1
|
Wang Z, Chu R, Ge H, Zhu Z, Zhang R, Han D, Fang R, Wang N, Gao S, Wang Y, Han Y, Wang Q. GRK2-facilitated TLR4 signaling promotes cardiac fibrosis in rheumatic mice. Int Immunopharmacol 2025; 157:114709. [PMID: 40339495 DOI: 10.1016/j.intimp.2025.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/25/2025] [Accepted: 04/20/2025] [Indexed: 05/10/2025]
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) have a much higher prevalence of cardiac dysfunction, which explains the high mortality rate in RA patients despite treatment with anti-arthritic drugs. This study elucidates a molecular mechanism that causes abnormal activation of cardiac fibroblasts in the inflammatory state of RA through transactivation of canonical TLR4 signaling by GRK2-dependent signaling mechanisms, and which ultimately induces heart disease. METHODS AND RESULTS Collagen-induced arthritis (CIA) models were established in mice, and the cardiac function in these CIA mice was dynamically examined using echocardiography. Cardiac diastolic and systolic dysfunction appeared and persisted in the hearts of CIA mice even after joint inflammation subsides, and significant fibrosis occurred in the cardiac tissue. TLR4 expression was elevated in the hearts of CIA mice which was associated with cardiac fibrosis. Cardiac fibroblasts from CIA mice undergo aberrant proliferation and a significant increase in NF-κB p65 nuclear translocation. Treatment with the specific TLR4 inhibitor, TAK-242, effectively protected CIA mice from cardiac fibrosis and cardiac diastolic dysfunction. Cardiac function was effectively rescued by administration of the GRK2 inhibitor paroxetine and carvedilol as well, with a concomitant reduction in NF-κB nuclear localization. In cardiac tissues of CIA mice, elevated levels of GRK2 expression thereby cause cardiac fibroblasts to undergo transdifferentiation. CONCLUSION GRK2 transactivates TLR4 signaling, which promoted cardiac fibroblast transdifferentiation. Furthermore, GRK2 inhibition effectively mitigated myocardial fibrosis and protected cardiac function, which offered an important strategy to protect RA patients from heart failure.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Hui Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Renhao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Nan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shan Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Yongsheng Wang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China..
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
2
|
Fu J, Su C, Ge Y, Ao Z, Xia L, Chen Y, Yang Y, Chen S, Xu R, Yang X, Huang K, Fu Q. PDE4D inhibition ameliorates cardiac hypertrophy and heart failure by activating mitophagy. Redox Biol 2025; 81:103563. [PMID: 40015131 PMCID: PMC11909752 DOI: 10.1016/j.redox.2025.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Cyclic adenosine monophosphate (cAMP) plays a major role in normal and pathologic signaling in the heart. Phosphodiesterase 4 (PDE4) is a major PDE degrading cAMP in the heart. There are inconsistencies concerning the roles of the PDE4 isoforms 4B and 4D in regulation of cardiac function. Cardiac PDE4B overexpression is beneficial in remodeling and heart failure (HF), however, the effect of PDE4D and PDE4 inhibitor in HF remains unclear. We generated global and conditional cardiac-specific heterozygous PDE4D knockout mice and adeno-associated virus serotype 9-PDE4D overexpression to determine the role of PDE4D in cardiac hypertrophy and HF. PDE4D upregulation was observed in failing hearts from human and isoproterenol injection and TAC mice. In vitro, isoproterenol stimulation increased PDE4D expression via PKA but had no effect on PDE4B expression in cardiomyocytes. PDE4D overexpression per se induced oxidative stress, mitochondrial damage and cardiomyocyte hypertrophy by decreasing PINK1/Parkin-mediated mitophagy through inhibiting cAMP-PKA-CREB-Sirtuin1 (SIRT1) signaling pathway, while PDE4B overexpression did not affect CREB-SIRT1 pathway and mitophagy but exhibited a protective effect on isoproterenol-induced oxidative stress and hypertrophy in cardiomyocytes. PDE4D silencing or inhibition with PDE4 inhibitor roflumilast ameliorated isoproterenol-induced mitochondrial injury and cardiomyocyte hypertrophy. In vivo, ISO injection or TAC inhibited cardiac mitophagy and caused cardiac hypertrophy and HF, which were ameliorated by roflumilast or cardiac-specific PDE4D haploinsufficiency. Conversely, cardiac PDE4D overexpression suppressed cardiac mitophagy and abolished the protective effects of global PDE4D haploinsufficiency on TAC-induced cardiac hypertrophy and HF. In conclusion, these studies elucidate a novel mechanism by which sustained adrenergic stimulation contributes to cardiac hypertrophy and HF by increasing PDE4D via cAMP-PKA signaling, which in turn reduces cAMP-PKA activity, resulting in cardiomyocyte hypertrophy and mitochondrial injury via inhibition of CREB-SIRT1 signaling-mediated mitophagy. PDE4D inhibition may represent a novel therapeutic strategy for HF.
Collapse
Affiliation(s)
- Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Congping Su
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Ge
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Ao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xia
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxiang Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizheng Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiwei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
| |
Collapse
|
3
|
Zhu Z, Guan Q, Xu B, Bahriz S, Shen A, West TM, Zhang Y, Deng B, Wei W, Han Y, Wang Q, Xiang YK. Inhibition of the upregulated phosphodiesterase 4D isoforms improves SERCA2a function in diabetic cardiomyopathy. Br J Pharmacol 2025; 182:1487-1507. [PMID: 39662482 DOI: 10.1111/bph.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) is impaired in heart failure. Phosphodiesterases (PDEs) are implicated in the modulation of local cAMP signals and protein kinase A (PKA) activity essential for cardiac function. We characterise PDE isoforms that underlie decreased activities of SERCA2a and reduced cardiac contractile function in diabetic cardiomyopathy. EXPERIMENTAL APPROACH Wild type mice were fed with either normal chow or a high-fat diet (HFD). Cardiomyocytes were isolated for excitation-contraction coupling (ECC), fluorescence resonant energy transfer PKA biosensor and proximity ligation assays. KEY RESULTS The upregulated PDE4D3 and PDE4D9 isoforms in HFD cardiomyocytes specifically bound to SERCA2a but not ryanodine receptor 2 (RyR2) on the sarcoplasmic reticulum (SR). The increased association of PDE4D isoforms with SERCA2a in HFD cardiomyocytes led to reduced local PKA activities and phosphorylation of phospholamban (PLB) but minimally effected the PKA activities and phosphorylation of RyR2. These changes correlate with slower calcium decay tau in the SR and attenuation of ECC in HFD cardiomyocytes. Selective inhibition of PDE4D3 or PDE4D9 restored PKA activities and phosphorylation of PLB at the SERCA2a complex, recovered calcium decay tau, and increased ECC in HFD cardiomyocytes. Therapies with PDE4 inhibitor roflumilast, PDE4D inhibitor BPN14770 or genetical deletion of PDE4D restored PKA phosphorylation of PLB and cardiac contractile function. CONCLUSION AND IMPLICATIONS The current study identifies upregulation of specific PDE4D isoforms that selectively inhibit SERCA2a function in HFD-induced cardiomyopathy, indicating that this remodelling can be targeted to restore cardiac contractility in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, USA
| | - Sherif Bahriz
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Ao Shen
- School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Toni M West
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Yu Zhang
- School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingqing Deng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, USA
| |
Collapse
|
4
|
Dongdem JT, Etornam AE, Beletaa S, Alidu I, Kotey H, Wezena CA. The β 3-Adrenergic Receptor: Structure, Physiopathology of Disease, and Emerging Therapeutic Potential. Adv Pharmacol Pharm Sci 2024; 2024:2005589. [PMID: 39640497 PMCID: PMC11620816 DOI: 10.1155/2024/2005589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
The discovery and characterization of the signal cascades of the β-adrenergic receptors have made it possible to effectively target the receptors for drug development. β-Adrenergic receptors are a class A rhodopsin type of G protein-coupled receptors (GPCRs) that are stimulated mainly by catecholamines and therefore mediate diverse effects of the parasympathetic nervous system in eliciting "fight or flight" type responses. They are detectable in several human tissues where they control a plethora of physiological processes and therefore contribute to the pathogenesis of several disease conditions. Given the relevance of the β-adrenergic receptor as a molecular target for many pathological conditions, this comprehensive review aims at providing an in-depth exploration of the recent advancements in β3-adrenergic receptor research. More importantly, we delve into the prospects of the β3-adrenergic receptor as a therapeutic target across a variety of clinical domains.
Collapse
Affiliation(s)
- Julius T. Dongdem
- Department of Chemical Pathology, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Axandrah E. Etornam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Solomon Beletaa
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Issah Alidu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Hassan Kotey
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Cletus A. Wezena
- Department of Microbiology, Faculty of Biosciences, University for Development Studies, Tamale, Northern Region, Ghana
| |
Collapse
|
5
|
Qi M, Chen TT, Li L, Gao PP, Li N, Zhang SH, Wei W, Sun WY. Insight into the regulatory mechanism of β-arrestin2 and its emerging role in diseases. Br J Pharmacol 2024; 181:3019-3038. [PMID: 38961617 DOI: 10.1111/bph.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
β-arrestin2, a member of the arrestin family, mediates the desensitization and internalization of most G protein-coupled receptors (GPCRs) and functions as a scaffold protein in signalling pathways. Previous studies have demonstrated that β-arrestin2 expression is dysregulated in malignant tumours, fibrotic diseases, cardiovascular diseases and metabolic diseases, suggesting its pathological roles. Transcription and post-transcriptional modifications can affect the expression of β-arrestin2. Furthermore, post-translational modifications, such as phosphorylation, ubiquitination, SUMOylation and S-nitrosylation affect the cellular localization of β-arrestin2 and its interaction with downstream signalling molecules, which further regulate the activity of β-arrestin2. This review summarizes the structure and function of β-arrestin2 and reveals the mechanisms involved in the regulation of β-arrestin2 at multiple levels. Additionally, recent studies on the role of β-arrestin2 in some major diseases and its therapeutic prospects have been discussed to provide a reference for the development of drugs targeting β-arrestin2.
