1
|
Johnson K, Bray JF, Heaps CL. Sexually dimorphic mechanisms of H 2O 2-mediated dilation in porcine coronary arterioles with ischemia and endurance exercise training. J Appl Physiol (1985) 2025; 138:950-963. [PMID: 40059640 DOI: 10.1152/japplphysiol.00761.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
We determined the impact of sex on H2O2-mediated dilation in coronary arterioles and the contribution of K+ channels after exercise training in ischemic heart disease. We hypothesized that arterioles from male and female swine would similarly display impaired H2O2-induced dilation after chronic occlusion that would be corrected by exercise training. Yucatan miniswine were surgically instrumented with an ameroid constrictor around the proximal left circumflex artery, gradually inducing occlusion and a collateral-dependent myocardium. Arterioles from the left anterior descending artery myocardial region served as nonoccluded controls. Eight weeks postoperatively, swine of each sex were separated into sedentary and exercise-trained (progressive treadmill regimen; 5 days/wk for 14 wk) groups. Collateral-dependent arterioles of sedentary female pigs displayed impaired sensitivity to H2O2 that was reversed with exercise training. In contrast, male pigs exhibited enhanced sensitivity to H2O2 in collateral-dependent versus nonoccluded arterioles in both sedentary and exercise-trained groups. Large-conductance, calcium-dependent K+ (BKCa) and 4-aminopyridine (AP)-sensitive voltage-gated K+ (Kv) channels contributed to H2O2-mediated dilation in nonoccluded and collateral-dependent arterioles of exercise-trained females, but not in arterioles of sedentary female or sedentary or exercise-trained male swine. BKCa channel, protein kinase A (PKA), and protein kinase G (PKG) protein levels were not significantly different between groups, nor were kinase enzymatic activities. Taken together, our studies suggest that in female swine, exercise training stimulates the coupling of H2O2 signaling with BKCa and 4-AP-sensitive Kv channels, compensating for impaired dilation in collateral-dependent arterioles. Interestingly, coronary arterioles from neither sedentary female or male swine, regardless of training status, depended upon BKCa or 4-AP-sensitive Kv channels for H2O2-mediated dilation.NEW & NOTEWORTHY The current studies reveal sexually dimorphic adaptations to H2O2-mediated dilation, and unique contributions of K+ channels, in coronary arterioles from swine subjected to chronic ischemia and exercise training; findings important for development of therapeutic strategies. In female swine, chronic ischemia attenuates dilation, which is reversed by exercise training via BKCa and Kv channel stimulation. In male swine, ischemia enhances dilation to H2O2, which is further augmented by exercise training and independent of BKCa and Kv channels.
Collapse
Affiliation(s)
- Kalen Johnson
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Jeff F Bray
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
2
|
Liu T, Zhang M, Li Q, Schroeder H, Power GG, Blood AB. Nitrite reverses nitroglycerin tolerance via repletion of a nitrodilator-activated nitric oxide store in vascular smooth muscle cells. Redox Biol 2025; 80:103513. [PMID: 39879735 PMCID: PMC11815961 DOI: 10.1016/j.redox.2025.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Repeated use of nitroglycerin results in a loss of its vasodilatory efficacy which limits its clinical use for the treatment of angina pectoris. This tolerance phenomenon is a defining characteristic of all compounds classified as nitrodilators, which includes NTG as well as S-nitrosothiols and dinitrosyl iron complexes. These compounds vasodilate via activation of soluble guanylate cyclase, although they do not release requisite amounts of free nitric oxide (NO) and some do not even cross the plasma membrane. Here we demonstrate that nitrodilators cause vasodilation via mobilization of NO moiety from a nitrodilator-activated NO store (NANOS) pre-formed in the vascular smooth muscle cell, similar to the mechanism by which UV light is also known to cause vasodilation and tolerance. Intraperitoneal nitrite prevented NTG tolerance in coronary arteries of rats that received NTG transdermal patches for 4 days, and potentiated NTG- and GSNO- mediated mesenteric vasodilation in intact rats. Consistent with the incorporation of nitrite into the depletable NANOS, incubation of arteries with 15N-nitrite resulted in the accumulation of high molecular weight 15N-NO-containing compounds in arteries, and subsequent exposure to NTG, GSNO, or UV light resulted in efflux of 15N-NO species. In addition, H2O2 and metal/metalloproteins synergistically facilitated NO release from nitrite, while the oxidative stress associated with inflammation and nitrite synergistically potentiated the nitrodilator-mediated vasodilation. In conclusion, NTG mediates vasodilation via activation of a depletable intracellular store of NO that can be replenished by nitrite, thereby preventing tolerance.
Collapse
Affiliation(s)
- Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Meijuan Zhang
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qian Li
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hobe Schroeder
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gordon G Power
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
3
|
Aminzai S, Hu T, Pilz RB, Casteel DE. PKGIα is activated by metal-dependent oxidation in vitro but not in intact cells. J Biol Chem 2022; 298:102175. [PMID: 35752367 PMCID: PMC9293632 DOI: 10.1016/j.jbc.2022.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022] Open
Abstract
Type I cGMP-dependent protein kinases (PKGIs) are important components of various signaling pathways, and are canonically activated by nitric oxide- and natriuretic peptide-induced cGMP generation. However, some reports have shown that PKGIα can also be activated in vitro by oxidizing agents. Using in vitro kinase assays, here we found that purified PKGIα stored in phosphate-buffered saline with Flag peptide became oxidized and activated even in the absence of oxidizing agent; furthermore, once established, this activation could not be reversed by reduction with dithiothreitol. We demonstrate that activation was enhanced by addition of Cu2+ before storage, indicating it was driven by oxidation and mediated by trace metals present during storage. Previous reports suggested that PKGIα Cys43, Cys118, and Cys196 play key roles in oxidation-induced kinase activation; we show that activation was reduced by C118A or C196V mutations, although C43S PKGIα activation was not reduced. In contrast, under the same conditions, purified PKGIβ activity only slightly increased with storage. Using PKGIα/PKGIβ chimeras, we found that residues throughout the PKGIα-specific autoinhibitory loop were responsible for this activation. To explore whether oxidants activate PKGIα in H9c2 and C2C12 cells, we monitored vasodilator-stimulated phosphoprotein (VASP) phosphorylation downstream of PKGIα. While we observed PKGIα Cys43 crosslinking in response to H2O2 (indicating an oxidizing environment in the cells), we were unable to detect increased VASP phosphorylation under these conditions. Taken together, we conclude that while PKGIα can be readily activated by oxidation in vitro, there is currently no direct evidence of oxidation-induced PKGIα activation in vivo.
Collapse
Affiliation(s)
- Sahar Aminzai
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Tingfei Hu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093.
| |
Collapse
|
4
|
Jüttner AA, Danser AHJ, Roks AJM. Pharmacological developments in antihypertensive treatment through nitric oxide-cGMP modulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:57-94. [PMID: 35659377 DOI: 10.1016/bs.apha.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Treatment of hypertension until now has been directed at inhibition of vasoconstriction, of cardiac contractility and of blood volume regulation. Despite the arsenal of drugs available for this purpose, the control of target blood pressure is still a difficult goal to reach in outpatients. The nitric oxide-cyclic guanosine monophosphate signaling is one of the most important mediators of vasodilation. It might therefore be a potential and most welcome drug target for optimization of the treatment of hypertension. In this chapter we review the problems that can occur in this signaling system, the attempts that have been made to correct these problems, and those that are still under investigation. Recently developed, clinically safe medicines that are currently approved for other applications, such as myocardial infarction, await to be tested for essential systemic hypertension. We conclude that despite many years of research without translation, stimulation of nitric oxide-cyclic guanosine monophosphate is still a viable strategy in the prevention of the health risk posed by chronic hypertension.
