1
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
2
|
Mitsis A, Kyriakou M, Sokratous S, Karmioti G, Drakomathioulakis M, Myrianthefs M, Ziakas A, Tzikas S, Kassimis G. Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction. Biomedicines 2024; 12:701. [PMID: 38540314 PMCID: PMC10968587 DOI: 10.3390/biomedicines12030701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 11/11/2024] Open
Abstract
The role of inflammation in the pathophysiology of acute myocardial infarction (AMI) is well established. In recognizing inflammation's pivotal role in AMI, this manuscript systematically traces the historical studies spanning from early attempts to the present landscape. Several anti-inflammatory trials targeting inflammation in post-AMI have been performed, and this review includes the key trials, as well as examines their designs, patient demographics, and primary outcomes. Efficacies and challenges are analyzed, thereby shedding light on the translational implications of trial outcomes. This article also discusses emerging trends, ongoing research, and potential future directions in the field. Practical applications and implications for clinical practice are considered by providing a holistic view of the evolving landscape of anti-inflammatory interventions in the context of AMI.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michaela Kyriakou
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Stefanos Sokratous
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Georgia Karmioti
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michail Drakomathioulakis
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
3
|
Lv D, Liu H, An Q, Lei C, Wang Y, Sun J, Li C, Lin Y, Dong Q, Yang Z, Che K, Liu W, Han W. Association of adverse fetal outcomes with placental inflammation after oral gestational exposure to hexafluoropropylene oxide dimer acid (GenX) in Sprague-Dawley rats. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132536. [PMID: 37717439 DOI: 10.1016/j.jhazmat.2023.132536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA), known as "GenX" for its trade name, is gradually taking the place of Perfluorooctanoic acid (PFOA). However, there is a poor understanding of the developmental effects of GenX. This study aims to explore whether GenX produces adverse effects on offspring development in Sprague-Dawley (SD) rats and the underlying mechanisms. Pregnant rats were orally administered with GenX (0, 1, 10 and 100 mg/kg/day) from gestational 0.5-19.5 days. Experimental data showed that the exposure to GenX resulted in increased rats' gestational weight gain, whereas both body weight and body length of their fetuses born naturally were significantly reduced. This could contribute to the developmental delays of fetal body weight, body length and tail length from postnatal 1-21 days. Histopathological evaluation of placenta indicated that GenX exposure led to neutrophil infiltration in decidual zone and congestion in labyrinth zone. Moreover, placental proteomics showed changes at the expression levels of the inflammation-related proteins in the Rap1 signaling pathway. In conclusion, gestational exposure to GenX induced fetal intrauterine and extrauterine development retardation in SD rats. Placental inflammation may play a key role in this process through the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Di Lv
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyun Liu
- Pathology Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China
| | - Qi An
- Child Healthcare Department, Qingdao Women and Children's Hospital, Qingdao 266071, China
| | - Chengwei Lei
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yanxuan Wang
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jin Sun
- Department of Developmental Pediatrics and Child Health Care, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Qing Dong
- Pediatrics Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Kui Che
- Key Laboratory of Thyroid Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wendong Liu
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China.
| | - Wenchao Han
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China.
| |
Collapse
|
4
|
Cheng L, Maboh RN, Wang H, Mao GW, Wu XY, Chen H. Naoxintong Capsule Activates the Nrf2/HO-1 Signaling Pathway and Suppresses the p38α Signaling Pathway Via Estrogen Receptors to Ameliorate Heart Remodeling in Female Mice With Postmenopausal Hypertension. J Cardiovasc Pharmacol 2022; 80:158-170. [PMID: 35500215 DOI: 10.1097/fjc.0000000000001285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Limited treatments are available for alleviating heart remodeling in postmenopausal hypertension. The cardioprotective effect of naoxintong (NXT) has been widely accepted. This study aimed to explore the effects of NXT on pathological heart remodeling in a postmenopausal hypertension mouse model in vivo and H9c2 cardiomyocytes in vitro. In vivo, ovariectomy combined with chronic angiotensin II infusion was used to establish the postmenopausal hypertension animal model. NXT significantly ameliorated cardiac remodeling as indicated by a reduced ratio of heart weight/body weight and left ventricle weight/body weight, left ventricular wall thickness, diameter of cardiomyocytes, and collagen deposition in the heart. NXT also significantly increased the expression of estrogen receptors (ERs) and downregulated the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2). In vitro, NXT treatment greatly suppressed angiotensin II-induced cardiac hypertrophy, cardiac fibrosis, and excessive oxidative stress as proven by reducing the diameter of H9c2 cardiomyocytes, expression of hypertrophy and fibrosis markers, intracellular reactive oxygen species, and oxidative enzymes. Mechanistically, NXT significantly upregulated the expression of ERs, which activated the Nrf2/HO-1 signaling pathway and inhibited the phosphorylation of the p38α pathway. Collectively, the results indicated that NXT administration might attenuate cardiac remodeling through upregulating the expression of ERs, which activated the Nrf2/HO-1 signaling pathway, inhibited the phosphorylation of the p38α signaling pathway, and reduced oxidative stress.
Collapse
Affiliation(s)
- Lan Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Rene Nfornah Maboh
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Huan Wang
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Gao-Wei Mao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Xiao-Ying Wu
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Hui Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and.,Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
5
|
Zang Y, Wang H, Kang Y, Zhang J, Li X, Zhang L, Yang Z, Zhang S. TAB1 binding induced p38α conformation change: an accelerated molecular dynamics simulation study. Phys Chem Chem Phys 2022; 24:10506-10513. [PMID: 35441632 DOI: 10.1039/d2cp00144f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
p38α mitogen-activated protein kinase (MAPK) undergoes autophosphorylation induced by the binding of TGFβ-activated kinase 1 binding protein 1 (TAB1) in myocardial ischemia. Investigation of the conformational transformations in p38α triggered by TAB1 binding is motivated by the need to find selective p38α activation inhibitors to treat myocardial ischemia. Herein, the conformational transformations of p38α were studied via all-atom accelerated molecular dynamics simulations and principal component analysis. With the binding of TAB1, the conformational changes of p38α auto-activation were characterized by the movement of the activation loop (A-loop) away from the αG helix toward the αF, αE helixes and L16-loop. In addition, a diverse intermediate state with an extensional and phosphorylated A-loop different from the transition intermediate state was explored. The conformational changes, including the A-loop alpha-structure breaking and the stronger hydrogen bond network formation, are accompanied by the extension of the A-loop and more intramolecular interactions in p38α. TAB1 correlates with other regions of p38α that are distal from the TAB1-binding site, including the A-loop, αC helix, and L16-loop, which regulates the intramolecular correlation of p38α. And, the phosphorylation further enhances the correlations between the A-loop and the other regions of p38α. The correlation results imply the regulation process of p38α conformational transformations. These findings will improve our understanding of the autophosphorylation of kinase and facilitate the development of selective inhibitors for the treatment of ischemic injury.
Collapse
Affiliation(s)
- Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
6
|
Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development. Antioxidants (Basel) 2022; 11:antiox11020400. [PMID: 35204282 PMCID: PMC8869691 DOI: 10.3390/antiox11020400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Kidney disease patients may have concurrent chronic kidney disease-associated mineral bone disorder and hypertension. Cardiovascular disease (CVD) and neuropathy occur due to kidney failure-induced accumulation of uremic toxins in the body. Indoxyl sulfate (IS), a product of indole metabolism in the liver, is produced from tryptophan by the intestinal flora and is ultimately excreted through the kidneys. Hemodialysis helps renal failure patients eliminate many nephrotoxins, except for IS, which leads to a poor prognosis. Although the impacts of IS on cardiac and renal development have been well documented using mouse and rat models, other model organisms, such as zebrafish, have rarely been studied. The zebrafish genome shares at least 70% similarity with the human genome; therefore, zebrafish are ideal model organisms for studying vertebrate development, including renal development. In this study, we aimed to investigate the impact of IS on the development of zebrafish embryos, especially cardiac and renal development. At 24 h postfertilization (hpf), zebrafish were exposed to IS at concentrations ranging from 2.5 to 10 mM. IS reduced survival and the hatching rate, caused cardiac edema, increased mortality, and shortened the body length of zebrafish embryos. In addition, IS decreased heart rates and renal function. IS affected zebrafish development via the ROS and MAPK pathways, which subsequently led to inflammation in the embryos. The results suggest that IS interferes with cardiac and renal development in zebrafish embryos, providing new evidence about the toxicity of IS to aquatic organisms and new insights for the assessment of human health risks. Accordingly, we suggest that zebrafish studies can ideally complement mouse model studies to allow the simultaneous and comprehensive investigation of the physiological impacts of uremic endotheliotoxins, such as IS, on cardiac and renal development.
Collapse
|
7
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
8
|
Cavender MA, O'Donoghue ML, Abbate A, Aylward P, Fox KAA, Glaser RX, Park JG, Lopez-Sendon J, Steg PG, Sabatine MS, Morrow DA. Inhibition of p38 MAP kinase in patients with ST-elevation myocardial infarction - findings from the LATITUDE-TIMI 60 trial. Am Heart J 2022; 243:147-157. [PMID: 34508693 DOI: 10.1016/j.ahj.2021.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 08/24/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND p38 mitogen activated kinase (MAPK) mediates the response to pro-inflammatory cytokines following myocardial infarction (MI) and is inhibited by losmapimod. METHODS LATITUDE-TIMI 60 (ClinicalTrials.gov NCT02145468) randomized patients with MI to losmapimod or placebo for 12 weeks (24 weeks total follow-up). In this pre-specified analysis, we examined outcomes based on MI type [ST-segment elevation MI (STEMI) (865, 25%) and non-STEMI (2624, 75%)]. RESULTS In patients with STEMI, inflammation, measured by hs-CRP, was significantly attenuated with losmapimod at 48 hours (P <0.001) and week 12 (P = 0.01). Losmapimod lowered NT-proBNP in patients with STEMI at 48 hours (P = 0.04) and week 12 (P = 0.02). The effects of losmapimod on CV death (CVD), MI, or severe recurrent ischemia requiring urgent coronary artery revascularization at 24 weeks [MACE] differed in patients with STEMI (7.0% vs 10.8%; HR 0.65, 95%CI 0.41 - 1.03; P= 0.06) and NSTEMI (11.4% vs 8.5%; HR 1.30, 95%CI 1.02 - 1.66; P = 0.04; p[int] = 0.009). CVD or HHF among patients with STEMI were 5.6% (losmapimod) and 8.3% (placebo) (HR 0.66; 95%CI 0.40 - 1.11; P = 0.12) and in NSTEMI were 4.8% (losmapimod) and 4.4% (placebo) (HR 1.09; 95%CI 0.76 - 1.56) in patients with NSTEMI. CONCLUSIONS Patients with STEMI treated with losmapimod had an attenuated inflammatory response. Our collective findings raise the hypothesis that mitigating the inflammatory response may result in different outcomes in patients with STEMI and NSTEMI. While the difference in outcomes is exploratory, these findings do support separate examination of patients with STEMI and NSTEMI and increased emphasis on heart failure in future investigation of modulators of inflammation in MI.
Collapse
|
9
|
Vainio L, Taponen S, Kinnunen SM, Halmetoja E, Szabo Z, Alakoski T, Ulvila J, Junttila J, Lakkisto P, Magga J, Kerkelä R. GSK3β Serine 389 Phosphorylation Modulates Cardiomyocyte Hypertrophy and Ischemic Injury. Int J Mol Sci 2021; 22:13586. [PMID: 34948382 PMCID: PMC8707850 DOI: 10.3390/ijms222413586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Prior studies show that glycogen synthase kinase 3β (GSK3β) contributes to cardiac ischemic injury and cardiac hypertrophy. GSK3β is constitutionally active and phosphorylation of GSK3β at serine 9 (S9) inactivates the kinase and promotes cellular growth. GSK3β is also phosphorylated at serine 389 (S389), but the significance of this phosphorylation in the heart is not known. We analyzed GSK3β S389 phosphorylation in diseased hearts and utilized overexpression of GSK3β carrying ser→ala mutations at S9 (S9A) and S389 (S389A) to study the biological function of constitutively active GSK3β in primary cardiomyocytes. We found that phosphorylation of GSK3β at S389 was increased in left ventricular samples from patients with dilated cardiomyopathy and ischemic cardiomyopathy, and in hearts of mice subjected to thoracic aortic constriction. Overexpression of either GSK3β S9A or S389A reduced the viability of cardiomyocytes subjected to hypoxia-reoxygenation. Overexpression of double GSK3β mutant (S9A/S389A) further reduced cardiomyocyte viability. Determination of protein synthesis showed that overexpression of GSK3β S389A or GSK3β S9A/S389A increased both basal and agonist-induced cardiomyocyte growth. Mechanistically, GSK3β S389A mutation was associated with activation of mTOR complex 1 signaling. In conclusion, our data suggest that phosphorylation of GSK3β at S389 enhances cardiomyocyte survival and protects from cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Saija Taponen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Sini M. Kinnunen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Eveliina Halmetoja
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
| | - Tarja Alakoski
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Johanna Ulvila
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
| | - Juhani Junttila
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
- Research Unit of Internal Medicine, Division of Cardiology, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Helsinki 00014, Finland;
- Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| |
Collapse
|
10
|
Hall EJ, Pal S, Glennon MS, Shridhar P, Satterfield SL, Weber B, Zhang Q, Salama G, Lal H, Becker JR. Cardiac natriuretic peptide deficiency sensitizes the heart to stress induced ventricular arrhythmias via impaired CREB signaling. Cardiovasc Res 2021; 118:2124-2138. [PMID: 34329394 DOI: 10.1093/cvr/cvab257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The cardiac natriuretic peptides (atrial natriuretic peptide [ANP] and B-type natriuretic peptide [BNP]) are important regulators of cardiovascular physiology, with reduced natriuretic peptide (NP) activity linked to multiple human cardiovascular diseases. We hypothesized that deficiency of either ANP or BNP would lead to similar changes in left ventricular structure and function given their shared receptor affinities. METHODS AND RESULTS We directly compared murine models deficient of ANP or BNP in the same genetic backgrounds (C57BL6/J) and environments. We evaluated control, ANP deficient (Nppa-/-) or BNP deficient (Nppb-/-) mice under unstressed conditions and multiple forms of pathological myocardial stress. Survival, myocardial structure, function and electrophysiology, tissue histology, and biochemical analyses were evaluated in the groups. In vitro validation of our findings was performed using human derived induced pluripotent stem cell cardiomyocytes (iPS-CM). In the unstressed state, both ANP and BNP deficient mice displayed mild ventricular hypertrophy which did not increase up to 1 year of life. NP-deficient mice exposed to acute myocardial stress secondary to thoracic aortic constriction (TAC) had similar pathological myocardial remodeling but a significant increase in sudden death. We discovered that the NP-deficient mice are more susceptible to stress induced ventricular arrhythmias using both in vivo and ex vivo models. Mechanistically, deficiency of either ANP or BNP led to reduced myocardial cGMP levels and reduced phosphorylation of the cAMP response element-binding protein (CREBS133) transcriptional regulator. Selective CREB inhibition sensitized wild type hearts to stress induced ventricular arrhythmias. ANP and BNP regulate cardiomyocyte CREBS133 phosphorylation through a cGMP-dependent protein kinase 1 (PKG1) and p38 mitogen activated protein kinase (p38 MAPK) signaling cascade. CONCLUSIONS Our data show that ANP and BNP act in a non-redundant fashion to maintain myocardial cGMP levels to regulate cardiomyocyte p38 MAPK and CREB activity. Cardiac natriuretic peptide deficiency leads to a reduction in CREB signaling which sensitizes the heart to stress induced ventricular arrhythmias. TRANSLATIONAL PERSPECTIVE Our study found that ANP or BNP deficiency leads to increased sudden death and ventricular arrhythmias after acute myocardial stress in murine models. We discovered that ANP and BNP act in a non-redundant fashion to maintain myocardial cGMP levels and uncovered a unique role for these peptides in regulating cardiomyocyte p38 MAPK and CREB signaling through a cGMP-PKG1 pathway. Importantly, this signaling pathway was conserved in human cardiomyocytes. This study provides mechanistic insight into how modulating natriuretic peptide levels in human heart failure patients reduces sudden death and mortality.
Collapse
Affiliation(s)
- Eric J Hall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Soumojit Pal
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael S Glennon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Puneeth Shridhar
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sidney L Satterfield
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Beth Weber
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qinkun Zhang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Guy Salama
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Jason R Becker
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
12
|
Yokota T, Li J, Huang J, Xiong Z, Zhang Q, Chan T, Ding Y, Rau C, Sung K, Ren S, Kulkarni R, Hsiai T, Xiao X, Touma M, Minamisawa S, Wang Y. p38 Mitogen-activated protein kinase regulates chamber-specific perinatal growth in heart. J Clin Invest 2020; 130:5287-5301. [PMID: 32573492 PMCID: PMC7524480 DOI: 10.1172/jci135859] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
In the mammalian heart, the left ventricle (LV) rapidly becomes more dominant in size and function over the right ventricle (RV) after birth. The molecular regulators responsible for this chamber-specific differential growth are largely unknown. We found that cardiomyocytes in the neonatal mouse RV had lower proliferation, more apoptosis, and a smaller average size compared with the LV. This chamber-specific growth pattern was associated with a selective activation of p38 mitogen-activated protein kinase (MAPK) activity in the RV and simultaneous inactivation in the LV. Cardiomyocyte-specific deletion of both the Mapk14 and Mapk11 genes in mice resulted in loss of p38 MAPK expression and activity in the neonatal heart. Inactivation of p38 activity led to a marked increase in cardiomyocyte proliferation and hypertrophy but diminished cardiomyocyte apoptosis, specifically in the RV. Consequently, the p38-inactivated hearts showed RV-specific enlargement postnatally, progressing to pulmonary hypertension and right heart failure at the adult stage. Chamber-specific p38 activity was associated with differential expression of dual-specific phosphatases (DUSPs) in neonatal hearts, including DUSP26. Unbiased transcriptome analysis revealed that IRE1α/XBP1-mediated gene regulation contributed to p38 MAPK-dependent regulation of neonatal cardiomyocyte proliferation and binucleation. These findings establish an obligatory role of DUSP/p38/IRE1α signaling in cardiomyocytes for chamber-specific growth in the postnatal heart.
Collapse
Affiliation(s)
- Tomohiro Yokota
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jin Li
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jijun Huang
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Zhaojun Xiong
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Zhang
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Tracey Chan
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Yichen Ding
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Cardiology and
| | - Christoph Rau
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kevin Sung
- Department of Bioengineering, School of Engineering and Applied Sciences
| | - Shuxun Ren
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rajan Kulkarni
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Dermatology, Department of Medicine, and
| | - Tzung Hsiai
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Cardiology and
| | - Xinshu Xiao
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Yibin Wang
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Division of Cardiology and
| |
Collapse
|
13
|
Khan S, Ahmad SS, Kamal MA. Diabetic Cardiomyopathy: From Mechanism to Management in a Nutshell. Endocr Metab Immune Disord Drug Targets 2020; 21:268-281. [PMID: 32735531 DOI: 10.2174/1871530320666200731174724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 06/03/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a significant complication of diabetes mellitus characterized by gradually failing heart with detrimental cardiac remodelings, such as fibrosis and diastolic and systolic dysfunction, which is not directly attributable to coronary artery disease. Insulin resistance and resulting hyperglycemia is the main trigger involved in the initiation of diabetic cardiomyopathy. There is a constellation of many pathophysiological events, such as lipotoxicity, oxidative stress, inflammation, inappropriate activation of the renin-angiotensin-aldosterone system, dysfunctional immune modulation promoting increased rate of cardiac cell injury, apoptosis, and necrosis, which ultimately culminates into interstitial fibrosis, cardiac stiffness, diastolic dysfunction, initially, and later systolic dysfunction too. These events finally lead to clinical heart failure of DCM. Herein, The pathophysiology of DCM is briefly discussed. Furthermore, potential therapeutic strategies currently used for DCM are also briefly mentioned.
Collapse
Affiliation(s)
- Shahzad Khan
- Department of Pathophysiology, Wuhan University School of Medicine, Hubei, Wuhan, China
| | - Syed S Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Nichols C, Ng J, Keshu A, Kelly G, Conte MR, Marber MS, Fraternali F, De Nicola GF. Mining the PDB for Tractable Cases Where X-ray Crystallography Combined with Fragment Screens Can Be Used to Systematically Design Protein-Protein Inhibitors: Two Test Cases Illustrated by IL1β-IL1R and p38α-TAB1 Complexes. J Med Chem 2020; 63:7559-7568. [PMID: 32543856 DOI: 10.1021/acs.jmedchem.0c00403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nowadays, it is possible to combine X-ray crystallography and fragment screening in a medium throughput fashion to chemically probe the surfaces used by proteins to interact and use the outcome of the screens to systematically design protein-protein inhibitors. To prove it, we first performed a bioinformatics analysis of the Protein Data Bank protein complexes, which revealed over 400 cases where the crystal lattice of the target in the free form is such that large portions of the interacting surfaces are free from lattice contacts and therefore accessible to fragments during soaks. Among the tractable complexes identified, we then performed single fragment crystal screens on two particular interesting cases: the Il1β-ILR and p38α-TAB1 complexes. The result of the screens showed that fragments tend to bind in clusters, highlighting the small-molecule hotspots on the surface of the target protein. In most of the cases, the hotspots overlapped with the binding sites of the interacting proteins.
Collapse
Affiliation(s)
- Charlie Nichols
- British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, U.K.,The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Joseph Ng
- The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Annika Keshu
- The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Geoff Kelly
- NMR Facility, The Francis Crick Institute, London NW1 1AT, U.K
| | - Maria R Conte
- The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Michael S Marber
- British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, U.K
| | - Franca Fraternali
- The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Gian F De Nicola
- British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, U.K.,The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| |
Collapse
|
15
|
Wu PH, Lin YT, Wu PY, Lee HH, Lee SC, Hung SC, Chen SC, Kuo MC, Chiu YW. Association between Circulation Indole-3-Acetic Acid Levels and Stem Cell Factor in Maintenance Hemodialysis Patients: A Cross-Sectional Study. J Clin Med 2020; 9:jcm9010124. [PMID: 31906560 PMCID: PMC7019261 DOI: 10.3390/jcm9010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Protein-bound uremic toxin is a cardiovascular (CV) risk factor for patients with end-stage renal disease. Indole-3-acetic acid (IAA) was found to be associated with CV disease but the detailed pathophysiology remains unknown. Moreover, mitogen-activated protein kinase (MAPK) signaling cascades play an important role in the pathogenesis of CV disease. Thus, we explored the association between circulating IAA levels and forty MAPK cascade associated proteins in patients undergoing hemodialysis (HD). Circulating total form IAA was quantified by mass spectrometry and forty MAPK cascade associated proteins by a proximity extension assay in 331 prevalent HD patients. Accounting for multiple testing, and in multivariable-adjusted linear regression models, circulating total form IAA levels were positively associated with stem cell factor (β coefficient 0.13, 95% confidence interval 0.04 to 0.21, p = 0.004). A bioinformatics approach using the search tool for interactions of chemicals (STITCH) tool provided information that IAA may be involved in the regulation of cell proliferation, hematopoietic cells, and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. The knowledge gained here can be generalized, thereby impacting the non-traditional CV risk factors in patients with kidney disease. Further in vitro work is necessary to validate the translation of the mechanistic pathways.
Collapse
Affiliation(s)
- Ping-Hsun Wu
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Medical Sciences, Uppsala University, Uppsala 75105, Sweden
| | - Yi-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Sciences, Uppsala University, Uppsala 75105, Sweden
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pei-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Hei-Hwa Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Su-Chu Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 23142, Taiwan;
| | - Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 81267, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7351)
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Loonat AA, Martin ED, Sarafraz-Shekary N, Tilgner K, Hertz NT, Levin R, Shokat KM, Burlingame AL, Arabacilar P, Uddin S, Thomas M, Marber MS, Clark JE. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin. FASEB J 2019; 33:13131-13144. [PMID: 31638431 PMCID: PMC6894093 DOI: 10.1096/fj.201701545r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Despite the high and preferential expression of p38γ MAPK in the myocardium, little is known about its function in the heart. The aim of the current study was to elucidate the physiologic and biochemical roles of p38γ in the heart. Expression and subcellular localization of p38 isoforms was determined in mouse hearts. Comparisons of the cardiac function and structure of wild-type and p38γ knockout (KO) mice at baseline and after abdominal aortic banding demonstrated that KO mice developed less ventricular hypertrophy and that contractile function is better preserved. To identify potential substrates of p38γ, we generated an analog-sensitive mutant to affinity tag endogenous myocardial proteins. Among other proteins, this technique identified calpastatin as a direct p38γ substrate. Moreover, phosphorylation of calpastatin by p38γ impaired its ability to inhibit the protease, calpain. We have identified p38γ as an important determinant of the progression of pathologic cardiac hypertrophy after aortic banding in mice. In addition, we have identified calpastatin, among other substrates, as a novel direct target of p38γ that may contribute to the protection observed in p38γKO mice.-Loonat, A. A., Martin, E. D., Sarafraz-Shekary, N., Tilgner, K., Hertz, N. T., Levin, R., Shokat, K. M., Burlingame, A. L., Arabacilar, P., Uddin, S., Thomas, M., Marber, M. S., Clark, J. E. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin.
Collapse
Affiliation(s)
- Aminah A. Loonat
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - E. Denise Martin
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Negin Sarafraz-Shekary
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Katharina Tilgner
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Nicholas T. Hertz
- University of California–San Francisco, San Francisco, California, USA
| | - Rebecca Levin
- University of California–San Francisco, San Francisco, California, USA
| | - Kevan M. Shokat
- University of California–San Francisco, San Francisco, California, USA
| | | | - Pelin Arabacilar
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Shahzan Uddin
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Max Thomas
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Michael S. Marber
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - James E. Clark
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Zhang ZY, Miao LF, Qian LL, Wang N, Qi MM, Zhang YM, Dang SP, Wu Y, Wang RX. Molecular Mechanisms of Glucose Fluctuations on Diabetic Complications. Front Endocrinol (Lausanne) 2019; 10:640. [PMID: 31620092 PMCID: PMC6759481 DOI: 10.3389/fendo.2019.00640] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates the occurrence and development of diabetic complications relates to not only constant high plasma glucose, but also glucose fluctuations which affect various kinds of molecular mechanisms in various target cells and tissues. In this review, we detail reactive oxygen species and their potentially damaging effects upon glucose fluctuations and resultant downstream regulation of protein signaling pathways, including protein kinase C, protein kinase B, nuclear factor-κB, and the mitogen-activated protein kinase signaling pathway. A deeper understanding of glucose-fluctuation-related molecular mechanisms in the development of diabetic complications may enable more potential target therapies in future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
18
|
Li M, Cui L, Feng X, Wang C, Zhang Y, Wang L, Ding Y, Zhao T. Losmapimod Protected Epileptic Rats From Hippocampal Neuron Damage Through Inhibition of the MAPK Pathway. Front Pharmacol 2019; 10:625. [PMID: 31231220 PMCID: PMC6565798 DOI: 10.3389/fphar.2019.00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: This research aimed to validate the therapeutic effect of losmapimod and explore the underlying mechanism in its treatment of epilepsy. Methods: A rat model of epilepsy was constructed with an injection of pilocarpine. Microarray analysis was performed to screen aberrantly expressed mRNAs and activated signaling pathways between epileptic rats and normal controls. A TdT-mediated dUTP nick-end labeling (TUNEL) assay was used to identify cell apoptosis. Hippocampal cytoarchitecture was visualized with Nissl staining. The secretion of inflammatory factors as well as the marker proteins in the mitogen-activated protein kinase (MAPK) pathway were detected by Western blot. A Morris water maze navigation test evaluated the rats’ cognitive functions. Results: Activation of the MAPK signaling pathway was observed in epilepsy rats. A decrease in the MAPK phosphorylation level by application of losmapimod protected against epilepsy by reducing neuron loss. Losmapimod effectively improved memory, reduced the frequency of seizures, protected the neuron from damage, and limited the apoptosis of neurons in epilepsy rats. Conclusion: The application of losmapimod could partly reverse the development of epilepsy.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Lexiang Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xuemin Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chao Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Major in Clinical Medicine, Medical College of Nanchang University, Nanchang, China
| | - Lijie Wang
- Department of Traditional Chinese Medicine, General Hospital of FAW, Fourth Hospital of Jilin University, Changchuan, China
| | - Ying Ding
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Teng Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Alakoski T, Ulvila J, Yrjölä R, Vainio L, Magga J, Szabo Z, Licht JD, Kerkelä R. Inhibition of cardiomyocyte Sprouty1 protects from cardiac ischemia-reperfusion injury. Basic Res Cardiol 2019; 114:7. [PMID: 30635790 PMCID: PMC6329741 DOI: 10.1007/s00395-018-0713-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/27/2018] [Indexed: 12/23/2022]
Abstract
Sprouty1 (Spry1) is a negative modulator of receptor tyrosine kinase signaling, but its role in cardiomyocyte survival has not been elucidated. The aim of this study was to investigate the potential role of cardiomyocyte Spry1 in cardiac ischemia–reperfusion (I/R) injury. Infarct areas of mouse hearts showed an increase in Spry1 protein expression, which localized to cardiomyocytes. To investigate if cardiomyocyte Spry1 regulates I/R injury, 8-week-old inducible cardiomyocyte Spry1 knockout (Spry1 cKO) mice and control mice were subjected to cardiac I/R injury. Spry1 cKO mice showed reduction in release of cardiac troponin I and reduced infarct size after I/R injury compared to control mice. Similar to Spry1 knockdown in cardiomyocytes in vivo, RNAi-mediated Spry1 silencing in isolated cardiomyocytes improved cardiomyocyte survival following simulated ischemia injury. Mechanistically, Spry1 knockdown induced cardiomyocyte extracellular signal-regulated kinase (ERK) phosphorylation in healthy hearts and isolated cardiomyocytes, and enhanced ERK phosphorylation after I/R injury. Spry1-deficient cardiomyocytes showed better preserved mitochondrial membrane potential following ischemic injury and an increase in levels of phosphorylated ERK and phosphorylated glycogen synthase kinase-3β (GSK-3β) in mitochondria of hypoxic cardiomyocytes. Overexpression of constitutively active GSK-3β abrogated the protective effect of Spry1 knockdown. Moreover, pharmacological inhibition of GSK-3β protected wild-type cardiomyocytes from cell death, but did not further protect Spry1-silenced cardiomyocytes from hypoxia-induced injury. Cardiomyocyte Spry1 knockdown promotes ERK phosphorylation and offers protection from I/R injury. Our findings indicate that Spry1 is an important regulator of cardiomyocyte viability during ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Tarja Alakoski
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Johanna Ulvila
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Raisa Yrjölä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland
| | - Jonathan D Licht
- University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P. O. BOX 5000, 90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
20
|
Gui JS, Jalil J, Jubri Z, Kamisah Y. Parkia speciosa empty pod extract exerts anti-inflammatory properties by modulating NFκB and MAPK pathways in cardiomyocytes exposed to tumor necrosis factor-α. Cytotechnology 2019; 71:79-89. [PMID: 30600464 DOI: 10.1007/s10616-018-0267-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/11/2018] [Indexed: 12/31/2022] Open
Abstract
Parkia speciosa Hassk is a plant found abundantly in the Southeast Asia region. Its seeds, with or without pods, have been used in traditional medicine locally to treat cardiovascular problems. The pathogenesis of cardiovascular diseases involves inflammation and oxidative stress. Based on this information, we sought to investigate the potential protective effects of Parkia speciosa empty pod extract (PSE) on inflammation in cardiomyocytes exposed to tumor necrosis factor-α (TNF-α). H9c2 cardiomyocytes were divided into four groups; negative control, TNF-α, PSE + TNF-α and quercetin + TNF-α. Groups 3 and 4 were pretreated with PSE ethyl acetate fraction of ethanol extract (500 µg/mL) or quercetin (1000 µM, positive control) for 1 h before inflammatory induction with TNF-α (12 ng/mL) for 24 h. TNF-α increased protein expression of nuclear factor kappa B cell (NFκB) p65, p38 mitogen-activated protein kinase (p38 MAPK), inducible nitric oxide synthase, cyclooxygenase-2 and vascular cell adhesion molecule-1 when compared to the negative control (p < 0.05). It also elevated iNOS activity, nitric oxide and reactive oxygen species levels. These increases were significantly reduced with PSE and quercetin pretreatments. The effects of PSE were comparable to that of quercetin. PSE exhibited anti-inflammatory properties against TNF-α-induced inflammation in H9c2 cardiomyocytes by modulating the NFκB and p38 MAPK pathways.
Collapse
Affiliation(s)
- J S Gui
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - J Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Z Jubri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Y Kamisah
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Gee MS, Kim SW, Kim N, Lee SJ, Oh MS, Jin HK, Bae JS, Inn KS, Kim NJ, Lee JK. A Novel and Selective p38 Mitogen-Activated Protein Kinase Inhibitor Attenuates LPS-Induced Neuroinflammation in BV2 Microglia and a Mouse Model. Neurochem Res 2018; 43:2362-2371. [PMID: 30327995 DOI: 10.1007/s11064-018-2661-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is an important pathological feature in neurodegenerative diseases. Accumulating evidence has suggested that neuroinflammation is mainly aggravated by activated microglia, which are macrophage like cells in the central nervous system. Therefore, the inhibition of microglial activation may be considered for treating neuroinflammatory diseases. p38 mitogen-activated protein kinase (MAPK) has been identified as a crucial enzyme with inflammatory roles in several immune cells, and its activation also relates to neuroinflammation. Considering the proinflammatory roles of p38 MAPK, its inhibitors can be potential therapeutic agents for neurodegenerative diseases relating to neuroinflammation initiated by microglia activation. This study was designed to evaluate whether NJK14047, a recently identified novel and selective p38 MAPK inhibitor, could modulate microglia-mediated neuroinflammation by utilizing lipopolysaccharide (LPS)-stimulated BV2 cells and an LPS-injected mice model. Our results showed that NJK14047 markedly reduced the production of nitric oxide and prostaglandin E2 by downregulating the expression of various proinflammatory mediators such as nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α and interleukin-1β in LPS-induced BV2 microglia. Moreover, NJK14047 significantly reduced microglial activation in the brains of LPS-injected mice. Overall, these results suggest that NJK14047 significantly reduces neuroinflammation in cellular/vivo model and would be a therapeutic candidate for various neuroinflammatory diseases.
Collapse
Affiliation(s)
- Min Sung Gee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Sang-Won Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Soo Jin Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae-Sung Bae
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyung-Soo Inn
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
22
|
De Nicola GF, Bassi R, Nichols C, Fernandez-Caggiano M, Golforoush PA, Thapa D, Anderson R, Martin ED, Verma S, Kleinjung J, Laing A, Hutchinson JP, Eaton P, Clark J, Marber MS. The TAB1-p38α complex aggravates myocardial injury and can be targeted by small molecules. JCI Insight 2018; 3:121144. [PMID: 30135318 PMCID: PMC6141180 DOI: 10.1172/jci.insight.121144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
Abstract
Inhibiting MAPK14 (p38α) diminishes cardiac damage in myocardial ischemia. During myocardial ischemia, p38α interacts with TAB1, a scaffold protein, which promotes p38α autoactivation; active p38α (pp38α) then transphosphorylates TAB1. Previously, we solved the X-ray structure of the p38α-TAB1 (residues 384–412) complex. Here, we further characterize the interaction by solving the structure of the pp38α-TAB1 (residues 1–438) complex in the active state. Based on this information, we created a global knock-in (KI) mouse with substitution of 4 residues on TAB1 that we show are required for docking onto p38α. Whereas ablating p38α or TAB1 resulted in early embryonal lethality, the TAB1-KI mice were viable and had no appreciable alteration in their lymphocyte repertoire or myocardial transcriptional profile; nonetheless, following in vivo regional myocardial ischemia, infarction volume was significantly reduced and the transphosphorylation of TAB1 was disabled. Unexpectedly, the activation of myocardial p38α during ischemia was only mildly attenuated in TAB1-KI hearts. We also identified a group of fragments able to disrupt the interaction between p38α and TAB1. We conclude that the interaction between the 2 proteins can be targeted with small molecules. The data reveal that it is possible to selectively inhibit signaling downstream of p38α to attenuate ischemic injury. Disrupting TAB1-p38α interaction in vivo has a protective effect during myocardial ischemia and can be achieved in vitro with small molecule inhibitors.
Collapse
Affiliation(s)
- Gian F De Nicola
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and.,The Randall Division, New Hunt's House, Guy's Campus, King's College London, United Kingdom
| | - Rekha Bassi
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and
| | - Charlie Nichols
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and.,The Randall Division, New Hunt's House, Guy's Campus, King's College London, United Kingdom
| | | | | | - Dibesh Thapa
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and
| | - Rhys Anderson
- The Randall Division, New Hunt's House, Guy's Campus, King's College London, United Kingdom
| | - Eva Denise Martin
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and
| | - Sharwari Verma
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and
| | - Jens Kleinjung
- Bioinformatics Facility, The Francis Crick Institute, London, United Kingdom
| | - Adam Laing
- Department of Immunobiology, King's College London, United Kingdom
| | - Jonathan P Hutchinson
- Platform Technologies and Science, GlaxoSmithKline, and.,Discovery Partnerships with Academia, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Philip Eaton
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and
| | - James Clark
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and
| | - Michael S Marber
- British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, and
| |
Collapse
|
23
|
Abstract
The importance of inflammation and inflammatory pathways in atherosclerotic disease and acute coronary syndromes (ACS) is well established. The success of statin therapy rests not only on potently reducing levels of low-density lipoprotein cholesterol, but also on the many beneficial, pleiotropic effects statin therapy has on various inflammatory mechanisms in atherosclerotic disease, from reducing endothelial dysfunction to attenuating levels of serum C-reactive protein. Due to the growing awareness of the importance of inflammation in ACS, investigators have attempted to develop novel therapies against known markers of inflammation for several decades. Targeted pathways have ranged from inhibiting C5 cleavage with a high-affinity monoclonal antibody against C5 to inhibiting the activation of the p38 mitogen-activated protein kinase signaling cascades. In each of these instances, despite promising early preclinical and mechanistic studies and phase 2 trials suggesting a potential benefit in reducing post-MI complications or restenosis, these novel therapies have failed to show benefits during large, phase 3 clinical outcomes trials. This review discusses several examples of novel anti-inflammatory therapies that failed to show significant improvement on clinical outcomes when tested in large, randomized trials and highlights potential explanations for why targeted therapies against known markers of inflammation in ACS have failed to launch.
Collapse
Key Words
- ACS, acute coronary syndromes
- CABG, coronary artery bypass graft
- CAD, coronary artery disease
- HDL-C, high-density lipoprotein cholesterol
- IL, interleukin
- LDL-C, low-density lipoprotein cholesterol
- Lp-PLA2, lipoprotein-associated phospholipase A2
- MAPK, mitogen-activated protein kinase
- MI, myocardial infarction
- NSTEMI, non–ST-segment myocardial infarction
- PCI, percutaneous coronary intervention
- PSGL, P-selectin glycoprotein ligand
- STEMI, ST-segment elevation myocardial infarction
- SVG, saphenous vein grafts
- TBR, tissue-to-background ratio
- acute coronary syndrome
- anti-inflammatory
- drug targets
- hsCRP, high-sensitivity C-reactive protein
- sPLA2, secretory phospholipase A2
Collapse
|
24
|
Lee JK, Kim NJ. Recent Advances in the Inhibition of p38 MAPK as a Potential Strategy for the Treatment of Alzheimer's Disease. Molecules 2017; 22:molecules22081287. [PMID: 28767069 PMCID: PMC6152076 DOI: 10.3390/molecules22081287] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
P38 mitogen-activated protein kinase (MAPK) is a crucial target for chronic inflammatory diseases. Alzheimer’s disease (AD) is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain, as well as neurodegeneration, and there is no known cure. Recent studies on the underlying biology of AD in cellular and animal models have indicated that p38 MAPK is capable of orchestrating diverse events related to AD, such as tau phosphorylation, neurotoxicity, neuroinflammation and synaptic dysfunction. Thus, the inhibition of p38 MAPK is considered a promising strategy for the treatment of AD. In this review, we summarize recent advances in the targeting of p38 MAPK as a potential strategy for the treatment of AD and envision possibilities of p38 MAPK inhibitors as a fundamental therapeutics for AD.
Collapse
Affiliation(s)
- Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
25
|
Kuzmanic A, Sutto L, Saladino G, Nebreda AR, Gervasio FL, Orozco M. Changes in the free-energy landscape of p38α MAP kinase through its canonical activation and binding events as studied by enhanced molecular dynamics simulations. eLife 2017; 6. [PMID: 28445123 PMCID: PMC5406204 DOI: 10.7554/elife.22175] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/06/2017] [Indexed: 01/03/2023] Open
Abstract
p38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity. Our study describes for the first time the molecular effects of different regulators of the enzymatic activity, and provides an integrative picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data. DOI:http://dx.doi.org/10.7554/eLife.22175.001
Collapse
Affiliation(s)
- Antonija Kuzmanic
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ludovico Sutto
- Department of Chemistry, University College London, London, United Kingdom
| | - Giorgio Saladino
- Department of Chemistry, University College London, London, United Kingdom
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain.,Department of Biochemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Kulawik A, Engesser R, Ehlting C, Raue A, Albrecht U, Hahn B, Lehmann WD, Gaestel M, Klingmüller U, Häussinger D, Timmer J, Bode JG. IL-1β-induced and p38 MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification. J Biol Chem 2017; 292:6291-6302. [PMID: 28223354 DOI: 10.1074/jbc.m117.775023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 12/15/2022] Open
Abstract
The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1-1.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation.
Collapse
Affiliation(s)
- Andreas Kulawik
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Raphael Engesser
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany.,the BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Christian Ehlting
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Andreas Raue
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Ute Albrecht
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | | | - Matthias Gaestel
- the Institute of Physiological Chemistry, Hannover Medical School, 30625 Hannover, Germany, and
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dieter Häussinger
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jens Timmer
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany.,the BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Johannes G Bode
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany,
| |
Collapse
|
27
|
Lin KH, Shibu MA, Kuo YH, Chen YC, Hsu HH, Bau DT, Chen MC, Tu CC, Viswanadha VP, Huang CY. Taiwanin C selectively inhibits arecoline and 4-NQO-induced oral cancer cell proliferation via ERK1/2 inactivation. ENVIRONMENTAL TOXICOLOGY 2017; 32:62-69. [PMID: 26537528 DOI: 10.1002/tox.22212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Arecoline, the most abundant alkaloid in betel nut is known to promote abnormal proliferation of epithelial cells by enhancing epidermal growth factor receptor (EGFR) activation and cyclooxygenase-2 (COX2) expression. Taiwanin C, a naturally occurring lignan extracted from Taiwania cryptomerioides, has been found to be a potential inhibitor of COX2 expression. Based on the MTT assay results, taiwanin C was found to be effective in inhibiting the tumorous T28 cell than the non-tumorous N28 cells. The modulations in the expression of relevant proteins were determined to understand the mechanism induced by taiwanin C to inhibit T28 cell proliferation. The levels of activated EGFR and COX2 were found to be abnormally high in the T28 oral cancer cells. However, taiwanin C was found to inhibit the activation of EGFR and regulated other related downstream proteins and thereby inhibited the T28 cell proliferation. In conclusion the results indicate that taiwanin C suppresses COX2-EGFR and enhances P27 pathways to suppress arecoline induced oral cancer cell proliferation via ERK1/2 inactivation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 62-69, 2017.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Emergency Department, China Medical University Hospital, Taichung, Taiwan
| | | | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yueh-Chiu Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
28
|
Kompa AR. Do p38 mitogen-activated protein kinase inhibitors have a future for the treatment of cardiovascular disease? J Thorac Dis 2016; 8:E1068-E1071. [PMID: 27747066 DOI: 10.21037/jtd.2016.07.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew R Kompa
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Identification of "Multiple Components-Multiple Targets-Multiple Pathways" Associated with Naoxintong Capsule in the Treatment of Heart Diseases Using UPLC/Q-TOF-MS and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9468087. [PMID: 27123036 PMCID: PMC4830706 DOI: 10.1155/2016/9468087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/02/2016] [Indexed: 11/29/2022]
Abstract
Naoxintong capsule (NXT) is a commercial medicinal product approved by the China Food and Drug Administration which is used in the treatment of stroke and coronary heart disease. However, the research on the composition and mechanism of NXT is still lacking. Our research aimed to identify the absorbable components, potential targets, and associated pathways of NXT with network pharmacology method. We explored the chemical compositions of NXT based on UPLC/Q-TOF-MS. Then, we used the five principles of drug absorption to identify absorbable ingredients. The databases of PharmMapper, Universal Protein, and the Molecule Annotation System were used to predict the main targets and related pathways. By the five principles of drug absorption as a judgment rule, we identified 63 compositions that could be absorbed in the blood in all 81 chemical compositions. Based on the constructed networks by the significant regulated 123 targets and 77 pathways, the main components that mediated the efficacy of NXT were organic acids, saponins, and tanshinones. Radix Astragali was the critical herbal medicine in NXT, which contained more active components than other herbs and regulated more targets and pathways. Our results showed that NXT had a therapeutic effect on heart diseases through the pattern “multiple components-multiple targets-multiple pathways.”
Collapse
|
30
|
Bourke L, McCormick J, Taylor V, Pericleous C, Blanchet B, Costedoat-Chalumeau N, Stuckey D, Lythgoe MF, Stephanou A, Ioannou Y. Hydroxychloroquine Protects against Cardiac Ischaemia/Reperfusion Injury In Vivo via Enhancement of ERK1/2 Phosphorylation. PLoS One 2015; 10:e0143771. [PMID: 26636577 PMCID: PMC4670100 DOI: 10.1371/journal.pone.0143771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/09/2015] [Indexed: 01/16/2023] Open
Abstract
An increasing number of investigations including human studies demonstrate that pharmacological ischaemic preconditioning is a viable way to protect the heart from myocardial ischaemia/reperfusion (I/R) injury. This study investigated the role of hydroxychloroquine (HCQ) in the heart during I/R injury. In vitro and in vivo models of myocardial I/R injury were used to assess the effects of HCQ. It was found that HCQ was protective in neonatal rat cardiomyocytes through inhibition of apoptosis, measured by TUNEL and cleaved caspase-3. This protection in vitro was mediated through enhancement of ERK1/2 phosphorylation mediated by HCQ in a dose-dependent fashion. A decrease in infarct size was observed in an in vivo model of myocardial I/R injury in HCQ treated animals and furthermore this protection was blocked in the presence of the ERK1/2 inhibitor U0126. For the first time, we have shown that HCQ promotes a preconditioning like protection in an in vivo simulated rat myocardial I/R injury model. Moreover, it was shown that HCQ is protective via enhanced phosphorylation of the pro-survival kinase ERK1/2.
Collapse
Affiliation(s)
- Lauren Bourke
- Centre for Rheumatology, Division of Medicine University College London, Rayne Institute, London, United Kingdom
- Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, United Kingdom
| | - James McCormick
- Biochemistry Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health & Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Valerie Taylor
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Charis Pericleous
- Centre for Rheumatology, Division of Medicine University College London, Rayne Institute, London, United Kingdom
| | - Benoit Blanchet
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Unité Fonctionnelle de Pharmacocinétique et Pharmacochimie, Paris, France
| | - Nathalie Costedoat-Chalumeau
- Université René Descartes; Centre de référence maladies auto-immunes et systémiques rares, Service de Médecine Interne, Pôle médecine, Hôpital Cochin, AP-HP, Paris, France
| | - Daniel Stuckey
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Mark F. Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Anastasis Stephanou
- Medical and Molecular Biology Unit, University College London, London, United Kingdom
| | - Yiannis Ioannou
- Centre for Rheumatology, Division of Medicine University College London, Rayne Institute, London, United Kingdom
- Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Therapeutic Role of Innovative Anti-Inflammatory Medications in the Prevention of Acute Coronary Syndrome. Cardiol Rev 2015; 23:252-60. [DOI: 10.1097/crd.0000000000000062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Wu Z, Yu Y, Liu C, Xiong Y, Montani JP, Yang Z, Ming XF. Role of p38 mitogen-activated protein kinase in vascular endothelial aging: interaction with Arginase-II and S6K1 signaling pathway. Aging (Albany NY) 2015; 7:70-81. [PMID: 25635535 PMCID: PMC4350325 DOI: 10.18632/aging.100722] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
p38 mitogen-activated protein kinase (p38) regulates cellular senescence and senescence-associated secretory phenotype (SASP), i.e., secretion of cytokines and/or chemokines. Previous work showed that augmented arginase-II (Arg-II) and S6K1 interact with each other to promote endothelial senescence through uncoupling of endothelial nitric oxide synthase (eNOS). Here we demonstrate eNOS-uncoupling, augmented expression/secretion of IL-6 and IL-8, elevation of p38 activation and Arg-II levels in senescent endothelial cells. Silencing Arg-II or p38α in senescent cells recouples eNOS and inhibits IL-6 and IL-8 secretion. Overexpression of Arg-II in young endothelial cells causes eNOS-uncoupling and enhances IL-6 and IL-8 expression/secretion, which is prevented by p38 inhibition or by antioxidant. Moreover, p38 activation and expression of IL-6 and KC (the murine IL-8 homologue) are increased in the heart and/or aortas of wild type (WT) old mice, which is abolished in mice with Arg-II gene deficiency (Arg-II−/−). In addition, inhibition of p38 in the old WT mice recouples eNOS function and reduces IL-6 and KC expression in the aortas and heart. Silencing Arg-II or p38α or S6K1 inhibits each other in senescence endothelial cells. Thus, Arg-II, p38, and S6K1 form a positive circuit which regulates endothelial senescence and cardiovascular aging.
Collapse
Affiliation(s)
- Zongsong Wu
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yi Yu
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Chang Liu
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yuyan Xiong
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Jean-Pierre Montani
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Zhihong Yang
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Xiu-Fen Ming
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
33
|
Marks-Konczalik J, Costa M, Robertson J, McKie E, Yang S, Pascoe S. A post-hoc subgroup analysis of data from a six month clinical trial comparing the efficacy and safety of losmapimod in moderate-severe COPD patients with ≤2% and >2% blood eosinophils. Respir Med 2015; 109:860-9. [PMID: 26033641 DOI: 10.1016/j.rmed.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/29/2015] [Accepted: 05/03/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND A six month study of the p38 MAPK inhibitor, losmapimod, suggested a trend in reducing COPD exacerbations with the 15 mg twice daily dose. OBJECTIVE AND METHODS Using data from this study which evaluated the efficacy of twice daily losmapimod, 2.5 mg, 7.5 mg, and 15 mg, versus placebo in patients with moderate-to-severe COPD, we analysed the effect of losmapimod in reducing the rate of moderate/severe exacerbations in patient subgroups with ≤2% and >2% blood eosinophils at baseline. Lung function, fibrinogen and hsCRP were also evaluated. RESULTS In the ≤2% eosinophil subgroup, there was an exposure-related reduction in the rate of moderate/severe exacerbations with losmapimod relative to placebo (losmapimod 15 mg: 55% reduction; losmapimod 7.5 mg: 29%; losmapimod 2.5 mg: 10%); with the 15 mg dose reaching statistical significance (15 mg/placebo mean rate ratio [95% CI]: 0.45 [0.22; 0.90]). There was also an improvement in lung function with 15 mg losmapimod over Weeks 1-12. No improvement in the rate of moderate/severe exacerbations or post-bronchodilator FEV1 was observed for subjects treated with Losmapimod compared to placebo in the patient subgroup with blood eosinophils >2% at baseline. Transient reductions in fibrinogen and hsCRP were observed with losmapimod 7.5 mg and 15 mg in both eosinophil subgroups. CONCLUSIONS These findings indicate eosinophil-related heterogeneity within COPD and suggest that losmapimod could be a potential therapy to reduce exacerbations in COPD patients with eosinophil levels ≤2%. This needs to be explored further in a prospectively designed study with pre-specified criteria for blood eosinophil subgroups in COPD patients.
Collapse
|
34
|
Arabacilar P, Marber M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Front Pharmacol 2015; 6:102. [PMID: 26029107 PMCID: PMC4428223 DOI: 10.3389/fphar.2015.00102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022] Open
Abstract
This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs) maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs.
Collapse
Affiliation(s)
- Pelin Arabacilar
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital London, UK
| | - Michael Marber
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital London, UK
| |
Collapse
|
35
|
Rationale and design of the LosmApimod To Inhibit p38 MAP kinase as a TherapeUtic target and moDify outcomes after an acute coronary syndromE trial. Am Heart J 2015; 169:622-630.e6. [PMID: 25965709 DOI: 10.1016/j.ahj.2015.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/14/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND p38 mitogen-activated protein kinase (MAPK) mediates cytokine production and amplification of the inflammatory cascade. Through inhibition of p38 MAPK, losmapimod appears to attenuate the inflammatory response in the vascular wall and thus may help stabilize plaques. STUDY DESIGN The LATITUDE-TIMI 60 trial is a randomized, double-blind, placebo-controlled, parallel-group, multicenter study planned to be conducted in a 3-stage design. Overall, the trial is designed to include 25,500 patients hospitalized with non-ST-elevation or ST-elevation myocardial infarction (MI) randomized to oral losmapimod (7.5 mg twice daily) versus matching placebo. Part A consists of a leading cohort (n = 3,500) that will provide an initial assessment of safety and exploratory efficacy before progressing to part B. Part B (n = ~22,000) of the study is event driven and will provide the primary assessment of efficacy. An independent safety review will be conducted after 3,500 patients in part B1 to determine whether a more focused schedule of clinic visits and laboratory assessments can be implemented (part B2). All patients are to be treated with study drug until week 12 and followed up until week 24. The primary end point is the composite of cardiovascular death, MI, or severe recurrent ischemia requiring urgent coronary revascularization. The key secondary end point is the composite of cardiovascular death or MI. The trial is designed to provide ≥90% power for the primary end point. CONCLUSIONS The LATITUDE-TIMI 60 trial will determine the efficacy and safety of short-term p38 MAPK inhibition with losmapimod in acute MI. The trial design adopts a stepwise approach to decision making and collection of data.
Collapse
|
36
|
Abstract
Reperfusion is mandatory to salvage ischemic myocardium from infarction, but reperfusion per se contributes to injury and ultimate infarct size. Therefore, cardioprotection beyond that by timely reperfusion is needed to reduce infarct size and improve the prognosis of patients with acute myocardial infarction. The conditioning phenomena provide such cardioprotection, insofar as brief episodes of coronary occlusion/reperfusion preceding (ischemic preconditioning) or following (ischemic postconditioning) sustained myocardial ischemia with reperfusion reduce infarct size. Even ischemia/reperfusion in organs remote from the heart provides cardioprotection (remote ischemic conditioning). The present review characterizes the signal transduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria. Cardioprotective signal transduction appears as a highly concerted spatiotemporal program. Although the translation of ischemic postconditioning and remote ischemic conditioning protocols to patients with acute myocardial infarction has been fairly successful, the pharmacological recruitment of cardioprotective signaling has been largely disappointing to date.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
37
|
Martin ED, Bassi R, Marber MS. p38 MAPK in cardioprotection - are we there yet? Br J Pharmacol 2015; 172:2101-13. [PMID: 25204838 PMCID: PMC4386984 DOI: 10.1111/bph.12901] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 12/14/2022] Open
Abstract
PKs transfer a phosphate from ATP to the side-chain hydroxyl group of a serine, threonine or tyrosine residue of a substrate protein. This in turn can alter that protein's function; modulating fundamental cellular processes including, metabolism, transcription, growth, division, differentiation, motility and survival. PKs are subdivided into families based on homology. One such group are the stress-activated kinases, which as the name suggests, are activated in response to cellular stresses such as toxins, cytokines, mechanical deformation and osmotic stress. Members include the p38 MAPK family, which is composed of α, β, γ and δ, isoforms which are encoded by separate genes. These kinases transduce extracellular signals and coordinate the cellular responses needed for adaptation and survival. However, in cardiovascular and other disease states, these same systems can trigger maladaptive responses that aggravate, rather than alleviate, the disease. This situation is analogous to adrenergic, angiotensin and aldosterone signalling in heart failure, where inhibition is beneficial despite the importance of these hormones to homeostasis. The question is whether similar benefits could accrue from p38 inhibition? In this review, we will discuss the structure and function of p38, the history of p38 inhibitors and their use in preclinical studies. Finally, we will summarize the results of recent cardiovascular clinical trials with p38 inhibitors.