Collapse
Affiliation(s)
- Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
6
|
Talamonti E, Davegardh J, Kalinovich A, van Beek SMM, Dehvari N, Halleskog C, Bokhari HM, Hutchinson DS, Ham S, Humphrys LJ, Dijon NC, Motso A, Sandstrom A, Zacharewicz E, Mutule I, Suna E, Spura J, Ditrychova K, Stoddart LA, Holliday ND, Wright SC, Lauschke VM, Nielsen S, Scheele C, Cheesman E, Hoeks J, Molenaar P, Summers RJ, Pelcman B, Yakala GK, Bengtsson T. The novel adrenergic agonist ATR-127 targets skeletal muscle and brown adipose tissue to tackle diabesity and steatohepatitis. Mol Metab 2024; 85:101931. [PMID: 38796310 PMCID: PMC11258667 DOI: 10.1016/j.molmet.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVE Simultaneous activation of β2- and β3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of β1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel β2-and β3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models. METHODS In the developmental phase, we assessed the impact of ATR-127's on cAMP accumulation in relation to the non-selective β-AR agonist isoprenaline across various rodent β-AR subtypes, including neonatal rat cardiomyocytes. Following these experiments, L6 muscle cells were stimulated with ATR-127 to assess the impact on GLUT4-mediated glucose uptake and intramyocellular cAMP accumulation. Additionally, in vitro, and in vivo assessments are conducted to measure ATR-127's effects on BAT glucose uptake and thermogenesis. Finally, diet-induced obese mice were treated with 5 mg/kg ATR-127 for 21 days to investigate the effects on glucose homeostasis, body weight, fat mass, skeletal muscle glucose uptake, BAT thermogenesis and hepatic steatosis. RESULTS Exposure of L6 muscle cells to ATR-127 robustly enhanced GLUT4-mediated glucose uptake despite low intramyocellular cAMP accumulation. Similarly, ATR-127 markedly increased BAT glucose uptake and thermogenesis both in vitro and in vivo. Prolonged treatment of diet-induced obese mice with ATR-127 dramatically improved glucose homeostasis, an effect accompanied by decreases in body weight and fat mass. These effects were paralleled by an enhanced skeletal muscle glucose uptake, BAT thermogenesis, and improvements in hepatic steatosis. CONCLUSIONS Our results demonstrate that ATR-127 is a highly effective, novel β2- and β3-ARs agonist holding great therapeutic promise for the treatment of obesity and its comorbidities, whilst potentially limiting cardiovascular complications. As such, the therapeutic effects of ATR-127 should be investigated in more detail in clinical studies.
Collapse
Affiliation(s)
| | - Jelena Davegardh
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | - Nodi Dehvari
- Atrogi AB, Tomtebodavagen 6, Solna, Stockholm, Sweden
| | | | | | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Seungmin Ham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Laura J Humphrys
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Nicola C Dijon
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Aikaterini Motso
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | | | - Evelyn Zacharewicz
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ilga Mutule
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Jana Spura
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Karolina Ditrychova
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Leigh A Stoddart
- Excellerate Bioscience, The Triangle, NG2 Business Park, Nottingham, UK
| | - Nicholas D Holliday
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Excellerate Bioscience, The Triangle, NG2 Business Park, Nottingham, UK
| | - Shane C Wright
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Volker M Lauschke
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Tübingen University, Tübingen, Germany
| | - Soren Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Elizabeth Cheesman
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Peter Molenaar
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | - Tore Bengtsson
- Atrogi AB, Tomtebodavagen 6, Solna, Stockholm, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
7
|
Xu B, Bahriz S, Salemme VR, Wang Y, Zhu C, Zhao M, Xiang YK. Differential Downregulation of β 1-Adrenergic Receptor Signaling in the Heart. J Am Heart Assoc 2024; 13:e033733. [PMID: 38860414 PMCID: PMC11255761 DOI: 10.1161/jaha.123.033733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Chronic sympathetic stimulation drives desensitization and downregulation of β1 adrenergic receptor (β1AR) in heart failure. We aim to explore the differential downregulation subcellular pools of β1AR signaling in the heart. METHODS AND RESULTS We applied chronic infusion of isoproterenol to induced cardiomyopathy in male C57BL/6J mice. We applied confocal and proximity ligation assay to examine β1AR association with L-type calcium channel, ryanodine receptor 2, and SERCA2a ((Sarco)endoplasmic reticulum calcium ATPase 2a) and Förster resonance energy transfer-based biosensors to probe subcellular β1AR-PKA (protein kinase A) signaling in ventricular myocytes. Chronic infusion of isoproterenol led to reduced β1AR protein levels, receptor association with L-type calcium channel and ryanodine receptor 2 measured by proximity ligation (puncta/cell, 29.65 saline versus 14.17 isoproterenol, P<0.05), and receptor-induced PKA signaling at the plasma membrane (Förster resonance energy transfer, 28.9% saline versus 1.9% isoproterenol, P<0.05) and ryanodine receptor 2 complex (Förster resonance energy transfer, 30.2% saline versus 10.6% isoproterenol, P<0.05). However, the β1AR association with SERCA2a was enhanced (puncta/cell, 51.4 saline versus 87.5 isoproterenol, P<0.05), and the receptor signal was minimally affected. The isoproterenol-infused hearts displayed decreased PDE4D (phosphodiesterase 4D) and PDE3A and increased PDE2A, PDE4A, and PDE4B protein levels. We observed a reduced role of PDE4 and enhanced roles of PDE2 and PDE3 on the β1AR-PKA activity at the ryanodine receptor 2 complexes and myocyte shortening. Despite the enhanced β1AR association with SERCA2a, the endogenous norepinephrine-induced signaling was reduced at the SERCA2a complexes. Inhibiting monoamine oxidase A rescued the norepinephrine-induced PKA signaling at the SERCA2a and myocyte shortening. CONCLUSIONS This study reveals distinct mechanisms for the downregulation of subcellular β1AR signaling in the heart under chronic adrenergic stimulation.
Collapse
Affiliation(s)
- Bing Xu
- VA Northern California Health Care SystemMatherCAUSA
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| | - Sherif Bahriz
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Clinical Pathology, Faculty of MedicineMansoura UniversityMansouraEgypt
| | | | - Ying Wang
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Pharmacology, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Chaoqun Zhu
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| | - Meimi Zhao
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Pharmaceutical ToxicologyChina Medical UniversityShenyangChina
| | - Yang K. Xiang
- VA Northern California Health Care SystemMatherCAUSA
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| |
Collapse
|
8
|
Ye W, Han K, Xie M, Li S, Chen G, Wang Y, Li T. Mitochondrial energy metabolism in diabetic cardiomyopathy: Physiological adaption, pathogenesis, and therapeutic targets. Chin Med J (Engl) 2024; 137:936-948. [PMID: 38527931 PMCID: PMC11046025 DOI: 10.1097/cm9.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 03/27/2024] Open
Abstract
Diabetic cardiomyopathy is defined as abnormal structure and function of the heart in the setting of diabetes, which could eventually develop heart failure and leads to the death of the patients. Although blood glucose control and medications to heart failure show beneficial effects on this disease, there is currently no specific treatment for diabetic cardiomyopathy. Over the past few decades, the pathophysiology of diabetic cardiomyopathy has been extensively studied, and an increasing number of studies pinpoint that impaired mitochondrial energy metabolism is a key mediator as well as a therapeutic target. In this review, we summarize the latest research in the field of diabetic cardiomyopathy, focusing on mitochondrial damage and adaptation, altered energy substrates, and potential therapeutic targets. A better understanding of the mitochondrial energy metabolism in diabetic cardiomyopathy may help to gain more mechanistic insights and generate more precise mitochondria-oriented therapies to treat this disease.
Collapse
Affiliation(s)
- Wanlin Ye
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kun Han
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, Division of Guideline and Rapid Recommendation, Cochrane China Center, MAGIC China Center, Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guo Chen
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyan Wang
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
10
|
Wang X, Yang J, Lu C, Hu Y, Xu Z, Wan Q, Zhang M, Shi T, Liu Z, Liu Y. Qifu Yixin Formula Improves Heart Failure by Enhancing β-Arrestin2 Mediated the SUMOylation of SERCA2a. Drug Des Devel Ther 2024; 18:781-799. [PMID: 38500692 PMCID: PMC10946281 DOI: 10.2147/dddt.s446324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose This study aimed to elucidate the protective mechanism of Traditional Chinese Medicine (TCM) Qifu Yixin formula (QFYXF) to improve heart failure (HF) by promoting β-arrestin2 (β-arr2)-mediated SERCA2a SUMOylation. Materials and Methods The transverse aortic constriction (TAC)-induced HF mice were treated with QFYXF or carvedilol for 8 weeks. β-arr2-KO mice and their littermate wild-type (WT) mice were used as controls. Neonatal rat cardiomyocytes (NRCMs) were used in vitro. Cardiac function was evaluated by echocardiography and serum NT-proBNP. Myocardial hypertrophy and myocardial fibrosis were assessed by histological staining. β-arr2, SERCA2a, SUMO1, PLB and p-PLB expressions were detected by Western blotting, immunofluorescence and immunohistochemistry. SERCA2a SUMOylation was detected by Co-IP. The molecular docking method was used to predict the binding ability of the main active components of QFYXF to β-arr2, SERCA2a, and SUMO1, and the binding degree of SERCA2a to SUMO1 protein. Results The HF model was constructed 8 weeks after TAC. QFYXF ameliorated cardiac function, inhibiting myocardial hypertrophy and fibrosis. QFYXF promoted SERCA2a expression and SERCA2a SUMOylation. Further investigation showed that QFYXF promoted β-arr2 expression, whereas Barbadin (β-arr2 inhibitor) or β-arr2-KO reduced SERCA2a SUMOylation and attenuated the protective effect of QFYXF improved HF. Molecular docking showed that the main active components of QFYXF had good binding activities with β-arr2, SERCA2a, and SUMO1, and SERCA2a had a high binding degree with SUMO1 protein. Conclusion QFYXF improves HF by promoting β-arr2 mediated SERCA2a SUMOylation and increasing SERCA2a expression.
Collapse
Affiliation(s)
- Xinting Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Jiahui Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Cheng Lu
- Department of Cardiology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, People’s Republic of China
| | - Yinqin Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Zhaohui Xu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Qiqi Wan
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Meng Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Tianyun Shi
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Zhirui Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Yongming Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| |
Collapse
|
11
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Xu J, Xiao H, He K, Zhang Y. Crosstalk between adrenergic receptors and catalytic receptors. CURRENT OPINION IN PHYSIOLOGY 2023; 36:100718. [DOI: 10.1016/j.cophys.2023.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Guven B, Onay-Besikci A. Past and present of beta arrestins: A new perspective on insulin secretion and effect. Eur J Pharmacol 2023; 956:175952. [PMID: 37541367 DOI: 10.1016/j.ejphar.2023.175952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Beta arrestins had been known as intracellular adaptors that uncouple and inactivate the G protein-coupled receptors that they interact with. Their roles as signal initiators for some receptors have recently been recognized. SCOPE OF REVIEW In this review, we focused on their role in mediating metabolic modulation primarily in relation to insulin signaling. Commenced by the upstream receptor, they seem to act like intracellular hubs that divert the metabolic profile of the cell. The amount of metabolic substrates in circulation and their usage/deposition by tissues are controlled by the contribution of all systems in the organism. This control is enabled by the release of hormones such as insulin, glucagon and glucagon-like peptide-1. Intriguingly, some ligands -either agonists or antagonists-of different classes of receptors have preferential properties mediated by β arrestins. This is not surprizing considering that substrate supply and usage should parallel physiological function such as hormone release or muscle contraction. MAJOR CONCLUSIONS Available data indicate that β arrestins conduct the regulatory role in insulin secretion and action. They may be good candidates to target when the upstream signal demands the function that may compromise the cell. An example is carvedilol that is protective by preventing the stimulatory effects of excessive catecholamines, stimulates mitochondrial function and has preferential clinical outcomes in metabolic disorders.
Collapse
Affiliation(s)
- Berna Guven
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey.
| |
Collapse
|
14
|
Zhu ZD, Zhang M, Wang Z, Jiang CR, Huang CJ, Cheng HJ, Guan QY, Su TT, Wang MM, Gao Y, Wu HF, Wei W, Han YS, Wang QT. Chronic β-adrenergic stress contributes to cardiomyopathy in rodents with collagen-induced arthritis. Acta Pharmacol Sin 2023; 44:1989-2003. [PMID: 37268711 PMCID: PMC10545746 DOI: 10.1038/s41401-023-01099-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
Patients with rheumatoid arthritis (RA) have a much higher incidence of cardiac dysfunction, which contributes to the high mortality rate of RA despite anti-arthritic drug therapy. In this study, we investigated dynamic changes in cardiac function in classic animal models of RA and examined the potential effectors of RA-induced heart failure (HF). Collagen-induced arthritis (CIA) models were established in rats and mice. The cardiac function of CIA animals was dynamically monitored using echocardiography and haemodynamics. We showed that cardiac diastolic and systolic dysfunction occurred in CIA animals and persisted after joint inflammation and that serum proinflammatory cytokine (IL-1β, TNF-α) levels were decreased. We did not find evidence of atherosclerosis (AS) in arthritic animals even though cardiomyopathy was significant. We observed that an impaired cardiac β1AR-excitation contraction coupling signal was accompanied by sustained increases in blood epinephrine levels in CIA rats. Furthermore, serum epinephrine concentrations were positively correlated with the heart failure biomarker NT-proBNP in RA patients (r2 = +0.53, P < 0.0001). In CIA mice, treatment with the nonselective βAR blocker carvedilol (2.5 mg·kg-1·d-1, for 4 weeks) or the specific GRK2 inhibitor paroxetine (2.5 mg·kg-1·d-1, for 4 weeks) effectively rescued heart function. We conclude that chronic and persistent β-adrenergic stress in CIA animals is a significant contributor to cardiomyopathy, which may be a potential target for protecting RA patients against HF.
Collapse
Affiliation(s)
- Zhen-Duo Zhu
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Zhang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhen Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Chun-Ru Jiang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Chong-Jian Huang
- Department of Emergency Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hui-Juan Cheng
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Qiu-Yun Guan
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Tian-Tian Su
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Man-Man Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yi Gao
- Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Hong-Fei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230038, China
| | - Wei Wei
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yong-Sheng Han
- Department of Emergency Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Qing-Tong Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
15
|
Tanaka Y, Nagoshi T, Takahashi H, Oi Y, Yasutake R, Yoshii A, Kimura H, Kashiwagi Y, Tanaka TD, Shimoda M, Yoshimura M. URAT1 is expressed in cardiomyocytes and dotinurad attenuates the development of diet-induced metabolic heart disease. iScience 2023; 26:107730. [PMID: 37694143 PMCID: PMC10483053 DOI: 10.1016/j.isci.2023.107730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
We recently reported that the selective inhibition of urate transporter-1 (URAT1), which is primarily expressed in the kidneys, ameliorates insulin resistance by attenuating hepatic steatosis and improving brown adipose tissue function in diet-induced obesity. In this study, we evaluated the effects of dotinurad, a URAT1-selective inhibitor, on the hearts of high-fat diet (HFD)-fed obese mice for 16-20 weeks and on neonatal rat cardiomyocytes (NRCMs) exposed to palmitic acid. Outside the kidneys, URAT1 was also expressed in cardiomyocytes and indeed worked as a uric acid transporter. Dotinurad substantially attenuated HFD-induced cardiac fibrosis, inflammatory responses, and cardiac dysfunction. Intriguingly, among various factors related to the pathophysiology of diet-induced obesity, palmitic acid significantly increased URAT1 expression in NRCMs and subsequently induced apoptosis, oxidative stress, and inflammatory responses via MAPK pathway, all of which were reduced by dotinurad. These results indicate that URAT1 is a potential therapeutic target for metabolic heart disease.
Collapse
Affiliation(s)
- Yoshiro Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hirotake Takahashi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yuhei Oi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Rei Yasutake
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Akira Yoshii
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Haruka Kimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yusuke Kashiwagi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Toshikazu D. Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
16
|
Li M, Gao S, Kang M, Zhang X, Lan P, Wu X, Yan X, Dang H, Zheng J. Quercitrin alleviates lipid metabolism disorder in polycystic ovary syndrome-insulin resistance by upregulating PM20D1 in the PI3K/Akt pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154908. [PMID: 37321077 DOI: 10.1016/j.phymed.2023.154908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/08/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Abnormal endocrine metabolism caused by polycystic ovary syndrome combined with insulin resistance (PCOS-IR) poses a serious risk to reproductive health in females. Quercitrin is a flavonoid that can efficiently improve both endocrine and metabolic abnormalities. However, it remains unclear if this agent can exert therapeutic effect on PCOS-IR. METHODS The present study used a combination of metabolomic and bioinformatic methods to screen key molecules and pathways involved in PCOS-IR. A rat model of PCOS-IR and an adipocyte IR model were generated to investigate the role of quercitrin in regulating reproductive endocrine and lipid metabolism processes in PCOS-IR. RESULTS Peptidase M20 domain containing 1 (PM20D1) was screened using bioinformatics to evaluate its participation in PCOS-IR. PCOS-IR regulation via the PI3K/Akt signaling pathway was also investigated. Experimental analysis showed that PM20D1 levels were reduced in insulin-resistant 3T3-L1 cells and a letrozole PCOS-IR rat model. Reproductive function was inhibited, and endocrine metabolism was abnormal. The loss of adipocyte PM20D1 aggravated IR. In addition, PM20D1 and PI3K interacted with each other in the PCOS-IR model. Furthermore, the PI3K/Akt signaling pathway was shown to participate in lipid metabolism disorders and PCOS-IR regulation. Quercitrin reversed these reproductive and metabolic disorders. CONCLUSION PM20D1 and PI3K/Akt were required for lipolysis and endocrine regulation in PCOS-IR to restore ovarian function and maintain normal endocrine metabolism. By upregulating the expression of PM20D1, quercitrin activated the PI3K/Akt signaling pathway, improved adipocyte catabolism, corrected reproductive and metabolic abnormalities, and had a therapeutic effect on PCOS-IR.
Collapse
Affiliation(s)
- Meihe Li
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China; Institute of Organ Transplantation, Xi'an Jiaotong University, 710061, China
| | - Shan Gao
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Institute of Organ Transplantation, Xi'an Jiaotong University, 710061, China
| | - Minchao Kang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xuan Zhang
- Health Science Center of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Lan
- Department of Nephrology, Hospital of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaofei Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jin Zheng
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China; Institute of Organ Transplantation, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
17
|
Beasley HK, Wanjalla CN, Kirabo A, Hinton A. β 2ARs: double edge sword in heart function. Trends Mol Med 2023; 29:422-424. [PMID: 36990857 PMCID: PMC10499308 DOI: 10.1016/j.molmed.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Deng and colleagues highlight the importance of understanding the divergent roles of β2-adrenoceptor (β2AR) in high-fat diet-induced heart failure. β2AR signaling has beneficial and detrimental effects depending on the context and level of activation. We discuss the importance of these findings and their implications in developing effective and safe therapies.
Collapse
Affiliation(s)
- Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Chadalavada S, Reinikainen J, Andersson J, Di Castelnuovo A, Iacoviello L, Jousilahti P, Kårhus LL, Linneberg A, Söderberg S, Tunstall-Pedoe H, Lekadir K, Aung N, Jensen MT, Kuulasmaa K, Niiranen TJ, Petersen SE. Diabetes and heart failure associations in women and men: Results from the MORGAM consortium. Front Cardiovasc Med 2023; 10:1136764. [PMID: 37180793 PMCID: PMC10167048 DOI: 10.3389/fcvm.2023.1136764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Background Diabetes and its cardiovascular complications are a growing concern worldwide. Recently, some studies have demonstrated that relative risk of heart failure (HF) is higher in women with type 1 diabetes (T1DM) than in men. This study aims to validate these findings in cohorts representing five countries across Europe. Methods This study includes 88,559 (51.8% women) participants, 3,281 (46.3% women) of whom had diabetes at baseline. Survival analysis was performed with the outcomes of interest being death and HF with a follow-up time of 12 years. Sub-group analysis according to sex and type of diabetes was also performed for the HF outcome. Results 6,460 deaths were recorded, of which 567 were amongst those with diabetes. Additionally, HF was diagnosed in 2,772 individuals (446 with diabetes). A multivariable Cox proportional hazard analysis showed that there was an increased risk of death and HF (hazard ratio (HR) of 1.73 [1.58-1.89] and 2.12 [1.91-2.36], respectively) when comparing those with diabetes and those without. The HR for HF was 6.72 [2.75-16.41] for women with T1DM vs. 5.80 [2.72-12.37] for men with T1DM, but the interaction term for sex differences was insignificant (p for interaction 0.45). There was no significant difference in the relative risk of HF between men and women when both types of diabetes were combined (HR 2.22 [1.93-2.54] vs. 1.99 [1.67-2.38] respectively, p for interaction 0.80). Conclusion Diabetes is associated with increased risks of death and heart failure, and there was no difference in relative risk according to sex.
Collapse
Affiliation(s)
- Sucharitha Chadalavada
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Jaakko Reinikainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Jonas Andersson
- Department of Public Health and Clinical Medicine, Skellefteå Research Unit, Umeå University, Skellefteå, Sweden
| | | | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
- Research Center in Epidemiology and Preventive Medicine-EPIMED, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Line Lund Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Hugh Tunstall-Pedoe
- Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, Dundee, United Kingdom
| | - Karim Lekadir
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques and Informàtica, Universitat de Barcelona, Barcelona, Spain
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Magnus T Jensen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, Herlev, Denmark
| | - Kari Kuulasmaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Teemu J Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Internal Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
- Health Data Research UK, London, United Kingdom
- National Institute for Health and Care Research, London, United Kingdom
| |
Collapse
|
19
|
Deng J, Yan F, Tian J, Qiao A, Yan D. Potential clinical biomarkers and perspectives in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:35. [PMID: 36871006 PMCID: PMC9985231 DOI: 10.1186/s13098-023-00998-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a serious cardiovascular complication and the leading cause of death in diabetic patients. Patients typically do not experience any symptoms and have normal systolic and diastolic cardiac functions in the early stages of DCM. Because the majority of cardiac tissue has already been destroyed by the time DCM is detected, research must be conducted on biomarkers for early DCM, early diagnosis of DCM patients, and early symptomatic management to minimize mortality rates among DCM patients. Most of the existing implemented clinical markers are not very specific for DCM, especially in the early stages of DCM. Recent studies have shown that a number of new novel markers, such as galactin-3 (Gal-3), adiponectin (APN), and irisin, have significant changes in the clinical course of the various stages of DCM, suggesting that we may have a positive effect on the identification of DCM. As a summary of the current state of knowledge regarding DCM biomarkers, this review aims to inspire new ideas for identifying clinical markers and related pathophysiologic mechanisms that could be used in the early diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Jianxin Deng
- Department of Endocrinology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, No. 3002, Sungang West Road, Futian District, Shenzhen, 518035, Guangdong Province, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, 611137, Sichuan Province, China
| | - Jinglun Tian
- Department of Geriatrics, the Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, 611130, China
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, Guangdong Province, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, No. 3002, Sungang West Road, Futian District, Shenzhen, 518035, Guangdong Province, China.
| |
Collapse
|
20
|
de Moura AL, Brum PC, de Carvalho AETS, Spadari RC. Effect of stress on the chronotropic and inotropic responses to β-adrenergic agonists in isolated atria of KOβ2 mice. Life Sci 2023; 322:121644. [PMID: 37004731 DOI: 10.1016/j.lfs.2023.121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Altered sensitivity to the chronotropic and inotropic effects of catecholamines and reduction in β1/β2-adrenoceptor (β1/β2-AR) ratio were reported in failing and in senescent human heart, as well as in isolated atria and ventricle of rats submitted to stress. This was due to downregulation of β1-AR with or without up-regulation of β2-AR. AIMS To investigate the stress-induced behavior of β1-AR in the heart of mice expressing a non-functional β2-AR subtype. The guiding hypothesis is that the absence of β2-AR signaling will not affect the behavior of β1-AR during stress and that those are independent processes. MATERIALS AND METHODS The chronotropic and inotropic responses to β-AR agonists in isolated atria of stressed mice expressing a non-functional β2-AR were analyzed. The mRNA and protein expressions of β1- and β2-AR were also determined. KEY FINDINGS No deaths were observed in mice under stress protocol. Atria of stressed mice displayed reduced sensitivity to isoprenaline compared to the controls, an effect that was abolished by the β2- and β1-AR antagonists 50 nM ICI118,551 and 300 nM CGP20712A, respectively. Sensitivity and maximum response to the β-agonists dobutamine and salbutamol were not altered by stress or ICI118,551. The responses to dobutamine and salbutamol were prevented by CGP20712A. The expression of β1-AR was reduced at protein levels. SIGNIFICANCE Collectively, our data provide evidence that the cardiac β2-AR is not essential for survival in a stressful situation and that the stress-induced reduction of β1-AR expression was independent of the β2-AR presence.
Collapse
|
21
|
Jovanovic A, Xu B, Zhu C, Ren D, Wang H, Krause-Hauch M, Abel ED, Li J, Xiang YK. Characterizing Adrenergic Regulation of Glucose Transporter 4-Mediated Glucose Uptake and Metabolism in the Heart. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
22
|
Deng B, Zhang Y, Zhu C, Wang Y, Weatherford E, Xu B, Liu X, Conway SJ, Abel ED, Xiang YK. Divergent Actions of Myofibroblast and Myocyte β 2-Adrenoceptor in Heart Failure and Fibrotic Remodeling. Circ Res 2023; 132:106-108. [PMID: 36458552 PMCID: PMC9985902 DOI: 10.1161/circresaha.122.321816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Bingqing Deng
- Department of Pharmacology, University of California at Davis (B.D., Y.Z., C.Z., Y.W., B.X., X.L., Y.K.X.)
| | - Yu Zhang
- Department of Pharmacology, University of California at Davis (B.D., Y.Z., C.Z., Y.W., B.X., X.L., Y.K.X.)
| | - Chaoqun Zhu
- Department of Pharmacology, University of California at Davis (B.D., Y.Z., C.Z., Y.W., B.X., X.L., Y.K.X.)
| | - Ying Wang
- Department of Pharmacology, University of California at Davis (B.D., Y.Z., C.Z., Y.W., B.X., X.L., Y.K.X.)
| | - Eric Weatherford
- Fraternal Order of Eagles Diabetes Research Center and Department of Medicine, University of Iowa, Iowa City (E.W., E.D.A.)
| | - Bing Xu
- Department of Pharmacology, University of California at Davis (B.D., Y.Z., C.Z., Y.W., B.X., X.L., Y.K.X.)
- VA Northern California, Mather (B.X., Y.K.X.)
| | - Xianhui Liu
- Department of Pharmacology, University of California at Davis (B.D., Y.Z., C.Z., Y.W., B.X., X.L., Y.K.X.)
| | - Simon J Conway
- Department of Pediatrics, Indiana University School of Medicine (S.J.C.)
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Department of Medicine, University of Iowa, Iowa City (E.W., E.D.A.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (E.D.A.)
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis (B.D., Y.Z., C.Z., Y.W., B.X., X.L., Y.K.X.)
- VA Northern California, Mather (B.X., Y.K.X.)
| |
Collapse
|
23
|
A novel GRK2 inhibitor alleviates experimental arthritis through restraining Th17 cell differentiation. Biomed Pharmacother 2023; 157:113997. [PMID: 36399825 DOI: 10.1016/j.biopha.2022.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
T helper type 17 (Th17) cell which is induced by interleukine-6 (IL-6)-signal transducers and activators of transcription 3 (STAT3) signaling is a central pro-inflammatory T cell subtype in rheumatoid arthritis (RA) and could be significantly reduced by paeoniflorin-6'-O-benzene sulfonate (CP-25) treatment with unclear mechanisms. This study was aimed to found out the mechanism of CP-25 in hampering Th17 cells differentiation in arthritic animals thus explore more therapeutic targets for RA. In mice with collagen-induced arthritis (CIA), both circulating and splenic Th17 subsets were expanded with increased STAT3 phosphorylation and decreased Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1)-β-arrestin2 (arrb2)-STAT3 interaction in CD4+ helper T (Th) cells. Either CP-25 or paroxetine (PAR), an established G protein coupled receptor kinase 2 (GRK2) inhibitor treatment effectively relieved the joints inflammation of CIA mice with substantially reduced Th17 cell population through inhibiting STAT3 and restoring the SHP1-arrb2-STAT3 complex. Knockout of arrb2 exacerbated the clinical manifestations of collagen antibody-induced arthritis with upregulated Th17 cells. In vitro studies revealed that depletion of arrb2 or inhibition of SHP1 promoted Th17 cell differentiation. Moreover, stimulation of adenosine A3 receptor (A3AR) simultaneously promoted Th17 cell differentiation via accelerating abbr2-A3AR binding, which could be prevented through inhibiting GRK2 phosphorylation by CP-25 or PAR, or genetically reducing GRK2. This work has demonstrated that CP-25 or PAR treatment recovers the SHP1-arrb2-STAT3 complex which prevents STAT3 activation in Th cells through reducing arrb2 recruitment to A3AR by inhibiting GRK2 phosphorylation, leading to the reduction in Th17 cell differentiation and arthritis attenuation.
Collapse
|
24
|
Yan JT, Zhu YZ, Liang L, Feng XY. NE-activated β 2-AR/β-arrestin 2/Src pathway mediates duodenal hyperpermeability induced by water-immersion restraint stress. Am J Physiol Cell Physiol 2023; 324:C133-C141. [PMID: 36440855 DOI: 10.1152/ajpcell.00412.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress causes a rapid spike in norepinephrine (NE) levels, leading to gastrointestinal dysfunction. NE reduces the expression of tight junctions (TJs) and aggravates intestinal mucosal damage, but the regulatory mechanism is still unclear. The present study aimed to investigate the molecular mechanisms underlying the regulation of stress-associated duodenal hyperpermeability by NE. Fluorescein isothiocyanate-dextran permeability, transepithelial resistance, immunofluorescence, Western blot, and high-performance liquid chromatography analysis were used in water-immersion restraint stress (WIRS) rats in this study. The results indicate that the duodenal permeability, degradation of TJs, mucosal NE, and β2-adrenergic receptor (β2-AR) increased in WIRS rats. The duodenal intracellular cyclic adenosine monophosphate levels were decreased, whereas the expression of β-arrestin 2 negatively regulates G protein-coupled receptors signaling, was significantly increased. Src recruitment was mediated by β-arrestin; thus, the levels of Src kinase activation were enhanced in WIRS rats. NE depletion, β2-AR, or β-arrestin 2 blockade significantly decreased mucosal permeability and increased TJs expression, suggesting improved mucosal barrier function. Moreover, NE induced an increased duodenal permeability of normal rats with activated β-arrestin 2/Src signaling, which was significantly inhibited by β2-AR blockade. The present findings demonstrate that the enhanced NE induced an increased duodenal permeability in WIRS rats through the activated β2-AR/β-arrestin 2/Src pathway. This study provides novel insight into the molecular mechanism underlying the regulation of NE on the duodenal mucosal barrier and a new target for treating duodenal ulcers induced by stress.
Collapse
Affiliation(s)
- Jing-Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Yin-Zhe Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liang Liang
- Grade 2020 Pediatrics, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Zhang Y, Zhang J, Wang J, Chen H, Ouyang L, Wang Y. Targeting GRK2 and GRK5 for treating chronic degenerative diseases: Advances and future perspectives. Eur J Med Chem 2022; 243:114668. [DOI: 10.1016/j.ejmech.2022.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
|
26
|
Ferrero KM, Koch WJ. GRK2 in cardiovascular disease and its potential as a therapeutic target. J Mol Cell Cardiol 2022; 172:14-23. [PMID: 35878706 DOI: 10.1016/j.yjmcc.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVDs) represent the leading cause of death globally. Despite major advances in the field of pharmacological CVD treatments, particularly in the field of heart failure (HF) research, case numbers and overall mortality remain high and have trended upwards over the last few years. Thus, identifying novel molecular targets for developing HF therapeutics remains a key research focus. G protein-coupled receptors (GPCRs) are critical myocardial signal transducers which regulate cardiac contractility, growth, adaptation and metabolism. Additionally, GPCR dysregulation underlies multiple models of cardiac pathology, and most pharmacological therapeutics currently used in HF target these receptors. Currently-approved treatments have improved patient outcomes, but therapies to stop or reverse HF are lacking. A recent focus on GPCR intracellular-regulating proteins such as GPCR kinases (GRKs) has uncovered GRK2 as a promising target for combating HF. Current literature strongly establishes increased levels and activity of GRK2 in multiple models of CVD. Additionally, the GRK2 interactome includes numerous proteins which interact with differential domains of GRK2 to modulate both beneficial and deleterious signaling pathways in the heart, indicating that these domains can be targeted with a high level of specificity unique to various cardiac pathologies. These data support the premise that GRK2 should be at the forefront of a novel investigative drug search. This perspective reviews cardiac GPCRs, describes the structure and functions of GRK2 in cardiac function and maladaptive pathology, and summarizes the ongoing and future research for targeting this critical kinase across cellular, animal and human models of cardiac dysfunction and HF.
Collapse
Affiliation(s)
- Kimberly M Ferrero
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Philadelphia, PA, USA; Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, USA
| | - Walter J Koch
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Philadelphia, PA, USA; Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Xu B, Wang Y, Bahriz SMFM, Zhao M, Zhu C, Xiang YK. Probing spatiotemporal PKA activity at the ryanodine receptor and SERCA2a nanodomains in cardomyocytes. Cell Commun Signal 2022; 20:143. [PMID: 36104752 PMCID: PMC9472443 DOI: 10.1186/s12964-022-00947-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractSpatiotemporal regulation of subcellular protein kinase A (PKA) activity for precise substrate phosphorylation is essential for cellular responses to hormonal stimulation. Ryanodine receptor 2 (RyR2) and (sarco)endoplasmic reticulum calcium ATPase 2a (SERCA2a) represent two critical targets of β adrenoceptor (βAR) signaling on the sarcoplasmic reticulum membrane for cardiac excitation and contraction coupling. Using novel biosensors, we show that cardiac β1AR signals to both RyR2 and SERCA2a nanodomains in cardiomyocytes from mice, rats, and rabbits, whereas the β2AR signaling is restricted from these nanodomains. Phosphodiesterase 4 (PDE4) and PDE3 control the baseline PKA activity and prevent β2AR signaling from reaching the RyR2 and SERCA2a nanodomains. Moreover, blocking inhibitory G protein allows β2AR signaling to the RyR2 but not the SERCA2a nanodomains. This study provides evidence for the differential roles of inhibitory G protein and PDEs in controlling the adrenergic subtype signaling at the RyR2 and SERCA2a nanodomains in cardiomyocytes.
Collapse
|
28
|
Islam MN, Rabby MG, Hossen MM, Kamal MM, Zahid MA, Syduzzaman M, Hasan MM. In silico functional and pathway analysis of risk genes and SNPs for type 2 diabetes in Asian population. PLoS One 2022; 17:e0268826. [PMID: 36037214 PMCID: PMC9423640 DOI: 10.1371/journal.pone.0268826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Type 2 diabetes (T2D) has earned widespread recognition as a primary cause of death, disability, and increasing healthcare costs. There is compelling evidence that hereditary factors contribute to the development of T2D. Clinical trials in T2D have mostly focused on genes and single nucleotide polymorphisms (SNPs) in protein-coding areas. Recently, it was revealed that SNPs located in noncoding areas also play a significant impact on disease vulnerability. It is required for cell type-specific gene expression. However, the precise mechanism by which T2D risk genes and SNPs work remains unknown. We integrated risk genes and SNPs from genome-wide association studies (GWASs) and performed comprehensive bioinformatics analyses to further investigate the functional significance of these genes and SNPs. We identified four intriguing transcription factors (TFs) associated with T2D. The analysis revealed that the SNPs are engaged in chromatin interaction regulation and/or may have an effect on TF binding affinity. The Gene Ontology (GO) study revealed high enrichment in a number of well-characterized signaling pathways and regulatory processes, including the STAT3 and JAK signaling pathways, which are both involved in T2D metabolism. Additionally, a detailed KEGG pathway analysis identified two major T2D genes and their prospective therapeutic targets. Our findings underscored the potential functional significance of T2D risk genes and SNPs, which may provide unique insights into the disease’s pathophysiology.
Collapse
Affiliation(s)
- Md. Numan Islam
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Munnaf Hossen
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Md. Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Ashrafuzzaman Zahid
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Syduzzaman
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Division of Plant Science, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
29
|
Sun H, Wang M, Su T, Guo P, Tai Y, Cheng H, Zhu Z, Jiang C, Yan S, Wei W, Zhang L, Wang Q. Ziyuglycoside I attenuates collagen-induced arthritis through inhibiting plasma cell expansion. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115348. [PMID: 35533910 DOI: 10.1016/j.jep.2022.115348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOBOTANICAL RELEVANCE With most of the anti-rheumatic drugs having severe adverse drug reactions and poor tolerance, the active components from natural herbs provides a repository for novel, safe, and effective drug development. Sanguisorba officinalis L. exhibits definite anti-inflammatory capacity, however, whether it has anti-rheumatic effects has not been revealed. AIM OF THE STUDY In the present study, the effect of Ziyuglycoside I (Ziyu I), one of the most important active components in Sanguisorba officinalis L., was investigated in treating collagen-induced arthritis (CIA), illuminating its potential pharmacological mechanisms. MATERIAL AND METHODS CIA mice were treated with 5, 10, or 20 mg/kg of Ziyu I or 2 mg/kg of MTX, and clinical manifestations as well as pathological changes were observed. T and B cell viability was determined using cell counting kit-8, plasma autoantibodies and cytokines were tested with ELISA, T and B cell subsets were identified by flow cytometry, Blimp1 expression was detected by RT-qPCR and in situ immunofluorescence. The expression of activation-induced cytidine deaminase (AID) was detected by immunohistochemistry. ERK activation in B cells was verified through western blotting and immunofluorescence. Meanwhile, bioinformatics retrieval and molecular docking/molecular dynamics were used to predict the relationship between Blimp1, ERK and Ziyu I with the pharmacokinetics and toxicity of Ziyu I being evaluated in the ADMETlab Web platform. RESULTS Ziyu I treatment effectively alleviated the joint inflammatory manifestation including arthritis index, global scores, swollen joint count and body weight of CIA mice. It improved the pathological changes of joint and spleen of arthritic mice, especially in germinal center formation. Ziyu I displayed a moderate regulatory effect on T cell activation, the percentage of total T and helper T cells, and tumor necrosis factor-α, but transforming growth factor-β was not restored. Increased spleen index, B cell viability and plasma auto-antibody production in CIA mice were significantly reduced by Ziyu I therapy. Of note, we found that Ziyu I administration substantially inhibited the excessive expansion of plasma cells in spleen through preventing the expression of B lymphocyte induced maturation protein 1 (Blimp1) and AID in B cells. Ziyu I was predicted in silico to directly interact with ERK2, and reduce ERK2 activation, contributing to the depressed expression of Blimp1. Moreover, Ziyu I was predicted to have a favorable pharmacokinetic profile and low toxicity. CONCLUSION Ziyu I effectively ameliorates CIA in mice by inhibiting plasma cell generation through prevention of ERK2-mediated Blimp1 expression in B cells. Therefore, Ziyu I is a promising candidate for anti-arthritic drug development.
Collapse
Affiliation(s)
- Hanfei Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Manman Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Tiantian Su
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Huijuan Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Chunru Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| |
Collapse
|
30
|
Xu R, Fu J, Hu Y, Yang X, Tao X, Chen L, Huang K, Fu Q. Roflumilast-Mediated Phosphodiesterase 4D Inhibition Reverses Diabetes-Associated Cardiac Dysfunction and Remodeling: Effects Beyond Glucose Lowering. Diabetes 2022; 71:1660-1678. [PMID: 35594380 DOI: 10.2337/db21-0898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Patients with type 2 diabetes have a substantial risk of developing cardiovascular disease. Phosphodiesterase 4 (PDE4) dysregulation is of pathophysiological importance in metabolic disorders. For determination of the role of PDE4 in diabetic cardiac dysfunction, mice fed with a high-fat diet (HFD) were treated by pharmacological inhibition of PDE4 or cardiac specific knocking down of PDE4D. Mice on HFD developed diabetes and cardiac dysfunction with increased cardiac PDE4D5 expression. PDE4 inhibitor roflumilast can reverse hyperglycemia and cardiac dysfunction, accompanied by the decrease of PDE4D expression and increase of muscle specific miRNA miR-1 level in hearts. Either cardiac specific PDE4D knockdown or miR-1 overexpression significantly reversed cardiac dysfunction in HFD mice, despite persistence of hyperglycemia. Findings of gain- and loss-of-function studies of PDE4D in cardiomyocytes indicated that inhibition of insulin-induced PDE4D protected cardiac hypertrophy by preserving miR-1 expression in cardiomyocytes through promoting cAMP-CREB-Sirt1 signaling-induced SERCA2a expression. We further revealed that insulin also induced PDE4D expression in cardiac fibroblasts, which causes cardiac fibrosis through TGF-β1 signaling-mediated miR-1 reduction. Importantly, the expression of PDE4D5 was increased in human failing hearts of individuals with diabetes. These studies elucidate a novel mechanism by which hyperinsulinemia-induced cardiac PDE4D expression contributes to diabetic cardiac remodeling through reducing the expression of miR-1 and upregulation of miR-1 target hypertrophy and fibrosis-associated genes. Our study suggests a therapeutic potential of PDE4 inhibitor roflumilast in preventing or treating cardiac dysfunction in diabetes in addition to lowering glucose.
Collapse
Affiliation(s)
- Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Yuting Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Xiang Tao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
31
|
β 2-adrenergic receptor promotes liver regeneration partially through crosstalk with c-met. Cell Death Dis 2022; 13:571. [PMID: 35760785 PMCID: PMC9237079 DOI: 10.1038/s41419-022-04998-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
The β2-adrenergic receptor (β2AR) is a G protein-coupled receptor (GPCR) that mediates the majority of cellular responses to external stimuli. Aberrant expression of β2AR results in various pathophysiological disorders, including tumorigenesis, but little is known about its role in liver regeneration. This study aims to investigate the impact and the underlying mechanism of β2AR in liver regeneration. Here, we found that β2AR was upregulated during liver regeneration induced by 70% PH. Deletion of β2AR in mice resulted in 62% mortality 2 days post-PH, decreased proliferative marker expression and impaired liver function throughout regeneration. Moreover, AAV8-mediated overexpression of β2AR in hepatocytes accelerated the regeneration process and increased target gene expression. Mechanistically, β2AR recruited G-protein-coupled receptor kinase 2 (GRK2) to the membrane and then formed a complex with c-met to transactivate c-met signaling, which triggered downstream extracellular regulated protein kinase (ERK) signaling activation and nuclear translocation. Inhibition of c-met with SU11274 or ERK with U0126 decreased β2AR overexpression-induced hepatocyte proliferation. Our findings revealed that β2AR might act as a critical mediator regulating liver regeneration by crosstalk with c-met and activation of ERK signaling.