Collapse
Affiliation(s)
- Annika A Jüttner
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Kamynina A, Guttzeit S, Eaton P, Cuello F. Nitroxyl Donor CXL-1020 Lowers Blood Pressure by Targeting C195 in Cyclic Guanosine-3',5'-Monophosphate-Dependent Protein Kinase I. Hypertension 2022; 79:946-956. [PMID: 35168371 DOI: 10.1161/hypertensionaha.122.18756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that nitroxyl causes vasodilation, at least in part, by inducing the formation of an intradisulfide bond between C117 and C195 in the high affinity cyclic guanosine monophosphate-binding site of PKGI (cyclic guanosine monophosphate-dependent protein kinase I). The aim of this study was to determine whether nitroxyl donors lower blood pressure via this novel PKGI activation mechanism in vivo. METHODS To determine this, a C195S PKGI knock-in mouse model was generated that ubiquitously and constitutively expresses a mutant kinase resistant to nitroxyl-induced intradisulfide activation. RESULTS Knock-in and wild-type littermates did not differ in appearance, body weight, in PKGI protein expression or blood gas content. Organ weight was similar between genotypes apart from the cecum that was significantly enlarged in knock-in animals. Mean arterial pressure and heart rate monitored in vivo over 24 hours by radio-telemetry revealed neither a significant difference between genotypes at baseline nor during angiotensin II-induced hypertension or sepsis. CXL-1020, a clinically relevant nitroxyl donor, did not lower blood pressure in normotensive animals. In contrast, administering CXL-1020 to hypertensive wild-type mice reduced their blood pressure by 10±4 mm Hg (P=0.0184), whereas the knock-in littermates were unaffected. CONCLUSIONS Oxidation of C195 in PKGI contributes to the antihypertensive effects observed in response to nitroxyl donors, emphasising the potential importance of nitroxyl donors in pathological scenarios when cyclic guanosine monophosphate levels are reduced and insufficient to activate PKGI.
Collapse
Affiliation(s)
- Alisa Kamynina
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Sebastian Guttzeit
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (F.C.)
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany (F.C.)
| |
Collapse
|
6
|
Phosphodiesterase-1 in the cardiovascular system. Cell Signal 2022; 92:110251. [DOI: 10.1016/j.cellsig.2022.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
7
|
Queiroz RF, Stanley CP, Wolhuter K, Kong SMY, Rajivan R, McKinnon N, Nguyen GTH, Roveri A, Guttzeit S, Eaton P, Donald WA, Ursini F, Winterbourn CC, Ayer A, Stocker R. Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation. Nat Commun 2021; 12:6626. [PMID: 34785665 PMCID: PMC8595612 DOI: 10.1038/s41467-021-26991-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
During systemic inflammation, indoleamine 2,3-dioxygenase 1 (IDO1) becomes expressed in endothelial cells where it uses hydrogen peroxide (H2O2) to oxidize L-tryptophan to the tricyclic hydroperoxide, cis-WOOH, that then relaxes arteries via oxidation of protein kinase G 1α. Here we show that arterial glutathione peroxidases and peroxiredoxins that rapidly eliminate H2O2, have little impact on relaxation of IDO1-expressing arteries, and that purified IDO1 forms cis-WOOH in the presence of peroxiredoxin 2. cis-WOOH oxidizes protein thiols in a selective and stereospecific manner. Compared with its epimer trans-WOOH and H2O2, cis-WOOH reacts slower with the major arterial forms of glutathione peroxidases and peroxiredoxins while it reacts more readily with its target, protein kinase G 1α. Our results indicate a paradigm of redox signaling by H2O2 via its enzymatic conversion to an amino acid-derived hydroperoxide that 'escapes' effective reductive inactivation to engage in selective oxidative activation of key target proteins.
Collapse
Affiliation(s)
- Raphael F Queiroz
- Department of Natural Sciences, Southwest Bahia State University, Vitoria da Conquista, Bahia, Brazil
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Christopher P Stanley
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Kathryn Wolhuter
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | - Ragul Rajivan
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Naomi McKinnon
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Philip Eaton
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Anita Ayer
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
- Heart Research Institute, The University of Sydney, Sydney, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
- Heart Research Institute, The University of Sydney, Sydney, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Current trends and future perspectives for heart failure treatment leveraging cGMP modifiers and the practical effector PKG. J Cardiol 2021; 78:261-268. [PMID: 33814252 DOI: 10.1016/j.jjcc.2021.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/22/2022]
Abstract
Cyclic guanosine monophosphate (cGMP), an intracellular second messenger molecule synthesized by guanylated cyclases (GCs), controls various myocardial properties, including cell growth and survival, interstitial fibrosis, endothelial permeability, cardiac contractility, and cardiovascular remodeling. These processes are mediated by the main cGMP effector protein kinase G (PKG) activation of which exerts intrinsic protective responses against the adverse effects of neurohormonal stimulation and pathological cardiac stress. Therapeutic strategies that enhance cGMP levels and PKG activation have been used for heart failure, which can be executed by reducing natriuretic peptide (NP) proteolysis, enhancing cGMP synthesis, or blocking cGMP hydrolysis. Among these, reducing NP clearance with neprilysin inhibitor combined with angiotensin receptor blocker has been shown to greatly improve the prognosis of patients with heart failure with reduced ejection fraction (HFrEF) compared to the prognosis of patients on standard therapy using angiotensin-converting enzyme inhibitors. Moreover, in a recent phase III clinical trial, soluble GC-derived cGMP generation was shown to have potential efficacy in the management of HFrEF. Despite the clinical significance of cGMP/PKG signaling activated by either soluble or particulate GCs in heart failure, the differential signaling events downstream of intracellular cGMP, which are precisely controlled not only by PKG activation but also by the changes in its targeting and compartmentalization depending on the pathophysiology of heart disease, are not yet completely understood. Hitherto, the importance of the latter PKG regulatory mechanisms in developing therapeutic strategies has not been elucidated. Further investigation of redox-based PKG modulation will aid in the successful development of clinical therapies and could also lead to the establishment of improved personalized treatments for patients with heart failure.
Collapse
|
9
|
Boguslavskyi A, Tokar S, Prysyazhna O, Rudyk O, Sanchez-Tatay D, Lemmey HA, Dora KA, Garland CJ, Warren HR, Doney A, Palmer CN, Caulfield MJ, Vlachaki Walker J, Howie J, Fuller W, Shattock MJ. Phospholemman Phosphorylation Regulates Vascular Tone, Blood Pressure, and Hypertension in Mice and Humans. Circulation 2021; 143:1123-1138. [PMID: 33334125 PMCID: PMC7969167 DOI: 10.1161/circulationaha.119.040557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Although it has long been recognized that smooth muscle Na/K ATPase modulates vascular tone and blood pressure (BP), the role of its accessory protein phospholemman has not been characterized. The aim of this study was to test the hypothesis that phospholemman phosphorylation regulates vascular tone in vitro and that this mechanism plays an important role in modulation of vascular function and BP in experimental models in vivo and in humans. METHODS In mouse studies, phospholemman knock-in mice (PLM3SA; phospholemman [FXYD1] in which the 3 phosphorylation sites on serines 63, 68, and 69 are mutated to alanines), in which phospholemman is rendered unphosphorylatable, were used to assess the role of phospholemman phosphorylation in vitro in aortic and mesenteric vessels using wire myography and membrane potential measurements. In vivo BP and regional blood flow were assessed using Doppler flow and telemetry in young (14-16 weeks) and old (57-60 weeks) wild-type and transgenic mice. In human studies, we searched human genomic databases for mutations in phospholemman in the region of the phosphorylation sites and performed analyses within 2 human data cohorts (UK Biobank and GoDARTS [Genetics of Diabetes Audit and Research in Tayside]) to assess the impact of an identified single nucleotide polymorphism on BP. This single nucleotide polymorphism was expressed in human embryonic kidney cells, and its effect on phospholemman phosphorylation was determined using Western blotting. RESULTS Phospholemman phosphorylation at Ser63 and Ser68 limited vascular constriction in response to phenylephrine. This effect was blocked by ouabain. Prevention of phospholemman phosphorylation in the PLM3SA mouse profoundly enhanced vascular responses to phenylephrine both in vitro and in vivo. In aging wild-type mice, phospholemman was hypophosphorylated, and this correlated with the development of aging-induced essential hypertension. In humans, we identified a nonsynonymous coding variant, single nucleotide polymorphism rs61753924, which causes the substitution R70C in phospholemman. In human embryonic kidney cells, the R70C mutation prevented phospholemman phosphorylation at Ser68. This variant's rare allele is significantly associated with increased BP in middle-aged men. CONCLUSIONS These studies demonstrate the importance of phospholemman phosphorylation in the regulation of vascular tone and BP and suggest a novel mechanism, and therapeutic target, for aging-induced essential hypertension in humans.
