1
|
Li L, Zheng Z, Lan W, Tang N, Zhang D, Ling J, Wu Y, Yang P, Fu L, Liu J, Zhang J, Yu P, Huang T. Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes. ACS OMEGA 2025; 10:18145-18169. [PMID: 40385188 PMCID: PMC12079207 DOI: 10.1021/acsomega.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
In the cardiovascular system, different types of cardiovascular cells can secrete specific exosomes and participate in the maintenance of cardiovascular function and the occurrence and development of diseases. Exosomes carry biologically active substances such as proteins and nucleic acids from cells of origin and can be used as biomarkers for disease diagnosis and prognosis assessment. In addition, exosome-mediated intercellular communication plays a key role in the occurrence and development of cardiovascular diseases and has become a potential therapeutic target. This article emphasizes the importance of understanding the mechanism of exosomes in cardiovascular diseases and systematically details the current understanding of exosomes as regulators of intercellular communication in cardiomyocytes, providing a basis for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Zhidong Zheng
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Wenyu Lan
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Nan Tang
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Deju Zhang
- Food
and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 0000, Hong Kong
| | - Jitao Ling
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Yuting Wu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Pingping Yang
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Linhua Fu
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jianping Liu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jing Zhang
- Department
of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Peng Yu
- Department
of Metabolism and Endocrinology, The Second
Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tieqiu Huang
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| |
Collapse
|
2
|
Izhar M, Lesniak MS. Role of Extracellular Vesicles in the Pathogenesis of Brain Metastasis. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70051. [PMID: 40330713 PMCID: PMC12053894 DOI: 10.1002/jex2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Extracellular vesicles (EVs) are small particles released by various cells, including cancer cells. They play a significant role in the development of different cancers, including brain metastasis. These EVs transport biomolecular materials such as RNA, DNA, and proteins from tumour cells to other cells, facilitating the spread of primary tumours to the brain tissue. EVs interact with the endothelial cells of the blood-brain barrier (BBB), compromising its integrity and allowing metastatic cells to pass through easily. Additionally, EVs interact with various cells in the brain's microenvironment, creating a conducive environment for incoming metastatic cells. They also influence the immune system within this premetastatic environment, promoting the growth of metastatic cells. This review paper focuses on the research regarding the role of EVs in the development of brain metastasis, including their impact on disrupting the BBB, preparing the premetastatic environment, and modulating the immune system. Furthermore, the paper discusses the potential of EVs as diagnostic and prognostic biomarkers for brain metastasis.
Collapse
Affiliation(s)
- Muhammad Izhar
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Maciej S. Lesniak
- Department of Neurological SurgeryLou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
3
|
Eerdekens H, Pirlet E, Willems S, Bronckaers A, Pincela Lins PM. Extracellular vesicles: innovative cell-free solutions for wound repair. Front Bioeng Biotechnol 2025; 13:1571461. [PMID: 40248643 PMCID: PMC12003306 DOI: 10.3389/fbioe.2025.1571461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Chronic non-healing wounds are often associated with conditions such as diabetes and peripheral vascular disease, pose significant medical and socioeconomic challenges. Cell-based therapies have shown promise in promoting wound healing but have major drawbacks such as immunogenicity and tumor formation. As a result, recent research has shifted to the potential of extracellular vesicles (EVs) derived from these cells. EVs are nanosized lipid bilayer vesicles, naturally produced by all cell types, which facilitate intercellular communication and carry bioactive molecules, offering advantages such as low immunogenicity, negligible toxicity and the potential to be re-engineered. Recent evidence recognizes that during wound healing EVs are released from a wide range of cells including immune cells, skin cells, epithelial cells and platelets and they actively participate in wound repair. This review comprehensively summarizes the latest research on the function of EVs from endogenous cell types during the different phases of wound healing, thereby presenting interesting therapeutic targets. Additionally, it gives a critical overview of the current status of mesenchymal stem cell-derived EVs in wound treatment highlighting their tremendous therapeutic potential as a non-cellular of-the-shelf alternative in wound care.
Collapse
Affiliation(s)
- Hanne Eerdekens
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Elke Pirlet
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Sarah Willems
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Annelies Bronckaers
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Paula M. Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, Belgium
| |
Collapse
|
4
|
Scuteri A, Donzelli E. Dual role of extracellular vesicles in neurodegenerative diseases. World J Stem Cells 2024; 16:1002-1011. [PMID: 39734484 PMCID: PMC11669982 DOI: 10.4252/wjsc.v16.i12.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-to-cell interaction tools that are attracting increasing interest in the literature in two opposing areas. In addition to their role in physiological development, there is growing evidence of their involvement in healing and protective processes. However, EVs also mediate pathological conditions, particularly contributing to the progression of several chronic diseases, such as neurodegenerative diseases. On the other hand, EVs also form the core of a new therapeutic strategy for neuroprotection, which is based on the administration of EVs derived from a wide range of donor cells. In particular, the possibility of obtaining numerous EVs from stem cells of different origins, which is feasible for therapeutic aims, is now under investigation. In this review, we focused on neurodegenerative diseases, in which EVs could have a propagative detrimental effect or could also be exploited to deliver protective factors. This review explores the different hypotheses concerning the dual role of EVs, with the aim of shedding light on the following question: Can vesicles be used to fight vesicle-propagated diseases?
Collapse
Affiliation(s)
- Arianna Scuteri
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
| | - Elisabetta Donzelli
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
5
|
Schliefsteiner C, Wadsack C, Allerkamp HH. Exploring the Lifeline: Unpacking the Complexities of Placental Vascular Function in Normal and Preeclamptic Pregnancies. Compr Physiol 2024; 14:5763-5787. [PMID: 39699084 DOI: 10.1002/cphy.c230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The proper development and function of the placenta are essential for the success of pregnancy and the well-being of both the fetus and the mother. Placental vascular function facilitates efficient fetal development during pregnancy by ensuring adequate gas exchange with low vascular resistance. This review focuses on how placental vascular function can be compromised in the pregnancy pathology preeclampsia, and conversely, how placental vascular dysfunction might contribute to this condition. While the maternal endothelium is widely recognized as a key focus in preeclampsia research, this review emphasizes the importance of understanding how this condition affects the development and function of the fetal placental vasculature. The placental vascular bed, consisting of microvasculature and macrovasculature, is discussed in detail, as well as structural and functional changes associated with preeclampsia. The complexity of placental vascular reactivity and function, its mediators, its impact on placental exchange and blood distribution, and how these factors are most affected in early-onset preeclampsia are further explored. These factors include foremost lipoproteins and their cargo, oxygen levels and oxidative stress, biomechanics, and shear stress. Challenges in studying placental pathophysiology are discussed, highlighting the necessity of innovative research methodologies, including ex vivo experiments, in vivo imaging tools, and computational modeling. Finally, an outlook on the potential of drug interventions targeting the placental endothelium to improve placental vascular function in preeclampsia is provided. Overall, this review highlights the need for further research and the development of models and tools to better understand and address the challenges posed by preeclampsia and its effects on placental vascular function to improve short- and long-term outcomes for the offspring of preeclamptic pregnancies. © 2024 American Physiological Society. Compr Physiol 14:5763-5787, 2024.
Collapse
Affiliation(s)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Hanna H Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Valero P, Silva K, Valenzuela-Hinrichsen A, Vásquez A, Espinoza F, Lira F, Cornejo M, Fuentes G, González D, Moore-Carrasco R, van der Beek EM, Hillebrands JL, van Goor H, Grismaldo A, Sobrevia L. Shortcomings, limitations and gaps in physiological roles of extracellular vesicles in obesity. J Physiol 2024. [PMID: 39470472 DOI: 10.1113/jp286955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in mediating communication between cells across species and kingdoms. The intercellular communication facilitated by EVs through autocrine and paracrine signalling mechanisms is essential for cell survival, maintaining normal metabolic functions and ensuring overall bodily homeostasis and health. Extracellular vesicles are present in various bodily fluids, such as pleural effusions, plasma, breast milk, amniotic fluid, semen and saliva. Additionally, the generation and release of EVs contribute to the removal of cellular waste. Patients with obesity exhibit a higher release and amount of circulating EVs than individuals with normal weight. This increased EV release in obesity might contribute to the inflammatory state characteristic of this metabolic condition, because higher levels of pro-inflammatory molecules are found within their cargo. However, interpreting results related to EV abundance, cargo and biological actions can be complicated by several factors; these include variations in cell sources, a wide age range (from children to the elderly), a mix of females and males, medication use and health status, a range of body weights (from normal weight to morbid obesity) and differences between in vitro assays using cell lines versus primary cultures. This article addresses the shortcomings, limitations and gaps in knowledge, providing a framework for enhancing our understanding of the physiological effects of EVs on obesity.
Collapse
Affiliation(s)
- Paola Valero
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Katherin Silva
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Valenzuela-Hinrichsen
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Vásquez
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Espinoza
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Lira
- Faculty of Medicine, Universidad de Antofagasta, Antofagasta, Chile
| | - Marcelo Cornejo
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Fuentes
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Daniel González
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | | | - Eline M van der Beek
- Department of Pediatrics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Nestlé Institute for Health Sciences, Nestlé Research, Societé des Produits de Nestlé, Lausanne, Switzerland
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Adriana Grismaldo
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- **Faculty of Excellence program, School of Medicine and Health Sciences, The Institute for Obesity Research (IOR), Eutra, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Luis Sobrevia
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- **Faculty of Excellence program, School of Medicine and Health Sciences, The Institute for Obesity Research (IOR), Eutra, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
7
|
Kang Y, Wu W, Yang Y, Luo J, Lu Y, Yin L, Cui X. Progress in extracellular vesicle homeostasis as it relates to cardiovascular diseases. J Physiol Biochem 2024; 80:511-522. [PMID: 38687443 DOI: 10.1007/s13105-024-01027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Extracellular vesicles (EVs) are involved in both physiological and pathological processes in many organ systems and are essential in mediating intercellular communication and maintaining organismal homeostasis. It is helpful to propose new strategies for disease treatment by elucidating the mechanisms of EV release and sorting. An increasing number of studies have shown that there is specific homeostasis in EVs, which is helpful for the human body to carry out physiological activities. In contrast, an EV homeostasis im-balance promotes or accelerates disease onset and development. Alternatively, regulating the quality of EVs can maintain homeostasis and even achieve the purpose of treating conditions. An analysis of the role of EV homeostasis in the onset and development of cardiovascular disease is presented in this review. This article also summarizes the methods that regulate EV homeostasis and their application in cardiovascular diseases. In particular, this study focuses on the connection between EV steady states and the cardiovascular system and the potential value of EVs in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yunan Kang
- College of Anesthesiology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Wenqian Wu
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Yi Yang
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Jinxi Luo
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Yajie Lu
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Luchang Yin
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China.
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Shandong Second Medical University, Weifang, P.R. China.
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China.
| |
Collapse
|
8
|
Cheung SWY, Chamley LW, Barrett CJ, Lau SYS. Extracellular vesicles and their effect on vascular haemodynamics: a systematic review. Hypertens Res 2024; 47:1588-1606. [PMID: 38600279 PMCID: PMC11150158 DOI: 10.1038/s41440-024-01659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/03/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Extracellular vesicles (EVs) are released from all cell types studied to date and act as intercellular communicators containing proteins, nucleic acids and lipid cargos. They have been shown to be involved in maintaining homoeostasis as well as playing a role in the development of pathology including hypertension and cardiovascular disease. It is estimated that there is 109-1010 circulating EVs/mL in the plasma of healthy individuals derived from various sources. While the effect of EVs on vascular haemodynamic parameters will be dependent on the details of the model studied, we systematically searched and summarized current literature to find patterns in how exogenously injected EVs affected vascular haemodynamics. Under homoeostatic conditions, evidence from wire and pressure myography data demonstrate that injecting isolated EVs derived from cell types found in blood and blood vessels resulted in the impairment of vasodilation in blood vessels ex vivo. Impaired vasodilation was also observed in rodents receiving intravenous injections of human plasma EVs from cardiovascular diseases including valvular heart disease, acute coronary syndrome, myocardial infarction and end stage renal disease. When EVs were derived from models of metabolic syndromes, such as diabetes, these EVs enhanced vasoconstriction responses in blood vessels ex vivo. There were fewer publications that assessed the effect of EVs in anaesthetised or conscious animals to confirm whether effects on the vasculature observed in ex vivo studies translated into alterations in vascular haemodynamics in vivo. In the available conscious animal studies, the in vivo data did not always align with the ex vivo data. This highlights the importance of in vivo work to determine the effects of EVs on the integrative vascular haemodynamics.
Collapse
Affiliation(s)
- Sharon W Y Cheung
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations, The University of Auckland, Auckland, New Zealand
| | - Carolyn J Barrett
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sien Yee S Lau
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Malin SK, Erdbrügger U. Extracellular Vesicles in Metabolic and Vascular Insulin Resistance. J Vasc Res 2024; 61:129-141. [PMID: 38615667 PMCID: PMC11149383 DOI: 10.1159/000538197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Insulin resistance is a major etiological factor in obesity, type 2 diabetes, and cardiovascular disease (CVD). Endothelial dysfunction may precede impairments in insulin-stimulated glucose uptake, thereby making it a key feature in development of CVD. However, the mechanism by which vascular tissue becomes dysfunctional is not clear. SUMMARY Extracellular vesicles (EVs) have emerged as potential mediators of insulin resistance and vascular dysfunction. EVs are membrane-bound particles released by tissues following cellular stress or activation. They carry "cargo" (e.g., insulin signaling proteins, eNOS-nitric oxide, and miRNA) that are believed to promote inter-cellular and interorgan communications. Herein, we review the underlying physiology of EVs in relation to type 2 diabetes and CVD risk. Specifically, we discuss how EVs may modulate metabolic (e.g., skeletal muscle, liver, and adipose) insulin sensitivity, and propose that EVs may modulate vascular insulin action to influence both endothelial function and arterial stiffness. We lastly identify how EVs may play a unique role following exercise to promote metabolic and vascular insulin sensitivity changes. KEY MESSAGE Gaining insight toward insulin-mediated EV mechanism has potential to identify novel pathways regulating cardiometabolic health and provide foundation for examining EVs as unique biomarkers and targets to prevent and/or treat chronic diseases.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ
- Institute of Translational Medicine & Science, Rutgers University, New Brunswick, NJ
| | - Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, VA
| |
Collapse
|
10
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
11
|
Alqurashi H, Alsharief M, Perciato ML, Raven B, Ren K, Lambert DW. Message in a bubble: the translational potential of extracellular vesicles. J Physiol 2023; 601:4895-4905. [PMID: 37795936 PMCID: PMC10952456 DOI: 10.1113/jp282047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-enclosed vesicles released by cells into the extracellular milieu. They are found in all body fluids and contain a variety of functional cargo including DNA, RNA, proteins, glycoproteins and lipids, able to provoke phenotypic responses in cells, both locally and at distant sites. They are implicated in a wide array of physiological and pathological processes and hence have attracted considerable attention in recent years as potential therapeutic targets, drug delivery vehicles and biomarkers of disease. In this review we summarise the major functions of EVs in health and disease and discuss their translational potential, highlighting opportunities of - and challenges to - capitalising on our rapidly increasing understanding of EV biology for patient benefit.
Collapse
Affiliation(s)
- H. Alqurashi
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- College of DentistryKing Faisal UniversitySaudi Arabia
| | - M. Alsharief
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - M. L. Perciato
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - B. Raven
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- Healthy Lifespan InstituteUniversity of SheffieldSheffieldUK
| | - K. Ren
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - D. W. Lambert
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- Healthy Lifespan InstituteUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
12
|
Liu W, Jin M, Chen Q, Li Q, Xing X, Luo Y, Sun X. Insight into extracellular vesicles in vascular diseases: intercellular communication role and clinical application potential. Cell Commun Signal 2023; 21:310. [PMID: 37907962 PMCID: PMC10617214 DOI: 10.1186/s12964-023-01304-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/02/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Cells have been increasingly known to release extracellular vesicles (EVs) to the extracellular environment under physiological and pathological conditions. A plethora of studies have revealed that EVs contain cell-derived biomolecules and are found in circulation, thereby implicating them in molecular trafficking between cells. Furthermore, EVs have an effect on physiological function and disease development and serve as disease biomarkers. MAIN BODY Given the close association between EV circulation and vascular disease, this review aims to provide a brief introduction to EVs, with a specific focus on the EV cargoes participating in pathological mechanisms, diagnosis, engineering, and clinical potential, to highlight the emerging evidence suggesting promising targets in vascular diseases. Despite the expansion of research in this field, some noticeable limitations remain for clinical translational research. CONCLUSION This review makes a novel contribution to a summary of recent advances and a perspective on the future of EVs in vascular diseases. Video Abstract.
Collapse
Affiliation(s)
- Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
13
|
Alli AA. Extracellular Vesicles: Investigating the Pathophysiology of Diabetes-Associated Hypertension and Diabetic Nephropathy. BIOLOGY 2023; 12:1138. [PMID: 37627022 PMCID: PMC10452642 DOI: 10.3390/biology12081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Extracellular vesicles (EVs) include exosomes, microvesicles, and apoptotic bodies. EVs are released by all cell types and are found in biological fluids including plasma and urine. Urinary extracellular vesicles (uEVs) are a mixed population of EVs that comprise small EVs that are filtered and excreted, EVs secreted by tubular epithelial cells, and EVs released from the bladder, urethra, and prostate. The packaged cargo within uEVs includes bioactive molecules such as metabolites, lipids, proteins, mRNAs, and miRNAs. These molecules are involved in intercellular communication, elicit changes in intracellular signaling pathways, and play a role in the pathogenesis of various diseases including diabetes-associated hypertension and diabetic nephropathy. uEVs represent a rich source of biomarkers, prognosis markers, and can be loaded with small-molecule drugs as a vehicle for delivery.
Collapse
Affiliation(s)
- Abdel A. Alli
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; ; Tel.: +1-352-273-7877
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Brown PA, Brown PD. Extracellular vesicles and atherosclerotic peripheral arterial disease. Cardiovasc Pathol 2023; 63:107510. [PMID: 36460259 DOI: 10.1016/j.carpath.2022.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Atherogenesis involves a complex multifactorial process including chronic inflammation that requires the participation of several cell types and molecules. In addition to their role in vascular homeostasis, extracellular vesicles also appear to play an important role in atherogenesis, including monocyte transmigration and foam cell formation, SMC proliferation and migration, leukocyte transmigration, and thrombosis. Peripheral arterial disease, a major form of peripheral vascular disease, is characterized by structural or functional impairment of peripheral arterial supply, often secondary to atherosclerosis. Elevated levels of extracellular vesicles have been demonstrated in patients with peripheral arterial disease and implicated in the development of atherosclerosis within peripheral vascular beds. However, extracellular vesicles also appear capable of delivering cargo with atheroprotective effects. This capability has been exploited in vesicles engineered to carry content capable of neovascularization, suggesting potential for therapeutic angiogenesis. This dual capacity holds substantial promise for diagnosis and therapy, including possibly limb- and life-saving options for peripheral arterial disease management.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - Paul D Brown
- Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica
| |
Collapse
|
16
|
Musi A, Bongiovanni L. Extracellular Vesicles in Cancer Drug Resistance: Implications on Melanoma Therapy. Cancers (Basel) 2023; 15:1074. [PMID: 36831417 PMCID: PMC9954626 DOI: 10.3390/cancers15041074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in the pathogenesis of neoplastic diseases. Their role in mediating drug resistance has been widely described in several types of cancers, including melanoma. EVs can mediate drug resistance through several different mechanisms, such as drug-sequestration, transfer of pro-survival proteins and RNA, induction of cancer stem cell-like features and interaction with cells of the tumor microenvironment and immune-system. Melanoma is a highly immunogenic tumor originating from the malignant transformation of melanocytes. Several therapeutic strategies currently used in the treatment of melanoma and the combination of BRAF and MEK-inhibitors, as well as immune check-point inhibitors (ICI), have consistently improved the overall survival time of melanoma patients. However, the development of resistance is one of the biggest problems leading to a poor clinical outcome, and EVs can contribute to this. EVs isolated from melanoma cells can contain "sequestered" chemotherapeutic drugs in order to eliminate them, or bioactive molecules (such as miRNA or proteins) that have been proven to play a crucial role in the transmission of resistance to sensitive neoplastic cells. This leads to the hypothesis that EVs could be considered as resistance-mediators in sensitive melanoma cells. These findings are a pivotal starting point for further investigations to better understand EVs' role in drug resistance mechanisms and how to target them. The purpose of this review is to summarize knowledge about EVs in order to develop a deeper understanding of their underlying mechanisms. This could lead to the development of new therapeutic strategies able to bypass EV-mediated drug-resistance in melanoma, such as by the use of combination therapy, including EV release inhibitors.
Collapse
Affiliation(s)
- Alice Musi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CT Utrecht, The Netherlands
| |
Collapse
|
17
|
Ragland TJ, Heiston EM, Ballantyne A, Stewart NR, La Salvia S, Musante L, Luse MA, Isakson BE, Erdbrügger U, Malin SK. Extracellular vesicles and insulin-mediated vascular function in metabolic syndrome. Physiol Rep 2023; 11:e15530. [PMID: 36597186 PMCID: PMC9810789 DOI: 10.14814/phy2.15530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 01/05/2023] Open
Abstract
Metabolic Syndrome (MetS) raises cardiovascular disease risk. Extracellular vesicles (EVs) have emerged as important mediators of insulin sensitivity, although few studies on vascular function exist in humans. We determined the effect of insulin on EVs in relation to vascular function. Adults with MetS (n = 51, n = 9 M, 54.8 ± 1.0 years, 36.4 ± 0.7 kg/m2 , ATPIII: 3.5 ± 0.1 a.u., VO2 max: 22.1 ± 0.6 ml/kg/min) were enrolled in this cross-sectional study. Peripheral insulin sensitivity (M-value) was determined during a euglycemic clamp (40 mU/m2 /min, 90 mg/dl), and blood was collected for EVs (CD105+, CD45+, CD41+, TX+, and CD31+; spectral flow cytometry), inflammation, insulin, and substrates. Central hemodynamics (applanation tonometry) was determined at 0 and 120 min via aortic waveforms. Pressure myography was used to assess insulin-induced arterial vasodilation from mouse 3rd order mesenteric arteries (100-200 μm in diameter) at 0.2, 2 and 20 nM of insulin with EVs from healthy and MetS adults. Adults with MetS had low peripheral insulin sensitivity (2.6 ± 0.2 mg/kg/min) and high HOMA-IR (4.7 ± 0.4 a.u.) plus Adipose-IR (13.0 ± 1.3 a.u.). Insulin decreased total/particle counts (p < 0.001), CD45+ EVs (p = 0.002), AIx75 (p = 0.005) and Pb (p = 0.04), FFA (p < 0.001), total adiponectin (p = 0.006), ICAM (p = 0.002), and VCAM (p = 0.03). Higher M-value related to lower fasted total EVs (r = -0.40, p = 0.004) while higher Adipose-IR associated with higher fasted EVs (r = 0.42, p = 0.004) independent of VAT. Fasting CD105+ and CD45+ derived total EVs correlated with fasting AIx75 (r = 0.29, p < 0.05) and Pb (r = 0.30, p < 0.05). EVs from MetS participants blunted insulin-induced vasodilation in mesenteric arteries compared with increases from healthy controls across insulin doses (all p < 0.005). These data highlight EVs as potentially novel mediators of vascular insulin sensitivity and disease risk.
Collapse
Affiliation(s)
- Tristan J. Ragland
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
| | - Emily M. Heiston
- Department of Internal Medicine, Pauley Heart CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Anna Ballantyne
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Nathan R. Stewart
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Luca Musante
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Melissa A. Luse
- Robert M Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Brant E. Isakson
- Robert M Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of Molecular Physiology and BiophysicsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Uta Erdbrügger
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Steven K. Malin
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Division of Endocrinology, Metabolism & NutritionDepartment of MedicineNew BrunswickNew JerseyUSA
- The New Jersey Institute for Food, Nutrition and HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Institute of Translational Medicine and ScienceRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
18
|
Mengozzi A, Costantino S, Paneni F, Duranti E, Nannipieri M, Mancini R, Lai M, La Rocca V, Puxeddu I, Antonioli L, Fornai M, Ghionzoli M, Georgiopoulos G, Ippolito C, Bernardini N, Ruschitzka F, Pugliese NR, Taddei S, Virdis* A, Masi S. Targeting SIRT1 Rescues Age- and Obesity-Induced Microvascular Dysfunction in Ex Vivo Human Vessels. Circ Res 2022; 131:476-491. [PMID: 35968712 PMCID: PMC9426744 DOI: 10.1161/circresaha.122.320888] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Experimental evidence suggests a key role of SIRT1 (silent information regulator 1) in age- and metabolic-related vascular dysfunction. Whether these effects hold true in the human microvasculature is unknown. We aimed to investigate the SIRT1 role in very early stages of age- and obesity-related microvascular dysfunction in humans. METHODS Ninety-five subjects undergoing elective laparoscopic surgery were recruited and stratified based on their body mass index status (above or below 30 kg/m2) and age (above or below 40 years) in 4 groups: Young Nonobese, Young Obese, Old Nonobese, and Old Obese. We measured small resistance arteries' endothelial function by pressurized micromyography before and after incubation with a SIRT1 agonist (SRT1720) and a mitochondria reactive oxygen species (mtROS) scavenger (MitoTEMPO). We assessed vascular levels of mtROS and nitric oxide availability by confocal microscopy and vascular gene expression of SIRT1 and mitochondrial proteins by qPCR. Chromatin immunoprecipitation assay was employed to investigate SIRT1-dependent epigenetic regulation of mitochondrial proteins. RESULTS Compared with Young Nonobese, obese and older patients showed lower vascular expression of SIRT1 and antioxidant proteins (FOXO3 [forkhead box protein O3] and SOD2) and higher expression of pro-oxidant and aging mitochondria proteins p66Shc and Arginase II. Old Obese, Young Obese and Old Nonobese groups endothelial dysfunction was rescued by SRT1720. The restoration was comparable to the one obtained with mitoTEMPO. These effects were explained by SIRT1-dependent chromatin changes leading to reduced p66Shc expression and upregulation of proteins involved in mitochondria respiratory chain. CONCLUSIONS SIRT1 is a novel central modulator of the earliest microvascular damage induced by age and obesity. Through a complex epigenetic control mainly involving p66Shc and Arginase II, it influences mtROS levels, NO availability, and the expression of proteins of the mitochondria respiratory chain. Therapeutic modulation of SIRT1 restores obesity- and age-related endothelial dysfunction. Early targeting of SIRT1 might represent a crucial strategy to prevent age- and obesity-related microvascular dysfunction.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy.,Scuola Superiore Sant’Anna, Pisa, Italy (A.M., V.L.R., N.B.)
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Switzerland (S.C., F.P.)
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Switzerland (S.C., F.P.).,Department of Cardiology, University Heart Center (F.P., F.R.), University Hospital Zurich, Switzerland.,Department of Research and Education (F.P.), University Hospital Zurich, Switzerland
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Rudj Mancini
- Unit of Bariatric Surgery, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy (R.M.)
| | - Michele Lai
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery (M.L., V.L.R.), University of Pisa, Italy
| | - Veronica La Rocca
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery (M.L., V.L.R.), University of Pisa, Italy.,Scuola Superiore Sant’Anna, Pisa, Italy (A.M., V.L.R., N.B.)
| | - Ilaria Puxeddu
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Marco Ghionzoli
- Paediatric Surgery Unit, Meyer Children’s Hospital, Florence, Italy (M.G.)
| | - Georgios Georgiopoulos
- School of Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (G.G.).,Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Greece (G.G.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy.,Scuola Superiore Sant’Anna, Pisa, Italy (A.M., V.L.R., N.B.)
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center (F.P., F.R.), University Hospital Zurich, Switzerland
| | - Nicola Riccardo Pugliese
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Agostino Virdis*
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine (A.M., E.D., M.N., I.P., L.A., M.F., C.I., N.B., N.R.P., S.T., A.V., S.M.), University of Pisa, Italy.,Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
| |
Collapse
|
19
|
Dieudé M, Hébert MJ. Extracellular vesicles beyond biomarkers: Effectors of antibody-mediated rejection. Am J Transplant 2022; 22:2131-2132. [PMID: 35776663 DOI: 10.1111/ajt.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mélanie Dieudé
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Université de Montréal, Montréal, Québec, Canada.,Héma-Québec, Montréal, Québec, Canada.,Canadian National Transplantation Research Program, Edmonton, Alberta, Canada
| | - Marie-Josée Hébert
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Université de Montréal, Montréal, Québec, Canada.,Canadian National Transplantation Research Program, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Diagnostic and Therapeutic Roles of Extracellular Vesicles in Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6742792. [PMID: 35979398 PMCID: PMC9377967 DOI: 10.1155/2022/6742792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 01/10/2023]
Abstract
Aging shows a decline in overall physical function, and cellular senescence is the powerful catalyst leading to aging. Considering that aging will be accompanied with the emergence of various aging-related diseases, research on new antiaging drugs is still valuable. Extracellular vesicles (EVs), as tools for intercellular communication, are important components of the senescence-associated secretory phenotype (SASP), and they can play pathological roles in the process of cellular senescence. In addition, EVs are similar to their original cells in functions. Therefore, EVs derived from pathological tissues or body fluids may be closely related to the progression of diseases and become potential biomarkers, while those from healthy cells may have therapeutic effects. Moreover, EVs are satisfactory drug carriers. At present, numerous studies have supported the idea that engineered EVs could improve drug targeting ability and utilization efficiency. Here, we summarize the characteristics of EVs and cellular senescence and focus on the diagnostic and therapeutic potential of EVs in various aging-related diseases, including Alzheimer disease, osteoporosis, cardiovascular disease, diabetes mellitus and its complications, and skin aging.
Collapse
|
21
|
Salomon C, Das S, Erdbrügger U, Kalluri R, Kiang Lim S, Olefsky JM, Rice GE, Sahoo S, Andy Tao W, Vader P, Wang Q, Weaver AM. Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocr Rev 2022; 43:441-468. [PMID: 35552682 PMCID: PMC10686249 DOI: 10.1210/endrev/bnac009] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/15/2022]
Abstract
During the last decade, there has been great interest in elucidating the biological role of extracellular vesicles (EVs), particularly, their hormone-like role in cell-to-cell communication. The field of endocrinology is uniquely placed to provide insight into the functions of EVs, which are secreted from all cells into biological fluids and carry endocrine signals to engage in paracellular and distal interactions. EVs are a heterogeneous population of membrane-bound vesicles of varying size, content, and bioactivity. EVs are specifically packaged with signaling molecules, including lipids, proteins, and nucleic acids, and are released via exocytosis into biofluid compartments. EVs regulate the activity of both proximal and distal target cells, including translational activity, metabolism, growth, and development. As such, EVs signaling represents an integral pathway mediating intercellular communication. Moreover, as the content of EVs is cell-type specific, it is a "fingerprint" of the releasing cell and its metabolic status. Recently, changes in the profile of EV and bioactivity have been described in several endocrine-related conditions including diabetes, obesity, cardiovascular diseases, and cancer. The goal of this statement is to highlight relevant aspects of EV research and their potential role in the field of endocrinology.
Collapse
Affiliation(s)
- Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Uta Erdbrügger
- Department of Medicine, Nephrology Division, University of Virginia, Charlottesville, VA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Jerrold M Olefsky
- Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Pieter Vader
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands; Laboratory of Experimental Cardiology, UMC Utrecht, Utrecht, The Netherlands
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Lugo-Gavidia LM, Carnagarin R, Burger D, Nolde JM, Chan J, Robinson S, Bosio E, Matthews VB, Schlaich MP. Circulating platelet-derived extracellular vesicles correlate with night-time blood pressure and vascular organ damage and may represent an integrative biomarker of vascular health. J Clin Hypertens (Greenwich) 2022; 24:738-749. [PMID: 35502649 PMCID: PMC9180329 DOI: 10.1111/jch.14479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Elevated office blood pressure (BP) has previously been associated with increased levels of circulating extracellular vesicles (EVs). The present study aimed to assess the relationship between levels of platelet derived EVs, ambulatory BP parameters, and pulse wave velocity as a marker of macrovascular organ damage. A total of 96 participants were included in the study. Platelet-derived extracellular vesicles (pEVs) were evaluated by flow cytometry (CD41+/Annexin v+). BP evaluation included unobserved automated office BP and ambulatory BP monitoring. Carotid-femoral pulse wave velocity (PWV) was measured as a marker of macrovascular damage. pEVs correlated with nocturnal systolic BP (r = 0.31; p = .003) and nocturnal dipping (r = -0.29; p = .01) in univariable analysis. Multivariable regression models confirmed robustness of the association of EVs and nocturnal blood pressure (p = .02). In contrast, systolic office, 24h- and daytime-BP did not show significant associations with pEVs. No correlations were found with diastolic BP. Circulating pEVs correlated with pulse wave velocity (r = 0.25; p = .02). When comparing different hypertensive phenotypes, higher levels of EVs and PWV were evident in patients with sustained hypertension compared to patients with white coat HTN and healthy persons. Circulating platelet derived EVs were associated with nocturnal BP, dipping, and PWV. Given that average nocturnal BP is the strongest predictor of CV events, platelet derived EVs may serve as an integrative marker of vascular health, a proposition that requires testing in prospective clinical trials.
Collapse
Affiliation(s)
- Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Dylan Burger
- Kidney Research Centre, The Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Janis M Nolde
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Justine Chan
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Sandi Robinson
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia.,Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Dabetes Institute, Melbourne, Victoria, Australia.,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
23
|
Ambrosino P, Bachetti T, D’Anna SE, Galloway B, Bianco A, D’Agnano V, Papa A, Motta A, Perrotta F, Maniscalco M. Mechanisms and Clinical Implications of Endothelial Dysfunction in Arterial Hypertension. J Cardiovasc Dev Dis 2022; 9:136. [PMID: 35621847 PMCID: PMC9146906 DOI: 10.3390/jcdd9050136] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The endothelium is composed of a monolayer of endothelial cells, lining the interior surface of blood and lymphatic vessels. Endothelial cells display important homeostatic functions, since they are able to respond to humoral and hemodynamic stimuli. Thus, endothelial dysfunction has been proposed as a key and early pathogenic mechanism in many clinical conditions. Given the relevant repercussions on cardiovascular risk, the complex interplay between endothelial dysfunction and systemic arterial hypertension has been a matter of study in recent years. Numerous articles have been published on this issue, all of which contribute to providing an interesting insight into the molecular mechanisms of endothelial dysfunction in arterial hypertension and its role as a biomarker of inflammation, oxidative stress, and vascular disease. The prognostic and therapeutic implications of endothelial dysfunction have also been analyzed in this clinical setting, with interesting new findings and potential applications in clinical practice and future research. The aim of this review is to summarize the pathophysiology of the relationship between endothelial dysfunction and systemic arterial hypertension, with a focus on the personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction while treating hypertension and cardiovascular comorbidities.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Direction, 27100 Pavia, Italy;
| | - Silvestro Ennio D’Anna
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Brurya Galloway
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy;
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy
| |
Collapse
|
24
|
Buffolo F, Monticone S, Camussi G, Aikawa E. Role of Extracellular Vesicles in the Pathogenesis of Vascular Damage. Hypertension 2022; 79:863-873. [PMID: 35144490 PMCID: PMC9010370 DOI: 10.1161/hypertensionaha.121.17957] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanosized membrane-bound structures released by cells that are able to transfer nucleic acids, protein cargos, and metabolites to specific recipient cells, allowing cell-to-cell communications in an endocrine and paracrine manner. Endothelial, leukocyte, and platelet-derived EVs have emerged both as biomarkers and key effectors in the development and progression of different stages of vascular damage, from earliest alteration of endothelial function, to advanced atherosclerotic lesions and cardiovascular calcification. Under pathological conditions, circulating EVs promote endothelial dysfunction by impairing vasorelaxation and instigate vascular inflammation by increasing levels of adhesion molecules, reactive oxygen species, and proinflammatory cytokines. Platelets, endothelial cells, macrophages, and foam cells secrete EVs that regulate macrophage polarization and contribute to atherosclerotic plaque progression. Finally, under pathological stimuli, smooth muscle cells and macrophages secrete EVs that aggregate between collagen fibers and serve as nucleation sites for ectopic mineralization in the vessel wall, leading to formation of micro- and macrocalcification. In this review, we summarize the emerging evidence of the pathological role of EVs in vascular damage, highlighting the major findings from the most recent studies and discussing future perspectives in this research field.
Collapse
Affiliation(s)
- Fabrizio Buffolo
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy. (F.B., S.M.).,Center for Interdisciplinary Cardiovascular Sciences, Department of Cardiovascular Medicine (F.B, E.A.)
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy. (F.B., S.M.)
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Italy. (G.C.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Department of Cardiovascular Medicine (F.B, E.A.).,Center for Excellence in Vascular Biology, Department of Cardiovascular Medicine (E.A.)
| |
Collapse
|
25
|
Gallo G, Volpe M, Savoia C. Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Front Med (Lausanne) 2022; 8:798958. [PMID: 35127755 PMCID: PMC8811286 DOI: 10.3389/fmed.2021.798958] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
Endothelium plays a fundamental role in the cardiovascular system, forming an interface between blood and adjacent tissues by regulating the vascular tone through the synthesis of nitric oxide, prostaglandins and other relaxing factors. Endothelial dysfunction is characterized by vasoconstriction, cell proliferation and shifting toward a proinflammatory and prothrombic state. In hypertension endothelial dysfunction may be involved in the initiation and development of vascular inflammation, vascular remodeling, and atherosclerosis and is independently associated with increased cardiovascular risk. Different conditions such as impaired vascular shear stress, inflammation and oxidative stress, activation of the renin angiotensin system have been described as important pathophysiological mechanisms involved in the development of endothelial dysfunction. The release of extracellular vesicles by neighboring cells in the vascular wall has emerged as an important regulator of endothelial function and with potential antihypertensive properties and beneficial effects by counteracting the hypertension mediated organ damage. Furthermore, macrovesicles are emerging as an innovative therapeutic approach for vascular protection, allowing the delivery of bioactive molecules, such as miRNA and drugs interacting with the renin angiotensin system. In this review we summarize the available evidence about the pathophysiological implications of endothelial dysfunction in cardiovascular diseases, focusing on hypertension and its sequelae, and the potential innovative therapeutic strategies targeting the endothelium with the aim to improve vascular function and remodeling.
Collapse
|
26
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part I: Health and Normal Physiology: Part I: Health and Normal Physiology. J Extracell Vesicles 2022; 11:e12151. [PMID: 35041249 PMCID: PMC8765331 DOI: 10.1002/jev2.12151] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordJohn Radcliffe Hospital, HeadingtonOxfordUK
| |
Collapse
|
27
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part II: Pathology: Part II: Pathology. J Extracell Vesicles 2022; 11:e12190. [PMID: 35041301 PMCID: PMC8765328 DOI: 10.1002/jev2.12190] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
It is clear from Part I of this series that extracellular vesicles (EVs) play a critical role in maintaining the homeostasis of most, if not all, normal physiological systems. However, the majority of our knowledge about EV signalling has come from studying them in disease. Indeed, EVs have consistently been associated with propagating disease pathophysiology. The analysis of EVs in biofluids, obtained in the clinic, has been an essential of the work to improve our understanding of their role in disease. However, to interfere with EV signalling for therapeutic gain, a more fundamental understanding of the mechanisms by which they contribute to pathogenic processes is required. Only by discovering how the EV populations in different biofluids change-size, number, and physicochemical composition-in clinical samples, may we then begin to unravel their functional roles in translational models in vitro and in vivo, which can then feedback to the clinic. In Part II of this review series, the functional role of EVs in pathology and disease will be discussed, with a focus on in vivo evidence and their potential to be used as both biomarkers and points of therapeutic intervention.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
28
|
Song T, Lv M, Zhou M, Huang M, Zheng L, Zhao M. Soybean-Derived Antihypertensive Peptide LSW (Leu-Ser-Trp) Antagonizes the Damage of Angiotensin II to Vascular Endothelial Cells through the Trans-vesicular Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10536-10549. [PMID: 34460247 DOI: 10.1021/acs.jafc.1c02733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An emerging inference is that vascular cells transfer their biological cargo to recipient cells by secretion of extracellular vesicles (EVs). This study explored the effects of EVs produced from VSMCs with Ang II (EVs-A) or LSW + Ang II on HUVECs. The EVs-A increase ROS production, activate inflammation, and upregulate the expression of adhesion molecules. Among the EVs-A, miR-22, miR-143, miR-144, and miR-155 were significantly downregulated, while VSMCs pre-incubated with LSW could produce improved EVs. RNA sequencing revealed differential expression of genes associated with endothelial dysfunction, including the TNF signaling pathway, NOD-like receptor signaling pathway, NF-κB signaling pathway, and fluid shear stress and atherosclerosis pathway. Finally, we found that LSW could improve endothelial function by repairing the expression of miRNAs in VSMCs. It also suggests a potential mechanism for the injury action of endogenous peptide Ang II and protective effects of exogenous peptide LSW on vascular endothelial cells.
Collapse
Affiliation(s)
- Tianyuan Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Miao Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P. R. China
| |
Collapse
|
29
|
Liu ZZ, Jose PA, Yang J, Zeng C. Importance of extracellular vesicles in hypertension. Exp Biol Med (Maywood) 2021; 246:342-353. [PMID: 33517775 DOI: 10.1177/1535370220974600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypertension affects approximately 1.13 billion adults worldwide and is the leading global risk factor for cardiovascular, cerebrovascular, and kidney diseases. There is emerging evidence that extracellular vesicles participate in the development and progression of hypertension. Extracellular vesicles are membrane-enclosed structures released from nearly all types of eukaryotic cells. During their formation, extracellular vesicles incorporate various parent cell components, including proteins, lipids, and nucleic acids that can be transferred to recipient cells. Extracellular vesicles mediate cell-to-cell communication in a variety of physiological and pathophysiological processes. Therefore, studying the role of circulating and urinary extracellular vesicles in hypertension has the potential to identify novel noninvasive biomarkers and therapeutic targets of different hypertension phenotypes. This review discusses the classification and biogenesis of three EV subcategories (exosomes, microvesicles, and apoptotic bodies) and provides a summary of recent discoveries in the potential impact of extracellular vesicles on hypertension with a specific focus on their role in the blood pressure regulation by organs-artery and kidney, as well as renin-angiotensin-system.
Collapse
Affiliation(s)
- Zhi Z Liu
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400714, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Chunyu Zeng
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400714, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China.,Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
30
|
Song T, Lv M, Zhang L, Zhang X, Song G, Huang M, Zheng L, Zhao M. The Protective Effects of Tripeptides VPP and IPP against Small Extracellular Vesicles from Angiotensin II-Induced Vascular Smooth Muscle Cells Mediating Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13730-13741. [PMID: 33180478 DOI: 10.1021/acs.jafc.0c05698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Endothelial dysfunction is a common disorder of vascular homeostasis in hypertension characterized by oxidative stress, malignant migration, inflammatory response, and active adhesion response of endothelial cells. The extracellular vesicles (EVs), a vital participant in vascular cell communication, have been considered responsible for vascular disease progression. However, the potential mechanism of antihypertensive peptides against the EVs-induced endothelial dysfunction is still unclear. In this study, we investigated whether the antihypertensive peptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) ameliorate the effects of EVs from Ang II-induced vascular smooth muscles (VSMCs) on the endothelial dysfunction. The dihydroethidium staining, wound healing assay, 3D cell culture, and co-culture with U937 monocyte were used to investigate the oxidant/antioxidant balance, migration, tube formation, and cell adhesion in EV-induced human umbilical vein endothelial cells. VPP and IPP treatment reduced the level of reactive oxygen species and EV-induced expression of adhesion molecules and restored the ability of tube formation by upregulating endothelial nitric oxide synthase expression. VPP and IPP reduced the protein levels of IL-6 to 227.34 ± 10.56 and 273.84 ± 22.28 pg/mL, of IL-1β protein to 131.56 ± 23.18 and 221.14 ± 13.8 pg/mL, and of MCP-1 to 301.48 ± 19.75 and 428.68 ± 9.59 pg/mL. These results suggested that the VPP and IPP are potential agents that can improve the endothelial dysfunction caused by EVs from Ang II-induced VSMCs.
Collapse
Affiliation(s)
- Tianyuan Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Miao Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Lixia Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, P.R. China
| | - Xun Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, P.R. China
| | - Guohui Song
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, P.R. China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| |
Collapse
|
31
|
La Salvia S, Musante L, Lannigan J, Gigliotti JC, Le TH, Erdbrügger U. T cell-derived extracellular vesicles are elevated in essential HTN. Am J Physiol Renal Physiol 2020; 319:F868-F875. [PMID: 33017187 PMCID: PMC7789979 DOI: 10.1152/ajprenal.00433.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are novel mediators of cell-to-cell communication and appear to mediate the pathogenesis of hypertension (HTN). However, the mechanisms underlying the involvement of EVs in HTN remain unclear. The adaptive and innate immune systems play an important role affecting the kidney and vasculature in animal models of HTN. Evolving evidence shows that immune cell-derived EVs can modulate the immune system in a paracrine fashion and therefore may mediate the effects of inflammation in the pathogenesis of HTN. Therefore, we aimed to understand if specific subtypes of leukocyte/immune cell-derived EVs are altered in essential HTN using an in vivo model of angiotensin II (ANG II)-induced HTN. After 4 wk of ANG II treatment, EVs were isolated from the blood and kidney. EV origin and counts were characterized with Imaging Flow Cytometry, antibody panels targeting platelets, endothelial cells, and leukocytes including B and T cells, monocytes, and neutrophils. Leukocyte-derived EVs (CD45+) were elevated in the circulation and kidney tissue in ANG II-induced HTN. Subgroup analysis depicted T cell-derived EVs (CD3+) to be significantly elevated in ANG II-induced HTN (3.50e+5 particles/mL) compared with control groups (9.16e+4 particles/mL, P = 0.0106). T cell-derived EVs also significantly correlated with systolic blood pressure levels (r2 = 0.898, P = 0.0012). In summary, leukocyte-derived EVs, and more specifically T cell-derived EVs (CD3+), are elevated in ANG II-induced HTN in the circulation and kidney tissue and correlate well with blood pressure severity. EVs from the circulation and kidney may be sensitive biomarkers for HTN and end-organ damage and may lead to new mechanistic insights in this silent disease.
Collapse
Affiliation(s)
- Sabrina La Salvia
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Luca Musante
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Joanne Lannigan
- School of Medicine, Flow Cytometry Core, University of Virginia, Charlottesville, Virginia
| | - Joseph Christopher Gigliotti
- Department of Integrated Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Uta Erdbrügger
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
32
|
Extracellular Vesicle-Mediated Vascular Cell Communications in Hypertension: Mechanism Insights and Therapeutic Potential of ncRNAs. Cardiovasc Drugs Ther 2020; 36:157-172. [PMID: 32964302 DOI: 10.1007/s10557-020-07080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Hypertension, a chronic and progressive disease, is an outstanding public health issue that affects nearly 40% of the adults worldwide. The increasing prevalence of hypertension is one of the leading causes of cardiovascular morbidity and mortality. Despite of the available treatment medications, an increasing number of hypertensive individuals continues to have uncontrolled blood pressure. In the vasculature, endothelial cells, vascular smooth muscle cells (VSMCs), and adventitial fibroblasts play a fundamental role in vascular homeostasis. The aberrant interactions between vascular cells might lead to hypertension and vascular remodeling. Identification of the precise mechanisms of vascular remodeling may be highly required to develop effective therapeutic approaches for hypertension. Recently, extracellular vesicle-mediated transfer of proteins or noncoding RNAs (ncRNAs) between vascular cells holds promise for the treatment of hypertension. Especially, extracellular vesicle-packaging ncRNAs have gained enormous attention of basic and clinical scientists because of their tremendous potential to act as novel clinical biomarkers and therapeutic targets of hypertension. Here we will discuss the current findings focusing on the emerging roles of extracellular vesicle-carrying ncRNAs in the pathologies of hypertension and its associated vascular remodeling. Furthermore, we will highlight the potential of extracellular vesicles and ncRNAs as biomarkers and therapeutic targets for hypertension. The future research directions on the challenges and perspectives of extracellular vesicles and ncRNAs in hypertensive vascular remodeling are also proposed.
Collapse
|
33
|
La Salvia S, Gunasekaran PM, Byrd JB, Erdbrügger U. Extracellular Vesicles in Essential Hypertension: Hidden Messengers. Curr Hypertens Rep 2020; 22:76. [PMID: 32880744 DOI: 10.1007/s11906-020-01084-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Hypertension affects about half of all Americans, yet in the vast majority of cases, the factors causing the hypertension cannot be clearly delineated. Developing a more precise understanding of the molecular pathogenesis of HTN and its various phenotypes is therefore a pressing priority. Circulating and urinary extracellular vesicles (EVs) are potential novel candidates as biomarkers and bioactivators in HTN. EVs are a heterogeneous population of small membrane fragments shed from various cell types into various body fluids. As EVs carry protein, RNA, and lipids, they also play a role as effectors and novel cell-to-cell communicators. In this review, we discuss the diagnostic, functional, and regenerative role of EVs in essential HTN and focus on EV protein and RNA cargo as the most extensively studied EV cargo. RECENT FINDINGS The field of EVs in HTN is still a young one and earlier studies have not used the novel EV detection tools currently available. More rigor and transparency in EV research are needed. Current data suggest that EVs represent potential novel biomarkers in HTN. EVs correlate with HTN severity and possibly end-organ damage. However, it has yet to be discerned which specific subtype(s) of EV reflects best HTN pathophysiology. Evolving studies are also showing that EVs might be novel regulators in vascular and renal tubular function and also be therapeutic. RNA in EVs has been studied in the context of hypertension, largely in the form of studies of miRNA, which are reviewed herein. Beyond miRNAs, mRNA in urinary EVs changed in response to sodium loading in humans. EVs represent promising novel biomarkers and bioactivators in essential HTN. Novel tools are being developed to apply more rigor in EV research including more in vivo models and translation to humans.
Collapse
Affiliation(s)
- Sabrina La Salvia
- Department of Internal Medicine, Division of Nephrology, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908-0133, USA.
| | - Pradeep Moon Gunasekaran
- Department of Internal Medicine, Division of Cardiovascular Medicine, Medical School, University of Michigan Medical School, 5570C MSRB II, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - James Brian Byrd
- Department of Internal Medicine, Division of Cardiovascular Medicine, Medical School, University of Michigan Medical School, 5570C MSRB II, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Uta Erdbrügger
- Department of Internal Medicine, Division of Nephrology, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908-0133, USA
| |
Collapse
|
34
|
Bagher P. Extracellular Vesicles: How a Circulating Biomarker Can Double As a Regulator of Blood Pressure. Hypertension 2019; 75:40-43. [PMID: 31760887 DOI: 10.1161/hypertensionaha.119.13549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pooneh Bagher
- From the Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|