Collapse
|
32
|
Xu R, Feng S, Ao Z, Chen Y, Su C, Feng X, Fu Q, Yang X. Long-Acting β2 Adrenergic Receptor Agonist Ameliorates Imiquimod-Induced Psoriasis-Like Skin Lesion by Regulating Keratinocyte Proliferation and Apoptosis. Front Pharmacol 2022; 13:865715. [PMID: 35795567 PMCID: PMC9250983 DOI: 10.3389/fphar.2022.865715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects approximately 1%–5% of the population worldwide. Considering frequent relapse, adverse drug reactions, and large costs of treatment, it is urgent to identify new medications for psoriasis. Keratinocytes play an essential role during psoriasis development, and they express high levels of β2-Adrenergic receptor (β2-AR), which increases intracellular cAMP levels when activated. Increased level of cAMP is associated with the inhibition of epidermal cell proliferation. In the present study, we observed the effect of salmeterol, a long-acting β2-AR agonist, on the proliferation and apoptosis of keratinocytes as well as imiquimod-induced psoriasis-like skin lesions in mice. As phosphodiesterase 4 (PDE4) inhibitors increases intracellular cAMP concentration by inhibiting its inactivation, we further explored the synergetic effect of a PDE4 inhibitor and salmeterol on psoriasis-like skin lesions in mice. Our results indicated that salmeterol effectively inhibited the proliferation of HaCaT cells induced by TNF-α and serum, and this effect was accompanied by significantly increased apoptosis and CREB phosphorylation, which were reversed by the PKA inhibitor, H89. Salmeterol ameliorated imiquimod-induced psoriasis-like skin lesions in mice, but salmeterol combined with a PDE4 inhibitor had no synergetic effect in improving skin lesions in mice. Of note, the synergistic effects of anti-proliferation and induction of apoptosis in HaCaT cells appeared by inhibiting ERK signaling. In summary, salmeterol, a long-acting β2-AR agonist, alleviates the severity of psoriasis via inhibiting the proliferation and promoting apoptosis of keratinocytes, partially by activating the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Shi Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Zhou Ao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Yingxiang Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Congping Su
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Xiuling Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- *Correspondence: Qin Fu, ; Xiaoyan Yang,
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- *Correspondence: Qin Fu, ; Xiaoyan Yang,
| |
Collapse
|
33
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
34
|
Understanding the Role of SERCA2a Microdomain Remodeling in Heart Failure Induced by Obesity and Type 2 Diabetes. J Cardiovasc Dev Dis 2022; 9:jcdd9050163. [PMID: 35621874 PMCID: PMC9147026 DOI: 10.3390/jcdd9050163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity and type 2 diabetes (T2D) are on trend to become a huge burden across all ages. They cause harm to almost every organ, especially the heart. For decades, the incidence of heart failure with impaired diastolic function (or called heart failure with preserved ejection fraction, HFpEF) has increased sharply. More and more studies have uncovered obesity and T2D to be closely associated with HFpEF. The sarcoplasmic/endoplasmic reticulum calcium ATPase2a (SERCA2a) microdomain is a key regulator of calcium reuptake into the sarcoplasmic reticulum (SR) during diastole. 3′,5′-cyclic adenosine monophosphate (cAMP) and its downstream effector cAMP dependent protein kinase (PKA) act locally within the SERCA2a microdomain to regulate the phosphorylation state of the small regulatory protein phospholamban (PLN), which forms a complex with SERCA2a. When phosphorylated, PLN promotes calcium reuptake into the SR and diastolic cardiac relaxation by disinhibiting SERCA2a pump function. In this review, we will discuss previous studies investigating the PLN/SERCA2a microdomain in obesity and T2D in order to gain a greater understanding of the underlying mechanisms behind obesity- and T2D-induced diastolic dysfunction, with the aim to identify the current state of knowledge and future work that is needed to guide further research in the field.
Collapse
|
35
|
Liu J, Hu X. Impact of insulin therapy on outcomes of diabetic patients with heart failure: A systematic review and meta-analysis. Diab Vasc Dis Res 2022; 19:14791641221093175. [PMID: 35543342 PMCID: PMC9102182 DOI: 10.1177/14791641221093175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To compare clinical outcomes in diabetic patients with heart failure managed by insulin with those managed by non-insulin (oral hypoglycemic agents and/or lifestyle modification) based therapy. METHODS PubMed and Scopus databases were searched for studies conducted on diabetic patients with heart failure. Studies were to compare outcomes of patients managed by insulin versus non-insulin therapies. RESULTS 15 studies were included. Compared to those who were managed using non-insulin therapy, insulin-treated patients had increased risk of all-cause mortality (RR 1.46, 95% CI: 1.14, 1.88) and cardiovascular specific mortality (RR 1.62, 95% CI: 1.33, 1.96). Those managed using insulin also had increased risk of hospitalization (RR 1.45, 95% CI: 1.09, 1.93) and readmission (RR 1.49, 95% CI: 1.32, 1.67). There was no additional risk for stroke (RR 1.07, 95% CI: 0.91, 1.27) or myocardial infarction (MI) (RR 1.10, 95% CI: 0.96, 1.27) between the two groups of patients. CONCLUSIONS Receipt of insulin among diabetic patients with heart failure was associated with an increased risk of mortality, hospitalization and readmission compared to management using oral hypoglycemic agents and/or lifestyle modification. Such patients should be closely monitored for any adverse events.
Collapse
Affiliation(s)
- Jingxing Liu
- Department of Emergency Intensive Care Medicine, Changxing People’s Hospital, Changxing County, Huzhou City, Zhejiang Province, China
| | - Xinhua Hu
- Department of Cardiology, Changxing People’s Hospital, Changxing County, Huzhou City, Zhejiang Province, China
- Xinhua Hu, Department of Cardiology, Changxing People’s Hospital, 66 Taihu Middle Road, Changxing County, Huzhou City, Zhejiang Province 313100, China.
| |
Collapse
|
36
|
Limberg JK, Soares RN, Padilla J. Role of the Autonomic Nervous System in the Hemodynamic Response to Hyperinsulinemia-Implications for Obesity and Insulin Resistance. Curr Diab Rep 2022; 22:169-175. [PMID: 35247145 PMCID: PMC9012695 DOI: 10.1007/s11892-022-01456-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Herein, we summarize recent advances which provide new insights into the role of the autonomic nervous system in the control of blood flow and blood pressure during hyperinsulinemia. We also highlight remaining gaps in knowledge as it pertains to the translation of findings to relevant human chronic conditions such as obesity, insulin resistance, and type 2 diabetes. RECENT FINDINGS Our findings in insulin-sensitive adults show that increases in muscle sympathetic nerve activity with hyperinsulinemia do not result in greater sympathetically mediated vasoconstriction in the peripheral circulation. Both an attenuation of α-adrenergic-receptor vasoconstriction and augmented β-adrenergic vasodilation in the setting of high insulin likely explain these findings. In the absence of an increase in sympathetically mediated restraint of peripheral vasodilation during hyperinsulinemia, blood pressure is supported by increases in cardiac output in insulin-sensitive individuals. We highlight a dynamic interplay between central and peripheral mechanisms during hyperinsulinemia to increase sympathetic nervous system activity and maintain blood pressure in insulin-sensitive adults. Whether these results translate to the insulin-resistant condition and implications for long-term cardiovascular regulation warrants further exploration.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO, 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
37
|
Fassina L, Assenza MR, Miragoli M, Isidori AM, Naro F, Barbagallo F. Cell Shortening and Calcium Homeostasis Analysis in Adult Cardiomyocytes via a New Software Tool. Biomedicines 2022; 10:biomedicines10030640. [PMID: 35327442 PMCID: PMC8945339 DOI: 10.3390/biomedicines10030640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular calcium (Ca2+) is the central regulator of heart contractility. Indeed, it couples the electrical signal, which pervades the myocardium, with cardiomyocytes contraction. Moreover, alterations in calcium management are the main factors contributing to the mechanical and electrical dysfunction observed in failing hearts. So, simultaneous analysis of the contractile function and intracellular Ca2+ is indispensable to evaluate cardiomyocytes activity. Intracellular Ca2+ variations and fraction shortening are commonly studied with fluorescent Ca2+ indicator dyes associated with microscopy techniques. However, tracking and dealing with multiple files manually is time-consuming and error-prone and often requires expensive apparatus and software. Here, we announce a new, user-friendly image processing and analysis tool, based on ImageJ-Fiji/MATLAB® software, to evaluate the major cardiomyocyte functional parameters. We succeeded in analyzing fractional cell shortening, Ca2+ transient amplitude, and the kinematics/dynamics parameters of mouse isolated adult cardiomyocytes. The proposed method can be applied to evaluate changes in the Ca2+ cycle and contractile behavior in genetically or pharmacologically induced disease models, in drug screening and other common applications to assess mammalian cardiomyocyte functions.