Collapse
Affiliation(s)
- Andrii Boguslavskyi
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Sergiy Tokar
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Oleksandra Prysyazhna
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Olena Rudyk
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - David Sanchez-Tatay
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Hamish A.L. Lemmey
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Kim A. Dora
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Christopher J. Garland
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Helen R. Warren
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Alexander Doney
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Colin N.A. Palmer
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Mark J. Caulfield
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Julia Vlachaki Walker
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Jacqueline Howie
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - William Fuller
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Michael J. Shattock
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| |
Collapse
|
10
|
Griffiths K, Lee JJ, Frenneaux MP, Feelisch M, Madhani M. Nitrite and myocardial ischaemia reperfusion injury. Where are we now? Pharmacol Ther 2021; 223:107819. [PMID: 33600852 DOI: 10.1016/j.pharmthera.2021.107819] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite major advances in technology and treatment, with coronary heart disease (CHD) being a key contributor. Following an acute myocardial infarction (AMI), it is imperative that blood flow is rapidly restored to the ischaemic myocardium. However, this restoration is associated with an increased risk of additional complications and further cardiomyocyte death, termed myocardial ischaemia reperfusion injury (IRI). Endogenously produced nitric oxide (NO) plays an important role in protecting the myocardium from IRI. It is well established that NO mediates many of its downstream functions through the 'canonical' NO-sGC-cGMP pathway, which is vital for cardiovascular homeostasis; however, this pathway can become impaired in the face of inadequate delivery of necessary substrates, in particular L-arginine, oxygen and reducing equivalents. Recently, it has been shown that during conditions of ischaemia an alternative pathway for NO generation exists, which has become known as the 'nitrate-nitrite-NO pathway'. This pathway has been reported to improve endothelial dysfunction, protect against myocardial IRI and attenuate infarct size in various experimental models. Furthermore, emerging evidence suggests that nitrite itself provides multi-faceted protection, in an NO-independent fashion, against a myriad of pathophysiologies attributed to IRI. In this review, we explore the existing pre-clinical and clinical evidence for the role of nitrate and nitrite in cardioprotection and discuss the lessons learnt from the clinical trials for nitrite as a perconditioning agent. We also discuss the potential future for nitrite as a pre-conditioning intervention in man.
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jordan J Lee
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael P Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
11
|
Abstract
Chronic hypoxia causes pulmonary hypertension (PH), vascular remodeling, right ventricular (RV) hypertrophy, and cardiac failure. Protein kinase G Iα (PKGIα) is susceptible to oxidation, forming an interprotein disulfide homodimer associated with kinase targeting involved in vasodilation. Here we report increased disulfide PKGIα in pulmonary arteries from mice with hypoxic PH or lungs from patients with pulmonary arterial hypertension. This oxidation is likely caused by oxidants derived from NADPH oxidase-4, superoxide dismutase 3, and cystathionine γ-lyase, enzymes that were concomitantly increased in these samples. Indeed, products that may arise from these enzymes, including hydrogen peroxide, glutathione disulfide, and protein-bound persulfides, were increased in the plasma of hypoxic mice. Furthermore, low-molecular-weight hydropersulfides, which can serve as "superreductants" were attenuated in hypoxic tissues, consistent with systemic oxidative stress and the oxidation of PKGIα observed. Inhibiting cystathionine γ-lyase resulted in decreased hypoxia-induced disulfide PKGIα and more severe PH phenotype in wild-type mice, but not in Cys42Ser PKGIα knock-in (KI) mice that are resistant to oxidation. In addition, KI mice also developed potentiated PH during hypoxia alone. Thus, oxidation of PKGIα is an adaptive mechanism that limits PH, a concept further supported by polysulfide treatment abrogating hypoxia-induced RV hypertrophy in wild-type, but not in the KI, mice. Unbiased transcriptomic analysis of hypoxic lungs before structural remodeling identified up-regulation of endothelial-to-mesenchymal transition pathways in the KI compared with wild-type mice. Thus, disulfide PKGIα is an intrinsic adaptive mechanism that attenuates PH progression not only by promoting vasodilation but also by limiting maladaptive growth and fibrosis signaling.
Collapse
|
12
|
Prysyazhna O, Wolhuter K, Switzer C, Santos C, Yang X, Lynham S, Shah AM, Eaton P, Burgoyne JR. Blood Pressure-Lowering by the Antioxidant Resveratrol Is Counterintuitively Mediated by Oxidation of cGMP-Dependent Protein Kinase. Circulation 2019; 140:126-137. [PMID: 31116951 PMCID: PMC6635045 DOI: 10.1161/circulationaha.118.037398] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Supplemental Digital Content is available in the text. Background: The health-promoting and disease-limiting abilities of resveratrol, a natural polyphenol, has led to considerable interest in understanding the mechanisms of its therapeutic actions. The polyphenolic rings of resveratrol enable it to react with and detoxify otherwise injurious oxidants. Whilst the protective actions of resveratrol are commonly ascribed to its antioxidant activity, here we show that this is a misconception. Methods: The ability of resveratrol to oxidize cGMP-dependent PKG1α (protein kinase 1α) was assessed in isolated rat aortic smooth muscle cells, and the mechanism of action of this polyphenol was characterized using in vitro experiments, mass spectrometry and electron paramagnetic resonance. The blood pressure of wild-type and C42S knock-in mice was assessed using implanted telemetry probes. Mice were made hypertensive by administration of angiotensin II via osmotic mini-pumps and blood pressure monitored during 15 days of feeding with chow diet containing vehicle or resveratrol. Results: Oxidation of the phenolic rings of resveratrol paradoxically leads to oxidative modification of proteins, explained by formation of a reactive quinone that oxidizes the thiolate side chain of cysteine residues; events that were enhanced in cells under oxidative stress. Consistent with these observations and its ability to induce vasodilation, resveratrol induced oxidative activation of PKG1α and lowered blood pressure in hypertensive wild-type mice, but not C42S PKG1α knock-in mice that are resistant to disulfide activation. Conclusions: Resveratrol mediates lowering of blood pressure by paradoxically inducing protein oxidation, especially during times of oxidative stress, a mechanism that may be a common feature of antioxidant molecules.
Collapse
Affiliation(s)
- Oleksandra Prysyazhna
- King's College London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, UK (O.P., K.W., C. Switzer., P.E., J.R.B.)
| | - Kathryn Wolhuter
- King's College London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, UK (O.P., K.W., C. Switzer., P.E., J.R.B.)
| | - Christopher Switzer
- King's College London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, UK (O.P., K.W., C. Switzer., P.E., J.R.B.)
| | - Celio Santos
- King's College London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The James Black Centre, Denmark Hill Campus, UK (C. Santos., A.M.S.)
| | - Xiaoping Yang
- King's College London, Proteomics Facility, Centre of Excellence for Mass Spectrometry, The James Black Centre, Denmark Hill Campus, UK (X.Y., S.L.)
| | - Steven Lynham
- King's College London, Proteomics Facility, Centre of Excellence for Mass Spectrometry, The James Black Centre, Denmark Hill Campus, UK (X.Y., S.L.)
| | - Ajay M Shah
- King's College London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The James Black Centre, Denmark Hill Campus, UK (C. Santos., A.M.S.)
| | - Philip Eaton
- King's College London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, UK (O.P., K.W., C. Switzer., P.E., J.R.B.)
| | - Joseph R Burgoyne
- King's College London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, UK (O.P., K.W., C. Switzer., P.E., J.R.B.)
| |
Collapse
|
13
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
14
|
Duraffourd C, Huckstepp RTR, Braren I, Fernandes C, Brock O, Delogu A, Prysyazhna O, Burgoyne J, Eaton P. PKG1α oxidation negatively regulates food seeking behaviour and reward. Redox Biol 2018; 21:101077. [PMID: 30593979 PMCID: PMC6306694 DOI: 10.1016/j.redox.2018.101077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Genes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain. ‘Redox dead’ C42S PKG1α knock-in (KI) mice, which are fully deficient in oxidant-induced disulfide-PKG1α formation, display increased food seeking and reward behaviour compared to wild-type (WT) littermates. Rewarding monoamines such as dopamine, which are released during feeding, are metabolised by monoamine oxidase to generate hydrogen peroxide that was shown to mediate PKG1α oxidation. Indeed, inhibition of monoamine oxidase, which prevents it producing hydrogen peroxide, attenuated PKG1α oxidation and increased sucrose preference in WT, but not KI mice. The deficient reward phenotype of the KI mice was rescued by expressing WT kinase that can form the disulfide state in the VTA using an adeno-associated virus, consistent with PKG1α oxidation providing a break on feeding behaviour. In conclusion, disulfide-PKG1α in VTA neurons acts as a negative regulator of feeding and therefore may provide a novel therapeutic target for obesity.
Collapse
Affiliation(s)
- Celine Duraffourd
- King's College London, School of Cardiovascular Medicine & Sciences, the Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | | | - Ingke Braren
- University Medical Center Eppendorf, Vector Facility, Inst. for Exp. Pharmacology and Toxikology, N30, Room 09, Martinistr. 52, 20246 Hamburg, Germany
| | - Cathy Fernandes
- SGDP Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Olivier Brock
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Alessio Delogu
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Oleksandra Prysyazhna
- King's College London, School of Cardiovascular Medicine & Sciences, the Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Joseph Burgoyne
- King's College London, School of Cardiovascular Medicine & Sciences, the Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Philip Eaton
- King's College London, School of Cardiovascular Medicine & Sciences, the Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| |
Collapse
|
15
|
An YM, Li YJ, Zhang CL, Cong X, Gao YS, Wu LL, Dou D. Decreased PKG transcription mediated by PI3K/Akt/FoxO1 pathway is involved in the development of nitroglycerin tolerance. Biochem Biophys Res Commun 2018; 508:1195-1201. [PMID: 30554658 DOI: 10.1016/j.bbrc.2018.12.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022]
Abstract
Phosphoinositide 3-kinase (PI3K)/Akt plays a pivotal role in the vascular response. The present study is to determine whether PI3K/Akt pathway in vascular smooth muscle cells is involved in nitroglycerin (NTG) tolerance and the underlying mechanism. Nitrate tolerance of porcine coronary arteries in vitro was induced by incubation of NTG (10-5 M) for 24 h. Nitrate tolerance in vivo was obtained by subcutaneous injection of mice with NTG (20 mg kg-1, tid, 3 days) and the aortas were used. Protein levels of total and phosphorylated Akt, forkhead box protein O1 (FoxO1), and cGMP-dependent protein kinase (PKG) were determined by western blot analysis. Isometric vessel tension was recorded by organ chamber technique. PKG mRNA was determined by real-time PCR. The cellular translocation of FoxO1 was observed by immunofluorescence. Reactive oxygen species (ROS) level was measured by DHE staining. The vascular relaxation to NTG was significantly inhibited in in vivo and in vitro NTG tolerant arteries. Meanwhile, the protein level of phosphorylated Akt at Ser473 was increased in the tolerant arteries. The attenuated relaxation and the augmented Akt-p were ameliorated by LY294002, a specific inhibitor of PI3K. The protein and mRNA expression of PKG were significantly down-regulated in NTG tolerant arteries, which were reversed by LY294002. The level of phosphorylated FoxO1 at Ser256 and its translocation from the nucleus to the cytosol were both increased in NTG tolerance and were also inhibited by LY294002. ROS production was significantly increased in NTG tolerant arteries, which was not be affected by LY294002 but inhibited by N-acetyl-L-cysteine. In conclusion, the present study suggests that PI3K/Akt in vascular smooth muscle is involved in the development of NTG tolerance via inhibiting PKG transcription and the effect is mediated by FoxO1.
Collapse
Affiliation(s)
- Yuan-Ming An
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan-Jing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan-Sheng Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
16
|
Sheehe JL, Bonev AD, Schmoker AM, Ballif BA, Nelson MT, Moon TM, Dostmann WR. Oxidation of cysteine 117 stimulates constitutive activation of the type Iα cGMP-dependent protein kinase. J Biol Chem 2018; 293:16791-16802. [PMID: 30206122 PMCID: PMC6204908 DOI: 10.1074/jbc.ra118.004363] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
The type I cGMP-dependent protein kinase (PKG I) is an essential regulator of vascular tone. It has been demonstrated that the type Iα isoform can be constitutively activated by oxidizing conditions. However, the amino acid residues implicated in this phenomenon are not fully elucidated. To investigate the molecular basis for this mechanism, we studied the effects of oxidation using recombinant WT, truncated, and mutant constructs of PKG I. Using an in vitro assay, we observed that oxidation with hydrogen peroxide (H2O2) resulted in constitutive, cGMP-independent activation of PKG Iα. PKG Iα C42S and a truncation construct that does not contain Cys-42 (Δ53) were both constitutively activated by H2O2 In contrast, oxidation of PKG Iα C117S maintained its cGMP-dependent activation characteristics, although oxidized PKG Iα C195S did not. To corroborate these results, we also tested the effects of our constructs on the PKG Iα-specific substrate, the large conductance potassium channel (KCa 1.1). Application of WT PKG Iα activated by either cGMP or H2O2 increased the open probabilities of the channel. Neither cGMP nor H2O2 activation of PKG Iα C42S significantly increased channel open probabilities. Moreover, cGMP-stimulated PKG Iα C117S increased KCa 1.1 activity, but this effect was not observed under oxidizing conditions. Finally, we observed that PKG Iα C42S caused channel flickers, indicating dramatically altered KCa 1.1 channel characteristics compared with channels exposed to WT PKG Iα. Cumulatively, these results indicate that constitutive activation of PKG Iα proceeds through oxidation of Cys-117 and further suggest that the formation of a sulfur acid is necessary for this phenotype.
Collapse
Affiliation(s)
- Jessica L Sheehe
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Adrian D Bonev
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Anna M Schmoker
- the Department of Biology, University of Vermont, Burlington, Vermont 05405 and
| | - Bryan A Ballif
- the Department of Biology, University of Vermont, Burlington, Vermont 05405 and
| | - Mark T Nelson
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Thomas M Moon
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|
17
|
Cuello F, Eaton P. Cysteine-Based Redox Sensing and Its Role in Signaling by Cyclic Nucleotide-Dependent Kinases in the Cardiovascular System. Annu Rev Physiol 2018; 81:63-87. [PMID: 30216743 DOI: 10.1146/annurev-physiol-020518-114417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidant molecules are produced in biological systems and historically have been considered causal mediators of damage and disease. While oxidants may contribute to the pathogenesis of disease, evidence continues to emerge that shows these species also play important regulatory roles in health. A major mechanism of oxidant sensing and signaling involves their reaction with reactive cysteine thiols within proteins, inducing oxidative posttranslational modifications that can couple to altered function to enable homeostatic regulation. Protein kinase A and protein kinase G are regulated by oxidants in this way, and this review focuses on our molecular-level understanding of these events and their role in regulating cardiovascular physiology during health and disease.
Collapse
Affiliation(s)
- Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Philip Eaton
- King's College London, School of Cardiovascular Medicine and Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom;
| |
Collapse
|
18
|
Cuello F, Wittig I, Lorenz K, Eaton P. Oxidation of cardiac myofilament proteins: Priming for dysfunction? Mol Aspects Med 2018; 63:47-58. [PMID: 30130564 DOI: 10.1016/j.mam.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Oxidants are produced endogenously and can react with and thereby post-translationally modify target proteins. They have been implicated in the redox regulation of signal transduction pathways conferring protection, but also in mediating oxidative stress and causing damage. The difference is that in scenarios of injury the amount of oxidants generated is higher and/or the duration of oxidant exposure sustained. In the cardiovascular system, oxidants are important for blood pressure homeostasis, for unperturbed cardiac function and also contribute to the observed protection during ischemic preconditioning. In contrast, oxidative stress accompanies all major cardiovascular pathologies and has been attributed to mediate contractile dysfunction in part by inducing oxidative modifications in myofilament proteins. However, the proportion to which oxidative modifications of contractile proteins are beneficial or causatively mediate disease progression needs to be carefully reconsidered. These antithetical aspects will be discussed in this review with special focus on direct oxidative post-translational modifications of myofilament proteins that have been described to occur in vivo and to regulate actin-myosin interactions in the cardiac myocyte sarcomere, the methodologies for detection of oxidative post-translational modifications in target proteins and the feasibility of antioxidant therapy strategies as a potential treatment for cardiac disorders.
Collapse
Affiliation(s)
- Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Germany
| | - Kristina Lorenz
- Comprehensive Heart Failure Center, Würzburg, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. Dortmund, West German Heart and Vascular Center, Essen, Germany
| | - Philip Eaton
- King's British Heart Foundation Centre, King's College London, UK
| |
Collapse
|
19
|
Bautista-Niño PK, van der Stel M, Batenburg WW, de Vries R, Roks AJ, Danser AJ. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H 2 O 2 versus S -nitrosothiols. Eur J Pharmacol 2018; 827:112-116. [DOI: 10.1016/j.ejphar.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/18/2023]
|
20
|
Rudyk O, Eaton P. Examining a role for PKG Iα oxidation in the pathogenesis of cardiovascular dysfunction during diet-induced obesity. Free Radic Biol Med 2017; 110:390-398. [PMID: 28690194 PMCID: PMC5541991 DOI: 10.1016/j.freeradbiomed.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/13/2017] [Accepted: 07/05/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND Protein kinase G (PKG) Iα is the end-effector kinase that mediates nitric oxide (NO)-dependent and oxidant-dependent vasorelaxation to maintain blood pressure during health. A hallmark of cardiovascular disease is attenuated NO production, which in part is caused by NO Synthase (NOS) uncoupling, which in turn increases oxidative stress because of superoxide generation. NOS uncoupling promotes PKG Iα oxidation to the interprotein disulfide state, likely mediated by superoxide-derived hydrogen peroxide, and because the NO-cyclic guanosine monophosphate (cGMP) pathway otherwise negatively regulates oxidation of the kinase to its active disulfide dimeric state. Diet-induced obesity is associated with NOS uncoupling, which may in part contribute to the associated cardiovascular dysfunction due to exacerbated PKG Iα disulfide oxidation to the disulfide state. This is a rational hypothesis because PKG Iα oxidation is known to significantly contribute to heart failure that arises from chronic myocardial oxidative stress. METHODS AND RESULTS Bovine arterial endothelial cells (BAECs) or smooth muscle cells (SMCs) were exposed to drugs that uncouple NOS. These included 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) which promotes its S-glutathiolation, 4-diamino-6-hydroxy-pyrimidine (DAHP) which inhibits guanosine-5'-triphosphate-cyclohydrolase 2 to prevent BH4 synthesis or methotrexate (MTX) which inhibits the regeneration of BH4 from BH2 by dihydrofolate reductase. While all the drugs mentioned above induced robust PKG Iα disulfide dimerization in cells, exposure of BAECs to NOS inhibitor L-NMMA did not. Increased PKG Iα disulfide formation occurred in hearts and aortae from mice treated in vivo with DAHP (10mM in a drinking water for 3 weeks). Redox-dead C42S PKG Iα knock-in (KI) mice developed less pronounced cardiac posterior wall hypertrophy and did not develop cardiac dysfunction, assessed by echocardiography, compared to the wild-type (WT) mice after chronic DAHP treatment. WT or KI mice were then subjected to a diet-induced obesity protocol by feeding them with a high fat Western-type diet (RM 60% AFE) for 27 weeks, which increased body mass, adiposity, plasma leptin, resistin and glucagon levels comparably in each genotype. Obesity-induced hypertension, assessed by radiotelemetry, was mild and transient in the WT, while the basally hypertensive KI mice were resistant to further increases in blood pressure following high fat feeding. Although the obesogenic diet caused mild cardiac dysfunction in the WT but not the KI mice, gross changes in myocardial structure monitored by echocardiography were not apparent in either genotype. The level of cyclic guanosine monophosphate (cGMP) was decreased in the aortae of WT and KI mice following high fat feeding. PKG Iα oxidation was not evident in the hearts of WT mice fed a high fat diet. CONCLUSIONS Despite robust evidence for PKG Iα oxidation during NOS uncoupling in cell models, it is unlikely that PKG Iα oxidation occurs to a significant extent in vivo during diet-induced obesity and so is unlikely to mediate the associated cardiovascular dysfunction.
Collapse
Affiliation(s)
- Olena Rudyk
- King's College London, Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip Eaton
- King's College London, Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
21
|
Burgoyne JR, Prysyazhna O, Richards DA, Eaton P. Proof of Principle for a Novel Class of Antihypertensives That Target the Oxidative Activation of PKG Iα (Protein Kinase G Iα). Hypertension 2017; 70:577-586. [PMID: 28716990 PMCID: PMC5548503 DOI: 10.1161/hypertensionaha.117.09670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Arterial hypertension continues to be a major health burden. Development of new antihypertensive drugs that engage vasodilatory mechanisms not harnessed by available therapies offer therapeutic potential. Oxidants induce an interprotein disulfide in PKG Iα (protein kinase G Iα) at C42, which is associated with its targeting and activation, resulting in vasodilation and blood pressure lowering. Consequently, we developed an assay and screened for electrophilic drugs that activate PKG Iα by selectively targeting C42, as such compounds have potential as novel antihypertensives with a mechanism of action that differs from current therapies. In this way, a drug that we termed G1 was identified, which targets C42 of PKG Iα to induce vasodilation of isolated resistance blood vessels and blood pressure lowering in a mouse model of angiotensin II-induced hypertension. In contrast, these antihypertensive effects were deficient in angiotensin II-induced hypertensive C42S PKG Iα knockin mice. These transgenic mice were engineered to have the reactive cysteinyl thiol replaced with a hydroxyl so that it cannot react with endogenous vasodilatory oxidants or electrophiles such as drug G1. These studies, therefore, provide validation of PKG Iα C42 as the target of G1, as well as proof-of-principle for a new class of antihypertensive drugs that have potential for further development for clinical use in humans.
Collapse
Affiliation(s)
- Joseph R Burgoyne
- From the Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom.
| | - Oleksandra Prysyazhna
- From the Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom
| | - Daniel A Richards
- From the Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom
| | - Philip Eaton
- From the Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom
| |
Collapse
|
22
|
Leroux AE, Schulze JO, Biondi RM. AGC kinases, mechanisms of regulation and innovative drug development. Semin Cancer Biol 2017; 48:1-17. [PMID: 28591657 DOI: 10.1016/j.semcancer.2017.05.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
The group of AGC kinases consists of 63 evolutionarily related serine/threonine protein kinases comprising PDK1, PKB/Akt, SGK, PKC, PRK/PKN, MSK, RSK, S6K, PKA, PKG, DMPK, MRCK, ROCK, NDR, LATS, CRIK, MAST, GRK, Sgk494, and YANK, while two other families, Aurora and PLK, are the most closely related to the group. Eight of these families are physiologically activated downstream of growth factor signalling, while other AGC kinases are downstream effectors of a wide range of signals. The different AGC kinase families share aspects of their mechanisms of inhibition and activation. In the present review, we update the knowledge of the mechanisms of regulation of different AGC kinases. The conformation of the catalytic domain of many AGC kinases is regulated allosterically through the modulation of the conformation of a regulatory site on the small lobe of the kinase domain, the PIF-pocket. The PIF-pocket acts like an ON-OFF switch in AGC kinases with different modes of regulation, i.e. PDK1, PKB/Akt, LATS and Aurora kinases. In this review, we make emphasis on how the knowledge of the molecular mechanisms of regulation can guide the discovery and development of small allosteric modulators. Molecular probes stabilizing the PIF-pocket in the active conformation are activators, while compounds stabilizing the disrupted site are allosteric inhibitors. One challenge for the rational development of allosteric modulators is the lack of complete structural information of the inhibited forms of full-length AGC kinases. On the other hand, we suggest that the available information derived from molecular biology and biochemical studies can already guide screening strategies for the identification of innovative mode of action molecular probes and the development of selective allosteric drugs for the treatment of human diseases.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Jörg O Schulze
- Research Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Research Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
Kalyanaraman H, Zhuang S, Pilz RB, Casteel DE. The activity of cGMP-dependent protein kinase Iα is not directly regulated by oxidation-induced disulfide formation at cysteine 43. J Biol Chem 2017; 292:8262-8268. [PMID: 28360102 DOI: 10.1074/jbc.c117.787358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
The type I cGMP-dependent protein kinases (PKGs) are key regulators of smooth muscle tone, cardiac hypertrophy, and other physiological processes. The two isoforms PKGIα and PKGIβ are thought to have unique functions because of their tissue-specific expression, different cGMP affinities, and isoform-specific protein-protein interactions. Recently, a non-canonical pathway of PKGIα activation has been proposed, in which PKGIα is activated in a cGMP-independent fashion via oxidation of Cys43, resulting in disulfide formation within the PKGIα N-terminal dimerization domain. A "redox-dead" knock-in mouse containing a C43S mutation exhibits phenotypes consistent with decreased PKGIα signaling, but the detailed mechanism of oxidation-induced PKGIα activation is unknown. Therefore, we examined oxidation-induced activation of PKGIα, and in contrast to previous findings, we observed that disulfide formation at Cys43 does not directly activate PKGIα in vitro or in intact cells. In transfected cells, phosphorylation of Ras homolog gene family member A (RhoA) and vasodilator-stimulated phosphoprotein was increased in response to 8-CPT-cGMP treatment, but not when disulfide formation in PKGIα was induced by H2O2 Using purified enzymes, we found that the Cys43 oxidation had no effect on basal kinase activity or Km and Vmax values; however, PKGIα containing the C43S mutation was less responsive to cGMP-induced activation. This reduction in cGMP affinity may in part explain the PKGIα loss-of-function phenotype of the C43S knock-in mouse. In conclusion, disulfide formation at Cys43 does not directly activate PKGIα, and the C43S-mutant PKGIα has a higher Ka for cGMP. Our results highlight that mutant enzymes should be carefully biochemically characterized before making in vivo inferences.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
24
|
Smooth Muscle Phenotypic Diversity: Effect on Vascular Function and Drug Responses. ADVANCES IN PHARMACOLOGY 2017. [PMID: 28212802 DOI: 10.1016/bs.apha.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
At its simplest resistance to blood flow is regulated by changes in the state of contraction of the vascular smooth muscle (VSM), a function of the competing activities of the myosin kinase and phosphatase determining the phosphorylation and activity of the myosin ATPase motor protein. In contrast, the vascular system of humans and other mammals is incredibly complex and highly regulated. Much of this complexity derives from phenotypic diversity within the smooth muscle, reflected in very differing power outputs and responses to signaling pathways that regulate vessel tone, presumably having evolved over the millennia to optimize vascular function and its control. The highly regulated nature of VSM tone, described as pharmacomechanical coupling, likely underlies the many classes of drugs in clinical use to alter vascular tone through activation or inhibition of these signaling pathways. This review will first describe the phenotypic diversity within VSM, followed by presentation of specific examples of how molecular diversity in signaling, myofilament, and calcium cycling proteins impacts arterial smooth muscle function and drug responses.
