1
|
Barć P, Lubieniecki P, Antkiewicz M, Kupczyńska D, Barć J, Frączkowska-Sioma K, Dawiskiba T, Dorobisz T, Sekula W, Czuwara B, Małodobra-Mazur M, Baczyńska D, Witkiewicz W, Skóra JP, Janczak D. Gene Therapy of Thromboangiitis Obliterans with Growth Factor Plasmid (VEGF165) and Autologous Bone Marrow Cells. Biomedicines 2024; 12:1506. [PMID: 39062079 PMCID: PMC11275074 DOI: 10.3390/biomedicines12071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND We performed gene therapy for critical limb ischemia in thromboangiitis obliterans (TAO) by the intramuscular administration of plasmids of the vascular endothelial growth factor gene (VEGF 165) with or without bone marrow-derived stem cells. METHODS The 21 patients were randomly assigned to three groups: A-with dual therapy, cells and plasmid; B-plasmid only; and C-control group, where patients received intramuscular injections of saline. Serum VEGF levels, the ankle-brachial index (ABI), transcutaneous oxygen pressure (TcPO2), and the rest pain measured by the visual analog scale (VAS) were determined sequentially before treatment, and then 1 and 3 months after treatment. RESULTS In the treatment groups, serum VEGF levels increased by 4 weeks and returned to baseline values after 3 months. ABI after 12 weeks increased by an average of 0.18 in group A, and 0.09 in group B and group C. TcPO2 increased by an average of 17.3 mmHg in group A, 14.1 mmHg in group B, and 10.7 mmHg in group C. The largest pain decrease was observed in group A and averaged 5.43 less pain intensity. CONCLUSIONS Gene therapy using the VEGF plasmid along with or without bone marrow-derived mononuclear cells administered intramuscularly into an ischemic limb in TAO is a safe and effective therapy.
Collapse
Affiliation(s)
- Piotr Barć
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Paweł Lubieniecki
- Clinical Department of Diabetology and Internal Disease, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland
| | - Maciej Antkiewicz
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Diana Kupczyńska
- Ars Estetica-Clinic for Aesthetic Medicine and Laser Therapy, ul. Powstancow Ślaskich 56a/2, 53-333 Wroclaw, Poland;
| | - Jan Barć
- Faculty of Medicine, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Katarzyna Frączkowska-Sioma
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Tomasz Dawiskiba
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Tadeusz Dorobisz
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Wojciech Sekula
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Błażej Czuwara
- Department of Vascular Surgery, Provincial Hospital Center of the Jelenia Gora Valley, Oginskiego Street 6, 58-506 Jelenia Gora, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland;
| | - Jan Paweł Skóra
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Dariusz Janczak
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| |
Collapse
|
2
|
Ma Y, Liu H, Wang Y, Xuan J, Gao X, Ding H, Ma C, Chen Y, Yang Y. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetol Metab Syndr 2022; 14:169. [PMID: 36376958 PMCID: PMC9661802 DOI: 10.1186/s13098-022-00942-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is widely recommended for preventing and treating cardiovascular complications of type 2 diabetes mellitus (T2DM), the underlying mechanisms remain unknown. MicroRNA-126 (miR-126) is an angiogenetic regulator abundant in endothelial cells (ECs) and endothelial progenitor cells (EPCs). It is primarily involved in angiogenesis, inflammation and apoptosis for cardiovascular protection. According to recent studies, the levels of miR-126 in the myocardium and circulation are affected by exercise protocol. High-intensity interval training (HIIT) or moderate-and high-intensity aerobic exercise, whether acute or chronic, can increase circulating miR-126 in healthy adults. Chronic aerobic exercise can effectively rescue the reduction of myocardial and circulating miR-126 and vascular endothelial growth factor (VEGF) in diabetic mice against diabetic vascular injury. Resistance exercise can raise circulating VEGF levels, but it may have a little influence on circulating miR-126. The Several targets of miR-126 have been suggested for cardiovascular fitness, such as sprouty-related EVH1 domain-containing protein 1 (SPRED1), phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), vascular cell adhesion molecule 1 (VCAM1), high-mobility group box 1 (HMGB1), and tumor necrosis factor receptor-associated factor 7 (TRAF7). Here, we present a comprehensive review of the roles of miR-126 and its downstream proteins as exercise mechanisms, and propose that miR-126 can be applied as an exercise indicator for cardiovascular prescriptions and as a preventive or therapeutic target for cardiovascular complications in T2DM.
Collapse
Affiliation(s)
- Yixiao Ma
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Hua Liu
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yong Wang
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Junjie Xuan
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Huixian Ding
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Chunlian Ma
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Yi Yang
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Canjuga D, Steinle H, Mayer J, Uhde AK, Klein G, Wendel HP, Schlensak C, Avci-Adali M. Homing of mRNA-Modified Endothelial Progenitor Cells to Inflamed Endothelium. Pharmaceutics 2022; 14:pharmaceutics14061194. [PMID: 35745767 PMCID: PMC9229815 DOI: 10.3390/pharmaceutics14061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are one of the most important stem cells for the neovascularization of tissues damaged by ischemic diseases such as myocardial infarction, ischemic stroke, or critical limb ischemia. However, their low homing efficiency in the treatment of ischemic tissues limits their potential clinical applications. The use of synthetic messenger RNA (mRNA) for cell engineering represents a novel and promising technology for the modulation of cell behavior and tissue regeneration. To improve the therapeutic potential of EPCs, in this study, murine EPCs were engineered with synthetic mRNAs encoding C-X-C chemokine receptor 4 (CXCR4) and P-selectin glycoprotein ligand 1 (PSGL-1) to increase the homing and migration efficiency of EPCs to inflamed endothelium. Flow cytometric measurements revealed that the transfection of EPCs with CXCR4 and PSGL-1 mRNA resulted in increased expressions of CXCR4 and PSGL-1 on the cell surface compared with the unmodified EPCs. The transfection of EPCs with mRNAs did not affect cell viability. CXCR4-mRNA-modified EPCs showed significantly higher migration potential than unmodified cells in a chemotactic migration assay. The binding strength of the EPCs to inflamed endothelium was determined with single-cell atomic force microscopy (AFM). This showed that the mRNA-modified EPCs required a three-fold higher detachment force to be released from the TNF-α-activated endothelium than unmodified EPCs. Furthermore, in a dynamic flow model, significantly increased binding of the mRNA-modified EPCs to inflamed endothelium was detected. This study showed that the engineering of EPCs with homing factors encoding synthetic mRNAs increases the homing and migration potentials of these stem cells to inflamed endothelium. Thus, this strategy represents a promising strategy to increase the therapeutic potential of EPCs for the treatment of ischemic tissues.
Collapse
Affiliation(s)
- Denis Canjuga
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany; (D.C.); (H.S.); (J.M.); (A.-K.U.); (H.P.W.); (C.S.)
| | - Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany; (D.C.); (H.S.); (J.M.); (A.-K.U.); (H.P.W.); (C.S.)
| | - Jana Mayer
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany; (D.C.); (H.S.); (J.M.); (A.-K.U.); (H.P.W.); (C.S.)
| | - Ann-Kristin Uhde
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany; (D.C.); (H.S.); (J.M.); (A.-K.U.); (H.P.W.); (C.S.)
| | - Gerd Klein
- Center for Medical Research, Department of Medicine II, University of Tuebingen, Waldhörnlestraße 22, 72072 Tuebingen, Germany;
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany; (D.C.); (H.S.); (J.M.); (A.-K.U.); (H.P.W.); (C.S.)
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany; (D.C.); (H.S.); (J.M.); (A.-K.U.); (H.P.W.); (C.S.)
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany; (D.C.); (H.S.); (J.M.); (A.-K.U.); (H.P.W.); (C.S.)
- Correspondence: ; Tel.: +49-7071-29-86605; Fax: +49-7071-29-3617
| |
Collapse
|
4
|
Heinisch PP, Bello C, Emmert MY, Carrel T, Dreßen M, Hörer J, Winkler B, Luedi MM. Endothelial Progenitor Cells as Biomarkers of Cardiovascular Pathologies: A Narrative Review. Cells 2022; 11:cells11101678. [PMID: 35626716 PMCID: PMC9139418 DOI: 10.3390/cells11101678] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
Endothelial progenitor cells (EPC) may influence the integrity and stability of the vascular endothelium. The association of an altered total EPC number and function with cardiovascular diseases (CVD) and risk factors (CVF) was discussed; however, their role and applicability as biomarkers for clinical purposes have not yet been defined. Endothelial dysfunction is one of the key mechanisms in CVD. The assessment of endothelial dysfunction in vivo remains a major challenge, especially for a clinical evaluation of the need for therapeutic interventions or for primary prevention of CVD. One of the main challenges is the heterogeneity of this particular cell population. Endothelial cells (EC) can become senescent, and the majority of circulating endothelial cells (CEC) show evidence of apoptosis or necrosis. There are a few viable CECs that have properties similar to those of an endothelial progenitor cell. To use EPC levels as a biomarker for vascular function and cumulative cardiovascular risk, a correct definition of their phenotype, as well as an update on the clinical application and practicability of current isolation methods, are an urgent priority.
Collapse
Affiliation(s)
- Paul Philipp Heinisch
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine, Technical University of Munich, 80636 Munich, Germany;
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, 80636 Munich, Germany
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
- Correspondence:
| | - Corina Bello
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany;
- Institute of Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thierry Carrel
- Department of Cardiac Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany;
| | - Jürgen Hörer
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine, Technical University of Munich, 80636 Munich, Germany;
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, 80636 Munich, Germany
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Hospital Hietzing, 1130 Vienna, Austria;
| | - Markus M. Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
| |
Collapse
|
5
|
Lee HN, Choi YY, Kim JW, Lee YS, Choi JW, Kang T, Kim YK, Chung BG. Effect of biochemical and biomechanical factors on vascularization of kidney organoid-on-a-chip. NANO CONVERGENCE 2021; 8:35. [PMID: 34748091 PMCID: PMC8575721 DOI: 10.1186/s40580-021-00285-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 05/05/2023]
Abstract
Kidney organoids derived from the human pluripotent stem cells (hPSCs) recapitulating human kidney are the attractive tool for kidney regeneration, disease modeling, and drug screening. However, the kidney organoids cultured by static conditions have the limited vascular networks and immature nephron-like structures unlike human kidney. Here, we developed a kidney organoid-on-a-chip system providing fluidic flow mimicking shear stress with optimized extracellular matrix (ECM) conditions. We demonstrated that the kidney organoids cultured in our microfluidic system showed more matured podocytes and vascular structures as compared to the static culture condition. Additionally, the kidney organoids cultured in microfluidic systems showed higher sensitivity to nephrotoxic drugs as compared with those cultured in static conditions. We also demonstrated that the physiological flow played an important role in maintaining a number of physiological functions of kidney organoids. Therefore, our kidney organoid-on-a-chip system could provide an organoid culture platform for in vitro vascularization in formation of functional three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- Han Na Lee
- Department of Biomedical Engineering, Sogang University, Seoul, South Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, South Korea
| | - Jin Won Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Seo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Yong Kyun Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon, South Korea.
| | - Bong Guen Chung
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea.
| |
Collapse
|
6
|
Zhang H, Luo H, Tang B, Chen Y, Fu J, Sun J. Endothelial progenitor cells overexpressing platelet derived growth factor-D facilitate deep vein thrombosis resolution. J Thromb Thrombolysis 2021; 53:750-760. [PMID: 34669127 DOI: 10.1007/s11239-021-02567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/27/2022]
Abstract
To assess the therapeutic efficacy of PDGF-D-overexpressing endothelial progenitor cells (EPCs) in deep vein thrombosis. Inferior vena cava thrombosis was induced in female Sprague Dawley (SD) rats. Animals were injected via the distal vena cava with EPCs overexpressing PDGF-D after transfection with a lentiviral vector containing the PDGF-D gene. The effect on thrombosis in animals who received EPCs was evaluated using MSB staining, immunohistochemistry, immunofluorescence, and venography; the steady-state mRNA and protein levels of PDGF-D and its receptor (PDGF-Rβ) were determined by RT-PCR and Western blotting, respectively; and the PDGF-D-induced mobilization of circulating EPCs was estimated by flow cytology. Compared with controls, injection of EPCs overexpressing PDGF-D was associated with increased thrombosis resolution; recanalization; PDGF-D and PDGF-Rβ expression; induction of monocyte homing; and mobilization of EPCs to the venous circulation. In a rat model, transplantation of PDGF-D-overexpressing EPCs facilitated the resolution of deep vein thrombosis.
Collapse
Affiliation(s)
- Haolong Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hailong Luo
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bo Tang
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yikuan Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Fu
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jianming Sun
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
7
|
Meng X, Xing Y, Li J, Deng C, Li Y, Ren X, Zhang D. Rebuilding the Vascular Network: In vivo and in vitro Approaches. Front Cell Dev Biol 2021; 9:639299. [PMID: 33968926 PMCID: PMC8097043 DOI: 10.3389/fcell.2021.639299] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
As the material transportation system of the human body, the vascular network carries the transportation of materials and nutrients. Currently, the construction of functional microvascular networks is an urgent requirement for the development of regenerative medicine and in vitro drug screening systems. How to construct organs with functional blood vessels is the focus and challenge of tissue engineering research. Here in this review article, we first introduced the basic characteristics of blood vessels in the body and the mechanism of angiogenesis in vivo, summarized the current methods of constructing tissue blood vessels in vitro and in vivo, and focused on comparing the functions, applications and advantages of constructing different types of vascular chips to generate blood vessels. Finally, the challenges and opportunities faced by the development of this field were discussed.
Collapse
Affiliation(s)
- Xiangfu Meng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yunhui Xing
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Cechuan Deng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
8
|
Wu K, Cai Z, Liu B, Hu Y, Yang P. RUNX2 promotes vascular injury repair by activating miR-23a and inhibiting TGFBR2. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:363. [PMID: 33842584 PMCID: PMC8033336 DOI: 10.21037/atm-20-2661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Previous evidence has suggested that the transcription factor, runt-related transcription factor 2 (RUNX2), promotes the repair of vascular injury and activates the expression of microRNA-23a (miR-23a). TGF-β receptor type II (TGFBR2) has been found to mediate smooth muscle cells (SMCs) following arterial injury. However, the interactions among RUNX2, miR-23a and TGFBR2 in vascular injury have not been investigated thoroughly yet. Therefore, we aim to explore the mechanism of how RUNX2 triggers the expression of miR-23a and its effects on the repair of vascular injury. Methods C57BL/6 mice were used to produce a model of arterial injury in vivo. Mouse arterial SMCs were isolated for in vitro cell injury induction by 100 nmol/L tumor necrosis factor-α (TNF-α). Gain-and loss-of-function studies were conducted to assess cell viability and apoptosis by using cell counting kit (CCK)-8 assay and flow cytometry respectively. The levels of TNF-α, interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) were examined by enzyme-linked immunosorbent assay (ELISA). The interaction between RUNX2 and miR-23a was identified by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays, while the targeting relationship between miR-23a and TGFBR2 was analyzed by RNA immunoprecipitation (RIP) and dual luciferase reporter assays. Results Both RUNX2 and miR-23a exhibited low levels of expressions, while TGFBR2 had a high level of expression in mice with induced arterial injury. RUNX2 was found to bind to the promoter of miR-23a and activate miR-23a, while miR-23a targeted TGFBR2. Ectopic RUNX2 expression inhibited inflammatory cell infiltration, and promoted collagen content by upregulating miR-23a and downregulating TGFBR2. Furthermore, the overexpression of RUNX2 increased viability and decreased apoptosis in vascular smooth muscle cells (VSMCs) by activating miR-23a. Conclusions The overexpression of RUNX2 elevated the expression of miR-23, thus inhibiting TGFBR2 and promoting vascular injury repair.
Collapse
Affiliation(s)
- Kai Wu
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Cai
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hu
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pu Yang
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Yu B, Dong B, He J, Huang H, Huang J, Wang Y, Liang J, Zhang J, Qiu Y, Shen J, Shuai X, Tao J, Xia W. Bimodal Imaging-Visible Nanomedicine Integrating CXCR4 and VEGFa Genes Directs Synergistic Reendothelialization of Endothelial Progenitor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001657. [PMID: 33344118 PMCID: PMC7740091 DOI: 10.1002/advs.202001657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Indexed: 06/01/2023]
Abstract
A major challenge to treat vascular endothelial injury is the restoration of endothelium integrity in which endothelial progenitor cells (EPCs) plays a central role. Transplantation of EPCs as a promising therapeutic means is subject to two interrelated processes, homing and differentiation of EPCs in vivo, and thus a lack of either one may greatly affect the outcome of EPC-based therapy. Herein, a polymeric nanocarrier is applied for the codelivery of CXCR4 and VEGFa genes to simultaneously promote the migration and differentiation of EPCs. Moreover, MRI T2 contrast agent SPION and NIR dye Cy7.5 are also loaded into the nanocarrier in order to track EPCs in vivo. Based on the synergistic effect of the two codelivered genes, an improved reendothelialization of EPCs is achieved in a rat carotid denuded model. The results show the potential of this bimodal imaging-visible nanomedicine to improve the performance of EPCs in repairing arterial injury, which may push forward the stem cell-based therapy of cardiovascular disease.