Collapse
Affiliation(s)
- Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering (DIII), University of Pavia, 27100 Pavia, Italy;
| | - Maria Rita Assenza
- Institute of Biochemistry and Cell Biology, CNR, 00015 Monterotondo, Italy;
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
- Humanitas Research Hospital—IRCCS, 20089 Rozzano, Italy
| | - Andrea M. Isidori
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy;
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| | - Federica Barbagallo
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy;
- Correspondence:
| |
Collapse
|
38
|
Tao X, He H, Peng J, Xu R, Fu J, Hu Y, Li L, Yang X, Feng X, Zhang C, Zhang L, Yu X, Shen A, Huang K, Fu Q. Overexpression of PDE4D in mouse liver is sufficient to trigger NAFLD and hypertension in a CD36-TGF-β1 pathway: therapeutic role of roflumilast. Pharmacol Res 2022; 175:106004. [PMID: 34826603 DOI: 10.1016/j.phrs.2021.106004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence has shown that nonalcoholic fatty liver disease (NAFLD) may be both a consequence and a cause of hypertension. Recent studies have demonstrated that phosphodiesterase 4 (PDE4)-cAMP signaling represents a pathway relevant to the pathophysiology of metabolic disorders. This study aims to investigate the impact and the underlying mechanism of PDE4 in the pathogenesis of NAFLD and its associated hypertension. Here we demonstrated that high-fat-diet (HFD) fed mice developed NAFLD and hypertension, with an associated increase in hepatic PDE4D expression, which can be prevented and even reversed by PDE4 inhibitor roflumilast. Furthermore, we demonstrated that hepatic overexpression of PDE4D drove significant hepatic steatosis and elevation of blood pressure. Mechanistically, PDE4D activated fatty acid translocase CD36 signaling which facilitates hepatic lipid deposition, resulting in TGF-β1 production by hepatocytes and excessive TGF-β1 signaling in vessels and consequent hypertension. Specific silencing of TGF-β1 in hepatocytes by siRNA using poly (β-amino ester) nanoparticles significantly normalized hepatic PDE4D overexpression-activated TGF-β1 signaling in vessels and hypertension. Together, the conclusions indicated that PDE4D plays an important role in the pathogenesis of NAFLD and associated hypertension via activation of CD36-TGF-β1 signaling in the liver. PDE4 inhibitor such as roflumilast, which is clinically approved for chronic obstructive pulmonary disease (COPD) treatment, has the potential to be used as a preventive or therapeutic drug against NAFLD and associated hypertension in the future.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiqing He
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiangtong Peng
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Yuting Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Xiuling Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingmin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ao Shen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Kai Huang
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
| |
Collapse
|
39
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
40
|
Tadinada SM, Weatherford ET, Collins GV, Bhardwaj G, Cochran J, Kutschke W, Zimmerman K, Bosko A, O'Neill BT, Weiss RM, Abel ED. Functional resilience of C57BL/6J mouse heart to dietary fat overload. Am J Physiol Heart Circ Physiol 2021; 321:H850-H864. [PMID: 34477461 PMCID: PMC8616610 DOI: 10.1152/ajpheart.00419.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023]
Abstract
Molecular mechanisms underlying cardiac dysfunction and subsequent heart failure in diabetic cardiomyopathy are incompletely understood. Initially we intended to test the role of G protein-coupled receptor kinase 2 (GRK2), a potential mediator of cardiac dysfunction in diabetic cardiomyopathy, but found that control animals on HFD did not develop cardiomyopathy. Cardiac function was preserved in both wild-type and GRK2 knockout animals fed high-fat diet as indicated by preserved left ventricular ejection fraction (LVEF) although heart mass was increased. The absence of cardiac dysfunction led us to rigorously evaluate the utility of diet-induced obesity to model diabetic cardiomyopathy in mice. Using pure C57BL/6J animals and various diets formulated with different sources of fat-lard (32% saturated fat, 68% unsaturated fat) or hydrogenated coconut oil (95% saturated fat), we consistently observed left ventricular hypertrophy, preserved LVEF, and preserved contractility measured by invasive hemodynamics in animals fed high-fat diet. Gene expression patterns that characterize pathological hypertrophy were not induced, but a modest induction of various collagen isoforms and matrix metalloproteinases was observed in heart with high-fat diet feeding. PPARα-target genes that enhance lipid utilization such as Pdk4, CD36, AcadL, and Cpt1b were induced, but mitochondrial energetics was not impaired. These results suggest that although long-term fat feeding in mice induces cardiac hypertrophy and increases cardiac fatty acid metabolism, it may not be sufficient to activate pathological hypertrophic mechanisms that impair cardiac function or induce cardiac fibrosis. Thus, additional factors that are currently not understood may contribute to the cardiac abnormalities previously reported by many groups.NEW & NOTEWORTHY Dietary fat overload (DFO) is widely used to model diabetic cardiomyopathy but the utility of this model is controversial. We comprehensively characterized cardiac contractile and mitochondrial function in C57BL6/J mice fed with lard-based or saturated fat-enriched diets initiated at two ages. Despite cardiac hypertrophy, contractile and mitochondrial function is preserved, and molecular adaptations likely limit lipotoxicity. The resilience of these hearts to DFO underscores the need to develop robust alternative models of diabetic cardiomyopathy.
Collapse
MESH Headings
- Age Factors
- Animals
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diet, High-Fat
- Disease Models, Animal
- Energy Metabolism
- Female
- Fibrosis
- G-Protein-Coupled Receptor Kinase 2/genetics
- G-Protein-Coupled Receptor Kinase 2/metabolism
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Myocardium/enzymology
- Myocardium/pathology
- Obesity/complications
- Stroke Volume
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Satya Murthy Tadinada
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Eric T Weatherford
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Greg V Collins
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jesse Cochran
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - William Kutschke
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kathy Zimmerman
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alyssa Bosko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brian T O'Neill
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| | - Robert M Weiss
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
41
|
Wang Q, Wang Y, West TM, Liu Y, Reddy GR, Barbagallo F, Xu B, Shi Q, Deng B, Wei W, Xiang YK. Carvedilol induces biased β1 adrenergic receptor-nitric oxide synthase 3-cyclic guanylyl monophosphate signalling to promote cardiac contractility. Cardiovasc Res 2021; 117:2237-2251. [PMID: 32956449 PMCID: PMC8502477 DOI: 10.1093/cvr/cvaa266] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
AIMS β-blockers are widely used in therapy for heart failure and hypertension. β-blockers are also known to evoke additional diversified pharmacological and physiological effects in patients. We aim to characterize the underlying molecular signalling and effects on cardiac inotropy induced by β-blockers in animal hearts. METHODS AND RESULTS Wild-type mice fed high-fat diet (HFD) were treated with carvedilol, metoprolol, or vehicle and echocardiogram analysis was performed. Heart tissues were used for biochemical and histological analyses. Cardiomyocytes were isolated from normal and HFD mice and rats for analysis of adrenergic signalling, calcium handling, contraction, and western blot. Biosensors were used to measure β-blocker-induced cyclic guanosine monophosphate (cGMP) signal and protein kinase A activity in myocytes. Acute stimulation of myocytes with carvedilol promotes β1 adrenergic receptor (β1AR)- and protein kinase G (PKG)-dependent inotropic cardiac contractility with minimal increases in calcium amplitude. Carvedilol acts as a biased ligand to promote β1AR coupling to a Gi-PI3K-Akt-nitric oxide synthase 3 (NOS3) cascade and induces robust β1AR-cGMP-PKG signal. Deletion of NOS3 selectively blocks carvedilol, but not isoproterenol-induced β1AR-dependent cGMP signal and inotropic contractility. Moreover, therapy with carvedilol restores inotropic contractility and sensitizes cardiac adrenergic reserves in diabetic mice with minimal impact in calcium signal, as well as reduced cell apoptosis and hypertrophy in diabetic hearts. CONCLUSION These observations present a novel β1AR-NOS3 signalling pathway to promote cardiac inotropy in the heart, indicating that this signalling paradigm may be targeted in therapy of heart diseases with reduced ejection fraction.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Antagonists/pharmacology
- Animals
- Cardiotonic Agents/pharmacology
- Carvedilol/pharmacology
- Cells, Cultured
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Heart Diseases/drug therapy
- Heart Diseases/enzymology
- Heart Diseases/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Rats
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/metabolism
- Second Messenger Systems
- Mice
Collapse
Affiliation(s)
- Qingtong Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Toni M West
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Yongming Liu
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Federica Barbagallo
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| | - Qian Shi
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Bingqing Deng
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- Sun-Yet Sen Memorial Hospital, Sun-Yet Sen University, Guangzhou 510120, China
| | - Wei Wei
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
42
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
43
|
Ferraino KE, Cora N, Pollard CM, Sizova A, Maning J, Lymperopoulos A. Adrenal angiotensin II type 1 receptor biased signaling: The case for "biased" inverse agonism for effective aldosterone suppression. Cell Signal 2021; 82:109967. [PMID: 33640432 DOI: 10.1016/j.cellsig.2021.109967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Angiotensin II (AngII) uses two distinct G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert a plethora of physiologic effects in the body and to significantly affect cardiovascular homeostasis. Although not much is known about the signaling of the AT2R, AT1R signaling is known to be quite pleiotropic, mobilizing a variety of signal transducers inside cells to produce a biological outcome. When the outcome in question is aldosterone production from the adrenal cortex, the main transducers activated specifically by the adrenocortical AT1R to signal toward that cellular effect are the Gq/11 protein alpha subunits and the β-arrestins (also known as Arrestin-2 and -3). The existence of various downstream pathways the AT1R signal can travel down on has led to the ever-expanding filed of GPCR pharmacology termed "biased" signaling, which refers to a ligand preferentially activating one signaling pathway over others downstream of the same receptor in the same cell. However, "biased" signaling or "biased" agonism is therapeutically desirable only when the downstream pathways lead to different or opposite cellular outcomes, so the pathway promoting the beneficial effect can be selectively activated over the pathway that leads to detrimental consequences. In the case of the adrenal AT1R, both Gq/11 proteins and β-arrestins mediate signaling to the same end-result: aldosterone synthesis and secretion. Therefore, both pathways need to remain inactive in the adrenal cortex to fully suppress the production of aldosterone, which is one of the culprit hormones elevated in chronic heart failure, hypertension, and various other cardiovascular diseases. Variations in the effectiveness of the AT1R antagonists, which constitute the angiotensin receptor blocker (ARB) class of drugs (also known as sartans), at the relative blockade of these two pathways downstream of the adrenal AT1R opens the door to the flip term "biased" inverse agonism at the AT1R. ARBs that are unbiased and equipotent inverse agonists for both G proteins and β-arrestins at this receptor, like candesartan and valsartan, are the most preferred agents with the best efficacy at reducing circulating aldosterone, thereby ameliorating heart failure. In the present review, the biased signaling of the adrenal AT1R, particularly in relation to aldosterone production, is examined and the term "biased" inverse agonism at the AT1R is introduced and explained, as a means of pharmacological categorization of the various agents within the ARB drug class.
Collapse
Affiliation(s)
- Krysten E Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
44
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
45
|
Li Z, Zhang J, Wang M, Qiu F, Jin C, Fu G. Expression of farnesyl pyrophosphate synthase is increased in diabetic cardiomyopathy. Cell Biol Int 2021; 45:1393-1403. [PMID: 33595160 DOI: 10.1002/cbin.11573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are involved in diabetic cardiomyopathy. This study investigated the specific role of FPPS in the development of diabetic cardiomyopathy. We demonstrated that FPPS expression was elevated in both in vivo and in vitro models of diabetic cardiomyopathy. FPPS inhibition decreased the expression of proteins related to cardiac fibrosis and cardiomyocytic hypertrophy, including collagen I, collagen III, connective tissue growth factor, natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Furthermore, FPPS inhibition and knockdown prevented phosphorylated c-Jun N-terminal kinase 1/2 (JNK1/2) activation in vitro. In addition, a JNK1/2 inhibitor downregulated high-glucose-induced responses to diabetic cardiomyopathy. Finally, immunofluorescence revealed that cardiomyocytic size was elevated by high glucose and was decreased by zoledronate, small-interfering farnesyl pyrophosphate synthase (siFPPS), and a JNK1/2 inhibitor. Taken together, our findings indicate that FPPS and JNK1/2 may be part of a signaling pathway that plays an important role in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Fuyu Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Chongyin Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
46
|
Limberg JK, Soares RN, Power G, Harper JL, Smith JA, Shariffi B, Jacob DW, Manrique-Acevedo C, Padilla J. Hyperinsulinemia blunts sympathetic vasoconstriction: a possible role of β-adrenergic activation. Am J Physiol Regul Integr Comp Physiol 2021; 320:R771-R779. [PMID: 33851554 DOI: 10.1152/ajpregu.00018.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we report in a sample of healthy young men (n = 14) and women (n = 12) that hyperinsulinemia induces time-dependent decreases in total peripheral resistance and its contribution to the maintenance of blood pressure. In the same participants, we observe profound vasodilatory effects of insulin in the lower limb despite concomitant activation of the sympathetic nervous system. We hypothesized that this prominent peripheral vasodilation is possibly due to the ability of the leg vasculature to escape sympathetic vasoconstriction during systemic insulin stimulation. Consistent with this notion, we demonstrate in a subset of healthy men (n = 9) and women (n = 7) that systemic infusion of insulin blunts sympathetically mediated leg vasoconstriction evoked by a cold pressor test, a well-established sympathoexcitatory stimulus. Further substantiating this observation, we show in mouse aortic rings that insulin exposure suppresses epinephrine and norepinephrine-induced vasoconstriction. Notably, we found that such insulin-suppressing effects on catecholamine-induced constriction are diminished following β-adrenergic receptor blockade. In accordance, we also reveal that insulin augments β-adrenergic-mediated vasorelaxation in isolated arteries. Collectively, these findings support the idea that sympathetic vasoconstriction can be attenuated during systemic hyperinsulinemia in the leg vasculature of both men and women and that this phenomenon may be in part mediated by potentiation of β-adrenergic vasodilation neutralizing α-adrenergic vasoconstriction.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
47
|
Chadalavada S, Jensen MT, Aung N, Cooper J, Lekadir K, Munroe PB, Petersen SE. Women With Diabetes Are at Increased Relative Risk of Heart Failure Compared to Men: Insights From UK Biobank. Front Cardiovasc Med 2021; 8:658726. [PMID: 33889602 PMCID: PMC8057521 DOI: 10.3389/fcvm.2021.658726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aims: To investigate the effect of diabetes on mortality and incident heart failure (HF) according to sex, in the low risk population of UK Biobank. To evaluate potential contributing factors for any differences seen in HF end-point. Methods: The entire UK Biobank study population were included. Participants that withdrew consent or were diagnosed with diabetes after enrolment were excluded from the study. Univariate and multivariate cox regression models were used to assess endpoints of mortality and incident HF, with median follow-up periods of 9 years and 8 years respectively. Results: A total of 493,167 participants were included, hereof 22,685 with diabetes (4.6%). Two thousand four hundred fifty four died and 1,223 were diagnosed or admitted with HF during the follow up periods of 9 and 8 years respectively. Overall, the mortality and HF risk were almost doubled in those with diabetes compared to those without diabetes (hazard ratio (HR) of 1.9 for both mortality and heart failure) in the UK Biobank population. Women with diabetes (both types) experience a 22% increased risk of HF compared to men (HR of 2.2 (95% CI: 1.9-2.5) vs. 1.8 (1.7-2.0) respectively). Women with type 1 diabetes (T1DM) were associated with 88% increased risk of HF compared to men (HR 4.7 (3.6-6.2) vs. 2.5 (2.0-3.0) respectively), while the risk of HF for type 2 diabetes (T2DM) was 17% higher in women compared to men (2.0 (1.7-2.3) vs. 1.7 (1.6-1.9) respectively). The increased risk of HF in women was independent of confounding factors. The findings were similar in a model with all-cause mortality as a competing risk. This interaction between sex, diabetes and outcome of HF is much more prominent for T1DM (p = 0.0001) than T2DM (p = 0.1). Conclusion: Women with diabetes, particularly those with T1DM, experience a greater increase in risk of heart failure compared to men with diabetes, which cannot be explained by the increased prevalence of cardiac risk factors in this cohort.
Collapse
Affiliation(s)
- Sucharitha Chadalavada
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom.,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Magnus T Jensen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom.,Department of Cardiology, Copenhagen University Hospital Amager & Hvidovre, Hvidovre, Denmark
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom.,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Jackie Cooper
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Karim Lekadir
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques and Informàtica, Universitat de Barcelona, Barcelona, Spain
| | - Patricia B Munroe
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom.,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| |
Collapse
|
48
|
Cividini F, Scott BT, Suarez J, Casteel DE, Heinz S, Dai A, Diemer T, Suarez JA, Benner CW, Ghassemian M, Dillmann WH. Ncor2/PPARα-Dependent Upregulation of MCUb in the Type 2 Diabetic Heart Impacts Cardiac Metabolic Flexibility and Function. Diabetes 2021; 70:665-679. [PMID: 33303689 PMCID: PMC7897348 DOI: 10.2337/db20-0779] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022]
Abstract
The contribution of altered mitochondrial Ca2+ handling to metabolic and functional defects in type 2 diabetic (T2D) mouse hearts is not well understood. In this study, we show that the T2D heart is metabolically inflexible and almost exclusively dependent on mitochondrial fatty acid oxidation as a consequence of mitochondrial calcium uniporter complex (MCUC) inhibitory subunit MCUb overexpression. Using a recombinant endonuclease-deficient Cas9-based gene promoter pulldown approach coupled with mass spectrometry, we found that MCUb is upregulated in the T2D heart due to loss of glucose homeostasis regulator nuclear receptor corepressor 2 repression, and chromatin immunoprecipitation assays identified peroxisome proliferator-activated receptor α as a mediator of MCUb gene expression in T2D cardiomyocytes. Upregulation of MCUb limits mitochondrial matrix Ca2+ uptake and impairs mitochondrial energy production via glucose oxidation by depressing pyruvate dehydrogenase complex activity. Gene therapy displacement of endogenous MCUb with a dominant-negative MCUb transgene (MCUbW246R/V251E) in vivo rescued T2D cardiomyocytes from metabolic inflexibility and stimulated cardiac contractile function and adrenergic responsiveness by enhancing phospholamban phosphorylation via protein kinase A. We conclude that MCUb represents one newly discovered molecular effector at the interface of metabolism and cardiac function, and its repression improves the outcome of the chronically stressed diabetic heart.
Collapse
Affiliation(s)
- Federico Cividini
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jorge Suarez
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Anzhi Dai
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Tanja Diemer
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jorge A Suarez
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | | |
Collapse
|
49
|
Lee HJ, Mariappan MM, Norton L, Bakewell T, Feliers D, Oh SB, Donati A, Rubannelsonkumar CS, Venkatachalam MA, Harris SE, Rubera I, Tauc M, Ghosh Choudhury G, Kahn CR, Sharma K, DeFronzo RA, Kasinath BS. Proximal tubular epithelial insulin receptor mediates high-fat diet-induced kidney injury. JCI Insight 2021; 6:143619. [PMID: 33400689 PMCID: PMC7934847 DOI: 10.1172/jci.insight.143619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal-fat diet (NFD) or high-fat diet (HFD) to control and kidney proximal tubule IR–knockout (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. Baseline serum glucose, serum creatinine, and the ratio of urinary albumin to creatinine (ACR) were similar in KPTIRKO mice compared to those of controls. On HFD, weight gain and increase in serum cholesterol were similar in control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR, urinary kidney injury molecule-1–to-creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD-fed male control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.
Collapse
Affiliation(s)
- Hak Joo Lee
- Center for Renal Medicine, Division of Nephrology
| | | | - Luke Norton
- Division of Diabetes, Department of Medicine
| | | | | | - Sae Byeol Oh
- Center for Renal Medicine, Division of Nephrology
| | | | | | | | - Stephen E Harris
- Department of Periodontics, University of Texas Health, San Antonio, Texas, USA
| | - Isabelle Rubera
- Universite Cote d'Azur, CNRS - UMR-7370, Laboratoire de Physiomédecine Moléculaire, Nice, France
| | - Michel Tauc
- Universite Cote d'Azur, CNRS - UMR-7370, Laboratoire de Physiomédecine Moléculaire, Nice, France
| | - Goutam Ghosh Choudhury
- Center for Renal Medicine, Division of Nephrology.,VA Research and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - C Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kumar Sharma
- Center for Renal Medicine, Division of Nephrology.,VA Research and
| | | | - Balakuntalam S Kasinath
- Center for Renal Medicine, Division of Nephrology.,VA Research and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
50
|
Wang Z, Zhou Z, Guo P, Wang M, Sun H, Tai Y, Xiao F, Han Y, Wei W, Wang Q. DBA/1 mice display equivalent cardiac function to C57BL/6J mice. Exp Physiol 2021; 106:868-881. [PMID: 33547685 DOI: 10.1113/ep089228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do normal adult DBA/1 mice have cardiac function and performance equal to those of C57BL/6J mice? What is the main finding and its importance? Male adult DBA/1 mice show equivalent cardiac function to C57BL/6J mice up to 8 months old. Therefore, cardiac dysfunction could be investigated in an autoimmune diseases model established with DBA/1 mice. ABSTRACT Cardiovascular mortality has been increasing, and in particular, cardiovascular damage caused by some chronic autoimmune diseases accounts for a large proportion of this. C57BL/6J mice have been used mostly in studies of cardiovascular diseases. However, for purposes of modelling, this strain of mouse has a very low incidence of some chronic immune diseases such as rheumatoid arthritis, to which instead DBA/1 mice are more susceptible. Basic cardiac function differs between mice with different genetic backgrounds. Therefore, we monitored cardiac function and structure of normal male C57BL/6J and DBA/1 mice for six consecutive months. Echocardiography was used to monitor cardiac functions once a month and cardiac systolic function was measured upon isoproterenol challenge at the end of observation. The Excitation-contraction coupling-related proteins were measured by western blotting. Heart tissue sections were subject to haematoxylin-eosin, TUNEL and Alizarin red staining. The results demonstrated that systolic and diastolic function did not vary significantly and both strains were indistinguishable in appearance and structure of hearts. DBA/1 mice showed a good cardiac β-adrenergic response comparable to C57BL/6J mice with isoproterenol treatment. The phosphorylation of phospholamban at either its protein kinase A or its Ca2+ /calmodulin-dependent protein kinase II site, as well as the activation of troponin I showed no significant difference between strains. These findings suggested that there was no obvious difference in the heart structure and function of normal male DBA/1 mice compared with C57BL/6J mice. The DBA/1 mouse is a strain applicable to investigating autoimmune disease-induced heart dysfunction and exploring potential interventions.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Zhengwei Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Manman Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Hanfei Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Feng Xiao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|