Collapse
|
25
|
Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun 2016; 7:13187. [PMID: 27782102 PMCID: PMC5095173 DOI: 10.1038/ncomms13187] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
The Frank–Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16—a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank–Starling response. The stroke volume of the heart increases in response to an increase in the blood volume filling the heart. Here the authors reveal that this coordinated process is mediated in part by oxidative activation of the protein kinase G Iα, which phosphorylates phospholamban to enhance diastolic relaxation in mice.
Collapse
|
26
|
Prysyazhna O, Burgoyne JR, Scotcher J, Grover S, Kass D, Eaton P. Phosphodiesterase 5 Inhibition Limits Doxorubicin-induced Heart Failure by Attenuating Protein Kinase G Iα Oxidation. J Biol Chem 2016; 291:17427-36. [PMID: 27342776 DOI: 10.1074/jbc.m116.724070] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/25/2023] Open
Abstract
Phosphodiesterase 5 (PDE5) inhibitors limit myocardial injury caused by stresses, including doxorubicin chemotherapy. cGMP binding to PKG Iα attenuates oxidant-induced disulfide formation. Because PDE5 inhibition elevates cGMP and protects from doxorubicin-induced injury, we reasoned that this may be because it limits PKG Iα disulfide formation. To investigate the role of PKG Iα disulfide dimerization in the development of apoptosis, doxorubicin-induced cardiomyopathy was compared in male wild type (WT) or disulfide-resistant C42S PKG Iα knock-in (KI) mice. Echocardiography showed that doxorubicin treatment caused loss of myocardial tissue and depressed left ventricular function in WT mice. Doxorubicin also reduced pro-survival signaling and increased apoptosis in WT hearts. In contrast, KI mice were markedly resistant to the dysfunction induced by doxorubicin in WTs. In follow-on experiments the influence of the PDE5 inhibitor tadalafil on the development of doxorubicin-induced cardiomyopathy in WT and KI mice was investigated. In WT mice, co-administration of tadalafil with doxorubicin reduced PKG Iα oxidation caused by doxorubicin and also protected against cardiac injury and loss of function. KI mice were again innately resistant to doxorubicin-induced cardiotoxicity, and therefore tadalafil afforded no additional protection. Doxorubicin decreased phosphorylation of RhoA (Ser-188), stimulating its GTPase activity to activate Rho-associated protein kinase (ROCK) in WTs. These pro-apoptotic events were absent in KI mice and were attenuated in WTs co-administered tadalafil. PKG Iα disulfide formation triggers cardiac injury, and this initiation of maladaptive signaling can be blocked by pharmacological therapies that elevate cGMP, which binds kinase to limit its oxidation.
Collapse
Affiliation(s)
| | | | | | - Steven Grover
- the Academic Department of Surgery, King's College London, Cardiovascular Division, British Heart Foundation Centre of Excellence, St. Thomas' Hospital, London, SE1 7EH, United Kingdom and
| | - David Kass
- the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205
| | | |
Collapse
|
27
|
Rainer PP, Kass DA. Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G. Cardiovasc Res 2016; 111:154-62. [PMID: 27297890 DOI: 10.1093/cvr/cvw107] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
The second messenger cyclic guanosine 3'5' monophosphate (cGMP) and its downstream effector protein kinase G (PKG) have been discovered more than 40 years ago. In vessels, PKG1 induces smooth muscle relaxation in response to nitric oxide signalling and thus lowers systemic and pulmonary blood pressure. In platelets, PKG1 stimulation by cGMP inhibits activation and aggregation, and in experimental models of heart failure (HF), PKG1 activation by inhibiting cGMP degradation is protective. The net effect of the above-mentioned signalling is cardiovascular protection. Yet, while modulation of cGMP-PKG has entered clinical practice for treating pulmonary hypertension or erectile dysfunction, translation of promising studies in experimental HF to clinical success has failed thus far. With the advent of new technologies, novel mechanisms of PKG regulation, including mechanosensing, redox regulation, protein quality control, and cGMP degradation, have been discovered. These novel, non-canonical roles of PKG1 may help understand why clinical translation has disappointed thus far. Addressing them appears to be a requisite for future, successful translation of experimental studies to the clinical arena.
Collapse
Affiliation(s)
- Peter P Rainer
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
28
|
Prysyazhna O, Eaton P. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system. Front Pharmacol 2015; 6:139. [PMID: 26236235 PMCID: PMC4505079 DOI: 10.3389/fphar.2015.00139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/22/2015] [Indexed: 11/13/2022] Open
Abstract
Elevated levels of oxidants in biological systems have been historically referred to as “oxidative stress,” a choice of words that perhaps conveys an imbalanced view of reactive oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a contemporary view is that oxidants are also crucial for the maintenance of homeostasis or adaptive signaling that can actually limit injury. This regulatory role for oxidants is achieved in part by them inducing oxidative post-translational modifications of proteins which may alter their function or interactions. Such mechanisms allow changes in cell oxidant levels to be coupled to regulated alterations in enzymatic function (i.e., signal transduction), which enables “redox signaling.” In this review we focus on the role of cGMP-dependent protein kinase (PKG) Ia disulfide dimerisation, an oxidative modification that is induced by oxidants that directly activates the enzyme, discussing how this impacts on the cardiovascular system. Additionally, how this oxidative activation of PKG may coordinate with or differ from classical activation of this kinase by cGMP is also considered.
Collapse
Affiliation(s)
- Oleksandra Prysyazhna
- Cardiovascular Division, King's College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital , London, UK
| | - Philip Eaton
- Cardiovascular Division, King's College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital , London, UK
| |
Collapse
|
29
|
Qin L, Reger AS, Guo E, Yang MP, Zwart P, Casteel DE, Kim C. Structures of cGMP-Dependent Protein Kinase (PKG) Iα Leucine Zippers Reveal an Interchain Disulfide Bond Important for Dimer Stability. Biochemistry 2015; 54:4419-22. [PMID: 26132214 DOI: 10.1021/acs.biochem.5b00572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
cGMP-dependent protein kinase (PKG) Iα is a central regulator of smooth muscle tone and vasorelaxation. The N-terminal leucine zipper (LZ) domain dimerizes and targets PKG Iα by interacting with G-kinase-anchoring proteins. The PKG Iα LZ contains C42 that is known to form a disulfide bond upon oxidation and to activate PKG Iα. To understand the molecular details of the PKG Iα LZ and C42-C42' disulfide bond, we determined crystal structures of the PKG Iα wild-type (WT) LZ and C42L LZ. Our data demonstrate that the C42-C42' disulfide bond dramatically stabilizes PKG Iα and that the C42L mutant mimics the oxidized WT LZ structurally.
Collapse
Affiliation(s)
| | | | | | | | - Peter Zwart
- ⊥Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Darren E Casteel
- @Department of Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
30
|
Wobst J, Kessler T, Dang TA, Erdmann J, Schunkert H. Role of sGC-dependent NO signalling and myocardial infarction risk. J Mol Med (Berl) 2015; 93:383-94. [PMID: 25733135 DOI: 10.1007/s00109-015-1265-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
The NO/cGMP pathway plays an important role in many physiological functions and pathophysiological conditions. In the last few years, several genetic and functional studies pointed to an underestimated role of this pathway in the development of atherosclerosis. Indeed, several genetic variants of key enzymes modulating the generation of NO and cGMP have been strongly associated with coronary artery disease and myocardial infarction risk. In this review, we aim to place the genomic findings on components of the NO/cGMP pathway, namely endothelial nitric oxide synthase, soluble guanylyl cyclase and phosphodiesterase 5A, in context of preventive and therapeutic strategies for treating atherosclerosis and its sequelae.
Collapse
Affiliation(s)
- Jana Wobst
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany
| | | | | | | | | |
Collapse
|
31
|
Reho JJ, Zheng X, Asico LD, Fisher SA. Redox signaling and splicing dependent change in myosin phosphatase underlie early versus late changes in NO vasodilator reserve in a mouse LPS model of sepsis. Am J Physiol Heart Circ Physiol 2015; 308:H1039-50. [PMID: 25724497 DOI: 10.1152/ajpheart.00912.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 01/07/2023]
Abstract
Microcirculatory dysfunction may cause tissue malperfusion and progression to organ failure in the later stages of sepsis, but the role of smooth muscle contractile dysfunction is uncertain. Mice were given intraperitoneal LPS, and mesenteric arteries were harvested at 6-h intervals for analyses of gene expression and contractile function by wire myography. Contractile (myosin and actin) and regulatory [myosin light chain kinase and phosphatase subunits (Mypt1, CPI-17)] mRNAs and proteins were decreased in mesenteric arteries at 24 h concordant with reduced force generation to depolarization, Ca(2+), and phenylephrine. Vasodilator sensitivity to DEA/nitric oxide (NO) and cGMP under Ca(2+) clamp were increased at 24 h after LPS concordant with a switch to Mypt1 exon 24- splice variant coding for a leucine zipper (LZ) motif required for PKG-1α activation of myosin phosphatase. This was reproduced by smooth muscle-specific deletion of Mypt1 exon 24, causing a shift to the Mypt1 LZ+ isoform. These mice had significantly lower resting blood pressure than control mice but similar hypotensive responses to LPS. The vasodilator sensitivity of wild-type mice to DEA/NO, but not cGMP, was increased at 6 h after LPS. This was abrogated in mice with a redox dead version of PKG-1α (Cys42Ser). Enhanced vasorelaxation in early endotoxemia is mediated by redox signaling through PKG-1α but in later endotoxemia by myosin phosphatase isoform shifts enhancing sensitivity to NO/cGMP as well as smooth muscle atrophy. Muscle atrophy and modulation may be a novel target to suppress microcirculatory dysfunction; however, inactivation of inducible NO synthase, treatment with the IL-1 antagonist IL-1ra, or early activation of α-adrenergic signaling did not suppressed this response.
Collapse
Affiliation(s)
- John J Reho
- Department of Medicine, Divisions of Cardiovascular Medicine and Nephrology, University of Maryland, Baltimore, Maryland
| | - Xiaoxu Zheng
- Department of Medicine, Divisions of Cardiovascular Medicine and Nephrology, University of Maryland, Baltimore, Maryland
| | - Laureano D Asico
- Department of Medicine, Divisions of Cardiovascular Medicine and Nephrology, University of Maryland, Baltimore, Maryland
| | - Steven A Fisher
- Department of Medicine, Divisions of Cardiovascular Medicine and Nephrology, University of Maryland, Baltimore, Maryland
| |
Collapse
|
32
|
Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P. Protein Kinase G Iα Oxidation Paradoxically Underlies Blood Pressure Lowering by the Reductant Hydrogen Sulfide. Hypertension 2014; 64:1344-51. [DOI: 10.1161/hypertensionaha.114.04281] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dysregulated blood pressure control leading to hypertension is prevalent and is a risk factor for several common diseases. Fully understanding blood pressure regulation offers the possibility of developing rationale therapies to alleviate hypertension and associated disease risks. Although hydrogen sulfide (H
2
S) is a well-established endogenous vasodilator, the molecular basis of its blood-pressure lowering action is incompletely understood. H
2
S-dependent vasodilation and blood pressure lowering in vivo was mediated by it catalyzing formation of an activating interprotein disulfide within protein kinase G (PKG) Iα. However, this oxidative activation of PKG Iα is counterintuitive because H
2
S is a thiol-reducing molecule that breaks disulfides, and so it is not generally anticipated to induce their formation. This apparent paradox was explained by H
2
S in the presence of molecular oxygen or hydrogen peroxide rapidly converting to polysulfides, which have oxidant properties that in turn activate PKG by inducing the disulfide. These observations are relevant in vivo because transgenic knockin mice in which the cysteine 42 redox sensor within PKG has been systemically replaced with a redox-dead serine residue are resistant to H
2
S-induced blood pressure lowering. Thus, a primary mechanism by which the reductant molecule H
2
S lowers blood pressure is mediated somewhat paradoxically by the oxidative activation of PKG.
Collapse
Affiliation(s)
- Daniel Stubbert
- From the Cardiovascular Division, King’s College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, United Kigdom
| | - Oleksandra Prysyazhna
- From the Cardiovascular Division, King’s College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, United Kigdom
| | - Olena Rudyk
- From the Cardiovascular Division, King’s College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, United Kigdom
| | - Jenna Scotcher
- From the Cardiovascular Division, King’s College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, United Kigdom
| | - Joseph R. Burgoyne
- From the Cardiovascular Division, King’s College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, United Kigdom
| | - Philip Eaton
- From the Cardiovascular Division, King’s College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, United Kigdom
| |
Collapse
|
33
|
Wolin MS. Novel role for protein kinase g oxidative activation in the vasodilator and antihypertensive actions of hydrogen sulfide. Hypertension 2014; 64:1196-7. [PMID: 25267797 DOI: 10.1161/hypertensionaha.114.04376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael S Wolin
- From the Department of Physiology and Pulmonary Hypertension Center, New York Medical College, Valhalla, NY.
| |
Collapse
|
34
|
Hoffmann LS, Chen HH. cGMP: transition from bench to bedside: a report of the 6th International Conference on cGMP Generators, Effectors and Therapeutic Implications. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:707-18. [PMID: 24927824 DOI: 10.1007/s00210-014-0999-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Essential physiological homeostatic processes such as vascular tone, fluid balance, cardiorenal function, and sensory processes are regulated by the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP). Dysregulation of cGMP-dependent pathways plays an important role in cardiovascular diseases such as hypertension, pulmonary hypertension, heart failure, or erectile dysfunction. Thus, the cGMP pathway consisting of the cGMP-generating guanylyl cyclases, protein kinases, and phosphodiesterases (PDE) has evolved to an important drug target and is the focus of a wide variety of research fields ranging from unraveling mechanisms on the molecular level to understanding the regulation of physiological and pathophysiological processes by cGMP. Based on the results from basic and preclinical research, therapeutic drugs have been developed which modulate the cGMP pathway and are investigated in clinical trials. Riociguat, a nitric oxide (NO)-independent soluble guanylyl cyclase stimulator; recombinant B-type natriuretic peptide (BNP); or recombinant atrial natriuretic peptide (ANP) and PDE5 inhibitors are cGMP-modulating drugs that are already available for the treatment of pulmonary hypertension, acute heart failure, and erectile dysfunction, respectively. The latest results from basic to clinical research on cGMP were presented on the 6th International Conference on cGMP in Erfurt, Germany, and are summarized in this article.
Collapse
Affiliation(s)
- Linda S Hoffmann
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany,
| | | |
Collapse
|
35
|
Rudyk O, Eaton P. Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2014; 2:803-13. [PMID: 25009782 PMCID: PMC4085346 DOI: 10.1016/j.redox.2014.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/11/2023] Open
Abstract
Oxidative post-translational modifications of proteins resulting from events that increase cellular oxidant levels play important roles in physiological and pathophysiological processes. Evaluation of alterations to protein redox states is increasingly common place because of methodological advances that have enabled detection, quantification and identification of such changes in cells and tissues. This mini-review provides a synopsis of biochemical methods that can be utilized to monitor the array of different oxidative and electrophilic modifications that can occur to protein thiols and can be important in the regulatory or maladaptive impact oxidants can have on biological systems. Several of the methods discussed are valuable for monitoring the redox state of established redox sensing proteins such as Keap1.
Collapse
Affiliation(s)
- Olena Rudyk
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip Eaton
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
36
|
Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase. Proc Natl Acad Sci U S A 2014; 111:8167-72. [PMID: 24843165 DOI: 10.1073/pnas.1402965111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Soluble epoxide hydrolase (sEH) is inhibited by electrophilic lipids by their adduction to Cys521 proximal to its catalytic center. This inhibition prevents hydrolysis of the enzymes' epoxyeicosatrienoic acid (EET) substrates, so they accumulate inducing vasodilation to lower blood pressure (BP). We generated a Cys521Ser sEH redox-dead knockin (KI) mouse model that was resistant to this mode of inhibition. The electrophilic lipid 10-nitro-oleic acid (NO2-OA) inhibited hydrolase activity and also lowered BP in an angiotensin II-induced hypertension model in wild-type (WT) but not KI mice. Furthermore, EET/dihydroxy-epoxyeicosatrienoic acid isomer ratios were elevated in plasma from WT but not KI mice following NO2-OA treatment, consistent with the redox-dead mutant being resistant to inhibition by lipid electrophiles. sEH was inhibited in WT mice fed linoleic acid and nitrite, key constituents of the Mediterranean diet that elevates electrophilic nitro fatty acid levels, whereas KIs were unaffected. These observations reveal that lipid electrophiles such as NO2-OA mediate antihypertensive signaling actions by inhibiting sEH and suggest a mechanism accounting for protection from hypertension afforded by the Mediterranean diet.
Collapse
|
37
|
Satoh K. Globotriaosylceramide induces endothelial dysfunction in fabry disease. Arterioscler Thromb Vasc Biol 2014; 34:2-4. [PMID: 24335674 DOI: 10.1161/atvbaha.113.302744] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
38
|
Abstract
Sulfhydryl-dependent formation of interprotein disulfide bonds in response to physiological oxidative stimuli is emerging as an important mechanism in the regulation of various biological activities. Soluble guanylyl cyclase (sGC) and cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) are key enzymes for actions caused by cGMP-elevating agents, including nitric oxide (NO). Both sGC and PKG are dimers. The dimerization of sGC is obligatory for its activity, whereas the dimerization of PKG improving its signaling efficacy. sGC dimerization is decreased by endogenous and exogenous thiol reductants, associated with reduced cGMP elevation and attenuated vasodilatation to NO. The dimerization of PKG Iα is increased by oxidative stress, coincident with improved PKG signaling and augmented vasodilatation to NO. In coronary arteries, the dimerizations and activities of sGC and PKG are increased by hypoxia, accompanied by enhanced relaxation induced by NO. In contrast, the dimerizations and activities of these enzymes and NO-induced relaxation of pulmonary arteries are reduced by hypoxia. These opposite effects may result from divergent changes in the redox status of cytoplasmic reduced nicotinamide adenine dinucleotide phosphate between coronary and pulmonary arteries in response to hypoxia.
Collapse
|
39
|
Hess DT, Stamler JS. Editorial for “Methods for Analysis of Nitric Oxide Signalling by S-nitrosylation”. Methods 2013; 62:121-2. [DOI: 10.1016/j.ymeth.2013.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Abstract
Sepsis is a common life-threatening clinical syndrome involving complications as a result of severe infection. A cardinal feature of sepsis is inflammation that results in oxidative stress. Sepsis in wild-type mice induced oxidative activation of cGMP-dependent protein kinase 1 alpha (PKG Iα), which increased blood vessel dilation and permeability, and also lowered cardiac output. These responses are typical features of sepsis and their combined effect is a lowering of blood pressure. This hypotension, a hallmark of sepsis, resulted in underperfusion of end organs, resulting in their damage. A central role for PKG Iα oxidative activation in injury is supported by oxidation-resistant Cys42Ser PKG Iα knock-in mice being markedly protected from these clinical indices of injury during sepsis. We conclude that oxidative activation of PKG Iα is a key mediator of hypotension and consequential organ injury during sepsis.
Collapse
|
41
|
Neo BH, Patel D, Kandhi S, Wolin MS. Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α. Am J Physiol Heart Circ Physiol 2013; 305:H330-43. [PMID: 23709600 DOI: 10.1152/ajpheart.01010.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The activity of glucose-6-phosphate dehydrogenase (G6PD) appears to control a vascular smooth muscle relaxing mechanism regulated through cytosolic NADPH oxidation. Since our recent studies suggest that thiol oxidation-elicited dimerization of the 1α form of protein kinase G (PKG1α) contributes to the relaxation of isolated endothelium-removed bovine pulmonary arteries (BPA) to peroxide and responses to hypoxia, we investigated whether cytosolic NADPH oxidation promoted relaxation by PKG1α dimerization. Relaxation of BPA to G6PD inhibitors 6-aminonicotinamide (6-AN) and epiandrosterone (studied under hypoxia to minimize basal levels of NADPH oxidation and PKG1α dimerization) was associated with increased PKG1α dimerization and PKG-mediated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Depletion of PKG1α by small inhibitory RNA (siRNA) inhibited relaxation of BPA to 6-AN and attenuated the increase in VASP phosphorylation. Relaxation to 6-AN did not appear to be altered by depletion of soluble guanylate cyclase (sGC). Depletion of G6PD, thioredoxin-1 (Trx-1), and Trx reductase-1 (TrxR-1) in BPA with siRNA increased PKG1α dimerization and VASP phosphorylation and inhibited force generation under aerobic and hypoxic conditions. Depletion of TrxR-1 with siRNA inhibited the effects of 6-AN and enhanced similar responses to peroxide. Peroxiredoxin-1 depletion by siRNA inhibited PKG dimerization to peroxide, but it did not alter PKG dimerization under hypoxia or the stimulation of dimerization by 6-AN. Thus regulation of cytosolic NADPH redox by G6PD appears to control PKG1α dimerization in BPA through its influence on Trx-1 redox regulation by the NADPH dependence of TrxR-1. NADPH regulation of PKG dimerization may contribute to vascular responses to hypoxia that are associated with changes in NADPH redox.
Collapse
Affiliation(s)
- Boon Hwa Neo
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
42
|
Page NA, Fung HL. Organic nitrate metabolism and action: toward a unifying hypothesis and the future-a dedication to Professor Leslie Z. Benet. J Pharm Sci 2013; 102:3070-81. [PMID: 23670666 DOI: 10.1002/jps.23550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 12/23/2022]
Abstract
This review summarizes the major advances that had been reported since the outstanding contributions that Professor Benet and his group had made in the 1980s and 1990s concerning the metabolism and pharmacologic action of organic nitrates (ORNs). Several pivotal studies have now enhanced our understanding of the metabolism and the bioactivation of ORNs, resulting in the identification of a host of cysteine-containing enzymes that can carry out this function. Three isoforms of aldehyde dehydrogenase, all of which with active catalytic cysteine sites, are now known to metabolize, somewhat selectively, various members of the ORN family. The existence of a long-proposed but unstable thionitrate intermediate from ORN metabolism has now been experimentally observed. ORN-induced thiol oxidation in multiple proteins, called the "thionitrate oxidation hypothesis," can be used not only to explain the phenomenon of nitrate tolerance, but also the various consequences of chronic nitrate therapy, namely, rebound vasoconstriction, and increased morbidity and mortality. Thus, a unifying biochemical hypothesis can account for the myriad of pharmacological events resulting from nitrate therapy. Optimization of the future uses of ORN in cardiology and other diseases could benefit from further elaboration of this unifying hypothesis.
Collapse
Affiliation(s)
- Nathaniel A Page
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
43
|
Müller PM, Gnügge R, Dhayade S, Thunemann M, Krippeit-Drews P, Drews G, Feil R. H₂O₂ lowers the cytosolic Ca²⁺ concentration via activation of cGMP-dependent protein kinase Iα. Free Radic Biol Med 2012; 53:1574-83. [PMID: 22922339 DOI: 10.1016/j.freeradbiomed.2012.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022]
Abstract
The cGMP-dependent protein kinase I (cGKI) is a key mediator of cGMP signaling, but the specific functions of its two isoforms, cGKIα and cGKIβ, are poorly understood. Recent studies indicated a novel cGMP-independent role for cGKIα in redox sensing. To dissect the effects of oxidative stress on the cGKI isoforms, we used mouse embryonic fibroblasts and vascular smooth muscle cells (VSMCs) expressing both, one, or none of them. In cGKIα-expressing cells, but not in cells expressing only cGKIβ, incubation with H₂O₂ induced the formation of a disulfide bond between the two identical subunits of the dimeric enzyme. Oxidation of cGKIα was associated with increased phosphorylation of its substrate, vasodilator-stimulated phosphoprotein. H₂O₂ did not stimulate cGMP production, indicating that it activates cGKIα directly via oxidation. Interestingly, there was a mutual influence of H₂O₂ and cGMP on cGKI activity and disulfide bond formation, respectively; preoxidation of the kinase with H₂O₂ slightly impaired its activation by cGMP, whereas preactivation of the enzyme with cGMP attenuated its oxidation by H₂O₂. To evaluate the functional relevance of the noncanonical H₂O₂-cGKIα pathway, we studied the regulation of the cytosolic Ca²⁺ concentration ([Ca²⁺](i)). H₂O₂ suppressed norepinephrine-induced Ca²⁺ transients in cGKIα-expressing VSMCs and, to a lower extent, in VSMCs expressing only cGKIβ or none of the isoforms. Thus, H₂O₂ lowers [Ca²⁺](i) mainly via a cGKIα-dependent pathway. These results indicate that oxidative stress selectively targets the cGKIα isoform, which then modulates cellular processes in a cGMP-independent manner. A decrease in [Ca²⁺](i) in VSMCs via activation of cGKIα might be a major mechanism of H₂O₂-induced vasodilation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium/metabolism
- Cells, Cultured
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- Cytosol/metabolism
- Disulfides/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/enzymology
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/enzymology
- Hydrogen Peroxide/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Oxidants/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
- Paul Markus Müller
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|