetic activity and BP in humans and its role in human obesity-induced hypertension.
Collapse
Affiliation(s)
- Allyn L Mark
- Department of Internal Medicine and the Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
46
|
Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML. PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol 2013; 48:430-45. [PMID: 23879520 DOI: 10.3109/10409238.2013.819830] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our understanding of the fundamental regulatory roles that tyrosine phosphatases play within cells has advanced significantly in the last two decades. Out-dated ideas that tyrosine phosphatases acts solely as the "off" switch counterbalancing the action of tyrosine kinases has proved to be flawed. PTP1B is the most characterized of all the tyrosine phosphatases and it acts as a critical negative and positive regulator of numerous signaling cascades. PTP1B's direct regulation of the insulin and the leptin receptors makes it an ideal therapeutic target for type II diabetes and obesity. Moreover, the last decade has also seen several reports establishing PTP1B as key player in cancer serving as both tumor suppressor and tumor promoter depending on the cellular context. Despite many key advances in these fields one largely ignored area is what role PTP1B may play in the modulation of immune signaling. The important recognition that PTP1B is a major negative regulator of Janus kinase - signal transducer and activator of transcription (JAK-STAT) signaling throughout evolution places it as a key link between metabolic diseases and inflammation, as well as a unique regulator between immune response and cancer. This review looks at the emergence of PTP1B through evolution, and then explore at the cell and systemic levels how it is controlled physiologically. The second half of the review will focus on the role(s) PTP1B can play in disease and in particular its involvement in metabolic syndromes and cancer. Finally we will briefly examine several novel directions in the development of PTP1B pharmacological inhibitors.
Collapse
|
47
|
do Carmo JM, da Silva AA, Dubinion J, Sessums PO, Ebaady SH, Wang Z, Hall JE. Control of metabolic and cardiovascular function by the leptin-brain melanocortin pathway. IUBMB Life 2013; 65:692-8. [PMID: 23847053 DOI: 10.1002/iub.1187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/11/2013] [Indexed: 12/26/2022]
Abstract
Obesity is recognized as a major worldwide health problem. Excess weight gain is the most common cause of elevated blood pressure (BP) and markedly increases the risk of metabolic, cardiovascular and renal diseases. Although the mechanisms linking obesity with hypertension have not been fully elucidated, increased sympathetic nervous system (SNS) activity contributes to elevated BP in obese subjects. Recent evidence indicates that leptin and the central nervous system (CNS) melanocortin system, including melanocortin 4 receptors (MC4R), play a key role in linking obesity with increased SNS activity and hypertension. Leptin, a peptide-hormone produced by adipose tissue, crosses the blood-brain barrier and activates brain centers that control multiple metabolic functions as well as SNS activity and BP via the CNS melanocortin system. The crosstalk between peripheral signals (e.g., leptin) and activation of CNS pathways (e.g., MC4R) that regulate energy balance, SNS activity and BP represents an important target for treating obesity and its metabolic and cardiovascular consequences.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Center of Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Belin de Chantemèle EJ, Ali MI, Mintz JD, Rainey WE, Tremblay ML, Fulton DJ, Stepp DW. Increasing peripheral insulin sensitivity by protein tyrosine phosphatase 1B deletion improves control of blood pressure in obesity. Hypertension 2012; 60:1273-9. [PMID: 23045458 DOI: 10.1161/hypertensionaha.112.196295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is a major risk factor for hypertension. The copresentation of hypertension and insulin resistance (IR) suggests a role for IR in blood pressure (BP) dysregulation. To test this hypothesis, peripheral IR has been genetically subtracted in a model of obesity by crossing leptin receptor mutant mice (K(db)H(PTP)) with mice lacking protein tyrosine phosphatase 1B (insulin desensitizer, H(db)K(PTP)) to generate obese insulin-sensitive mice (K(db)K(PTP)). BP was recorded in lean (H(db)H(PTP), H(db)K(PTP)) and obese (K(db)H(PTP), K(db)K(PTP)) mice via telemetry, and a frequency analysis of the recording was performed to determine BP variability. Correction of IR in obese mice normalized BP values to baseline levels (H(db)H(PTP): 116 ± 2 mm Hg; K(db)H(PTP): 129 ± 4 mm Hg; K(db)K(PTP): 114 ± 5 mm Hg) and restored BP variability by decreasing its standard deviation and the frequency of BP values over the upper autoregulatory limit of the kidneys. However, although IR-induced increases in proteinuria (versus 53 ± 13 μg/d, H(db)H(PTP)) were corrected in K(db)K(PTP) (112 ± 39 versus 422 ± 159 μg/d, K(db)H(PTP)), glomerular hypertrophy was not. IR reduced plasma aldosterone levels ruling out a role for mineralocorticoids in the development of hypertension. Taken together, these data indicate that correction of IR prevents hypertension, BP variability, and microalbuminuria in obese mice. Although the mechanism remains to be fully determined, increases in aldosterone or sympathoactivation of the cardiovascular system seem to be less likely contributors.
Collapse
|
49
|
Abstract
1. Leptin is a 16-kDa hormone, synthesized primarily by adipocyte, which acts as a key factor for maintenance of energy homeostasis in central and peripheral tissues. In most obese individuals, serum leptin levels are increased and correlate with the individual's body mass index. 2. Abundant investigations ranging from clinical and animal model studies to in vitro analyses show that leptin plays a pivotal role in obesity-related cardiovascular diseases (CVD). Hyperleptinaemia has been confirmed to be a predictor of acute cardiovascular events. However, some studies have shown that leptin has a cardioprotective effect in leptin-deficient models. These data suggest the influences of leptin on the pathophysiology of cardiovascular diseases are complex and not completely understood. 3. In the present review, we summarize the major leptin signalling pathways, including Janus-activated kinase/signal transducers and activators of transcription (Jak/STAT), mitogen-activated protein kinases (MAPK), and phosphatidylinositol 3-kinase (PI-3K) signalling pathways, and analyse the probable mechanisms of selective leptin resistance. We then provide a detailed review of the effects of leptin on the cardiovascular system, including sympathoactivation, oxidative stress, vascular inflammation, endothelial dysfunction, vascular cell proliferation, cardiomyocytes hypertrophy, as well as fatty acid metabolism, all of which contribute to the pathogenesis of cardiovascular diseases (e.g. ischaemic heart disease). The central premise of this review is to elucidate the mechanisms by which leptin affects the cardiovascular function and provide insight into obesity-related CVD.
Collapse
Affiliation(s)
- Ning Hou
- Department of Pharmacology, Guangzhou institute of Cardiovascular Disease, Guangzhou key laboratory of Cardiovascular Disease, and Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | | |
Collapse
|
50
|
Protein phosphatase 1b in the solitary tract nucleus is necessary for normal baroreflex function. J Cardiovasc Pharmacol 2012; 59:472-8. [PMID: 22569287 DOI: 10.1097/fjc.0b013e31824ba490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite positive metabolic effects, genetic deletion of protein phosphatase 1b (PTP1b) results in sympathetically mediated elevations in arterial pressure (AP) in mice. Because several PTP1b-regulated peptides also impair the baroreflex sensitivity (BRS) for control of heart rate (HR), we hypothesized that PTP1b in the solitary tract nucleus (NTS) participates in the maintenance of resting baroreflex function. To test this hypothesis, we performed acute bilateral microinjection of an allosteric PTP1b inhibitor (100 nM/120 nL) in the NTS of urethane/chloralose anesthetized Sprague-Dawley rats and assessed the BRS, responses to cardiac vagal chemosensitive fiber activation, and resting AP and HR before and after the injection. PTP1b inhibition impaired the BRS for bradycardia (n = 6; 0.93 ± 0.14 baseline vs. 0.48 ± 0.04 at 10 minutes vs. 0.49 ± 0.04 millisecond/mm Hg at 60 minutes; P < 0.01), with no significant effect on the BRS for tachycardia (0.30 ± 0.16 baseline vs. 0.24 ± 0.08 at 10 minutes vs. 0.24 ± 0.12 millisecond/mm Hg at 60 minutes). The reduced BRS for bradycardia was associated with a significant decrease in alpha-adrenergic responsiveness to phenylephrine at 60 minutes after PTP1b inhibition. Injection of the PTP1b inhibitor in the NTS elicited transient decreases in AP and HR in these animals. However, there was no effect of the inhibitor on depressor or bradycardic responses elicited by activation of cardiac vagal chemosensitive fibers, which converge with baroreceptor afferents in the NTS. These results suggest that PTP1b within the NTS may be a novel molecular mechanism for preservation of resting baroreflex function and provides further evidence for deleterious cardiovascular effects associated with PTP1b inhibition.
Collapse
|