1
|
Iorra FDQ, Rodrigues PG, Bock PM, Guahnon MP, Eller S, de Oliveira TF, Birk L, Schwarz PDS, Drehmer M, Bloch KV, Cureau FV, Schaan BD. Gut Microbiota Metabolite TMAO and Adolescent Cardiometabolic Health: A Cross-sectional Analysis. J Endocr Soc 2025; 9:bvaf055. [PMID: 40242209 PMCID: PMC12000724 DOI: 10.1210/jendso/bvaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Indexed: 04/18/2025] Open
Abstract
Background Trimethylamine N-oxide (TMAO) is a metabolite derived from gut microbiota that has been associated with cardiovascular and metabolic disease risk in adults. However, its role in assessing cardiometabolic risk in adolescents is unclear. Objective This study investigates the association between serum TMAO levels and cardiometabolic health indicators in Brazilian adolescents. Materials and Methods This is a multicenter, cross-sectional analysis involving 4446 participants aged 12 to 17 years from four Brazilian cities. Serum TMAO levels were quantified using liquid chromatography-tandem mass spectrometry, and associations with clinical, metabolic, and inflammatory variables were evaluated through multivariate linear regression analyses. Results After adjusting for potential confounders, being in the highest tertile of serum TMAO was positively associated with waist circumference [β 1.45; 95% confidence interval (CI) 0.77, 2.14; P < .001], body mass index Z-score (β .19; 95% CI 0.10, 0.27; P < .001), and C-reactive protein (β .24; 95% CI 0.13, 0.34; P < .001). A negative association between the highest tertile of TMAO and fasting plasma glucose was also observed (β -1.22; 95% CI -1.77, -0.66; P < .001). Conclusion TMAO may serve as an emerging biomarker for cardiometabolic risk assessment in adolescents.
Collapse
Affiliation(s)
- Fernando de Quadros Iorra
- Postgraduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | | | - Patrícia Martins Bock
- Post-Graduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Marina Petrasi Guahnon
- Postgraduate Program in Epidemiology, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Sarah Eller
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Leticia Birk
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Patricia de Souza Schwarz
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Michele Drehmer
- Postgraduate Program in Epidemiology, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Postgraduate Program in Food, Nutrition and Health, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Katia V Bloch
- Institute of Studies in Public Health, Federal University of Rio de Janeiro, Rio de Janeiro 20271-062, Brazil
| | - Felipe Vogt Cureau
- Graduate Program in Cardiology and Cardiovascular Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Beatriz D Schaan
- Postgraduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| |
Collapse
|
2
|
Shu L, Xiao L, Hu B, Yu Q, Dai D, Chen J, Wang J, Xi Z, Zhang J, Bao M. Carotid baroreceptor stimulation attenuates obesity-related hypertension through sympathetic-driven IL- 22 restoration of intestinal homeostasis. Eur J Med Res 2025; 30:291. [PMID: 40234921 PMCID: PMC12001698 DOI: 10.1186/s40001-025-02528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Gut microbiota and its metabolites, as well as the intestinal barrier, play important roles in the development of obesity-related hypertension. Sympathetic nerves are critical for intestinal homeostasis. Carotid baroreceptor stimulation (CBS) has been shown to exert protective effects against hypertension via sympathetic tone reduction. This study aimed to reveal the effects of CBS treatment on intestinal homeostasis and its underlying mechanisms in obesity-related hypertension. METHODS An animal model of obesity-related hypertension was established with Sprague-Dawley rats by a high-fat diet and 10% fructose solution for 13 weeks. CBS devices were implanted at the 5 th week. The effects of CBS on body weight, blood pressure, gut microbiota, intestinal autonomic nerve, intestinal barrier, and type 3 innate lymphoid cells (ILC3 s) were investigated. RESULTS CBS treatment significantly reduced blood pressure and body weight in rats with obesity-related hypertension. In addition, CBS obviously improved gut microbial dysbiosis and intestinal barrier damage. Interestingly, after an 8-week CBS intervention, the obesity-related hypertensive rats exhibited a dramatic decrease in sympathetic nerve distribution and norepinephrine concentration, as well as an increase in IL- 22 production by ILC3 s in the intestine. CONCLUSIONS CBS increased IL- 22 production in ILC3 s to alleviate gut microbial dysbiosis and intestinal barrier destruction, thus improving obesity-related hypertension in rats.
Collapse
Affiliation(s)
- Ling Shu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Lingling Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Bangwang Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, 441300, China
| | - Dilin Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Jie Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Zhaoqing Xi
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Junxia Zhang
- Department of Endocrinology, Taikang Tongji (Wuhan) Hospital, 322 Sixin North Road, Wuhan, 430050, Hubei, China.
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
3
|
Theodoridis X, Papaemmanouil A, Papageorgiou N, Savopoulos C, Chourdakis M, Triantafyllou A. The Association Between Lifestyle Interventions and Trimethylamine N-Oxide: A Systematic-Narrative Hybrid Literature Review. Nutrients 2025; 17:1280. [PMID: 40219037 PMCID: PMC11990624 DOI: 10.3390/nu17071280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a gut- and food-derived molecule. Elevated TMAO concentrations have been associated with an increased risk of cardiovascular disease (CVD) and all-cause mortality, highlighting its significance as a potential biomarker for adverse health outcomes. Given these associations, it is hypothesized that lifestyle interventions, such as healthy dietary patterns and exercise, could reduce TMAO concentrations. The aim of this systematic-narrative hybrid literature review was to evaluate the relationship between various lifestyle interventions and TMAO. METHODS MEDLINE (via PubMed®), Scopus®, and grey literature were searched until July 2024 for eligible clinical trials. Case reports, case series, case studies and observational studies were excluded, as well as studies that investigated food products, nutraceuticals, dietary supplements or have been conducted in the pediatric population. RESULTS In total, 27 studies were included in this review. While some dietary interventions, such as plant-based, high-dairy, very low-calorie ketogenic diet or the Mediterranean diet, were associated with lower TMAO concentrations, others-including high-protein and high-fat diets-were linked to an increase in TMAO concentrations. Studies that incorporated a combination of nutrition and exercise-based intervention presented neutral results. CONCLUSIONS The relationship between dietary interventions and TMAO concentration remains controversial. While certain interventions show promise in reducing TMAO levels, others yield mixed or contradictory outcomes. Further research, including well-structured RCTs, is needed to investigate the aforementioned associations.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (N.P.); (M.C.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (N.P.); (M.C.)
| | - Niki Papageorgiou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (N.P.); (M.C.)
| | - Christos Savopoulos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece;
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (N.P.); (M.C.)
| | - Areti Triantafyllou
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece;
| |
Collapse
|
4
|
Wang S, Yan K, Dong Y, Chen Y, Song J, Chen Y, Liu X, Qi R, Zhou X, Zhong J, Li J. The influence of microplastics on hypertension-associated cardiovascular injury via the modulation of gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125760. [PMID: 39880356 DOI: 10.1016/j.envpol.2025.125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Microplastics (MPs) have been found to interfere with the gut microbiota and compromise the integrity of the gut barrier. Excessive exposure to MPs markedly elevates the risk of cardiovascular disease, yet their influence on hypertension remains elusive, calling for investigation into their potential impacts on blood pressure (BP) regulation. In the present study, an increase in the concentration of MPs was observed in the fecal samples of individuals suffering from hypertension, as compared to the controls. Oral administration of MPs led to obvious increases in systolic, diastolic and mean BP levels in mice. MPs were associated with promoting myocardial hypertrophy, fibrosis, and cardiac remodeling through alterations in gut microbial composition, such as Prevotella and Coprobacillus, or fecal metabolites Betaine and Glycyrrhetinic acid. The hypertensive damage mediated by MPs was significantly mitigated by the high-fiber diet or antibiotics that targeted the gut microbiota. Notablely, fecal microbiota transplantation from mice treated with MPs led to an increase in systolic BP levels and the development of cardiac dysfunction. Our findings offer valuable insights into the complex interplay between MPs and the gut microbiome in the context of hypertension, and suggest potential strategies for reducing the vascular and cardiac injury caused by MPs.
Collapse
Affiliation(s)
- Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yihang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiawei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yufei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Ruiqiang Qi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhou
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Golshany H, Helmy SA, Morsy NFS, Kamal A, Yu Q, Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int J Food Sci Nutr 2025; 76:95-121. [PMID: 39701663 DOI: 10.1080/09637486.2024.2437472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
This comprehensive review examines the impact of dietary patterns on gut microbiome composition and diversity from infancy to old age, linking these changes to age-related health outcomes. It investigates how the gut microbiome develops and changes across life stages, focusing on the influence of dietary factors. The review explores how early-life feeding practices, including breastfeeding and formula feeding, shape the infant gut microbiota and have lasting effects. In elderly individuals, alterations in the gut microbiome are associated with increased susceptibility to infections, chronic inflammation, metabolic disorders and cognitive decline. The critical role of diet in modulating the gut microbiome throughout life is emphasised, particularly the potential benefits of probiotics and fortified foods in promoting healthy ageing. By elucidating the mechanisms connecting food systems to gut health, this review provides insights into interventions that could enhance gut microbiome resilience and improve health outcomes across the lifespan.
Collapse
Affiliation(s)
- Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | - Aya Kamal
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety & Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Kim H, Lee SH, Yang JY. Mechanobiological Approach for Intestinal Mucosal Immunology. BIOLOGY 2025; 14:110. [PMID: 40001878 PMCID: PMC11852114 DOI: 10.3390/biology14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
The intestinal area is composed of diverse cell types that harmonize gut homeostasis, which is influenced by both endogenous and exogenous factors. Notably, the environment of the intestine is exposed to several types of mechanical forces, including shear stress generated by fluid flow, compression and stretch generated by luminal contents and peristaltic waves of the intestine, and stiffness attributed to the extracellular matrix. These forces play critical roles in the regulation of cell proliferation, differentiation, and migration. Many efforts have been made to simulate the actual intestinal environment in vitro. The three-dimensional organoid culture system has emerged as a powerful tool for studying the mechanism of the intestinal epithelial barrier, mimicking rapidly renewing epithelium from intestinal stem cells (ISCs) in vivo. However, many aspects of how mechanical forces, such as shear stress, stiffness, compression, and stretch forces, influence the intestinal area remain unresolved. Here, we review the recent studies elucidating the impact of mechanical forces on intestinal immunity, interaction with the gut microbiome, and intestinal diseases.
Collapse
Affiliation(s)
- Hyeyun Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
| | - Se-Hui Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Zhang Y, Huang L, Ou S. Research progress on the association between TMAO and vascular calcification in patients with chronic kidney disease. Ren Fail 2024; 46:2435485. [PMID: 39627031 PMCID: PMC11616764 DOI: 10.1080/0886022x.2024.2435485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/06/2024] Open
Abstract
Vascular calcification (VC) is a common complication in patients with chronic kidney disease (CKD) and a major risk factor for increased cardiovascular mortality in patients with CKD. Its pathology and pathogenesis are complex and have not been fully elucidated. Trimethylamine N-oxide (TMAO) is an enteric-borne uremic toxin that has been found to play a role in the progression of VC. This article mainly reviews the metabolism of TMAO, the relationship between TMAO and VC in CKD patients, and possible treatments for TMAO, aiming to further explore the mechanism of VC occurrence in CKD patients and provide potential diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Liangying Huang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Santao Ou
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
8
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
9
|
Athmuri DN, Bhattacharyya J, Bhatnagar N, Shiekh PA. Alleviating hypoxia and oxidative stress for treatment of cardiovascular diseases: a biomaterials perspective. J Mater Chem B 2024; 12:10490-10515. [PMID: 39302443 DOI: 10.1039/d4tb01126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A state of hypoxia (lack of oxygen) persists in the initial and later phases of healing in cardiovascular diseases, which can alter the tissue's repair or regeneration, ultimately affecting the structure and functionality of the related organ. Consequently, this results in a cascade of events, leading to metabolic stress and the production of reactive oxygen species (ROS) and autophagy. This unwanted situation not only limits the oxygen supply to the needy tissues but also creates an inflammatory state, limiting the exchange of nutrients and other supplements. Consequently, biomaterials have gained considerable attention to alleviate hypoxia and oxidative stress in cardiovascular diseases. Numerous oxygen releasing and antioxidant biomaterials have been developed and proven to alleviate hypoxia and oxidative stress. This review article summarizes the mechanisms involved in cardiovascular pathologies due to hypoxia and oxidative stress, as well as the treatment modalities currently in practice. The applications, benefits and possible shortcomings of these approaches have been discussed. Additionally, the review explores the role of novel biomaterials in combating the limitations of existing approaches, primarily focusing on the development of oxygen-releasing and antioxidant biomaterials for cardiac repair and regeneration. It also directs attention to various other potential applications with critical insights for further advancement in this area.
Collapse
Affiliation(s)
- Durga Nandini Athmuri
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Jayanta Bhattacharyya
- Bio-therapeutics Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
10
|
Wang Z, Shao Y, Wu F, Luo D, He G, Liang J, Quan X, Chen X, Xia W, Chen Y, Liu Y, Chen L. Berberine ameliorates vascular dysfunction by downregulating TMAO-endoplasmic reticulum stress pathway via gut microbiota in hypertension. Microbiol Res 2024; 287:127824. [PMID: 39053076 DOI: 10.1016/j.micres.2024.127824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The gut microbial metabolite trimethylamine N-oxide (TMAO) is regarded as a novel risk factor for hypertension. Berberine (BBR) exerts cardiovascular protective effects by regulating the gut microbiota-metabolite production pathway. However, whether and how BBR alleviates TMAO-induced vascular dysfunction in hypertension remains unclear. In the present study, we observed that plasma TMAO and related bacterial abundance were significantly elevated and negatively correlated with vascular function in 86 hypertensive patients compared with 46 normotensive controls. TMAO activated endoplasmic reticulum stress (ERS) signaling pathway to promote endothelial cell dysfunction and apoptosis in vitro. BBR (100, 200 mg · kg-1 ·d-1) for 4 weeks ameliorates TMAO-induced vascular dysfunction and ERS activation in a choline-angiotensin II hypertensive mouse model. We found that plasma TMAO levels in 15 hypertensive patients treated with BBR (0.4 g, tid) were reduced by 8.8 % and 16.7 % at months 1 and 3, respectively, compared with pretreatment baseline. The oral BBR treatment also improved vascular function and lowered blood pressure. Faecal 16 S rDNA showed that BBR altered the gut bacterial composition and reduced the abundance of CutC/D bacteria in hypertensive mice and patients. In vitro bacterial cultures and enzyme reaction systems indicated that BBR inhibited the biosynthesis of TMAO precursor in the gut microbiota by binding to and inhibiting the activity of CutC/D enzyme. Our results indicate that BBR improve vascular dysfunction at least partially by decreasing TMAO via regulation of the gut microbiota in hypertension.
Collapse
Affiliation(s)
- Zhichao Wang
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Wu
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dangu Luo
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Guoyifan He
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianwen Liang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoqing Quan
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiehui Chen
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ye Chen
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Long Chen
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
11
|
Wu Y, Xie L, Liu Y, Xie L. Semi-supervised meta-learning elucidates understudied molecular interactions. Commun Biol 2024; 7:1104. [PMID: 39251833 PMCID: PMC11383949 DOI: 10.1038/s42003-024-06797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Many biological problems are understudied due to experimental limitations and human biases. Although deep learning is promising in accelerating scientific discovery, its power compromises when applied to problems with scarcely labeled data and data distribution shifts. We develop a deep learning framework-Meta Model Agnostic Pseudo Label Learning (MMAPLE)-to address these challenges by effectively exploring out-of-distribution (OOD) unlabeled data when conventional transfer learning fails. The uniqueness of MMAPLE is to integrate the concept of meta-learning, transfer learning and semi-supervised learning into a unified framework. The power of MMAPLE is demonstrated in three applications in an OOD setting where chemicals or proteins in unseen data are dramatically different from those in training data: predicting drug-target interactions, hidden human metabolite-enzyme interactions, and understudied interspecies microbiome metabolite-human receptor interactions. MMAPLE achieves 11% to 242% improvement in the prediction-recall on multiple OOD benchmarks over various base models. Using MMAPLE, we reveal novel interspecies metabolite-protein interactions that are validated by activity assays and fill in missing links in microbiome-human interactions. MMAPLE is a general framework to explore previously unrecognized biological domains beyond the reach of present experimental and computational techniques.
Collapse
Affiliation(s)
- You Wu
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY, USA
| | - Li Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, NY, USA
| | - Yang Liu
- Department of Computer Science, Hunter College, The City University of New York, New York, NY, USA
| | - Lei Xie
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY, USA.
- Department of Computer Science, Hunter College, The City University of New York, New York, NY, USA.
- Helen & Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
12
|
Strauss-Kruger M, Pieters M, van Zyl T, Kruger R, Jacobs A, Jansen van Vuren E, Louw R, Mels CCMC. Urinary metabolomics signature of animal and plant protein intake and its association with 24-h blood pressure: the African-PREDICT study. Hypertens Res 2024; 47:2456-2470. [PMID: 38965426 PMCID: PMC11374704 DOI: 10.1038/s41440-024-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
The contrasting relationships of plant and animal protein intake with blood pressure (BP) may be partially attributed to the differential non-protein (e.g., saturated fat and fibre) and amino acid (AA) compositions. This study determined whether animal and plant protein intake were related to differential metabolomic profiles associated with BP. This study included 1008 adults from the African-PREDICT study (aged 20-30 years). Protein intake was determined using 24-h dietary recalls. Twenty-four-hour ambulatory BP was measured. Amino acids and acylcarnitines were analysed in spot urine samples using liquid chromatography-tandem mass spectrometry-based metabolomics. Participants with a low plant, high animal protein intake had higher SBP (by 3 mmHg, p = 0.011) than those with high plant, low animal protein intake (low-risk group). We found that the relationships of plant and animal protein intake with 24-h SBP were partially mediated by BMI and saturated fat intake, which were independently associated with SBP. Protein intake was therefore not related to SBP in multiple regression analysis after adjusting for confounders. In the low-risk group, methionine (Std. β = -0.217; p = 0.034), glutamic acid (Std. β = -0.220; p = 0.031), glycine (Std. β = -0.234; p = 0.025), and proline (Std. β = -0.266; p = 0.010) were inversely related to SBP, and beta-alanine (Std. β = -0.277; p = 0.020) to DBP. Ultimately a diet high in animal and low in plant protein intake may contribute to higher BP by means of increased BMI and saturated fat intake. Conversely, higher levels of urinary AAs observed in adults consuming a plant rich diet may contribute to lower BP.
Collapse
Affiliation(s)
- Michél Strauss-Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Marlien Pieters
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, 2520, South Africa
| | - Tertia van Zyl
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, 2520, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Adriaan Jacobs
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom, 2520, North-West Province, South Africa
| | - Carina C M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa.
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
13
|
Gu Z, Wang Y, Fang Z, Wang T, Gao S, Yang Q, Zhang Y, Wang Y, Wang L, Fan L, Cao F. Plasma metabolomics identifies S-adenosylmethionine as a biomarker and potential therapeutic target for vascular aging in older adult males. J Pharm Biomed Anal 2024; 243:116097. [PMID: 38489960 DOI: 10.1016/j.jpba.2024.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Brachial-ankle pulse wave velocity (baPWV) is a noninvasive index of vascular aging. However, the metabolic profile underlying vascular aging has not yet been fully elucidated. The current study aimed to identify circulating markers of vascular aging as assessed by baPWV and to elucidate its mechanism from a metabolomic perspective in older adults. A total of 60 and 61 Chinese male participants aged ≥80 years were recruited to the metabolome and validation cohorts, respectively. The baPWV of participants was measured using an automatic waveform analyzer. Plasma metabolic profile was investigated using ultra-performance liquid chromatography coupled with triple quadrupole linear ion trap tandem mass spectrometry. Orthogonal partial least squares (OPLS) regression modeling established the association between metabolic profile and baPWV to determine important metabolites predictive of vascular aging. Additionally, an enzyme-linked immunosorbent assay was employed to validate the metabolites in plasma and culture media of vascular smooth muscle cells in vitro. OPLS modeling identified 14 and 22 metabolites inversely and positively associated with baPWV, respectively. These 36 biomarkers were significantly enriched in seven metabolite sets, especially in cysteine and methionine metabolism (p <0.05). Notably, among metabolites involved in cysteine and methionine metabolism, S-adenosylmethionine (SAM) level was inversely related to baPWV, with a significant correlation coefficient in the OPLS model (p <0.05). Furthermore, the relationship between SAM and vascular aging was reconfirmed in an independent cohort and at the cellular level in vitro. SAM was independently associated with baPWV after adjustments for clinical covariates (β = -0.448, p <0.001) in the validation cohort. In summary, plasma metabolomics identified an inverse correlation between SAM and baPWV in older males. SAM has the potential to be a novel biomarker and therapeutic target for vascular aging.
Collapse
Affiliation(s)
- Zhenghui Gu
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujia Wang
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiyi Fang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tianhu Wang
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Shan Gao
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Yang
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingjie Zhang
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yabin Wang
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Linghuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Li Fan
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| | - Feng Cao
- Chinese PLA Medical School & Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
14
|
Zhao Y, Wang C, Qiu F, Liu J, Xie Y, Lin Z, He J, Chen J. Trimethylamine-N-oxide promotes osteoclast differentiation and oxidative stress by activating NF-κB pathway. Aging (Albany NY) 2024; 16:9251-9263. [PMID: 38809508 PMCID: PMC11164488 DOI: 10.18632/aging.205869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Senile osteoporosis may be caused by an imbalance in intestinal flora and oxidative stress. Trimethylamine-N-oxide (TMAO), a metabolite of dietary choline dependent on gut microbes, has been found to be significantly increased in osteoporosis. However, the role of TMAO in bone loss during osteoporosis remains poorly understood. In this study, we examined the impact of TMAO on osteoclast differentiation and bone resorption in an in vitro setting. METHODS Osteoclast differentiation was induced by incubating RAW 264.7 cells in the presence of Receptor Activator for Nuclear Factor-κB Ligand (RANKL) and macrophage-stimulating factor (M-CSF). Flow cytometry, TRAP staining assay, CCK-8, and ELISA were employed to investigate the impact of TMAO on osteoclast differentiation and bone resorption activity in vitro. For mechanistic exploration, RT-PCR and Western blotting were utilized to assess the activation of the NF-κB pathway. Additionally, protein levels of secreted cytokines and growth factors were determined using suspension array technology. RESULTS Our findings demonstrate that TMAO enhances RANKL and M-CSF-induced osteoclast formation and bone resorption in a dose-dependent manner. Mechanistically, TMAO triggers the upregulation of the NF-κB pathway and osteoclast-related genes (NFATc1, c-Fos, NF-κB p65, Traf6, and Cathepsin K). Furthermore, TMAO markedly elevated the levels of oxidative stress and inflammatory factors. CONCLUSIONS In conclusion, TMAO enhances RANKL and M-CSF-induced osteoclast differentiation and inflammation in RAW 264.7 cells by activating the NF-κB signaling pathway. These findings offer a new rationale for further academic and clinical research on osteoporosis treatment.
Collapse
Affiliation(s)
- Yangyang Zhao
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Chizhen Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Fei Qiu
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Liu
- School of Medicine, Xiamen University, Xiamen, China
| | - Yujuan Xie
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhengkun Lin
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianquan He
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jian Chen
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Humanity Rehabilitation Hospital, Xiamen, China
| |
Collapse
|
15
|
Ottosson F, Engström G, Orho‐Melander M, Melander O, Nilsson PM, Johansson M. Plasma Metabolome Predicts Aortic Stiffness and Future Risk of Coronary Artery Disease and Mortality After 23 Years of Follow-Up in the General Population. J Am Heart Assoc 2024; 13:e033442. [PMID: 38639368 PMCID: PMC11179945 DOI: 10.1161/jaha.123.033442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Increased aortic stiffness (arteriosclerosis) is associated with early vascular aging independent of age and sex. The underlying mechanisms of early vascular aging remain largely unexplored in the general population. We aimed to investigate the plasma metabolomic profile in aortic stiffness (vascular aging) and associated risk of incident cardiovascular disease and mortality. METHODS AND RESULTS We included 6865 individuals from 2 Swedish population-based cohorts. Untargeted plasma metabolomics was performed by liquid-chromatography mass spectrometry. Aortic stiffness was assessed directly by carotid-femoral pulse wave velocity (PWV) and indirectly by augmentation index (AIx@75). A least absolute shrinkage and selection operator (LASSO) regression model was created on plasma metabolites in order to predict aortic stiffness. Associations between metabolite-predicted aortic stiffness and risk of new-onset cardiovascular disease, cardiovascular mortality, and all-cause mortality were calculated. Metabolite-predicted aortic stiffness (PWV and AIx@75) was positively associated particularly with acylcarnitines, dimethylguanidino valeric acid, glutamate, and cystine. The plasma metabolome predicted aortic stiffness (PWV and AIx@75) with good accuracy (R2=0.27 and R2=0.39, respectively). Metabolite-predicted aortic stiffness (PWV and AIx@75) was significantly correlated with age, sex, systolic blood pressure, body mass index, and low-density lipoprotein. After 23 years of follow-up, metabolite-predicted aortic stiffness (PWV and AIx@75) was significantly associated with increased risk of new-onset coronary artery disease, cardiovascular mortality, and all-cause mortality. CONCLUSIONS Aortic stiffness is associated particularly with altered metabolism of acylcarnitines, cystine, and dimethylguanidino valeric acid. These metabolic disturbances predict increased risk of new-onset coronary artery disease, cardiovascular mortality, and all-cause mortality after more than 23 years of follow-up in the general population.
Collapse
Affiliation(s)
- Filip Ottosson
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Section for Clinical Mass SpectrometryStatens Serum InstitutCopenhagenDenmark
| | - Gunnar Engström
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
| | | | - Olle Melander
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Department of Internal MedicineSkåne University HospitalMalmöSweden
| | - Peter M. Nilsson
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Department of Internal MedicineSkåne University HospitalMalmöSweden
| | - Madeleine Johansson
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Department of CardiologySkåne University HospitalMalmöSweden
| |
Collapse
|
16
|
Zhang Y, Wei S, Zhang H, Jo Y, Kang JS, Ha KT, Joo J, Lee HJ, Ryu D. Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging. BMB Rep 2024; 57:207-215. [PMID: 38627947 PMCID: PMC11139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, China, Busan 49241, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| |
Collapse
|
17
|
Wang P, Mi Y, Yu H, Teng X, Jin S, Xiao L, Xue H, Tian D, Guo Q, Wu Y. Trimethylamine-N-oxide aggravated the sympathetic excitation in D-galactose induced aging rats by down-regulating P2Y12 receptor in microglia. Biomed Pharmacother 2024; 174:116549. [PMID: 38593701 DOI: 10.1016/j.biopha.2024.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1β levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1β levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.
Collapse
Affiliation(s)
- