1
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
2
|
Song Y, Choi JE, Park JM, Kwon YJ, Hong KW, Lee JW. Genome-Wide Approach of Gene-Nutrient Intake Interaction Study for Essential Hypertension in a Large Korean Cohort (KoGES). Nutrients 2024; 16:4147. [PMID: 39683541 DOI: 10.3390/nu16234147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: There is limited evidence on gene-nutrient interaction associated with hypertension (HTN). We examined interactions between genotypes and various nutrients that influenced high blood pressure (BP). Methods: Data were obtained from a total of 50,808 participants from the Korean Genome and Epidemiology Study (KoGES). Dietary intake was assessed by a food frequency questionnaire, and dietary reference intakes (DRIs) were set. We performed genome-wide association analyses (GWAS) and subsequent interaction analyses with genome-wide significant SNPs to identify genomic loci that interact with specific nutrients associated with HTN. Results: We identified one locus near the CUB and Sushi Multiple Domains 1 (CSMD1) gene that showed interaction with dietary iron and vitamin B6 (Vit.B6) intake and significantly influenced HTN risk. Among the individuals consuming iron above DRI (9.5 mg/day for men, 9.25 mg/day for women), carriers of the rs13282715 minor allele (A) at 8p23.2 showed a lower risk of HTN than those who did not (odds ratio [OR] 0.723, 95% confidence interval [CI] (0.644-0.813), p-value 4.858 × 10-8; interaction p-value 1.336 × 10-3). Among the individuals consuming Vit.B6 above DRI (1.5 mg/day for men, 1.4 mg/day for women), carriers of the same variant rs13282715 minor allele (A) also showed a lower risk of HTN (OR 0.733, 95% CI 0.733 (0.656-0.819), p-value 4.121 × 10-8; interaction p-value 7.183 × 10-4). Conclusions: We identified a novel gene-nutrient interaction regarding dietary iron and Vit.B6 intake affecting the risk of HTN in Korean adults. This suggests individuals with the variant may benefit from lower HTN risk from dietary intervention of iron and Vit.B6 intake. Further studies with larger diverse populations are warranted to validate our findings.
Collapse
Affiliation(s)
- Youhyun Song
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- Healthcare Research Team, Health Promotion Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ja-Eun Choi
- Advanced Institute of Technology, Theragen Health Co., Ltd., Seongnam-si 13493, Republic of Korea
| | - Jae-Min Park
- Department of Family Medicine, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea
| | - Kyung-Won Hong
- Advanced Institute of Technology, Theragen Health Co., Ltd., Seongnam-si 13493, Republic of Korea
| | - Ji-Won Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul 06237, Republic of Korea
| |
Collapse
|
3
|
Oppelaar JJ, Ferwerda B, Romman MA, Sahebdin GN, Zwinderman AH, Galenkamp H, Boekholdt SM, van den Born BJH, Olde Engberink RH, Vogt L. Genetic Variance in Heparan Sulfation Is Associated With Salt Sensitivity. Hypertension 2024; 81:2101-2112. [PMID: 39247955 PMCID: PMC11404764 DOI: 10.1161/hypertensionaha.124.23421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND High heritability of salt sensitivity suggests an essential role for genetics in the relationship between sodium intake and blood pressure (BP). The role of glycosaminoglycan genes, which are crucial for salinity tolerance, remains to be elucidated. METHODS Interactions between 54 126 variants in 130 glycosaminoglycan genes and daily sodium excretion on BP were explored in 20 420 EPIC-Norfolk (European Prospective Investigation Into Cancer in Norfolk) subjects. The UK Biobank (n=414 132) and the multiethnic HELIUS study (Healthy Life in an Urban Setting; n=2239) were used for validation. Afterward, the urinary glycosaminoglycan composition was studied in HELIUS participants (n=57) stratified by genotype and upon dietary sodium loading in a time-controlled crossover intervention study (n=12). RESULTS rs2892799 in NDST3 (heparan sulfate N-deacetylase/N-sulfotransferase 3) showed the strongest interaction with sodium on mean arterial pressure (false discovery rate 0.03), with higher mean arterial pressure for the C allele in high sodium conditions. Also, rs9654628 in HS3ST5 (heparan sulfate-glucosamine 3-sulfotransferase 5) showed an interaction with sodium on systolic BP (false discovery rate 0.03). These interactions were multiethnically validated. Stratifying for the rs2892799 genotype showed higher urinary expression of N-sulfated heparan sulfate epitope D0S0 for the T allele. Conversely, upon dietary sodium loading, urinary D0S0 expression was higher in participants with stable BP after sodium loading, and sodium-induced effects on this epitope were opposite in individuals with and without BP response to sodium. CONCLUSIONS The C allele of rs2892799 in NDST3 exhibits higher BP in high sodium conditions when compared with low sodium conditions, whereas no differences were detected for the T allele. Concomitantly, both alleles demonstrate distinct expressions of D0S0, which, in turn, correlates with sodium-mediated BP elevation. These findings underscore the potential significance of genetic glycosaminoglycan variation in human BP regulation.
Collapse
Affiliation(s)
- Jetta J. Oppelaar
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics (B.F., A.H.Z.)
| | - Mohamed A. Romman
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
| | - Ghazalah N. Sahebdin
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
| | | | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam Public Health (H.G., B.-J.H.B.)
| | - S. Matthijs Boekholdt
- Department of Cardiology (S.M.B.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| | - Bert-Jan H. van den Born
- Department of Public and Occupational Health, Amsterdam Public Health (H.G., B.-J.H.B.)
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam University Medical Center location University of Amsterdam, Meibergdreef 9, the Netherlands (B.-J.H.B.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| | - Rik H.G. Olde Engberink
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| |
Collapse
|
4
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation via Hexosamine Biosynthetic Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309211. [PMID: 39119859 PMCID: PMC11481188 DOI: 10.1002/advs.202309211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Age is a prominent risk factor for cardiometabolic disease, often leading to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction exclusively resulting from physiological aging remain elusive. Previous research demonstrated age-related functional alterations in baboons, analogous to humans. The goal of this study is to identify early cardiac molecular alterations preceding functional adaptations, shedding light on the regulation of age-associated changes. Unbiased transcriptomics of left ventricle samples are performed from female baboons aged 7.5-22.1 years (human equivalent ≈30-88 years). Weighted-gene correlation network and pathway enrichment analyses are performed, with histological validation. Modules of transcripts negatively correlated with age implicated declined metabolism-oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggested a metabolic shift toward glucose-dependent anabolic pathways, including hexosamine biosynthetic pathway (HBP). This shift is associated with increased glycosaminoglycan synthesis, modification, precursor synthesis via HBP, and extracellular matrix accumulation, verified histologically. Upregulated extracellular matrix-induced signaling coincided with glycosaminoglycan accumulation, followed by cardiac hypertrophy-related pathways. Overall, these findings revealed a transcriptional shift in metabolism favoring glycosaminoglycan accumulation through HBP before cardiac hypertrophy. Unveiling this metabolic shift provides potential targets for age-related cardiac diseases, offering novel insights into early age-related mechanisms.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
- Institute for Interdisciplinary ResearchPDBEB – Doctoral Programme in Experimental Biology and BiomedicineUniversity of CoimbraCoimbra3060Portugal
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Kip D. Zimmerman
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Sobha Puppala
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Jeannie Chan
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Hillary F. Huber
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78245USA
| | - Ge Li
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Avinash Y. L. Jadhav
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Benlian Wang
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Cun Li
- Texas Pregnancy & Life‐Course Health Research CenterDepartment of Animal ScienceUniversity of WyomingLaramieWY82071USA
| | - Geoffrey D. Clarke
- Department of RadiologyUniversity of Texas Health Science CenterSan AntonioTX78229USA
| | - Thomas C. Register
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Paulo J. Oliveira
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life‐Course Health Research CenterDepartment of Animal ScienceUniversity of WyomingLaramieWY82071USA
| | - Michael Olivier
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Susana P. Pereira
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
- Laboratory of Metabolism and Exercise (LaMetEx)Research Centre in Physical ActivityHealth and Leisure (CIAFEL)Laboratory for Integrative and Translational Research in Population Health (ITR)Faculty of SportsUniversity of PortoPorto4050Portugal
| | - Laura A. Cox
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78245USA
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC27157USA
| |
Collapse
|
5
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
6
|
Li X, Guo Y, Liang H, Wang J, Qi L. Genome-wide association analysis of hypertension and epigenetic aging reveals shared genetic architecture and identifies novel risk loci. Sci Rep 2024; 14:17792. [PMID: 39090212 PMCID: PMC11294447 DOI: 10.1038/s41598-024-68751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Hypertension is a disease associated with epigenetic aging. However, the pathogenic mechanism underlying this relationship remains unclear. We aimed to characterize the shared genetic architecture of hypertension and epigenetic aging, and identify novel risk loci. Leveraging genome-wide association studies (GWAS) summary statistics of hypertension (129,909 cases and 354,689 controls) and four epigenetic clocks (N = 34,710), we investigated genetic architectures and genetic overlap using bivariate casual mixture model and conditional/conjunctional false discovery rate methods. Functional gene-sets pathway analyses were performed by functional mapping and gene annotation (FUMA) protocol. Hypertension was polygenic with 2.8 K trait-influencing genetic variants. We observed cross-trait genetic enrichment and genetic overlap between hypertension and all four measures of epigenetic aging. Further, we identified 32 distinct genomic loci jointly associated with hypertension and epigenetic aging. Notably, rs1849209 was shared between hypertension and three epigenetic clocks (HannumAge, IEAA, and PhenoAge). The shared loci exhibited a combination of concordant and discordant allelic effects. Functional gene-set analyses revealed significant enrichment in biological pathways related to sensory perception of smell and nervous system processes. We observed genetic overlaps with mixed effect directions between hypertension and all four epigenetic aging measures, and identified 32 shared distinct loci with mixed effect directions, 25 of which were novel for hypertension. Shared genes enriched in biological pathways related to olfaction.
Collapse
Affiliation(s)
- Xin Li
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, 511436, China
| | - Yu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150086, China
| | - Haihai Liang
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, 511436, China.
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
7
|
Khan MM, Kirabo A. Long Noncoding RNA MALAT1: Salt-Sensitive Hypertension. Int J Mol Sci 2024; 25:5507. [PMID: 38791545 PMCID: PMC11122212 DOI: 10.3390/ijms25105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the primary reasons behind this pro-inflammatory response is the epithelial sodium channel (ENaC), responsible for transporting sodium ions into APCs and the activation of NADPH oxidase, leading to increased oxidative stress. Oxidative stress increases lipid peroxidation and the formation of pro-inflammatory isolevuglandins (IsoLG). Long noncoding RNAs (lncRNAs) play a crucial role in regulating gene expression, and MALAT1, broadly expressed across cell types, including blood vessels and inflammatory cells, is also associated with inflammation regulation. In hypertension, the decreased transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2 or Nfe2l2) correlates with heightened oxidative stress in APCs and impaired control of various antioxidant genes. Kelch-like ECH-associated protein 1 (Keap1), an intracellular inhibitor of Nrf2, exhibits elevated levels of hypertension. Sodium, through an increase in Sp1 transcription factor binding at its promoter, upregulates MALAT1 expression. Silencing MALAT1 inhibits sodium-induced Keap1 upregulation, facilitating the nuclear translocation of Nrf2 and subsequent antioxidant gene transcription. Thus, MALAT1, acting via the Keap1-Nrf2 pathway, modulates antioxidant defense in hypertension. This review explores the potential role of the lncRNA MALAT1 in controlling the Keap1-Nrf2-antioxidant defense pathway in salt-induced hypertension. The inhibition of MALAT1 holds therapeutic potential for the progression of salt-induced hypertension and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Department of Medicine, Preston Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| | - Annet Kirabo
- Department of Medicine, Preston Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Zappa M, Golino M, Verdecchia P, Angeli F. Genetics of Hypertension: From Monogenic Analysis to GETomics. J Cardiovasc Dev Dis 2024; 11:154. [PMID: 38786976 PMCID: PMC11121881 DOI: 10.3390/jcdd11050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Arterial hypertension is the most frequent cardiovascular risk factor all over the world, and it is one of the leading drivers of the risk of cardiovascular events and death. It is a complex trait influenced by heritable and environmental factors. To date, the World Health Organization estimates that 1.28 billion adults aged 30-79 years worldwide have arterial hypertension (defined by European guidelines as office systolic blood pressure ≥ 140 mmHg or office diastolic blood pressure ≥ 90 mmHg), and 7.1 million die from this disease. The molecular genetic basis of primary arterial hypertension is the subject of intense research and has recently yielded remarkable progress. In this review, we will discuss the genetics of arterial hypertension. Recent studies have identified over 900 independent loci associated with blood pressure regulation across the genome. Comprehending these mechanisms not only could shed light on the pathogenesis of the disease but also hold the potential for assessing the risk of developing arterial hypertension in the future. In addition, these findings may pave the way for novel drug development and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Martina Zappa
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Michele Golino
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23223, USA
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS, 06100 Perugia, Italy
- Division of Cardiology, Hospital S. Maria della Misericordia, 06100 Perugia, Italy
| | - Fabio Angeli
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institutes, IRCCS, 21049 Tradate, Italy
| |
Collapse
|
9
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 699] [Impact Index Per Article: 699.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
10
|
Prone-Olazabal D, Davies I, González-Galarza FF. Metabolic Syndrome: An Overview on Its Genetic Associations and Gene-Diet Interactions. Metab Syndr Relat Disord 2023; 21:545-560. [PMID: 37816229 DOI: 10.1089/met.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors that includes central obesity, hyperglycemia, hypertension, and dyslipidemias and whose inter-related occurrence may increase the odds of developing type 2 diabetes and cardiovascular diseases. MetS has become one of the most studied conditions, nevertheless, due to its complex etiology, this has not been fully elucidated. Recent evidence describes that both genetic and environmental factors play an important role on its development. With the advent of genomic-wide association studies, single nucleotide polymorphisms (SNPs) have gained special importance. In this review, we present an update of the genetics surrounding MetS as a single entity as well as its corresponding risk factors, considering SNPs and gene-diet interactions related to cardiometabolic markers. In this study, we focus on the conceptual aspects, diagnostic criteria, as well as the role of genetics, particularly on SNPs and polygenic risk scores (PRS) for interindividual analysis. In addition, this review highlights future perspectives of personalized nutrition with regard to the approach of MetS and how individualized multiomics approaches could improve the current outlook.
Collapse
Affiliation(s)
- Denisse Prone-Olazabal
- Postgraduate Department, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Ian Davies
- Research Institute of Sport and Exercise Science, The Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| | | |
Collapse
|
11
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation Via Hexosamine Biosynthetic Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567640. [PMID: 38014295 PMCID: PMC10680868 DOI: 10.1101/2023.11.17.567640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Age is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans. Previous research demonstrated that baboons undergo age-related reduction in ejection fraction and increased heart sphericity, mirroring changes observed in humans. The goal of this study was to identify early cardiac molecular alterations that precede functional adaptations, shedding light on the regulation of age-associated changes. We performed unbiased transcriptomics of left ventricle (LV) samples from female baboons aged 7.5-22.1 years (human equivalent ~30-88 years). Weighted-gene correlation network and pathway enrichment analyses were performed to identify potential age-associated mechanisms in LV, with histological validation. Myocardial modules of transcripts negatively associated with age were primarily enriched for cardiac metabolism, including oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggest upregulation of glucose uptake, pentose phosphate pathway, and hexosamine biosynthetic pathway (HBP), indicating a metabolic shift towards glucose-dependent anabolic pathways. Upregulation of HBP commonly results in increased glycosaminoglycan precursor synthesis. Transcripts involved in glycosaminoglycan synthesis, modification, and intermediate metabolism were also upregulated in older animals, while glycosaminoglycan degradation transcripts were downregulated with age. These alterations would promote glycosaminoglycan accumulation, which was verified histologically. Upregulation of extracellular matrix (ECM)-induced signaling pathways temporally coincided with glycosaminoglycan accumulation. We found a subsequent upregulation of cardiac hypertrophy-related pathways and an increase in cardiomyocyte width. Overall, our findings revealed a transcriptional shift in metabolism from catabolic to anabolic pathways that leads to ECM glycosaminoglycan accumulation through HBP prior to upregulation of transcripts of cardiac hypertrophy-related pathways. This study illuminates cellular mechanisms that precede development of cardiac hypertrophy, providing novel potential targets to remediate age-related cardiac diseases.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sobha Puppala
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Avinash Y. L. Jadhav
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Benlian Wang
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffrey D. Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas C. Register
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susana P. Pereira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Li C, Pan Y, Zhang R, Huang Z, Li D, Han Y, Larkin C, Rao V, Sun X, Kelly TN. Genomic Innovation in Early Life Cardiovascular Disease Prevention and Treatment. Circ Res 2023; 132:1628-1647. [PMID: 37289909 PMCID: PMC10328558 DOI: 10.1161/circresaha.123.321999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality globally. Although CVD events do not typically manifest until older adulthood, CVD develops gradually across the life-course, beginning with the elevation of risk factors observed as early as childhood or adolescence and the emergence of subclinical disease that can occur in young adulthood or midlife. Genomic background, which is determined at zygote formation, is among the earliest risk factors for CVD. With major advances in molecular technology, including the emergence of gene-editing techniques, along with deep whole-genome sequencing and high-throughput array-based genotyping, scientists now have the opportunity to not only discover genomic mechanisms underlying CVD but use this knowledge for the life-course prevention and treatment of these conditions. The current review focuses on innovations in the field of genomics and their applications to monogenic and polygenic CVD prevention and treatment. With respect to monogenic CVD, we discuss how the emergence of whole-genome sequencing technology has accelerated the discovery of disease-causing variants, allowing comprehensive screening and early, aggressive CVD mitigation strategies in patients and their families. We further describe advances in gene editing technology, which might soon make possible cures for CVD conditions once thought untreatable. In relation to polygenic CVD, we focus on recent innovations that leverage findings of genome-wide association studies to identify druggable gene targets and develop predictive genomic models of disease, which are already facilitating breakthroughs in the life-course treatment and prevention of CVD. Gaps in current research and future directions of genomics studies are also discussed. In aggregate, we hope to underline the value of leveraging genomics and broader multiomics information for characterizing CVD conditions, work which promises to expand precision approaches for the life-course prevention and treatment of CVD.