Collapse
Affiliation(s)
- E D Martin
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| | - R Bassi
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| | - M S Marber
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| |
Collapse
|
38
|
Forini F, Nicolini G, Iervasi G. Mitochondria as key targets of cardioprotection in cardiac ischemic disease: role of thyroid hormone triiodothyronine. Int J Mol Sci 2015; 16:6312-36. [PMID: 25809607 PMCID: PMC4394534 DOI: 10.3390/ijms16036312] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/30/2022] Open
Abstract
Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48–72 h after the insult), the subacute phase (from 72 h to 7–10 days) and chronic stage (from 10–14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).
Collapse
Affiliation(s)
- Francesca Forini
- CNR Institute of Clinical Physiology, Via G. Moruzzi 1, Pisa 56124, Italy.
| | - Giuseppina Nicolini
- CNR Institute of Clinical Physiology, Via G. Moruzzi 1, Pisa 56124, Italy.
- Tuscany Region G. Monasterio Foundation, Via G. Moruzzi 1, Pisa 56124, Italy.
| | - Giorgio Iervasi
- CNR Institute of Clinical Physiology, Via G. Moruzzi 1, Pisa 56124, Italy.
| |
Collapse
|
39
|
Watanabe T, Sekine S, Naguro I, Sekine Y, Ichijo H. Apoptosis Signal-regulating Kinase 1 (ASK1)-p38 Pathway-dependent Cytoplasmic Translocation of the Orphan Nuclear Receptor NR4A2 Is Required for Oxidative Stress-induced Necrosis. J Biol Chem 2015; 290:10791-803. [PMID: 25752609 DOI: 10.1074/jbc.m114.623280] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 11/06/2022] Open
Abstract
p38 mitogen-activated protein kinases (MAPKs) play important roles in various cellular stress responses, including cell death, which is roughly categorized into apoptosis and necrosis. Although p38 signaling has been extensively studied, the molecular mechanisms of p38-mediated cell death are unclear. ASK1 is a stress-responsive MAP3K that acts as an upstream kinase of p38 and is activated by various stresses, such as oxidative stress. Here, we show that NR4A2, a member of the NR4A nuclear receptor family, acts as a necrosis promoter downstream of ASK1-p38 pathway during oxidative stress. Although NR4A2 is well known as a nucleus-localized transcription factor, we found that it is translocated into the cytosol after phosphorylation by p38. Because the phosphorylation site mutants of NR4A2 cannot rescue the cell death-promoting activity, ASK1-p38 pathway-dependent phosphorylation and subsequent cytoplasmic translocation of NR4A2 may be required for oxidative stress-induced cell death. In addition, NR4A2-mediated cell death does not depend on caspases and receptor-interacting protein 1 (RIP1)-RIP3 complex, suggesting that NR4A2 promotes an RIP kinase-independent necrotic type of cell death. Our findings may enable a more precise understanding of molecular mechanisms that regulate oxidative stress-induced and p38-mediated necrosis.
Collapse
Affiliation(s)
- Takeshi Watanabe
- From the Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, the Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, 1-5-45 Bunkyo-ku, Tokyo 113-8510, Japan, and
| | - Shiori Sekine
- From the Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- From the Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Sekine
- From the Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Hidenori Ichijo
- From the Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan,
| |
Collapse
|
40
|
Affiliation(s)
- Andrew R Kompa
- Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia.
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| |
Collapse
|
41
|
Newby LK, Marber MS, Melloni C, Sarov-Blat L, Aberle LH, Aylward PE, Cai G, de Winter RJ, Hamm CW, Heitner JF, Kim R, Lerman A, Patel MR, Tanguay JF, Lepore JJ, Al-Khalidi HR, Sprecher DL, Granger CB. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet 2014; 384:1187-95. [PMID: 24930728 DOI: 10.1016/s0140-6736(14)60417-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND p38 MAPK inhibition has potential myocardial protective effects. We assessed losmapimod, a potent oral p38 MAPK inhibitor, in patients with non-ST-segment elevation myocardial infarction (NSTEMI) in a double-blind, randomised, placebo-controlled trial. METHODS From October, 2009, to November, 2011, NSTEMI patients were assigned oral losmapimod (7·5 mg or 15·0 mg loading dose followed by 7·5 mg twice daily) or matching placebo in a 3:3:2 ratio. Safety outcomes were serious adverse events and alanine aminotransferase (ALT) concentrations over 12 weeks, and cardiac events (death, myocardial infarction, recurrent ischaemia, stroke, and heart failure) at 90 days. Efficacy outcomes were high-sensitivity C-reactive protein (hsCRP) and B-type natriuretic peptide (BNP) concentrations at 72 h and 12 weeks, and troponin I area under the curve (AUC) over 72 h. The losmapimod groups were pooled for analysis. This trial is registered with ClinicalTrials.gov, number NCT00910962. FINDINGS Of 535 patients enrolled, 526 (98%) received at least one dose of study treatment (losmapimod n=388 and placebo n=138). Safety outcomes did not differ between groups. HsCRP concentrations at 72 h were lower in the losmapimod group than in the placebo group (geometric mean 64·1 nmol/L, 95% CI 53·0-77·6 vs 110·8 nmol/L, 83·1-147·7; p=0·0009) but were similar at 12 weeks. Early geometric mean BNP concentrations were similar at 72 h but significantly lower in the losmapimod group at 12 weeks (37·2 ng/L, 95% CI 32·3-42·9 vs 49·4 ng/L, 38·7-63·0; p=0·04). Mean troponin I AUC values did not differ. INTERPRETATION p38 MAPK inhibition with oral losmapimod was well tolerated in NSTEMI patients and might improve outcomes after acute coronary syndromes. FUNDING GlaxoSmithKline.
Collapse
Affiliation(s)
- L Kristin Newby
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
| | - Michael S Marber
- King's College London BHF Centre, Cardiovascular Division, Rayne Institute, St Thomas' Hospital, London, UK
| | - Chiara Melloni
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Lea Sarov-Blat
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, Philadelphia, PA, USA
| | - Laura H Aberle
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Philip E Aylward
- South Australian Health and Medical Research Institute, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Gengqian Cai
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, Philadelphia, PA, USA
| | - Robbert J de Winter
- Department of Cardiology, Academic Medical Center-University of Amsterdam, Amsterdam, Netherlands
| | | | - John F Heitner
- Division of Cardiology, New York Methodist Hospital, Brooklyn, NY, USA
| | - Raymond Kim
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Manesh R Patel
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - John J Lepore
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, Philadelphia, PA, USA
| | - Hussein R Al-Khalidi
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dennis L Sprecher
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, Philadelphia, PA, USA
| | - Christopher B Granger
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
42
|
Urocortin-2 suppression of p38-MAPK signaling as an additional mechanism for ischemic cardioprotection. Mol Cell Biochem 2014; 398:135-46. [DOI: 10.1007/s11010-014-2213-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022]
|
43
|
Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci 2014; 34:9621-43. [PMID: 25031403 DOI: 10.1523/jneurosci.3991-13.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less clear. We found that A1Rs and GluA2-containing AMPA receptors (AMPARs) form stable protein complexes from hippocampal brain homogenates and cultured hippocampal neurons from Sprague Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not coprecipitate or colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the agonist N(6)-cyclopentyladenosine (CPA) caused adenosine-induced persistent synaptic depression (APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated endocytosis of GluA2 subunits with the Tat-GluA2-3Y peptide. Using biotinylation and membrane fractionation assays, prolonged CPA incubation showed significant depletion of GluA2/GluA1 surface expression from hippocampal brain slices and cultured neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that functional A1Rs, but not A2ARs, are required for clathrin-mediated AMPAR endocytosis in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 subunits. Tat-GluA2-3Y peptide or A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine also prevented hypoxia-mediated GluA2/GluA1 internalization. Finally, in a pial vessel disruption cortical stroke model, a unilateral cortical lesion compared with sham surgery reduced hippocampal GluA2, GluA1, and A1R surface expression and also caused synaptic depression in hippocampal slices that was consistent with AMPAR downregulation and decreased probability of transmitter release. Together, these results indicate a previously unknown mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated GluA2 and GluA1 internalization that leads to hippocampal neurodegeneration after hypoxia/cerebral ischemia.
Collapse
|
44
|
Effects of antidepressants on IP-10 production in LPS-activated THP-1 human monocytes. Int J Mol Sci 2014; 15:13223-35. [PMID: 25073092 PMCID: PMC4159790 DOI: 10.3390/ijms150813223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/12/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022] Open
Abstract
Major depressive disorder and cardiovascular disease are common serious illnesses worldwide. Selective serotonin reuptake inhibitors and norepinephrine-dopamine reuptake inhibitors may reduce the mortality of cardiovascular disease patients with comorbid depression. Interferon-γ-inducible protein 10 (IP-10), a type 1 T helper cell (Th1)-related chemokine, contributes to manifestations of atherosclerosis during cardiovascular inflammations; however, the pathophysiological mechanisms linking cardiovascular disease and effective antidepressants have remained elusive. We investigated the in vitro effects of six different classes of antidepressants on the IP-10 chemokine expression in lipopolysaccharide (LPS)-stimulated monocytes, and their detailed intracellular mechanisms. The human monocytes were pretreated with antidepressants (10−8–10−5 M) before LPS-stimulation. IP-10 was measured by enzyme-linked immunosorbent assay (ELISA) and then intracellular signaling was investigated using Western blotting and chromatin immunoprecipitation. Fluoxetine and bupropion suppressed LPS-induced IP-10 expression in monocytes, and they had no cytotoxic effects. Furthermore, fluoxetine inhibited LPS-induced IP-10 expression via the mitogen-activated protein kinase (MAPK)-p38 pathway. Fluoxetine and bupropion could not only treat depression but also reduce Th1-related chemokine IP-10 production in human monocytes. Our results may indicate a possible mechanism related to how particular antidepressants reduce the risk of cardiovascular disease.
Collapse
|
45
|
Yu Y, Rajapakse AG, Montani JP, Yang Z, Ming XF. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-uncoupling in obesity. Cardiovasc Diabetol 2014; 13:113. [PMID: 25034973 PMCID: PMC4422321 DOI: 10.1186/s12933-014-0113-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/08/2014] [Indexed: 01/13/2023] Open
Abstract
Background Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Methods Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II-/-) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. Results HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II-/- obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which was associated with reduced p38mapk activation in aortas of the Arg-II-/- obese mice. Moreover, overexpression of Arg-II in human endothelial cells caused eNOS-uncoupling and augmented p38mapk activation. The Arg-II-induced eNOS-uncoupling was prevented by silencing p38mapk. Furthermore, pharmacological inhibition of p38mapk recouples eNOS in isolated aortas from WT obese mice. Conclusions Taking together, we demonstrate here for the first time that Arg-II causes eNOS-uncoupling through activation of p38 mapk in HFD-induced obesity.
Collapse
Affiliation(s)
- Yi Yu
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland.
| | - Angana G Rajapakse
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland.
| | - Jean-Pierre Montani
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland.
| | - Zhihong Yang
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland.
| | - Xiu-Fen Ming
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
46
|
Vagnozzi RJ, Gatto GJ, Kallander LS, Hoffman NE, Mallilankaraman K, Ballard VLT, Lawhorn BG, Stoy P, Philp J, Graves AP, Naito Y, Lepore JJ, Gao E, Madesh M, Force T. Inhibition of the cardiomyocyte-specific kinase TNNI3K limits oxidative stress, injury, and adverse remodeling in the ischemic heart. Sci Transl Med 2014; 5:207ra141. [PMID: 24132636 DOI: 10.1126/scitranslmed.3006479] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Percutaneous coronary intervention is first-line therapy for acute coronary syndromes (ACS) but can promote cardiomyocyte death and cardiac dysfunction via reperfusion injury, a phenomenon driven in large part by oxidative stress. Therapies to limit this progression have proven elusive, with no major classes of new agents since the development of anti-platelets/anti-thrombotics. We report that cardiac troponin I-interacting kinase (TNNI3K), a cardiomyocyte-specific kinase, promotes ischemia/reperfusion injury, oxidative stress, and myocyte death. TNNI3K-mediated injury occurs through increased mitochondrial superoxide production and impaired mitochondrial function and is largely dependent on p38 mitogen-activated protein kinase (MAPK) activation. We developed a series of small-molecule TNNI3K inhibitors that reduce mitochondrial-derived superoxide generation, p38 activation, and infarct size when delivered at reperfusion to mimic clinical intervention. TNNI3K inhibition also preserves cardiac function and limits chronic adverse remodeling. Our findings demonstrate that TNNI3K modulates reperfusion injury in the ischemic heart and is a tractable therapeutic target for ACS. Pharmacologic TNNI3K inhibition would be cardiac-selective, preventing potential adverse effects of systemic kinase inhibition.
Collapse
Affiliation(s)
- Ronald J Vagnozzi
- Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen D, Goswami CP, Burnett RM, Anjanappa M, Bhat-Nakshatri P, Muller W, Nakshatri H. Cancer affects microRNA expression, release, and function in cardiac and skeletal muscle. Cancer Res 2014; 74:4270-81. [PMID: 24980554 DOI: 10.1158/0008-5472.can-13-2817] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circulating microRNAs (miRNA) are emerging as important biomarkers of various diseases, including cancer. Intriguingly, circulating levels of several miRNAs are lower in patients with cancer compared with healthy individuals. In this study, we tested the hypothesis that a circulating miRNA might serve as a surrogate of the effects of cancer on miRNA expression or release in distant organs. Here we report that circulating levels of the muscle-enriched miR486 is lower in patients with breast cancer compared with healthy individuals and that this difference is replicated faithfully in MMTV-PyMT and MMTV-Her2 transgenic mouse models of breast cancer. In tumor-bearing mice, levels of miR486 were relatively reduced in muscle, where there was elevated expression of the miR486 target genes PTEN and FOXO1A and dampened signaling through the PI3K/AKT pathway. Skeletal muscle expressed lower levels of the transcription factor MyoD, which controls miR486 expression. Conditioned media (CM) obtained from MMTV-PyMT and MMTV-Her2/Neu tumor cells cultured in vitro were sufficient to elicit reduced levels of miR486 and increased PTEN and FOXO1A expression in C2C12 murine myoblasts. Cytokine analysis implicated tumor necrosis factor α (TNFα) and four additional cytokines as mediators of miR486 expression in CM-treated cells. Because miR486 is a potent modulator of PI3K/AKT signaling and the muscle-enriched transcription factor network in cardiac/skeletal muscle, our findings implicated TNFα-dependent miRNA circuitry in muscle differentiation and survival pathways in cancer.
Collapse
Affiliation(s)
- Daohong Chen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chirayu P Goswami
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Riesa M Burnett
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - William Muller
- Molecular Oncology Group, McGill University, Montreal, Canada
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
48
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
49
|
Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease. Am J Cardiovasc Drugs 2014; 14:155-65. [PMID: 24504769 DOI: 10.1007/s40256-014-0063-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
p38 mitogen-activated protein kinases (p38 MAPKs) are key signalling molecules that regulate cellular behavior in response to environmental stresses. They regulate pro-inflammatory cytokines and therefore p38 MAPKs are implicated in the pathogenesis of many inflammatory-driven conditions, including atherosclerosis. Therapeutic inhibition of p38 MAPKs to attenuate inflammation has been the focus of comprehensive research in the last 2 decades, following the discovery of p38α as the molecular target of pyrindinyl imidazole compounds, which suppress the cytokines tumor necrosis factor-α and interleukin-1. The potential of p38 MAPK inhibitors was initially explored within archetypal inflammatory conditions such as rheumatoid arthritis and Crohn's disease, but early studies demonstrated poor clinical efficacy and unacceptable side effects. Subsequent clinical trials evaluating different p38 MAPK inhibitor compounds in disease models such as chronic obstructive pulmonary disease (COPD) and atherosclerosis have shown potential clinical efficacy. This review aims to provide succinct background information regarding the p38 MAPK signaling pathway, a focus of p38 MAPKs in disease, and a brief summary of relevant pre-clinical studies. An update of human clinical trial experience encompassing a clinically orientated approach, dedicated to cardiovascular disease follows. It provides a current perspective of the therapeutic potential of p38 MAPK inhibitors in the cardiovascular domain, including safety, tolerability, and pharmacokinetics.
Collapse
|
50
|
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality among the diabetic population. Both experimental and clinical evidence suggest that diabetic subjects are predisposed to a distinct cardiomyopathy, independent of concomitant macro- and microvascular disorders. 'Diabetic cardiomyopathy' is characterized by early impairments in diastolic function, accompanied by the development of cardiomyocyte hypertrophy, myocardial fibrosis and cardiomyocyte apoptosis. The pathophysiology underlying diabetes-induced cardiac damage is complex and multifactorial, with elevated oxidative stress as a key contributor. We now review the current evidence of molecular disturbances present in the diabetic heart, and their role in the development of diabetes-induced impairments in myocardial function and structure. Our focus incorporates both the contribution of increased reactive oxygen species production and reduced antioxidant defenses to diabetic cardiomyopathy, together with modulation of protein signaling pathways and the emerging role of protein O-GlcNAcylation and miRNA dysregulation in the progression of diabetic heart disease. Lastly, we discuss both conventional and novel therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients, from inhibition of the renin-angiotensin-aldosterone-system, through recent evidence favoring supplementation of endogenous antioxidants for the treatment of diabetic cardiomyopathy. Novel therapeutic strategies, such as gene therapy targeting the phosphoinositide 3-kinase PI3K(p110α) signaling pathway, and miRNA dysregulation, are also reviewed. Targeting redox stress and protective protein signaling pathways may represent a future strategy for combating the ever-increasing incidence of heart failure in the diabetic population.
Collapse
Affiliation(s)
- Karina Huynh
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | - Julie R McMullen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|