Collapse
Affiliation(s)
- Bingbo Yu
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Bing Dong
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Jiang He
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Hui Huang
- Department of CardiovascularThe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518000China
| | - Jinsheng Huang
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Yong Wang
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jianwen Liang
- Department of CardiovascularThe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518000China
| | - Jianning Zhang
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Yumin Qiu
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Jun Shen
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xintao Shuai
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jun Tao
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Wenhao Xia
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| |
Collapse
|
10
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
11
|
Wang K, Dai X, He J, Yan X, Yang C, Fan X, Sun S, Chen J, Xu J, Deng Z, Fan J, Yuan X, Liu H, Carlson EC, Shen F, Wintergerst KA, Conklin DJ, Epstein PN, Lu C, Tan Y. Endothelial Overexpression of Metallothionein Prevents Diabetes-Induced Impairment in Ischemia Angiogenesis Through Preservation of HIF-1α/SDF-1/VEGF Signaling in Endothelial Progenitor Cells. Diabetes 2020; 69:1779-1792. [PMID: 32404351 PMCID: PMC7519474 DOI: 10.2337/db19-0829] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/09/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-induced oxidative stress is one of the major contributors to dysfunction of endothelial progenitor cells (EPCs) and impaired endothelial regeneration. Thus, we tested whether increasing antioxidant protein metallothionein (MT) in EPCs promotes angiogenesis in a hind limb ischemia (HLI) model in endothelial MT transgenic (JTMT) mice with high-fat diet- and streptozocin-induced diabetes. Compared with littermate wild-type (WT) diabetic mice, JTMT diabetic mice had improved blood flow recovery and angiogenesis after HLI. Similarly, transplantation of JTMT bone marrow-derived mononuclear cells (BM-MNCs) stimulated greater blood flow recovery in db/db mice with HLI than did WT BM-MNCs. The improved recovery was associated with augmented EPC mobilization and angiogenic function. Further, cultured EPCs from patients with diabetes exhibited decreased MT expression, increased cell apoptosis, and impaired tube formation, while cultured JTMT EPCs had enhanced cell survival, migration, and tube formation in hypoxic/hyperglycemic conditions compared with WT EPCs. Mechanistically, MT overexpression enhanced hypoxia-inducible factor 1α (HIF-1α), stromal cell-derived factor (SDF-1), and vascular endothelial growth factor (VEGF) expression and reduced oxidative stress in ischemic tissues. MT's pro-EPC effects were abrogated by siRNA knockdown of HIF-1α without affecting its antioxidant action. These results indicate that endothelial MT overexpression is sufficient to protect against diabetes-induced impairment of angiogenesis by promoting EPC function, most likely through upregulation of HIF-1α/SDF-1/VEGF signaling and reducing oxidative stress.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Survival/genetics
- Cell Survival/physiology
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Endothelial Progenitor Cells/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Hindlimb/pathology
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Ischemia/genetics
- Ischemia/metabolism
- Leukocytes, Mononuclear/metabolism
- Male
- Metallothionein/genetics
- Metallothionein/metabolism
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Oxidative Stress/genetics
- Oxidative Stress/physiology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Kai Wang
- Department of Pediatrics, Endocrinology and Metabolism, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Xiaozhen Dai
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Junhong He
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengkui Yang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Xia Fan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Chen
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Zhongbin Deng
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY
| | - Jiawei Fan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaohuan Yuan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Heilongjiang, China
| | - Hairong Liu
- Experimental Research Center, the First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Edward C Carlson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND
| | - Feixia Shen
- Department of Pediatrics, Endocrinology and Metabolism, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children's Medical Group, Louisville, KY
- Wendy Novak Diabetes Center, Louisville, KY
| | - Daniel J Conklin
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Paul N Epstein
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Wendy Novak Diabetes Center, Louisville, KY
| | - Chaosheng Lu
- Department of Pediatrics, Endocrinology and Metabolism, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Wendy Novak Diabetes Center, Louisville, KY
| |
Collapse
|
12
|
Chen Y, Cao J, Peng W, Chen W. Neurotrophin-3 accelerates reendothelialization through inducing EPC mobilization and homing. Open Life Sci 2020; 15:241-250. [PMID: 33817212 PMCID: PMC7874535 DOI: 10.1515/biol-2020-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/27/2018] [Accepted: 01/12/2019] [Indexed: 01/17/2023] Open
Abstract
Rapid endothelialization is an effective way to treat intimal hyperplasia after intravascular stent implantation. Blood vessels and nerves coordinate with each other in function, while neurotrophin-3 (NT-3) is an important class of nerve growth factors. Our study found that NT-3 promoted endothelial progenitor cell (EPC) mobilization, and the proportion of EPCs in peripheral blood was increased by 1.774 times compared with the control group. Besides, NT-3 promoted the expression of stromal cell-derived factor-1α (SDF-1α), matrix metalloproteinase-9 (MMP9), and chemokine (C-X-C motif) receptor 4 (CXCR4) in EPCs, which increased by 59.89%, 74.46%, and 107.7%, respectively, compared with the control group. Transwell experiments showed that NT-3 enhanced the migration of EPCs by 1.31 times. Flow chamber experiments demonstrated that NT-3 captured more circulating EPCs. As shown by ELISA results, NT-3 can promote the paracrine of vascular endothelial growth factor, interleukin-8, MMP-9, and SDF-1 from EPCs. Such increased angiogenic growth factors further accelerated the closure of endothelial cell scratches. Additionally, EPC-conditioned medium in the NT-3 group significantly inhibited the proliferation of vascular smooth muscle cells. Then animal experiments also illustrated that NT-3 prominently accelerated the endothelialization of injured carotid artery. In short, NT-3 accelerated rapid reendothelialization of injured carotid artery through promoting EPC mobilization and homing.
Collapse
Affiliation(s)
- Yan Chen
- Department of Integrated TCM & Western Medicine, Central Hospital of Yiyang city, YiyangHunan, 413200, China
| | - Jian Cao
- Department of General Surgery, Central Hospital of Yiyang city, Yiyang, Hunan, 413200, China
| | - Weixia Peng
- Department of Integrated TCM & Western Medicine, Central Hospital of Yiyang city, YiyangHunan, 413200, China
| | - Wen Chen
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| |
Collapse
|
13
|
Proangiogenic and Proarteriogenic Therapies in Coronary Microvasculature Dysfunction. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
15
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
16
|
Barć P, Antkiewicz M, Śliwa B, Baczyńska D, Witkiewicz W, Skóra JP. Treatment of Critical Limb Ischemia by pIRES/VEGF165/HGF Administration. Ann Vasc Surg 2019; 60:346-354. [PMID: 31200059 DOI: 10.1016/j.avsg.2019.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/03/2019] [Accepted: 03/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prognosis of peripheral artery disease (PAD), especially critical limb ischemia (CLI), is very poor despite the development of endovascular therapy and bypass surgery. Many patients result in having leg amputation. We decided to investigate the safety and efficacy of plasmid of internal ribosome entry site/vascular endothelial growth factor (VEGF) 165/hepatocyte growth factor (HGF) gene therapy (GT) in patients suffered from CLI. METHODS Administration of plasmid of internal ribosome entry site/VEGF165/HGF was performed in 12 limbs of 12 patients with rest pain and ischemic ulcers due to CLI. Plasmid was injected into the muscles of the ischemic limbs. The levels of VEGF in serum and the ankle-brachial index (ABI) were measured before and after treatment. RESULTS Mean (±SD) plasma levels of VEGF increased nonsignificantly from 258 ± 81 pg/L to 489 ± 96 pg/L (P > 0.05) 2 weeks after therapy, and the ABI improved significantly from 0.27 ± 0.20 to 0.50 ± 0.22 (P < 0.001) 3 months after therapy. Ischemic ulcers healed in 9 limbs. Amputation was performed in 3 patients because of advanced necrosis and wound infection. However, the level of amputations was lowered below knee in these cases. Complications were limited to transient leg edema in 3 patients and fever in 2 patients. CONCLUSIONS Intramuscular administration of plasmid of internal ribosome entry site/VEGF165/HGF is safe, feasible, and effective for patients with critical leg ischemia.
Collapse
Affiliation(s)
- Piotr Barć
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Antkiewicz
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
| | - Barbara Śliwa
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Dagmara Baczyńska
- Molecular Techniques Unit, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Witkiewicz
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
| | - Jan Paweł Skóra
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
17
|
Marvasti TB, Alibhai FJ, Weisel RD, Li RK. CD34 + Stem Cells: Promising Roles in Cardiac Repair and Regeneration. Can J Cardiol 2019; 35:1311-1321. [PMID: 31601413 DOI: 10.1016/j.cjca.2019.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Cell therapy has received significant attention as a novel therapeutic approach to restore cardiac function after injury. CD34-positive (CD34+) stem cells have been investigated for their ability to promote angiogenesis and contribute to the prevention of remodelling after infarct. However, there are significant differences between murine and human CD34+ cells; understanding these differences might benefit the therapeutic use of these cells. Herein we discuss the function of the CD34 cell and highlight the similarities and differences between murine and human CD34 cell function, which might explain some of the differences between the animal and human evolutions. We also summarize the studies that report the application of murine and human CD34+ cells in preclinical studies and clinical trials and current limitations with the application of cell therapy for cardiac repair. Finally, to overcome these limitations we discuss the application of novel humanized rodent models that can bridge the gap between preclinical and clinical studies as well as rejuvenation strategies for improving the quality of old CD34+ cells for future clinical trials of autologous cell transplantation.
Collapse
Affiliation(s)
- Tina Binesh Marvasti
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada
| | - Richard D Weisel
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto; Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto; Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Jin Y, Yang C, Sui X, Cai Q, Guo L, Liu Z. Endothelial progenitor cell transplantation attenuates lipopolysaccharide-induced acute lung injury via regulating miR-10a/b-5p. Lipids Health Dis 2019; 18:136. [PMID: 31174540 PMCID: PMC6556024 DOI: 10.1186/s12944-019-1079-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Background Bone marrow-derived endothelial progenitor cells (EPCs) are shown to attenuate lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in animal models. However, the molecular mechanism is largely unknown. Materials and methods The animal model of ALI was induced by intratracheal instillation of purified LPS with 2.5 mg/ml/kg. The expression of microRNAs and ADAM15 in lung tissues and LPS-induced mouse pulmonary microvascular endothelial cells (MPMVECs) was determined by quantitative real-time PCR and western blot analysis. The target relationship between miR-10a/b-5p and ADAM15 was confirmed by luciferase reporter assay and RNA interference. The effect of EPCs on MPMVEC proliferation was detected by MTT assay. Results EPCs increased the expression of miR-10a/b-5p and reduced ADAM15 protein level in LPS-induced ALI lung tissues and MPMVECs (p < 0.05), and promoted LPS-induced MPMVEC proliferation (p < 0.05). ADAM15 was confirmed to be a downstream target of miR-10a/b-5p. Additionally, EPCs promoted LPS-induced MPMVEC proliferation and exerted the therapeutic effect of ALI via regulating miR-10a/b-5p/ADAM15 axis. Conclusion EPC transplantation exerted its therapeutic effect of ALI via increasing miR-10a/b-5p and reducing ADAM15, thus providing a novel insight into the molecular mechanism of EPC transplantation in treating ALI. Electronic supplementary material The online version of this article (10.1186/s12944-019-1079-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Jin
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Chen Yang
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xintong Sui
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Quan Cai
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Liang Guo
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Zhi Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China.
| |
Collapse
|
19
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
20
|
Differential Expression of Vascular Endothelial Growth Factor-A 165 Isoforms Between Intracranial Atherosclerosis and Moyamoya Disease. J Stroke Cerebrovasc Dis 2018; 28:360-368. [PMID: 30392834 DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/14/2018] [Accepted: 10/06/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor-A165 (VEGF-A165) has been identified as a combination of 2 alternative splice variants: proangiogenic VEGF-A165a and antiangiogenic VEGF-A165b. Intracranial atherosclerotic disease (ICAD) and moyamoya disease (MMD) are 2 main types of intracranial arterial steno-occlusive disorders with distinct capacities for collateral formation. Recent studies indicate that VEGF-A165 regulates collateral growth in ischemia. Therefore, we investigated if there is a distinctive composition of VEGF-A165 isoforms in ICAD and MMD. METHODS Sixty-six ICAD patients, 6 MMD patients, and 5 controls were enrolled in this prospective study. ICAD and MMD patients received intensive medical management upon enrollment. Surgery was offered to 9 ICAD patients who had recurrent ischemic events, 6 MMD patients, and 5 surgical controls without ICAD. VEGF-A165a and VEGF-A165b plasma levels were measured at baseline, within 1 week after patients having surgery, and at 1, 3, and 6 months after treatment. RESULTS A significantly higher baseline VEGF-A165a/b ratio was observed in MMD compared to ICAD (P = .016). The VEGF-A165a/b ratio increased significantly and rapidly after surgical treatment in ICAD (P = .026) more so than in MMD and surgical controls. In patients with ICAD receiving intensive medical management, there was also an elevation of the VEGF-A165a/b ratio, but at a slower rate, reaching the peak at 3 months after initiation of treatment (baseline versus 3 months VEGF-A165a/b ratio, P = .028). CONCLUSIONS Our study shows an increased VEGF-A165a/b ratio in MMD compared to ICAD, and suggests that both intensive medical management and surgical revascularization elevate the VEGF-A165a/b ratio in ICAD patients.
Collapse
|
21
|
Hou Y, Li C. Stem/Progenitor Cells and Their Therapeutic Application in Cardiovascular Disease. Front Cell Dev Biol 2018; 6:139. [PMID: 30406100 PMCID: PMC6200850 DOI: 10.3389/fcell.2018.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in the world. The stem/progenitor cell-based therapy has emerged as a promising approach for the treatment of a variety of cardiovascular diseases including myocardial infarction, stroke, peripheral arterial disease, and diabetes. An increasing number of evidence has shown that stem/progenitor cell transplantation could replenish damaged cells, improve cardiac and vascular functions, and repair injured tissues in many pre-clinical studies and clinical trials. In this review, we have outlined the major types of stem/progenitor cells, and summarized the studies in applying these cells, especially endothelial stem/progenitor cells and their derivatives, in the treatment of cardiovascular disease. Here the strategies used to improve the stem/progenitor cell-based therapies in cardiovascular disease and the challenges with these therapies in clinical applications are also reviewed.
Collapse
Affiliation(s)
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
22
|
Li N, Wang WB, Bao H, Shi Q, Jiang ZL, Qi YX, Han Y. MicroRNA-129-1-3p regulates cyclic stretch-induced endothelial progenitor cell differentiation by targeting Runx2. J Cell Biochem 2018; 120:5256-5267. [PMID: 30320897 DOI: 10.1002/jcb.27800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) are vital to the recovery of endothelial function and maintenance of vascular homeostasis. EPCs mobilize to sites of vessel injury and differentiate into mature endothelial cells (ECs). Locally mobilized EPCs are exposed to cyclic stretch caused by blood flow, which is important for EPC differentiation. MicroRNAs (miRNAs) have emerged as key regulators of several cellular processes. However, the role of miRNAs in cyclic stretch-induced EPC differentiation remains unclear. Here, we investigate the effects of microRNA-129-1-3p (miR-129-1-3p) and its novel target Runt-related transcription factor 2 (Runx2) on EPC differentiation induced by cyclic stretch. Bone marrow-derived EPCs were exposed to cyclic stretch with a magnitude of 5% (which mimics physiological mechanical stress) at a constant frequency of 1.25 Hz for 24 hours. The results from a miRNA array revealed that cyclic stretch significantly decreased miR-129-1-3p expression. Furthermore, we found that downregulation of miR-129-1-3p during cyclic stretch-induced EPC differentiation toward ECs. Meanwhile, expression of Runx2, a putative target gene of miR-129-1-3p, was increased as a result of cyclic stretch. A 3'UTR reporter assay validated Runx2 as a direct target of miR-129-1-3p. Furthermore, small interfering RNA (siRNA)-mediated knockdown of Runx2 inhibited EPC differentiation into ECs and attenuated EPC tube formation via modulation of vascular endothelial growth factor (VEGF) secretion from EPCs in vitro. Our findings demonstrated that cyclic stretch suppresses miR-129-1-3p expression, which in turn activates Runx2 and VEGF to promote endothelial differentiation of EPCs and angiogenesis. Therefore, targeting miR-129-1-3p and Runx2 may be a potential therapeutic strategy for treating vessel injury.
Collapse
Affiliation(s)
- Na Li
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Bin Wang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Steinle H, Golombek S, Behring A, Schlensak C, Wendel HP, Avci-Adali M. Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mRNAs. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:387-398. [PMID: 30343252 PMCID: PMC6198099 DOI: 10.1016/j.omtn.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
The application of endothelial progenitor cells (EPCs) for the revascularization of ischemic tissues, such as after myocardial infarction, stroke, and acute limb ischemia, has a huge clinical potential. However, the low retention and engraftment of EPCs as well as the poor survival of migrated stem cells in ischemic tissues still hamper the successful clinical application. Thus, in this study, we engineered, for the first time, murine EPCs with synthetic mRNAs to transiently produce proangiogenic factors vascular endothelial growth factor-A (VEGF-A), stromal cell-derived factor-1α (SDF-1α), and angiopoietin-1 (ANG-1). After the transfection of cells with synthetic mRNAs, significantly increased VEGF-A, SDF-1α, and ANG-1 protein levels were detected compared to untreated EPCs. Thereby, mRNA-engineered EPCs showed significantly increased chemotactic activity versus untreated EPCs and resulted in significantly improved attraction of EPCs. Furthermore, ANG-1 mRNA-transfected EPCs displayed a strong wound-healing capacity. Already after 12 hr, 94% of the created wound area in the scratch assay was closed compared to approximately 45% by untreated EPCs. Moreover, the transfection of EPCs with ANG-1 or SDF-1α mRNA also significantly improved the in vitro tube formation capacity; however, the strongest effect could be detected with EPCs simultaneously transfected with VEGF-A, SDF-1α, and ANG-1 mRNA. In the in vivo chicken chorioallantoic membrane (CAM) assay, EPCs transfected with ANG-1 mRNA revealed the strongest angiogenetic potential with significantly elevated vessel density and total vessel network length. In conclusion, this study demonstrated that EPCs can be successfully engineered with synthetic mRNAs encoding proangiogenic factors to improve their therapeutic angiogenetic potential in patients experiencing chronic or acute ischemic disease.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Andreas Behring
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Hans Peter Wendel
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
24
|
Zhang ZD, Xu YQ, Chen F, Luo JF, Liu CD. Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization. Heart Vessels 2018; 34:167-176. [PMID: 30043157 DOI: 10.1007/s00380-018-1230-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/20/2018] [Indexed: 01/15/2023]
Abstract
We hypothesize that the controlled delivery of vascular endothelial growth factor (VEGF) using a novel protein sustained-release system based on the combination of protein-loaded dextran microparticles and PLGA microspheres could be useful to achieve mature vessel formation in a rat hind-limb ischemic model. VEGF-loaded dextran microparticles were fabricated and then encapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres to prepare VEGF-dextran-PLGA microspheres. The release behavior and bioactivity in promoting endothelial cell proliferation of VEGF from PLGA microspheres were monitored in vitro. VEGF-dextran-PLGA microsphere-loaded fibrin gel was injected into an ischemic rat model, and neovascularization at the ischemic site was evaluated. The release of VEGF from PLGA microspheres was in a sustained manner for more than 1 month in vitro with low level of initial burst release. The released VEGF enhanced the proliferation of endothelial cells in vitro, and significantly promoted the capillaries and smooth muscle α-actin positive vessels formation in vivo. The retained bioactivity of VEGF released from VEGF-dextran-PLGA microspheres potentiated the angiogenic efficacy of VEGF. This sustained-release system may be a promising vehicle for delivery of multiple angiogenic factors for therapeutic neovascularization.
Collapse
Affiliation(s)
- Zhen Dong Zhang
- Department of Pathology, The First Affiliated Hospital, Nanchang University, 330006, Nanchang, People's Republic of China
| | - Ying Qi Xu
- Department of Vascular Surgery, The Second Affiliated Hospital, Nanchang University, 330006, Nanchang, People's Republic of China
| | - Feng Chen
- Department of Vascular Surgery, The Second Affiliated Hospital, Nanchang University, 330006, Nanchang, People's Republic of China.
| | - Jun Fu Luo
- Department of Vascular Surgery, The Second Affiliated Hospital, Nanchang University, 330006, Nanchang, People's Republic of China
| | - Chong Dong Liu
- Medical College, Nanchang University, 330006, Nanchang, People's Republic of China
| |
Collapse
|
25
|
Adipurnama I, Yang MC, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci 2018; 5:22-37. [PMID: 27942617 DOI: 10.1039/c6bm00618c] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular implants, especially vascular grafts made of synthetic polymers, find wide clinical applications in the treatment of cardiovascular diseases. However, cases of failure still exist, notably caused by restenosis and thrombus formation. Aiming to solve these problems, various approaches to surface modification of synthetic vascular grafts have been used to improve both the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification using hydrophilic molecules can enhance hemocompatibility, but this may limit the initial vascular endothelial cell adhesion. Therefore, the improvement of endothelialization on these grafts with specific peptides and biomolecules is now an exciting field of research. In this review, several techniques to improve surface modification and endothelialization on vascular grafts, mainly polyurethane (PU) grafts, are summarized, together with the recent development and evolution of the different strategies: from the use of PEG, zwitterions, and polysaccharides to peptides and other biomolecules and genes; from in vitro endothelialization to in vivo endothelialization; and from bio-inert and bio-active to bio-mimetic approaches.
Collapse
Affiliation(s)
- Iman Adipurnama
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
26
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
27
|
Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Fan H. Exosomes from Endothelial Progenitor Cells Improve the Outcome of a Murine Model of Sepsis. Mol Ther 2018; 26:1375-1384. [PMID: 29599080 DOI: 10.1016/j.ymthe.2018.02.020] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 01/07/2023] Open
Abstract
Microvascular dysfunction leads to multi-organ failure and mortality in sepsis. Our previous studies demonstrated that administration of exogenous endothelial progenitor cells (EPCs) confers protection in sepsis as evidenced by reduced vascular leakage, improved organ function, and increased survival. We hypothesize that EPCs protect the microvasculature through the exosomes-mediated transfer of microRNAs (miRNAs). Mice were rendered septic by cecal ligation and puncture (CLP), and EPC exosomes were administered intravenously at 4 hr after CLP. EPC exosomes treatment improved survival, suppressing lung and renal vascular leakage, and reducing liver and kidney dysfunction in septic mice. EPC exosomes attenuated sepsis-induced increases in plasma levels of cytokines and chemokine. Moreover, we determined miRNA contents of EPC exosomes with next-generation sequencing and found abundant miR-126-3p and 5p. We demonstrated that exosomal miR-126-5p and 3p suppressed LPS-induced high mobility group box 1 (HMGB1) and vascular cell adhesion molecule 1 (VCAM1) levels, respectively, in human microvascular endothelial cells (HMVECs). Inhibition of microRNA-126-5p and 3p through transfection with microRNA-126-5p and 3p inhibitors abrogated the beneficial effect of EPC exosomes. The inhibition of exosomal microRNA-126 failed to block LPS-induced increase in HMGB1 and VCAM1 protein levels in HMVECs and negated the protective effect of exosomes on sepsis survival. Thus, EPC exosomes prevent microvascular dysfunction and improve sepsis outcomes potentially through the delivery of miR-126.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biopharmaceutics, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andrew J Goodwin
- Department of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eugene Chang
- Department of Obstetrics-Gynecology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
28
|
Haider KH, Aziz S, Al-Reshidi MA. Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models. Regen Med 2017; 12:969-982. [PMID: 29215316 DOI: 10.2217/rme-2017-0074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.
Collapse
Affiliation(s)
| | - Salim Aziz
- Department of CV Surgery, George Washington University, 2440 M Street NW, Suite 505, Washington DC 20037, USA
| | - Mateq Ali Al-Reshidi
- Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Ai J, Sun JH, Ma J, Yao K. Effects of lentivirus-mediated endostatin on endothelial progenitor cells. Oncotarget 2017; 8:94431-94439. [PMID: 29212239 PMCID: PMC5706885 DOI: 10.18632/oncotarget.21770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are candidates for gene therapies against retinal neovascularization (NV). The aim of present study was to investigate the effects of endostatin transfection on EPC function. In the present study, the EPCs were infected with lentivirus overexpressing endostatin. The transfection effects of endostatin overexpression on the proliferation, migratory, differentiation, apoptosis and the cell cycle of this cell line were determined. The real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assays showed high expression levels of endostatin. A cell counting kit-8 assay showed that endostatin overexpression inhibited EPC proliferation. The transwell assay indicated that endostatin overexpression could suppress EPC migration. Furthermore, endostatin overexpression enhanced apoptosis (as showed by AnnexinV-FITC/propidiumiodide staining analysis), induced differentiation and blocked the cell cycle. As compared with negative control group, EPC viability significantly decreased in gene transfection group. In conclusion, present study determined the feasibility of lentivirus-mediated endostatin gene transfer, and indirectly proved the effect of endostatin secretion on EPCs. Also our study provided a new opportunity for the potential application of gene therapy in retinal NV.
Collapse
Affiliation(s)
- Jing Ai
- Eye Center, 2nd Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jun-Hui Sun
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Ma
- Eye Center, 2nd Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ke Yao
- Eye Center, 2nd Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
30
|
Luo L, Zheng W, Lian G, Chen H, Li L, Xu C, Xie L. Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad pathway. Int J Mol Med 2017; 41:51-60. [PMID: 29115380 PMCID: PMC5746303 DOI: 10.3892/ijmm.2017.3226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to assess the effects of therapy with adiponectin (APN) gene-modified adipose-derived stem cells (ADSCs) on pulmonary arterial hypertension (PAH) in rats and the underlying cellular and molecular mechanisms. ADSCs were successfully isolated from the rats and characterized. ADSCs were effectively infected with the green fluorescent protein (GFP)-empty (ADSCs-V) or the APN-GFP (ADSCs-APN) lentivirus and the APN expression was evaluated by ELISA. Sprague-Dawley rats were administered monocrotaline (MCT) to develop PAH. The rats were treated with MCT, ADSCs, ADSCs-V and ADSCs-APN. Then ADSCs-APN in the lung were investigated by confocal laser scanning microscopy and western blot analysis. Engrafted ADSCs in the lung were located around the vessels. Mean pulmonary arterial pressure (mPAP) and the right ventricular hypertrophy index (RVHI) in the ADSCs-APN-treated mice were significantly decreased as compared with the ADSCs and ADSCs-V treatments. Pulmonary vascular remodeling was assessed. Right ventricular (RV) function was evaluated by echocardiography. We found that pulmonary vascular remodeling and the parameters of RV function were extensively improved after ADSCs-APN treatment when compared with ADSCs and ADSCs-V treatment. Pulmonary artery smooth muscle cells (PASMCs) were isolated from the PAH rats. The antiproliferative effect of APN on PASMCs was assayed by Cell Counting Kit-8. The influence of APN and specific inhibitors on the levels of bone morphogenetic protein (BMP), adenosine monophosphate activated protein kinase (AMPK), and small mothers against decapentaplegia (Smad) pathways was detected by western blot analysis. We found that APN suppressed the proliferation of PASMCs isolated from the PAH rats by regulating the AMPK/BMP/Smad pathway. This effect was weakened by addition of the AMPK inhibitor (compound C) and BMP2 inhibitor (noggin). Therefore, combination treatment with ADSCs and APN effectively attenuated PAH in rats by inhibiting PASMC proliferation and regulating the AMPK/BMP/Smad pathway.
Collapse
Affiliation(s)
- Li Luo
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wuhong Zheng
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huaning Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Li
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
31
|
Li L, Liu H, Xu C, Deng M, Song M, Yu X, Xu S, Zhao X. VEGF promotes endothelial progenitor cell differentiation and vascular repair through connexin 43. Stem Cell Res Ther 2017; 8:237. [PMID: 29065929 PMCID: PMC5655878 DOI: 10.1186/s13287-017-0684-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023] Open
Abstract
Background Endothelial progenitor cell (EPC) differentiation is considered crucial for vascular repair. Vascular endothelial growth factor (VEGF) induces EPC differentiation, but the underlying mechanism of this phenomenon remains unclear. Connexin 43 (Cx43) is reported to be involved in the regulation of stem cell differentiation. Therefore, we sought to determine whether Cx43 is involved in VEGF-induced EPC differentiation and vascular repair. Methods Rat spleen-derived EPCs were cultured and treated with various concentrations of VEGF (0, 10, or 50 ng/mL), and the relationship between EPC differentiation and Cx43 expression was evaluated. Thereafter, fluorescence redistribution after photobleaching was performed to assess the relationship between adjacent EPC differentiation and Cx43-induced gap junction intercellular communication (GJIC). After carotid artery injury, EPCs pretreated with VEGF were injected into the tail veins, and the effects of Cx43 on vascular repair were evaluated. Results EPCs cultured with VEGF exhibited accelerated differentiation and increased expression of Cx43. However, inhibition of Cx43 expression using short interfering RNA (siRNA) attenuated EPC GJIC and consequent EPC differentiation. VEGF-pretreated EPC transplantation promoted EPC homing and reendothelialization, and inhibited neointimal formation. These effects were attenuated by siRNA inhibition of Cx43. Conclusions Our results from in vivo and in vitro experiments indicated that VEGF promotes EPC differentiation and vascular repair through Cx43. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0684-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lufeng Li
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Huanyun Liu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.,Cardiovascular Department, First People's Hospital of Chong Qing Liang Jiang New Zone, Chongqing, 401120, China
| | - Chunxin Xu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mengyang Deng
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mingbao Song
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xuejun Yu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shangcheng Xu
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohui Zhao
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
32
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
33
|
Abstract
Vascular complications contribute significantly to morbidity and mortality of diabetes mellitus. The primary cause of vascular complications in diabetes mellitus is hyperglycaemia, associated with endothelial dysfunction and impaired neovascularization. Circulating endothelial progenitor cells was shown to play important roles in vascular repair and promoting neovascularization. In this review, we will demonstrate the individual effect of high glucose on endothelial progenitor cells. Endothelial progenitor cells isolated from healthy subjects exposed to high glucose conditions or endothelial progenitor cells isolated from diabetic patients exhibit reduced number of endothelial cell colony forming units, impaired abilities of differentiation, proliferation, adhesion and migration, tubulization, secretion, mobilization and homing, whereas enhanced senescence. Increased production of reactive oxygen species by the mitochondria seems to play a crucial role in high glucose-induced endothelial progenitor cells deficit. Later, we will review the agents that might be used to alleviate dysfunction of endothelial progenitor cells induced by high glucose. The conclusions are that the relationship between hyperglycaemia and endothelial progenitor cells dysfunction is only beginning to be recognized, and future studies should pay more attention to the haemodynamic environment of endothelial progenitor cells and ageing factors to discover novel treatment agents.
Collapse
Affiliation(s)
- Hongyan Kang
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xuejiao Ma
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiajia Liu
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- 2 National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiaoyan Deng
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
34
|
Endothelial Progenitor Cells for Ischemic Stroke: Update on Basic Research and Application. Stem Cells Int 2017; 2017:2193432. [PMID: 28900446 PMCID: PMC5576438 DOI: 10.1155/2017/2193432] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke is one of the leading causes of human death and disability worldwide. So far, ultra-early thrombolytic therapy is the most effective treatment. However, most patients still live with varying degrees of neurological dysfunction due to its narrow therapeutic time window. It has been confirmed in many studies that endothelial progenitor cells (EPCs), as a kind of adult stem cells, can protect the neurovascular unit by repairing the vascular endothelium and its secretory function, which contribute to the recovery of neurological function after an ischemic stroke. This paper reviews the basic researches and clinical trials of EPCs especially in the field of ischemic stroke and addresses the combination of EPC application with new technologies, including neurovascular intervention, synthetic particles, cytokines, and EPC modification, with the aim of shedding some light on the application of EPCs in treating ischemic stroke in the future.
Collapse
|
35
|
Chang TY, Tsai WC, Huang TS, Su SH, Chang CY, Ma HY, Wu CH, Yang CY, Lin CH, Huang PH, Cheng CC, Cheng SM, Wang HW. Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and -146b in cardiovascular disease patients. PLoS One 2017; 12:e0181562. [PMID: 28727754 PMCID: PMC5519171 DOI: 10.1371/journal.pone.0181562] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
Functional impairment of endothelial colony-forming cells (ECFCs), a specific cell lineage of endothelial progenitor cells (EPCs) is highly associated with the severity of coronary artery disease (CAD), the most common type of cardiovascular disease (CVD). Emerging evidence show that circulating microRNAs (miRNAs) in CAD patients’ body fluid hold a great potential as biomarkers. However, our knowledge of the role of circulating miRNA in regulating the function of ECFCs and the progression of CAD is still in its infancy. We showed that when ECFCs from healthy volunteers were incubated with conditioned medium or purified exosomes of cultured CAD ECFCs, the secretory factors from CAD ECFCs dysregulated migration and tube formation ability of healthy ECFCs. It is known that exosomes influence the physiology of recipient cells by introducing RNAs including miRNAs. By using small RNA sequencing (smRNA-seq), we deciphered the circulating miRNome in the plasma of healthy individual and CAD patients, and found that the plasma miRNA spectrum from CAD patients was significantly different from that of healthy control. Interestingly, smRNA-seq of both healthy and CAD ECFCs showed that twelve miRNAs that had a higher expression in the plasma of CAD patients also showed higher expression in CAD ECFCs when compared with healthy control. This result suggests that these miRNAs may be involved in the regulation of ECFC functions. For identification of potential mRNA targets of the differentially expressed miRNA in CAD patients, cDNA microarray analysis was performed to identify the angiogenesis-related genes that were down-regulated in CAD ECFCs and Pearson’s correlation were used to identify miRNAs that were negatively correlated with the identified angiogenesis-related genes. RT-qPCR analysis of the five miRNAs that negatively correlated with the down-regulated angiogenesis-related genes in plasma and ECFC of CAD patients showed miR-146a-5p and miR-146b-5p up-regulation compared to healthy control. Knockdown of miR-146a-5p or miR-146b-5p in CAD ECFCs enhanced migration and tube formation activity in diseased ECFCs. Contrarily, overexpression of miR-146a-5p or miR-146b-5p in healthy ECFC repressed migration and tube formation in ECFCs. TargetScan analysis showed that miR-146a-5p and miR-146b-5p target many of the angiogenesis-related genes that were down-regulated in CAD ECFCs. Knockdown of miR-146a-5p or miR-146b-5p restores CAV1 and RHOJ levels in CAD ECFCs. Reporter assays confirmed the direct binding and repression of miR-146a-5p and miR-146b-5p to the 3’-UTR of mRNA of RHOJ, a positive regulator of angiogenic potential in endothelial cells. Consistently, RHOJ knockdown inhibited the migration and tube formation ability in ECFCs. Collectively, we discovered the dysregulation of miR-146a-5p/RHOJ and miR-146b-5p/RHOJ axis in the plasma and ECFCs of CAD patients that could be used as biomarkers or therapeutic targets for CAD and other angiogenesis-related diseases.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Research Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chi Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Shun Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Engineering in Medicine, University of California, San Diego, United States of America
| | - Shu-Han Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Young Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Yen Ma
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| | - Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
36
|
Li R, Pang Z, He H, Lee S, Qin J, Wu J, Pang L, Wang J, Yang VC. Drug depot-anchoring hydrogel: A self-assembling scaffold for localized drug release and enhanced stem cell differentiation. J Control Release 2017; 261:234-245. [PMID: 28694033 DOI: 10.1016/j.jconrel.2017.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/30/2022]
Abstract
Localized and long-term delivery of growth factors has been a long-standing challenge for stem cell-based tissue engineering. In the current study, a polymeric drug depot-anchoring hydrogel scaffold was developed for the sustained release of macromolecules to enhance the differentiation of stem cells. Self-assembling peptide (RADA16)-modified drug depots (RDDs) were prepared and anchored to a RADA16 hydrogel. The anchoring effect of RADA16 modification on the RDDs was tested both in vitro and in vivo. It was shown that the in vitro leakage of RDDs from the RADA16 hydrogel was significantly less than that of the unmodified drug depots (DDs). In addition, the in vivo retention of injected hydrogel-incorporated RDDs was significantly longer than that of hydrogel-incorporated unmodified DDs. A model drug, vascular endothelial growth factor (VEGF), was encapsulated in RDDs (V-RDDs) as drug depot that was then anchored to the hydrogel. The release of VEGF could be sustained for 4weeks. Endothelial progenitor cells (EPCs) were cultured on the V-RDDs-anchoring scaffold and enhanced cell proliferation and differentiation were observed, compared with a VEGF-loaded scaffold. Furthermore, this scaffold laden with EPCs promoted neovascularization in an animal model of hind limb ischemia. These results demonstrate that self-assembling hydrogel-anchored drug-loaded RDDs are promising for localized and sustained drug release, and can effectively enhance the proliferation and differentiation of resident stem cells, thus lead to successful tissue regeneration.
Collapse
Affiliation(s)
- Ruixiang Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Seungjin Lee
- College of Pharmacy, Ewha Women's University, Seoul 03760, Republic of Korea
| | - Jing Qin
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jian Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Liang Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianxin Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA.
| |
Collapse
|
37
|
Kang ML, Kim JE, Im GI. Vascular endothelial growth factor-transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells. J Tissue Eng Regen Med 2017; 11:3337-3348. [DOI: 10.1002/term.2247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/03/2016] [Accepted: 07/03/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Mi-Lan Kang
- Department of Orthopedics; Dongguk University Ilsan Hospital; Goyang Korea
| | - Ji-Eun Kim
- Department of Orthopedics; Dongguk University Ilsan Hospital; Goyang Korea
| | - Gun-Il Im
- Department of Orthopedics; Dongguk University Ilsan Hospital; Goyang Korea
| |
Collapse
|
38
|
Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res 2017; 56:148-165. [PMID: 27784628 PMCID: PMC5237620 DOI: 10.1016/j.preteyeres.2016.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy.
Collapse
Affiliation(s)
- Susanna S Park
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Elad Moisseiev
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Gerhard Bauer
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Johnathon D Anderson
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Maria B Grant
- Department of Ophthalmology, Glick Eye Institute, Indiana University, Indianapolis, IN, USA.
| | - Azhar Zam
- UC Davis RISE Eye-Pod Small Animal Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA.
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA; UC Davis RISE Eye-Pod Small Animal Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA.
| | - John S Werner
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Jan A Nolta
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
39
|
AGEs Decreased SIRT3 Expression and SIRT3 Activation Protected AGEs-Induced EPCs’ Dysfunction and Strengthened Anti-oxidant Capacity. Inflammation 2016; 40:473-485. [DOI: 10.1007/s10753-016-0493-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis. PLoS One 2016; 11:e0166660. [PMID: 27846321 PMCID: PMC5112804 DOI: 10.1371/journal.pone.0166660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/01/2016] [Indexed: 01/23/2023] Open
Abstract
Notch signaling is involved in cell fate decisions during murine vascular development and hematopoiesis in the microenvironment of bone marrow. To investigate the close relationship between hematopoietic stem cells and human endothelial progenitor cells (EPCs) in the bone marrow niche, we examined the effects of Notch signals [Jagged-1 and Delta-like ligand (Dll)-1] on the proliferation and differentiation of human CD133+ cell-derived EPCs. We established stromal systems using HESS-5 murine bone marrow cells transfected with human Jagged-1 (hJagged-1) or human Dll-1 (hDll-1). CD133+ cord blood cells were co-cultured with the stromal cells for 7 days, and then their proliferation, differentiation, and EPC colony formation was evaluated. We found that hJagged-1 induced the proliferation and differentiation of CD133+ cord blood EPCs. In contrast, hDll-1 had little effect. CD133+ cells stimulated by hJagged-1 differentiated into CD31+/KDR+ cells, expressed vascular endothelial growth factor-A, and showed enhanced EPC colony formation compared with CD133+ cells stimulated by hDll-1. To evaluate the angiogenic properties of hJagged-1- and hDll-1-stimulated EPCs in vivo, we transplanted these cells into the ischemic hindlimbs of nude mice. Transplantation of EPCs stimulated by hJagged-1, but not hDll-1, increased regional blood flow and capillary density in ischemic hindlimb muscles. This is the first study to show that human Notch signaling influences EPC proliferation and differentiation in the bone marrow microenvironment. Human Jagged-1 induced the proliferation and differentiation of CD133+ cord blood progenitors compared with hDll-1. Thus, hJagged-1 signaling in the bone marrow niche may be used to expand EPCs for therapeutic angiogenesis.
Collapse
|
41
|
Xiang W, Hu ZL, He XJ, Dang XQ. Intravenous transfusion of endothelial progenitor cells that overexpress vitamin D receptor inhibits atherosclerosis in apoE-deficient mice. Biomed Pharmacother 2016; 84:1233-1242. [PMID: 27810779 DOI: 10.1016/j.biopha.2016.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are widely used for angiogenic therapies, as well as predictive biomarkers to assess cardiovascular disease risk. However, it is unknown that whether overexpressed vitamin D receptor (VDR) in EPCs could help EPCs counteracting atherosclerotic risks. Here, we study intravenous transplantation of genetically modified EPCs over-expressing VDR in regulating endothelial dysfunction and spontaneously arising atherosclerotic plaques of ApoE-deficient mice. Firstly, we found that over-expression of VDR in EPCs could reduce atherosclerotic plaque formation in transplanted ApoE-/- mice. In addition, the concentration of serum HDL-C in ovVDR-EPCs group was much higher than that in control groups (ApoE-/- mice without injection or injected with fresh medium or adenovirus vector). While concentrations of serum total cholesterol, LDL-C, apoB and Lp (a) were negatively correlated with the expression level of VDR. What's more, improved serum concentration of NO and elevated serum and vessel wall expression of eNOS were observed in ovVDR-EPCs group. Furthermore, reduced expression and activity of MMP2, and elevated expression and activity of TIMP2 were detected in ovVDR-EPCs group. Taken together, intravenous transfusion of EPCs that overexpress VDR significantly inhibited atherosclerosis in ApoE-deficient mice and could be used as a potential method for angiogenic therapy.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Pediatrics, Hainan Provincial Maternal Hospital, Hainan province, 570006, China
| | - Zhi-Lan Hu
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Hunan province, 410000, China
| | - Xiao-Jie He
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Hunan province, 410000, China.
| | - Xi-Qiang Dang
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Hunan province, 410000, China
| |
Collapse
|
42
|
Ra JC, Jeong EC, Kang SK, Lee SJ, Choi KH. A Prospective, Nonrandomized, no Placebo-Controlled, Phase I/II Clinical Trial Assessing the Safety and Efficacy of Intramuscular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells in Patients With Severe Buerger's Disease. CELL MEDICINE 2016; 9:87-102. [PMID: 28713639 DOI: 10.3727/215517916x693069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Buerger's disease is a rare and severe disease affecting the blood vessels of the limbs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have the potential to cure Buerger's disease when developed as a stem cell drug. In the present study, we conducted a prospective, nonrandomized, no placebo-controlled, phase I/II clinical trial with a 2-year follow-up questionnaire survey. A total of 17 patients were intramuscularly administered autologous ADSCs at a dose of 5 million cells/kg. The incidence of adverse events (AEs), adverse drug reaction (ADR), and serious adverse events (SAEs) was monitored. No ADRs and SAEs related to stem cell treatment occurred during the 6-month follow-up. In terms of efficacy, the primary endpoint was increase in total walking distance (TWD). The secondary endpoint was improvement in rest pain, increase in pain-free walking distance (PFWD), toe-brachial pressure index (TBPI), transcutaneous oxygen pressure (TcPO2), and arterial brachial pressure index (ABPI). ADSCs demonstrated significant functional improvement results including increased TWD, PFWD, and rest pain reduction. No amputations were reported during the 6-month clinical trial period and in the follow-up questionnaire survey more than 2 years after the ADSC injection. In conclusion, intramuscular injection of ADSCs is very safe and is shown to prompt functional improvement in patients with severe Buerger's disease at a dosage of 300 million cells per 60 kg of body weight. However, the confirmatory therapeutic efficacy and angiogenesis need further study.
Collapse
Affiliation(s)
- Jeong Chan Ra
- Biostar Stem Cell Research Institute, R Bio Co. Ltd., Seoul, Republic of Korea
| | - Euicheol C Jeong
- †Department of Plastic Surgery, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea.,‡Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung Keun Kang
- Biostar Stem Cell Research Institute, R Bio Co. Ltd., Seoul, Republic of Korea
| | - Seog Ju Lee
- Biostar Stem Cell Research Institute, R Bio Co. Ltd., Seoul, Republic of Korea
| | - Kyoung Ho Choi
- Biostar Stem Cell Research Institute, R Bio Co. Ltd., Seoul, Republic of Korea
| |
Collapse
|
43
|
Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2483163. [PMID: 27668035 PMCID: PMC5030421 DOI: 10.1155/2016/2483163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.
Collapse
|
44
|
Yang J, Zhang X, Zhao Z, Li X, Wang X, Chen M, Song B, Ii M, Shen Z. Regulatory roles of interferon-inducible protein 204 on differentiation and vasculogenic activity of endothelial progenitor cells. Stem Cell Res Ther 2016; 7:111. [PMID: 27514835 PMCID: PMC4981987 DOI: 10.1186/s13287-016-0365-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have shown great potential in angiogenesis either by their differentiation into endothelial cells or by secretion of angiogenic factors. Interferon-inducible protein 204 (Ifi204) has been reported to participate in the regulation of cell growth and differentiation. However, its role in differentiation of EPCs remains unknown. We proposed that Ifi204 could modulate the differentiation and regenerative abilities of EPCs. METHODS Ifi204-expressing lentivirus and Ifi204 siRNA were introduced into EPCs to overexpress and suppress the expression of Ifi204. Using fluorescence-activated cell sorting, immunocytochemistry, and quantitative PCR, endothelial markers including CD31, VE-cadherin, and vWF were detected in the modified EPCs. An in-vitro incorporation assay and a colony-forming assay were also performed. RESULTS Evidence showed that Ifi204 inhibition decreased the endothelial differentiation and vasculogenic activities of EPCs in vitro. In mice with hindlimb ischemia, downregulation of Ifi204 in EPCs, which was tracked by our newly synthesized nanofluorogen, impaired neovascularization, with a corresponding reduction in hindlimb blood reperfusion by postoperative day 14. CONCLUSIONS Ifi204 is required for EPC differentiation and neovascularization in vitro and in vivo. The regulatory roles of Ifi204 in EPC differentiation may benefit the clinical therapy of ischemic vascular diseases.
Collapse
Affiliation(s)
- Junjie Yang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 188 Shizi Street, Suzhou, 215006 China
- Institute for Cardiovascular Science, Soochow University, 708 Renmin Road, Suzhou, 215006 China
| | - Xiaofei Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 188 Shizi Street, Suzhou, 215006 China
| | - Zhenao Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 188 Shizi Street, Suzhou, 215006 China
| | - Xizhe Li
- Department of Cardiovascular Surgery, Affiliated Shanghai 1st People’s Hospital, Shanghai Jiaotong University, Shanghai, 200080 China
| | - Xu Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 188 Shizi Street, Suzhou, 215006 China
| | - Ming Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 188 Shizi Street, Suzhou, 215006 China
| | - Bo Song
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
| | - Masaaki Ii
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 188 Shizi Street, Suzhou, 215006 China
| |
Collapse
|
45
|
Cho H, Balaji S, Hone NL, Moles CM, Sheikh AQ, Crombleholme TM, Keswani SG, Narmoneva DA. Diabetic wound healing in a MMP9-/- mouse model. Wound Repair Regen 2016; 24:829-840. [PMID: 27292154 DOI: 10.1111/wrr.12453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
Reduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM-derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC-based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double-deficiency (EPC + diabetes) models of wound healing. MMP9 knockout (MMP9 KO) mouse model was utilized, where impaired EPC mobilization can be rescued by stem cell factor (SCF). The hypotheses were: (1) MMP9 KO mice exhibit impaired wound neovascularization and healing, which are further exacerbated with diabetes; (2) these impairments can be rescued by SCF administration. Full-thickness excisional wounds with silicone splints to minimize contraction were created on MMP9 KO mice with/without streptozotocin-induced diabetes in the presence or absence of tail-vein injected SCF. Wound morphology, vascularization, inflammation, and EPC mobilization and recruitment were quantified at day 7 postwounding. Results demonstrate no difference in wound closure and granulation tissue area between any groups. MMP9 deficiency significantly impairs wound neovascularization, increases inflammation, decreases collagen deposition, and decreases peripheral blood EPC (pb-EPC) counts when compared with wild-type (WT). Diabetes further increases inflammation, but does not cause further impairment in vascularization, as compared with MMP9 KO group. SCF improves neovascularization and increases EPCs to WT levels (both nondiabetic and diabetic MMP9 KO groups), while exacerbating inflammation in all groups. SCF rescues EPC-deficiency and impaired wound neovascularization in both diabetic and nondiabetic MMP9 KO mice. Overall, the results demonstrate that BM-derived EPCs play a significant role during wound neovascularization and that the SCF-based therapy with controlled inflammation could be a viable approach to enhance healing in chronic diabetic wounds.
Collapse
Affiliation(s)
- Hongkwan Cho
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Swathi Balaji
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio.,Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Natalie L Hone
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Chad M Moles
- Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Abdul Q Sheikh
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Timothy M Crombleholme
- Children's Hospital Colorado and the University of Colorado School of Medicine, Aurora, Colorado
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Daria A Narmoneva
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
46
|
Deveza L, Choi J, Lee J, Huang N, Cooke J, Yang F. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model. Theranostics 2016; 6:1176-89. [PMID: 27279910 PMCID: PMC4893644 DOI: 10.7150/thno.12866] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/18/2016] [Indexed: 12/29/2022] Open
Abstract
Peripheral arterial disease affects nearly 202 million individuals worldwide, sometimes leading to non-healing ulcers or limb amputations in severe cases. Genetically modified stem cells offer potential advantages for therapeutically inducing angiogenesis via augmented paracrine release mechanisms and tuned dynamic responses to environmental stimuli at disease sites. Here, we report the application of nanoparticle-induced CXCR4-overexpressing stem cells in a mouse hindlimb ischemia model. We found that CXCR4 overexpression improved stem cell survival, modulated inflammation in situ, and accelerated blood reperfusion. These effects, unexpectedly, led to complete limb salvage and skeletal muscle repair, markedly outperforming the efficacy of the conventional angiogenic factor control, VEGF. Importantly, assessment of CXCR4-overexpressing stem cells in vitro revealed that CXCR4 overexpression induced changes in paracrine signaling of stem cells, promoting a therapeutically desirable pro-angiogenic and anti-inflammatory phenotype. These results suggest that nanoparticle-induced CXCR4 overexpression may promote favorable phenotypic changes and therapeutic efficacy of stem cells in response to the ischemic environment.
Collapse
|
47
|
Nollet E, Hoymans VY, Van Craenenbroeck AH, Vrints CJ, Van Craenenbroeck EM. Improving stem cell therapy in cardiovascular diseases: the potential role of microRNA. Am J Physiol Heart Circ Physiol 2016; 311:H207-18. [PMID: 27208159 DOI: 10.1152/ajpheart.00239.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 11/22/2022]
Abstract
The initial promising prospect of autologous bone marrow-derived stem cell therapy in the setting of cardiovascular diseases has been overshadowed by functional shortcomings of the stem cell product. As powerful epigenetic regulators of (stem) cell function, microRNAs are valuable targets for novel therapeutic strategies. Indeed, modulation of specific miRNA expression could contribute to improved therapeutic efficacy of stem cell therapy. First, this review elaborates on the functional relevance of miRNA dysregulation in bone marrow-derived progenitor cells in different cardiovascular diseases. Next, we provide a comprehensive overview of the current evidence on the effect of specific miRNA modulation in several types of progenitor cells on cardiac and/or vascular regeneration. By elaborating on the cardioprotective regulation of progenitor cells on cardiac miRNAs, more insight in the underlying mechanisms of stem cell therapy is provided. Finally, some considerations are made regarding the potential of circulating miRNAs as regulators of the miRNA signature of progenitor cells in cardiovascular diseases.
Collapse
Affiliation(s)
- Evelien Nollet
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium
| | - Vicky Y Hoymans
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium
| | - Amaryllis H Van Craenenbroeck
- Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; and
| | - Christiaan J Vrints
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
48
|
Fujinaga H, Fujinaga H, Watanabe N, Kato T, Tamano M, Terao M, Takada S, Ito Y, Umezawa A, Kuroda M. Cord blood-derived endothelial colony-forming cell function is disrupted in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1143-54. [PMID: 27130531 DOI: 10.1152/ajplung.00357.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/22/2016] [Indexed: 01/07/2023] Open
Abstract
Vascular growth is necessary for normal lung development. Although endothelial progenitor cells (EPCs) play an important role in vascularization, little is known about EPC function in congenital diaphragmatic hernia (CDH), a severe neonatal condition that is associated with pulmonary hypoplasia. We hypothesized that the function of endothelial colony-forming cells (ECFCs), a type of EPC, is impaired in CDH. Cord blood (CB) was collected from full-term CDH patients and healthy controls. We assessed CB progenitor cell populations as well as plasma vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1α (SDF1α) levels. CB ECFC clonogenicity; growth kinetics; migration; production of VEGF, SDF1α, and nitric oxide (NO); vasculogenic capacity; and mRNA expression of VEGF-A, fms-related tyrosine kinase 1 (FLT1), kinase insert domain receptor (KDR), nitric oxide synthase (NOS) 1-3, SDF1, and chemokine (C-X-C motif) receptor 4 (CXCR4) were also assessed. Compared with controls, CB ECFCs were decreased in CDH. CDH ECFCs had reduced potential for self-renewal, clonogenicity, proliferation, and migration. Their capacity for NO production was enhanced but their response to VEGF was blunted in CDH ECFCs. In vivo potential for de novo vasculogenesis was reduced in CDH ECFCs. There was no difference in CB plasma VEGF and SDF1α concentrations, VEGF and SDF1α production by ECFCs, and ECFC mRNA expression of VEGF-A, FLT1, KDR, NOS1-3, SDF1, and CXCR4 between CDH and control subjects. In conclusion, CB ECFC function is disrupted in CDH, but these changes may be caused by mechanisms other than alteration of VEGF-NO and SDF1-CXCR4 signaling.
Collapse
Affiliation(s)
- Hideshi Fujinaga
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan; Division of Neonatology, Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, Tokyo, Japan;
| | - Hiroko Fujinaga
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Institute for Child Health and Development, Tokyo, Japan; and
| | - Tomoko Kato
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Moe Tamano
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Yushi Ito
- Division of Neonatology, Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
49
|
Lin TC, Lin CS, Tsai TN, Cheng SM, Lin WS, Cheng CC, Wu CH, Hsu CH. Stimulatory Influences of Far Infrared Therapy on the Transcriptome and Genetic Networks of Endothelial Progenitor Cells Receiving High Glucose Treatment. ACTA CARDIOLOGICA SINICA 2016; 31:414-28. [PMID: 27122901 DOI: 10.6515/acs20141201c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) play a fundamental role in vascular repair and angiogenesis- related diseases. It is well-known that the process of angiogenesis is faulty in patients with diabetes. Long-term exposure of peripheral blood EPCs to high glucose (HG-EPCs) has been shown to impair cell proliferation and other functional competencies. Far infrared (FIR) therapy can promote ischemia-induced angiogenesis in diabetic mice and restore high glucose-suppressed endothelial progenitor cell functions both in vitro and in vivo. However, the detail mechanisms and global transcriptome alternations are still unclear. METHODS In this study, we investigated the influences of FIR upon HG-EPC gene expressions. EPCs were obtained from the peripheral blood and treated with high glucose. These cells were then subjected to FIR irradiation and functional assays. RESULTS Those genes responsible for fibroblast growth factors, Mitogen-activated protein kinases (MAPK), Janus kinase/signal transducer and activator of transcription and prostaglandin signaling pathways were significantly induced in HG-EPCs after FIR treatment. On the other hand, mouse double minute 2 homolog, genes involved in glycogen metabolic process, and genes involved in cardiac fibrosis were down-regulated. We also observed complex genetic networks functioning in FIR-treated HG-EPCs, in which several genes, such as GATA binding protein 3, hairy and enhancer of split-1, Sprouty Homolog 2, MAPK and Sirtuin 1, acted as hubs to maintain the stability and connectivity of the whole genetic network. CONCLUSIONS Deciphering FIR-affected genes will not only provide us with new knowledge regarding angiogenesis, but also help to develop new biomarkers for evaluating the effects of FIR therapy. Our findings may also be adapted to develop new methods to increase EPC activities for treating diabetes-related ischemia and metabolic syndrome-associated cardiovascular disorders. KEY WORDS Endothelial progenitor cell; Far infrared; Microarray; Systems biology.
Collapse
Affiliation(s)
- Tzu-Chiao Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Neng Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Shiang Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hsueng Hsu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
50
|
Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016; 90:85-115. [PMID: 27016619 DOI: 10.1016/j.biomaterials.2016.03.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Youngmee Jung
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Soo Hyun Kim
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|