Collapse
Affiliation(s)
- Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Davey Li
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Yunan Han
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Claire Larkin
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Varun Rao
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| |
Collapse
|
13
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2242] [Impact Index Per Article: 1121.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
14
|
Martin K, Toussaint ND, Tan SJ, Hewitson TD. Skin regulation of salt and blood pressure and potential clinical implications. Hypertens Res 2023; 46:408-416. [PMID: 36434290 DOI: 10.1038/s41440-022-01096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Sodium chloride, as salt, gives rise to hypertension. Nevertheless, individual susceptibility to the ramifications of sodium chloride is heterogeneous. The conventional nephron-centric regulation of sodium with neurohormonal inputs and responses is now expanded to include an intricate extrarenal pathway including the endothelium, skin, lymphatics, and immune cells. An overabundance of sodium is buffered and regulated by the skin interstitium. Excess sodium passes through (and damages) the vascular endothelium and can be dynamically stored in the skin, modulated by skin immune cells and lymphatics. This excess interstitially stored sodium is implicated in hypertension, cardiovascular dysfunction, metabolic disruption, and inflammatory dysregulation. This extrarenal pathway of regulating sodium represents a novel target for better blood pressure management, rebalancing disturbed inflammation, and hence addressing cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia. .,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
He J, Lin H, Ding Y, Liu X, Xu K, Chen X, Shen W, Zhou S, Wang M, Xia J, He N. Genome-wide associated variants of subclinical atherosclerosis among young people with HIV and gene-environment interactions. J Transl Med 2022; 20:609. [PMID: 36539828 PMCID: PMC9764595 DOI: 10.1186/s12967-022-03817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified some variants associated with subclinical atherosclerosis (SCA) in general population but lacking sufficient validation. Besides traditional risk factors, whether and how would genetic variants associate with SCA among people with HIV (PWH) remains to be elucidated. METHOD A large original GWAS and gene-environment interaction analysis of SCA were conducted among Chinese PWH (n = 2850) and age/sex-matched HIV-negative controls (n = 5410). Subgroup analyses by age and functional annotations of variants were also performed. RESULTS Different from HIV-negative counterparts, host genome had a greater impact on young PWH rather than the elders: one genome-wide significant variant (rs77741796, P = 2.20 × 10-9) and eight suggestively significant variants (P < 1 × 10-6) were identified to be specifically associated with SCA among PWH younger than 45 years. Seven genomic loci and 15 genes were mapped to play a potential role on SCA among young PWH, which were enriched in the biological processes of atrial cardiac muscle cell membrane repolarization and molecular function of protein kinase A subunit binding. Furthermore, genome-wide interaction analyses revealed significant HIV-gene interactions overall as well as gene-environment interactions with alcohol consumption, tobacco use and obesity among PWH. The identified gene-environment interaction on SCA among PWH might be useful for discovering high-risk individuals for the prevention of SCA, particularly among those with tobacco use and alcohol consumption. CONCLUSION The present study provides new clues for the genetic contribution of SCA among young PWH and is the starting point of precision intervention targeting HIV-related atherosclerosis.
Collapse
Affiliation(s)
- Jiayu He
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Haijiang Lin
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang China
| | - Yingying Ding
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China
| | - Xing Liu
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China
| | - Kelin Xu
- grid.8547.e0000 0001 0125 2443Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Xiaoxiao Chen
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang China
| | - Sujuan Zhou
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Miaochen Wang
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China
| | - Na He
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
16
|
SNPs in lncRNA KCNQ1OT1 Modulate Its Expression and Confer Susceptibility to Salt Sensitivity of Blood Pressure in a Chinese Han Population. Nutrients 2022; 14:nu14193990. [PMID: 36235643 PMCID: PMC9571541 DOI: 10.3390/nu14193990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNA (lncRNA) plays an important role in cardiovascular diseases, but the involvement of lncRNA in salt sensitivity of blood pressure (SSBP) is not well-known. We aimed to explore the association of sixteen single-nucleotide polymorphisms (SNPs) in five lncRNA genes (KCNQOT1, lnc-AGAP1-8:1, lnc-IGSF3-1:1, etc.) with their expression and susceptibility to SSBP. A two-stage association study was conducted among 2057 individuals. Quantified expression of the lncRNA was detected using real-time PCR. Genotyping was accomplished using the MassARRAY System. The expression quantitative tra2it loci test and the generalized linear model were utilized to explore the function of SNPs. One-sample Mendelian randomization was used to study the causal relationship between KCNQOT1 and SSBP. Significant effects were observed in KCNQ1OT1 expressions on the SSBP phenotype (p < 0.05). Rs10832417 and rs3782064 in KCNQ1OT1 may influence the secondary structure, miRNA binding, and expression of KCNQ1OT1. Rs10832417 and rs3782064 in KCNQ1OT1 were identified to be associated with one SSBP phenotype after multiple testing corrections and may be mediated by KCNQ1OT1. One-sample Mendelian randomization analyses showed a causal association between KCNQ1OT1 and SSBP. Our findings suggest that rs10832417 and rs3782064 might be associated with a lower risk of SSBP through influencing the KCNQ1OT1 secondary structure and miRNA binding, resulting in changes in KCNQ1OT1 expression.
Collapse
|
17
|
Patil CN, Ritter ML, Wackman KK, Oliveira V, Balapattabi K, Grobe CC, Brozoski DT, Reho JJ, Nakagawa P, Mouradian GC, Kriegel AJ, Kwitek AE, Hodges MR, Segar JL, Sigmund CD, Grobe JL. Cardiometabolic effects of DOCA-salt in male C57BL/6J mice are variably dependent on sodium and nonsodium components of diet. Am J Physiol Regul Integr Comp Physiol 2022; 322:R467-R485. [PMID: 35348007 PMCID: PMC9054347 DOI: 10.1152/ajpregu.00017.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Hypertension characterized by low circulating renin activity accounts for roughly 25%-30% of primary hypertension in humans and can be modeled experimentally via deoxycorticosterone acetate (DOCA)-salt treatment. In this model, phenotypes develop in progressive phases, although the timelines and relative contributions of various mechanisms to phenotype development can be distinct between laboratories. To explore interactions among environmental influences such as diet formulation and dietary sodium (Na) content on phenotype development in the DOCA-salt paradigm, we examined an array of cardiometabolic endpoints in young adult male C57BL/6J mice during sham or DOCA-salt treatments when mice were maintained on several common, commercially available laboratory rodent "chow" diets including PicoLab 5L0D (0.39% Na), Envigo 7913 (0.31% Na), Envigo 2920x (0.15% Na), or a customized version of Envigo 2920x (0.4% Na). Energy balance (weight gain, food intake, digestive efficiency, and energy efficiency), fluid and electrolyte homeostasis (fluid intake, Na intake, fecal Na content, hydration, and fluid compartmentalization), renal functions (urine production rate, glomerular filtration rate, urine Na excretion, renal expression of renin, vasopressin receptors, aquaporin-2 and relationships among markers of vasopressin release, aquaporin-2 shedding, and urine osmolality), and blood pressure, all exhibited changes that were subject to interactions between diet and DOCA-salt. Interestingly, some of these phenotypes, including blood pressure and hydration, were dependent on nonsodium dietary components, as Na-matched diets resulted in distinct phenotype development. These findings provide a broad and robust illustration of an environment × treatment interaction that impacts the use and interpretation of a common rodent model of low-renin hypertension.
Collapse
Affiliation(s)
- Chetan N Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel T Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3141] [Impact Index Per Article: 1047.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
19
|
Affiliation(s)
- Bailong Hu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Hunter RW, Dhaun N, Bailey MA. The impact of excessive salt intake on human health. Nat Rev Nephrol 2022; 18:321-335. [DOI: 10.1038/s41581-021-00533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/19/2022]
|
21
|
Liu T, Li H, Conley YP, Primack BA, Wang J, Lo WJ, Li C. A Genome-Wide Association Study of Prediabetes Status Change. Front Endocrinol (Lausanne) 2022; 13:881633. [PMID: 35769078 PMCID: PMC9234217 DOI: 10.3389/fendo.2022.881633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
We conducted the first genome-wide association study of prediabetes status change (to diabetes or normal glycaemia) among 900 White participants of the Atherosclerosis Risk in Communities (ARIC) study. Single nucleotide polymorphism (SNP)-based analysis was performed by logistic regression models, controlling for age, gender, body mass index, and the first 3 genetic principal components. Gene-based analysis was conducted by combining SNP-based p values using effective Chi-square test method. Promising SNPs (p < 1×10-5) and genes (p < 1×10-4) were further evaluated for replication among 514 White participants of the Framingham Heart Study (FHS). To accommodate familial correlations, generalized estimation equation models were applied for SNP-based analyses in the FHS. Analysis results across ARIC and FHS were combined using inverse-variance-weighted meta-analysis method for SNPs and Fisher's method for genes. We robustly identified 5 novel genes that are associated with prediabetes status change using gene-based analyses, including SGCZ (ARIC p = 9.93×10-6, FHS p = 2.00×10-3, Meta p = 3.72×10-7) at 8p22, HPSE2 (ARIC p = 8.26×10-19, FHS p = 5.85×10-3, Meta p < 8.26×10-19) at 10q24.2, ADGRA1 (ARIC p = 1.34×10-5, FHS p = 1.13×10-3, Meta p = 2.88×10-7) at 10q26.3, GLB1L3 (ARIC p = 3.71×10-6, FHS p = 4.51×10-3, Meta p = 3.16×10-7) at 11q25, and PCSK6 (ARIC p = 6.51×10-6, FHS p = 1.10×10-2, Meta p = 1.25×10-6) at 15q26.3. eQTL analysis indicated that these genes were highly expressed in tissues related to diabetes development. However, we were not able to identify any novel locus in single SNP-based analysis. Future large scale genomic studies of prediabetes status change are warranted.
Collapse
Affiliation(s)
- Tingting Liu
- College of Nursing, Florida State University, Tallahassee, FL, United States
| | - Hongjin Li
- College of Nursing, University of Illinois at Chicago, Chicago, IL, United States
| | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian A. Primack
- College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Jing Wang
- College of Nursing, Florida State University, Tallahassee, FL, United States
| | - Wen-Juo Lo
- College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Tropical Medicine and Public Health, New Orleans, LA, United States
- *Correspondence: Changwei Li,
| |
Collapse
|
22
|
Association of Circulating Biomarkers of lnc-IGSF3-1:1, SCOC-AS1, and SLC8A1-AS1 with Salt Sensitivity of Blood Pressure in Chinese Population. J Cardiovasc Transl Res 2021; 15:906-917. [PMID: 34855149 DOI: 10.1007/s12265-021-10190-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 01/24/2023]
Abstract
Accumulating evidence suggested that long non-coding RNAs (lncRNAs) could play biological roles in cardiovascular diseases. We investigated whether lncRNAs can serve as biomarkers for salt sensitivity of blood pressure (SSBP). Participants were divided into salt-sensitive (SS) and salt-resistant (SR) ones by oral saline test. LncRNAs were tested by microarray (N = 20) and two-stage qRT-PCR (N = 89 and 228). We identified five differently expressed lncRNAs (lnc-IGSF3-1:1, SCOC-AS1, SLC8A1-AS1, KCNQ1OT1, and lnc-GNG-10-3:1) between SS and SR. In single-lncRNA analyses, lnc-IGSF3-1:1 displayed better diagnostic performance in hypertensive patients (AUC = 0.840), while SCOC-AS1 in normotensive (AUC = 0.810). In multi-lncRNA analyses, lnc-IGSF3-1:1 + SCOC-AS1 + SLC8A1-AS1 combination showed the best diagnostic performance in hypertensive (AUC = 0.853) and normotensive groups (AUC = 0.873). We constructed a lncRNA-mRNA-GO-KEGG-disease network by bioinformatic analysis; lnc-IGSF3-1:1 and SLC8A1-AS1 were identified as hub biomarkers. Our findings suggest that lnc-IGSF3-1:1, SCOC-AS1, and SLC8A1-AS1 may represent as genetic susceptible biomarkers for SSBP, and had different SS diagnostic performance in hypertensive patients and normotensive individuals.
Collapse
|
23
|
Zou T, Yao S, Du MF, Mu JJ, Chu C, Hu GL, Liao YY, Chen C, Wang D, Ma Q, Yan Y, Jia H, Wang KK, Sun Y, Niu ZJ, Zhang X, Yan RC, Man ZY, Ren DF, Wang L, Gao WH, Li H, Wu YX, Li CH, Gao K, Zhang J, Yang TL, Wang Y. Associations of corin genetic polymorphisms with salt sensitivity, blood pressure changes, and hypertension incidence in Chinese adults. J Clin Hypertens (Greenwich) 2021; 23:2115-2123. [PMID: 34846782 PMCID: PMC8696215 DOI: 10.1111/jch.14401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/17/2023]
Abstract
Corin, a transmembrane serine protease that can cleave pro‐atrial natriuretic peptide (Pro‐ANP) into smaller bioactive molecule atrial natriuretic peptide, has been shown to be involved in the pathophysiology of hypertension, cardiac hypertrophy. We sought to examine the associations of corin genetic variations with salt sensitivity, blood pressure (BP) changes and hypertension incidence. We studied participants of the original Baoji Salt‐Sensitive cohort, recruited from 124 families from seven Chinese villages in 2004 who sequentially received a usual baseline salt diet, a 7‐day low salt diet (3 g/day) and a 7‐day high salt diet (18 g/day), respectively. They were followed up for 8 years (in 2009, 2012) to evaluate the development of hypertension. Corin SNP rs3749584 was significantly associated with diastolic BP (DBP) and mean arterial pressure (MAP) response to low‐salt diet, while rs4695253, rs17654278 were associated with pulse pressure (PP) response to low‐salt diet. SNPs rs4695253, rs12509275, rs2351783, rs2271036, rs2271037 were significantly associated with systolic BP (SBP), DBP, and MAP responses to high‐salt diet. In addition, SNPs rs12641823, rs6834933, rs2271036, and rs22710367 were significantly associated with the longitudinal changes in SBP, DBP, MAP, or PP over 8 years of follow‐up. SNP rs73814824 was significantly associated with the incidence of hypertension over 8 years. Gene‐based analysis showed that corin gene was significantly associated with longitudinal BP changes and hypertension incidence after 8‐year follow‐up. This study suggests that corin may play a role in salt sensitivity, BP progression, and development of hypertension.
Collapse
Affiliation(s)
- Ting Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming-Fei Du
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Chao Chu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Gui-Lin Hu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue-Yuan Liao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Chen Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Dan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yu Yan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Hao Jia
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke-Ke Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yue Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Ze-Jiaxin Niu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Xi Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui-Chen Yan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Zi-Yue Man
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Dan-Feng Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Wang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wei-Hua Gao
- Department of Cardiology, Xi'an No.1 Hospital, Xi'an, China
| | - Hao Li
- Department of Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong-Xing Wu
- Department of Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chun-Hua Li
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an, China
| | - Ke Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhang
- Department of Cardiology, Xi'an People's Hospital, Xi'an, China
| | - Tie-Lin Yang
- Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an, China
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| |
Collapse
|
24
|
Xie Y, Liu Z, Liu K, Qi H, Peng W, Cao H, Liu X, Li B, Wen F, Zhang F, Zhang L. Candidate Gene Polymorphisms Influence the Susceptibility to Salt Sensitivity of Blood Pressure in a Han Chinese Population: Risk Factors as Mediators. Front Genet 2021; 12:675230. [PMID: 34671380 PMCID: PMC8521039 DOI: 10.3389/fgene.2021.675230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/26/2021] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies suggest that there is a significant genetic susceptibility to salt sensitivity of blood pressure (SSBP), but it still needs to be verified in varied and large sample populations. We attempted to verify the associations between single-nucleotide polymorphisms (SNPs) in candidate genes and SSBP and to estimate their interaction with potential risk factors. A total of 29 candidate SNPs were genotyped in the 2,057 northern Han Chinese population from the Systems Epidemiology Study on Salt Sensitivity. A modified Sullivan’s acute oral saline load and diuresis shrinkage test (MSAOSL-DST) was used to identify SSBP. A generalized linear model was conducted to analyze the association between SNPs and SSBP, and Bonferroni correction was used for multiple testing. Mediation analysis was utilized to explore the mediation effect of risk factors. Eleven SNPs in eight genes (PRKG1, CYBA, BCAT1, SLC8A1, AGTR1, SELE, CYP4A11, and VSNL1) were identified to be significantly associated with one or more SSBP phenotypes (P < 0.05). Four SNPs (PRKG1/rs1904694 and rs7897633, CYP4A11/rs1126742, and CYBA/rs4673) were still significantly associated after Bonferroni correction (P < 0.0007) adjusted for age, sex, fasting blood glucose, total cholesterol, salt-eating habit, physical activity, and hypertension. Stratified analysis showed that CYBA/rs4673 was significantly associated with SSBP in hypertensive subjects (P < 0.0015) and CYP4A11/rs1126742 was significantly associated with SSBP in normotensive subjects (P < 0.0015). Subjects carrying both CYBA/rs4673-AA and AGTR1/rs2638360-GG alleles have a higher genetic predisposition to salt sensitivity due to the potential gene co-expression interaction. Expression quantitative trait loci analysis (eQTL) suggested that the above positive four SNPs showed cis-eQTL effects on the gene expression levels. Mediation analysis suggested that several risk factors were mediators of the relation between SNP and SSBP. This study suggests that the genetic variants in eight genes might contribute to the susceptibility to SSBP, and other risk factors may be the mediators.
Collapse
Affiliation(s)
- Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Zheng Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
25
|
Navas-Acien A, Domingo-Relloso A, Subedi P, Riffo-Campos AL, Xia R, Gomez L, Haack K, Goldsmith J, Howard BV, Best LG, Devereux R, Tauqeer A, Zhang Y, Fretts AM, Pichler G, Levy D, Vasan RS, Baccarelli AA, Herreros-Martinez M, Tang WY, Bressler J, Fornage M, Umans JG, Tellez-Plaza M, Fallin MD, Zhao J, Cole SA. Blood DNA Methylation and Incident Coronary Heart Disease: Evidence From the Strong Heart Study. JAMA Cardiol 2021; 6:1237-1246. [PMID: 34347013 DOI: 10.1001/jamacardio.2021.2704] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Importance American Indian communities experience a high burden of coronary heart disease (CHD). Strategies are needed to identify individuals at risk and implement preventive interventions. Objective To investigate the association of blood DNA methylation (DNAm) with incident CHD using a large number of methylation sites (cytosine-phosphate-guanine [CpG]) in a single model. Design, Setting, and Participants This prospective study, including a discovery cohort (the Strong Heart Study [SHS]) and 4 additional cohorts (the Women's Health Initiative [WHI], the Framingham Heart Study [FHS], the Atherosclerosis Risk in Communities Study ([ARIC]-Black, and ARIC-White), evaluated 12 American Indian communities in 4 US states; African American women, Hispanic women, and White women throughout the US; White men and White women from Massachusetts; and Black men and women and White men and women from 4 US communities. A total of 2321 men and women (mean [SD] follow-up, 19.1 [9.2] years) were included in the SHS, 1874 women (mean [SD] follow-up, 15.8 [5.9] years) in the WHI, 2128 men and women (mean [SD] follow-up, 7.7 [1.8] years) in the FHS, 2114 men and women (mean [SD] follow-up, 20.9 [7.2] years) in the ARIC-Black, and 931 men and women (mean [SD] follow-up, 20.9 [7.2] years) in the ARIC-White. Data were collected from May 1989 to December 2018 and analyzed from February 2019 to May 2021. Exposure Blood DNA methylation. Main Outcome and Measure Using a high-dimensional time-to-event elastic-net model for the association of 407 224 CpG sites with incident CHD in the SHS (749 events), this study selected the differentially methylated CpG positions (DMPs) selected in the SHS and evaluated them in the WHI (531 events), FHS (143 events), ARIC-Black (350 events), and ARIC-White (121 events) cohorts. Results The median (IQR) age of participants in SHS was 55 (49-62) years, and 1359 participants (58.6%) were women. Elastic-net models selected 505 DMPs associated with incident CHD in the SHS beyond established risk factors, center, blood cell counts, and genetic principal components. Among those DMPs, 33 were commonly selected in 3 or 4 of the other cohorts and the pooled hazard ratios from the standard Cox models were significant at P < .05 for 10 of the DMPs. For example, the hazard ratio (95% CI) for CHD comparing the 90th and 10th percentiles of differentially methylated CpGs was 0.86 (0.78-0.95) for cg16604233 (tagged to COL11A2) and 1.23 (1.08-1.39) for cg09926486 (tagged to FRMD5). Some of the DMPs were consistent in the direction of the association; others showed associations in opposite directions across cohorts. Untargeted independent elastic-net models of CHD showed distinct DMPs, genes, and network of genes in the 5 cohorts. Conclusions and Relevance In this multi-cohort study, blood-based DNAm findings supported an association between a complex blood epigenomic signature and CHD that was largely different across populations.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York.,Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain.,Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Pooja Subedi
- College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville
| | | | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston
| | - Lizbeth Gomez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | | | - Lyle G Best
- Missouri Breaks Industries Research Inc, Eagle Butte, South Dakota
| | | | - Ali Tauqeer
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle
| | - Gernot Pichler
- Department of Cardiology, Heart Center Clinic Floridsdorf, Vienna, Austria
| | - Daniel Levy
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts.,Section of Preventive Medicine and Epidemiology and Section of Cardiovascular Medicine, Department of Medicine, Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts.,Section of Preventive Medicine and Epidemiology and Section of Cardiovascular Medicine, Department of Medicine, Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | | | - Wan-Yee Tang
- Department of Occupational and Environmental Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston.,Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston
| | - Jason G Umans
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York.,Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - M Daniele Fallin
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland.,Department of Mental Health, Johns Hopkins University, Baltimore, Maryland
| | - Jinying Zhao
- College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio
| |
Collapse
|
26
|
Razavi MA, Bazzano LA, Nierenberg J, Huang Z, Fernandez C, Razavi AC, Whelton SP, He J, Kelly TN. Advances in Genomics Research of Blood Pressure Responses to Dietary Sodium and Potassium Intakes. Hypertension 2021; 78:4-15. [PMID: 33993724 DOI: 10.1161/hypertensionaha.121.16509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than half of US adults have hypertension by 40 years of age and a subsequent increase in atherosclerotic cardiovascular disease risk. Dietary sodium and potassium are intricately linked to the pathophysiology of hypertension. However, blood pressure responses to dietary sodium and potassium, phenomena known as salt and potassium sensitivity of blood pressure, respectively, are heterogenous and normally distributed in the general population. Like blood pressure, salt and potassium sensitivity are complex phenotypes, and previous research has shown that up to 75% of individuals experience a blood pressure change in response to such dietary minerals. Previous research has also implicated both high salt sensitivity and low salt sensitivity (or salt resistance) of blood pressure to an increased risk of hypertension and potentially atherosclerotic cardiovascular disease risk. Given the clinical challenges required to accurately measure the sodium and potassium response phenotypes, genomic characterization of these traits has become of interest for hypertension prevention initiatives on both the individual and population levels. Here, we review advances in human genomics research of blood pressure responses to dietary sodium and potassium by focusing on 3 main areas, including the phenotypic characterization of salt sensitivity and resistance, clinical challenges in diagnosing such phenotypes, and the genomic mechanisms that may help to explain salt and potassium sensitivity and resistance. Through this process, we hope to further underline the value of leveraging genomics and broader multiomics for characterizing the blood pressure response to sodium and potassium to improve precision in lifestyle approaches for primordial and primary atherosclerotic cardiovascular disease prevention.
Collapse
Affiliation(s)
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Jovia Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine (J.N.)
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Camilo Fernandez
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Alexander C Razavi
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Seamus P Whelton
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (S.P.W.)
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| |
Collapse
|
27
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3501] [Impact Index Per Article: 875.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
28
|
Li W, Zheng M, Zhao G, Wang J, Liu J, Wang S, Feng F, Liu D, Zhu D, Li Q, Guo L, Guo Y, Liu R, Wen J. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genet Sel Evol 2021; 53:13. [PMID: 33549052 PMCID: PMC7866652 DOI: 10.1186/s12711-021-00608-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Feed accounts for about 70% of the total cost of poultry meat production. Residual feed intake (RFI) has become the preferred measure of feed efficiency because it is phenotypically independent of growth rate and body weight. In this study, our aim was to estimate genetic parameters and identify quantitative trait loci (QTL) for feed efficiency in 3314 purebred broilers using a genome-wide association study. Broilers were genotyped using a custom 55 K single nucleotide polymorphism (SNP) array. RESULTS Estimates of genomic heritability for seven growth and feed efficiency traits, including body weight at 28 days of age (BW28), BW42, average daily feed intake (ADFI), RFI, and RFI adjusted for weight of abdominal fat (RFIa), ranged from 0.12 to 0.26. Eleven genome-wide significant SNPs and 15 suggestively significant SNPs were detected, of which 19 clustered around two genomic regions. A region on chromosome 16 (2.34-2.66 Mb) was associated with both BW28 and BW42, and the most significant SNP in this region, AX_101003762, accounted for 7.6% of the genetic variance of BW28. The other region, on chromosome 1 (91.27-92.43 Mb) was associated with RFI and ADFI, and contains the NSUN3 and EPHA6 as candidate genes. The most significant SNP in this region, AX_172588157, accounted for 4.4% of the genetic variance of RFI. In addition, a genomic region containing the gene AGK on chromosome 1 was found to be associated with RFIa. The NSUN3 and AGK genes were found to be differentially expressed in breast muscle, thigh muscle, and abdominal fat between male broilers with high and low RFI. CONCLUSIONS We identified QTL regions for BW28 and BW42 (spanning 0.32 Mb) and RFI (spanning 1.16 Mb). The NSUN3, EPHA6, and AGK were identified as the most likely candidate genes for these QTL. These genes are involved in mitochondrial function and behavioral regulation. These results contribute to the identification of candidate genes and variants for growth and feed efficiency in poultry.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Shunli Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liping Guo
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
29
|
The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res 2020; 42:1235-1481. [PMID: 31375757 DOI: 10.1038/s41440-019-0284-9] [Citation(s) in RCA: 1247] [Impact Index Per Article: 249.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Louca P, Menni C, Padmanabhan S. Genomic Determinants of Hypertension With a Focus on Metabolomics and the Gut Microbiome. Am J Hypertens 2020; 33:473-481. [PMID: 32060494 DOI: 10.1093/ajh/hpaa022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022] Open
Abstract
Epidemiologic and genomic studies have progressively improved our understanding of the causation of hypertension and the complex relationship with diet and environment. The majority of Mendelian forms of syndromic hypotension and hypertension (HTN) have all been linked to mutations in genes whose encoded proteins regulate salt-water balance in the kidney, supporting the primacy of the kidneys in blood pressure regulation. There are more than 1,477 single nucleotide polymorphisms associated with blood pressure and hypertension and the challenge is establishing a causal role for these variants. Hypertension is a complex multifactorial phenotype and it is likely to be influenced by multiple factors including interactions between diet and lifestyle factors, microbiome, and epigenetics. Given the finite genetic variability that is possible in humans, it is likely that incremental gains from single marker analyses have now plateaued and a greater leap in our understanding of the genetic basis of disease will come from integration of other omics and the interacting environmental factors. In this review, we focus on emerging results from the microbiome and metabolomics and discuss how leveraging these findings may facilitate a deeper understanding of the interrelationships between genomics, diet, and microbial ecology in humans in the causation of essential hypertension.
Collapse
Affiliation(s)
| | - Cristina Menni
- Department of Twin Research, King’s College London, London, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
31
|
Bai X, Mangum K, Kakoki M, Smithies O, Mack CP, Taylor JM. GRAF3 serves as a blood volume-sensitive rheostat to control smooth muscle contractility and blood pressure. Small GTPases 2020; 11:194-203. [PMID: 29099324 PMCID: PMC7549679 DOI: 10.1080/21541248.2017.1375602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular resistance is a major determinant of BP and is controlled, in large part, by RhoA-dependent smooth muscle cell (SMC) contraction within small peripheral arterioles and previous studies from our lab indicate that GRAF3 is a critical regulator of RhoA in vascular SMC. The elevated contractile responses we observed in GRAF3 deficient vessels coupled with the hypertensive phenotype provided a mechanistic link for the hypertensive locus recently identified within the GRAF3 gene. On the basis of our previous findings that the RhoA signaling axis also controls SMC contractile gene expression and that GRAF3 expression was itself controlled by this pathway, we postulated that GRAF3 serves as an important counter-regulator of SMC phenotype. Indeed, our new findings presented herein indicate that GRAF3 expression acts as a pressure-sensitive rheostat to control vessel tone by both reducing calcium sensitivity and restraining expression of the SMC-specific contractile proteins that support this function. Collectively, these studies highlight the potential therapeutic value of GRAF3 in the control of human hypertension.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin Mangum
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Masao Kakoki
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Molecular Regulation of the RhoGAP GRAF3 and Its Capacity to Limit Blood Pressure In Vivo. Cells 2020; 9:cells9041042. [PMID: 32331391 PMCID: PMC7226614 DOI: 10.3390/cells9041042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Anti-hypertensive therapies are usually prescribed empirically and are often ineffective. Given the prevalence and deleterious outcomes of hypertension (HTN), improved strategies are needed. We reported that the Rho-GAP GRAF3 is selectively expressed in smooth muscle cells (SMC) and controls blood pressure (BP) by limiting the RhoA-dependent contractility of resistance arterioles. Importantly, genetic variants at the GRAF3 locus controls BP in patients. The goal of this study was to validate GRAF3 as a druggable candidate for future anti-HTN therapies. Importantly, using a novel mouse model, we found that modest induction of GRAF3 in SMC significantly decreased basal and vasoconstrictor-induced BP. Moreover, we found that GRAF3 protein toggles between inactive and active states by processes controlled by the mechano-sensing kinase, focal adhesion kinase (FAK). Using resonance energy transfer methods, we showed that agonist-induced FAK-dependent phosphorylation at Y376GRAF3 reverses an auto-inhibitory interaction between the GAP and BAR-PH domains. Y376 is located in a linker between the PH and GAP domains and is invariant in GRAF3 homologues and a phosphomimetic E376GRAF3 variant exhibited elevated GAP activity. Collectively, these data provide strong support for the future identification of allosteric activators of GRAF3 for targeted anti-hypertensive therapies.
Collapse
|
33
|
Kim Y, Kim J, Lim JE, Oh B, Won S, Kim MK. Genome-wide interaction study of single-nucleotide polymorphisms and alcohol consumption on blood pressure: The Ansan and Ansung study of the Korean Genome and Epidemiology Study (KoGES). Genet Epidemiol 2020; 44:300-310. [PMID: 32048322 DOI: 10.1002/gepi.22285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/01/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Hypertension is a common disease worldwide. Alcohol consumption is one of the risk factors for hypertension, however, it is unclear how alcohol consumption elevates blood pressure. Blood pressure could be affected by interactions between genetic variations and alcohol consumption. Thus, we performed a genome-wide interaction study (GWIS) to assess the effect of gene-alcohol consumption interaction on blood pressure among adults aged ≥40 years from the Ansan and Ansung cohort study (n = 6,176), a part of the Korean Genome Epidemiology Study (KoGES). As a result, rs1297184, single-nucleotide polymorphism (SNP) in locus LGR5 was significant (PGWIS = 8.78 × 10-9 ) in GWIS analysis on diastolic blood pressure, but not on systolic blood pressure. However, there was a heteroscedasticity of alcohol consumption. In the GWIS analysis, applying the inverse-variance weighting to correct the systematic inflation slightly attenuated the strength of interaction (PGWIS_IVW = 7.14 × 10-8 ). This interaction was replicated in the Health Examinees cohort (p = .026), a large-scale community-based cohort (n = 18,708). In conclusion, we identified a possible novel interaction between an SNP (rs1297184) and alcohol consumption on blood pressure.
Collapse
Affiliation(s)
- Youngjun Kim
- Department of Public Health Science, College of Medicine, Hanyang University, Seoul, South Korea.,Laboratory of Research and Development for Genomics, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Jihye Kim
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Sungho Won
- Department of Public Health Science, Seoul National University, Seoul, South Korea
| | - Mi Kyung Kim
- Department of Public Health Science, College of Medicine, Hanyang University, Seoul, South Korea.,Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
34
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020; 141:e139-e596. [PMID: 31992061 DOI: 10.1161/cir.0000000000000757] [Citation(s) in RCA: 5366] [Impact Index Per Article: 1073.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2020 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association's 2020 Impact Goals. RESULTS Each of the 26 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, healthcare administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
35
|
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019; 139:e56-e528. [PMID: 30700139 DOI: 10.1161/cir.0000000000000659] [Citation(s) in RCA: 5783] [Impact Index Per Article: 963.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Csipo T, Nyúl-Tóth Á, Lipecz A, Szabo C, Farkas E, Wren JD, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience 2019; 41:419-439. [PMID: 31463647 PMCID: PMC6815288 DOI: 10.1007/s11357-019-00095-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression. Strong experimental evidence shows that dysregulation of microRNAs (miRNAs) has a role in vascular aging. The present study was designed to test the hypothesis that age-related NAD+ depletion is causally linked to dysregulation of vascular miRNA expression. A corollary hypothesis is that functional vascular rejuvenation in NMN-treated aged mice is also associated with restoration of a youthful vascular miRNA expression profile. To test these hypotheses, aged (24-month-old) mice were treated with NMN for 2 weeks and miRNA signatures in the aortas were compared to those in aortas obtained from untreated young and aged control mice. We found that protective effects of NMN treatment on vascular function are associated with anti-aging changes in the miRNA expression profile in the aged mouse aorta. The predicted regulatory effects of NMN-induced differentially expressed miRNAs in aged vessels include anti-atherogenic effects and epigenetic rejuvenation. Future studies will uncover the mechanistic role of miRNA gene expression regulatory networks in the anti-aging effects of NAD+ booster treatments and determine the links between miRNAs regulated by NMN and sirtuin activators and miRNAs known to act in the conserved pathways of aging and major aging-related vascular diseases.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Cory B Giles
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre / Theoretical Medicine Doctoral School, Hungarian Academy of Sciences, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Szabo
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eszter Farkas
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Jonathan D Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
37
|
Kokubo Y, Padmanabhan S, Iwashima Y, Yamagishi K, Goto A. Gene and environmental interactions according to the components of lifestyle modifications in hypertension guidelines. Environ Health Prev Med 2019; 24:19. [PMID: 30857519 PMCID: PMC6410507 DOI: 10.1186/s12199-019-0771-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/24/2019] [Indexed: 12/24/2022] Open
Abstract
Risk factors for hypertension consist of lifestyle and genetic factors. Family history and twin studies have yielded heritability estimates of BP in the range of 34–67%. The most recent paper of BP GWAS has explained about 20% of the population variation of BP. An overestimation of heritability may have occurred in twin studies due to violations of shared environment assumptions, poor phenotyping practices in control cohorts, failure to account for epistasis, gene-gene and gene-environment interactions, and other non-genetic sources of phenotype modulation that are suspected to lead to underestimations of heritability in GWAS. The recommendations of hypertension guidelines in major countries consist of the following elements: weight reduction, a healthy diet, dietary sodium reduction, increasing physical activity, quitting smoking, and moderate alcohol consumption. The hypertension guidelines are mostly the same for each country or region, beyond race and culture. In this review, we summarize gene-environmental interactions associated with hypertension by describing lifestyle modifications according to the hypertension guidelines. In the era of precision medicine, clinicians who are responsible for hypertension management should consider the gene-environment interactions along with the appropriate lifestyle components toward the prevention and treatment of hypertension. We briefly reviewed the interaction of genetic and environmental factors along the constituent elements of hypertension guidelines, but a sufficient amount of evidence has not yet accumulated, and the results of genetic factors often differed in each study.
Collapse
Affiliation(s)
- Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 5-7-1, Fujishiro-dai, Suita, Osaka, 565-8565, Japan. .,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Yoshio Iwashima
- Division of Hypertension and Nephrology, Department of Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Goto
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
38
|
Dee RA, Mangum KD, Bai X, Mack CP, Taylor JM. Druggable targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacol Ther 2019; 193:121-134. [PMID: 30189292 PMCID: PMC7235948 DOI: 10.1016/j.pharmthera.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of high blood pressure (also known as hypertension) has steadily increased over the last few decades. Known as a silent killer, hypertension increases the risk for cardiovascular disease and can lead to stroke, heart attack, kidney failure and associated sequela. While numerous hypertensive therapies are currently available, it is estimated that only half of medicated patients exhibit blood pressure control. This signifies the need for a better understanding of the underlying cause of disease and for more effective therapies. While blood pressure homeostasis is very complex and involves the integrated control of multiple body systems, smooth muscle contractility and arterial resistance are important contributors. Strong evidence from pre-clinical animal models and genome-wide association studies indicate that smooth muscle contraction and BP homeostasis are governed by the small GTPase RhoA and its downstream target, Rho kinase. In this review, we summarize the signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity in smooth muscle cells and discuss current therapeutic strategies to target these RhoA pathway components. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations.
Collapse
Affiliation(s)
- Rachel A Dee
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin D Mangum
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Hachiya T, Narita A, Ohmomo H, Sutoh Y, Komaki S, Tanno K, Satoh M, Sakata K, Hitomi J, Nakamura M, Ogasawara K, Yamamoto M, Sasaki M, Hozawa A, Shimizu A. Genome-wide analysis of polymorphism × sodium interaction effect on blood pressure identifies a novel 3'-BCL11B gene desert locus. Sci Rep 2018; 8:14162. [PMID: 30242241 PMCID: PMC6155053 DOI: 10.1038/s41598-018-32074-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
Excessive sodium intake is a global risk factor for hypertension. Sodium effects on blood pressure vary from person to person; hence, high-risk group targeting based on personal genetic information can play a complementary role to ongoing population preventive approaches to reduce sodium consumption. To identify genetic factors that modulate sodium effects on blood pressure, we conducted a population-based genome-wide interaction analysis in 8,768 Japanese subjects, which was >3 times larger than a similar previous study. We tested 7,135,436 polymorphisms in the discovery cohort, and loci that met suggestive significance were further examined in an independent replication cohort. We found that an interaction between a novel 3'-BCL11B gene desert locus and daily sodium consumption was significantly associated with systolic blood pressure in both discovery and replication cohorts under the recessive model. Further statistical analysis of rs8022678, the sentinel variant of the 3'-BCL11B gene desert locus, showed that differences in mean systolic blood pressure between high and low sodium consumption subgroups were 5.9 mm Hg (P = 8.8 × 10-12) in rs8022678 A carriers and -0.3 mm Hg (P = 0.27) in rs8022678 A non-carriers, suggesting that the rs8022678 genotype can classify persons into sodium-sensitive (A carriers) and sodium-insensitive (A non-carriers) subgroups. Our results implied that rs8022678 A carriers may receive a greater benefit from sodium-lowering interventions than non-carriers.
Collapse
Affiliation(s)
- Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
| | - Akira Narita
- Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
| | - Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Mamoru Satoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, Shiwa, Japan
| | - Kiyomi Sakata
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Jiro Hitomi
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Anatomy, School of Medicine, Iwate Medical University, Shiwa, Japan
| | - Motoyuki Nakamura
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kuniaki Ogasawara
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Masayuki Yamamoto
- Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Shiwa, Japan
| | - Atsushi Hozawa
- Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan.
| |
Collapse
|
40
|
Ng FL, Warren HR, Caulfield MJ. Hypertension genomics and cardiovascular prevention. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:291. [PMID: 30211179 DOI: 10.21037/atm.2018.06.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypertension continues to be a major risk factor for global mortality, and recent genome-wide association studies (GWAS) have expanded in size, leading to the identification of further genetic loci influencing blood pressure. In light of the new knowledge from the largest cardiovascular GWAS to date, we review the potential impact of genomics on discovering potential drug targets, risk stratification with genetic risk scores, drug selection with pharmacogenetics, and exploring insights provided by gene-environment interactions.
Collapse
Affiliation(s)
- Fu Liang Ng
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| | - Helen R Warren
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| |
Collapse
|
41
|
Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O'Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018; 137:e67-e492. [PMID: 29386200 DOI: 10.1161/cir.0000000000000558] [Citation(s) in RCA: 4758] [Impact Index Per Article: 679.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Liu K, Liu Z, Qi H, Liu B, Wu J, Liu Y, Zhang J, Cao H, Yan Y, He Y, Zhang L. Genetic Variation in SLC8A1 Gene Involved in Blood Pressure Responses to Acute Salt Loading. Am J Hypertens 2018; 31:415-421. [PMID: 29182730 DOI: 10.1093/ajh/hpx179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP) increases the risk of cardiovascular complications, and the heritability of SSBP is about 50% in Chinese population. However, studies identifying genes involved in BP responses to acute sodium loading and diuresis shrinkage are still limited. METHOD A total of 342 essential hypertensives from Beijing were recruited in our study. A modified Sullivan's acute oral saline load and diuresis shrinkage test was conducted to each individual. Medical history and lifestyle risk factors were obtained by questionnaire. Generalized linear model was used to examine the associations of 29 single-nucleotide polymorphisms (SNPs) with SSBP and false discovery rate (FDR) was used to correct P values for multiple testing. RESULTS In the process of acute sodium loading, after adjusting for age and 24-hour urinary sodium concentration, SNPs in CYP11B2, PRKG1, SLC8A1 genes were significantly associated with systolic BP (SBP) rising in the additive and recessive model; SNPs in CYP4A11, PRKG1, SLC8A1, and ADRB2 genes were significantly associated with diastolic BP (DBP) rising. In the process of diuresis shrinkage, SNPs of CLCNKA, eNOS, PRKG1 gene were associated with SBP and DBP decreasing. After FDR correction, rs434082 in SLC8A1 gene was still significantly associated with blood pressure rising during salt load. In the additive model, A allele increased DBP of 2.8 mm Hg (FDR_q = 0.029) and MAP of 3.1 mm Hg (FDR_q = 0.029) after adjusting for age and 24-hour urinary sodium concentration. CONCLUSION SLC8A1 gene may contribute to BP change in the process of acute sodium loading in a Han Chinese population.
Collapse
Affiliation(s)
- Kuo Liu
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Zheng Liu
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Qi
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Bin Liu
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jingjing Wu
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yezhou Liu
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
| | - Jie Zhang
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yuxiang Yan
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yan He
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health statistics, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
43
|
Freitas SRS. Molecular Genetics of Salt-Sensitivity and Hypertension: Role of Renal Epithelial Sodium Channel Genes. Am J Hypertens 2018; 31:172-174. [PMID: 29045522 DOI: 10.1093/ajh/hpx184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Silvia R S Freitas
- Department of Biology, Center of Higher Education in Tefé, Amazonas State University, Amazonas, Brazil
| |
Collapse
|
44
|
Smith JA, Zhao W, Yasutake K, August C, Ratliff SM, Faul JD, Boerwinkle E, Chakravarti A, Diez Roux AV, Gao Y, Griswold ME, Heiss G, Kardia SLR, Morrison AC, Musani SK, Mwasongwe S, North KE, Rose KM, Sims M, Sun YV, Weir DR, Needham BL. Gene-by-Psychosocial Factor Interactions Influence Diastolic Blood Pressure in European and African Ancestry Populations: Meta-Analysis of Four Cohort Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1596. [PMID: 29258278 PMCID: PMC5751013 DOI: 10.3390/ijerph14121596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
Inter-individual variability in blood pressure (BP) is influenced by both genetic and non-genetic factors including socioeconomic and psychosocial stressors. A deeper understanding of the gene-by-socioeconomic/psychosocial factor interactions on BP may help to identify individuals that are genetically susceptible to high BP in specific social contexts. In this study, we used a genomic region-based method for longitudinal analysis, Longitudinal Gene-Environment-Wide Interaction Studies (LGEWIS), to evaluate the effects of interactions between known socioeconomic/psychosocial and genetic risk factors on systolic and diastolic BP in four large epidemiologic cohorts of European and/or African ancestry. After correction for multiple testing, two interactions were significantly associated with diastolic BP. In European ancestry participants, outward/trait anger score had a significant interaction with the C10orf107 genomic region (p = 0.0019). In African ancestry participants, depressive symptom score had a significant interaction with the HFE genomic region (p = 0.0048). This study provides a foundation for using genomic region-based longitudinal analysis to identify subgroups of the population that may be at greater risk of elevated BP due to the combined influence of genetic and socioeconomic/psychosocial risk factors.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA.
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kalyn Yasutake
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carmella August
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA.
| | - Eric Boerwinkle
- Department of Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ana V Diez Roux
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA.
| | - Yan Gao
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Michael E Griswold
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Kathryn M Rose
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA.
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Kim M, Yoo HJ, Kim M, Kim J, Baek SH, Song M, Lee JH. EPHA6 rs4857055 C > T polymorphism associates with hypertension through triglyceride and LDL particle size in the Korean population. Lipids Health Dis 2017; 16:230. [PMID: 29208002 PMCID: PMC5718072 DOI: 10.1186/s12944-017-0620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Erythropoietin-producing human hepatocellular (Eph) receptors might contribute to the development of atherosclerosis. A genome-wide association study indicated that the Eph receptor A6 gene (EPHA6) associated with at least 1 blood pressure (BP) phenotype. The objective of the present study was to determine whether EPHA6 is a novel candidate gene for hypertension in a Korean population. METHODS A total 2146 study participants with normotension and hypertension were included. Genotype data were obtained using a Korean Chip. To assess the association between single-nucleotide polymorphisms (SNPs) and BP, we performed a linear regression analysis, which showed that rs4850755 in the EPHA6 gene was the SNP most highly associated with both systolic and diastolic BP. RESULTS The presence of the TT genotype of the EPHA6 rs4857055 C > T SNP was associated with a higher risk of hypertension after adjusting for age, sex, body mass index (BMI), smoking, and drinking [odds ratio 1.533, P = 0.001]. In the control group, significant associations were observed between systolic BP and the rs4857055 polymorphism and between diastolic BP and the rs4857055 polymorphism. In the hypertension group, a significant association was observed between systolic BP and the rs4857055 polymorphism. In the hypertension group, subjects with the TT genotype showed significantly higher systolic BP than CC subjects. Additionally, in the hypertension group, TT carriers showed a higher tendency of serum triglyceride (P = 0.069) and significantly higher apolipoprotein B (P = 0.015) and smaller low-density lipoprotein (LDL) particle size (P < 0.001) than either TC or CC subjects. CONCLUSIONS These results could suggest that the EPHA6 rs4857055 C > T SNP is a novel candidate gene for hypertension in the Korean population. Additionally, the TT genotype could be associated with hypertriglyceridemia and small LDL particle size in hypertension.
Collapse
Affiliation(s)
- Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea
| | - Hye Jin Yoo
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Minkyung Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea
| | - Jiyoo Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea.,National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Seung Han Baek
- Institute of Convergence Technology, Yonsei University, Seoul, 03722, Korea
| | - Min Song
- Department of Library and Information Science, Yonsei University, Seoul, 03722, Korea
| | - Jong Ho Lee
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea. .,Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea. .,National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
46
|
Mishra S, Ingole S, Jain R. Salt sensitivity and its implication in clinical practice. Indian Heart J 2017; 70:556-564. [PMID: 30170653 PMCID: PMC6116721 DOI: 10.1016/j.ihj.2017.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/01/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Hypertension (HTN) is a complex multi-factorial disease and is considered one of the foremost modifiable risk factors for stroke, heart failure, ischemic heart disease and renal dysfunction. Over the past century, salt and its linkage to HTN and cardiovascular (CV) mortality has been the subject of intense scientific scrutiny. There is now consensus that different individuals have different susceptibilities to blood pressure (BP)-raising effects of salt and this susceptiveness is called as salt sensitivity. Several renal and extra-renal mechanisms are believed to play a role. Blunted activity of the renin–angiotensin–aldosterone system (RAAS), adrenal Rac1-MR-Sgk1-NCC/ENaC pathway, renal SNS-GR-WNK4-NCC pathway, defect of membrane ion transportation, inflammation and abnormalities of Na+/Ca2+ exchange have all been implicated as pathophysiological basis for salt sensitive HTN. While salt restriction is definitely beneficial recent observation suggests that treatment with Azilsartan may improve salt sensitivity by selectively reducing renal proximal tubule Na+/H+ exchange. This encourages the future potential benefits of recognizing and therapeutically addressing the salt sensitive phenotype in humans.
Collapse
|
47
|
Frame AA, Wainford RD. Renal sodium handling and sodium sensitivity. Kidney Res Clin Pract 2017; 36:117-131. [PMID: 28680820 PMCID: PMC5491159 DOI: 10.23876/j.krcp.2017.36.2.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
The pathophysiology of hypertension, which affects over 1 billion individuals worldwide, involves the integration of the actions of multiple organ systems, including the kidney. The kidney, which governs sodium excretion via several mechanisms including pressure natriuresis and the actions of renal sodium transporters, is central to long term blood pressure regulation and the salt sensitivity of blood pressure. The impact of renal sodium handling and the salt sensitivity of blood pressure in health and hypertension is a critical public health issue owing to the excess of dietary salt consumed globally and the significant percentage of the global population exhibiting salt sensitivity. This review highlights recent advances that have provided new insight into the renal handling of sodium and the salt sensitivity of blood pressure, with a focus on genetic, inflammatory, dietary, sympathetic nervous system and oxidative stress mechanisms that influence renal sodium excretion. Increased understanding of the multiple integrated mechanisms that regulate the renal handling of sodium and the salt sensitivity of blood pressure has the potential to identify novel therapeutic targets and refine dietary guidelines designed to treat and prevent hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
48
|
Abstract
Hypertension tends to perpetuate in families and the heritability of hypertension is estimated to be around 20-60%. So far, the main proportion of this heritability has not been found by single-locus genome-wide association studies. Therefore, the current study explored gene-gene interactions that have the potential to partially fill in the missing heritability. A two-stage discovery-confirmatory analysis was carried out in the Framingham Heart Study cohorts. The first stage was an exhaustive pairwise search performed in 2320 early-onset hypertensive cases with matched normotensive controls from the offspring cohort. Then, identified gene-gene interactions were assessed in an independent set of 694 subjects from the original cohort. Four unique gene-gene interactions were found to be related to hypertension. Three detected genes were recognized by previous studies, and the other 5 loci/genes (MAN1A1, LMO3, NPAP1/SNRPN, DNAL4, and RNA5SP455/KRT8P5) were novel findings, which had no strong main effect on hypertension and could not be easily identified by single-locus genome-wide studies. Also, by including the identified gene-gene interactions, more variance was explained in hypertension. Overall, our study provides evidence that the genome-wide gene-gene interaction analysis has the possibility to identify new susceptibility genes, which can provide more insights into the genetic background of blood pressure regulation.
Collapse
|
49
|
Waken RJ, de las Fuentes L, Rao DC. A Review of the Genetics of Hypertension with a Focus on Gene-Environment Interactions. Curr Hypertens Rep 2017; 19:23. [PMID: 28283927 PMCID: PMC5647656 DOI: 10.1007/s11906-017-0718-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Here, we discuss the interpretation and modeling of gene-environment interactions in hypertension-related phenotypes, with a focus on the necessary assumptions and possible challenges. RECENT FINDINGS Recently, small cohort studies have discovered several novel genetic variants associated with hypertension-related phenotypes through modeling gene-environment interactions. Several consortia-based meta-analytic efforts have uncovered many novel genetic variants in hypertension without modeling interaction terms, giving promise to future meta-analytic efforts that incorporate gene-environment interactions. Heritability studies and genome-wide association studies have established that hypertension, a prevalent cardiovascular disease, has a genetic component that may be modulated by the environment (such as lifestyle factors). This review includes a discussion of known genetic associations for hypertension/blood pressure, including those resulting from the incorporation of gene-environmental interaction modeling.
Collapse
Affiliation(s)
- R J Waken
- Division of Biostatistics, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave, Campus Box 8067, St. Louis, MO, 63110, USA.
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave, Campus Box 8067, St. Louis, MO, 63110, USA
- Division of Cardiology, Department of Medicine, 660 S. Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA
| | - D C Rao
- Division of Biostatistics, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave, Campus Box 8067, St. Louis, MO, 63110, USA
| |
Collapse
|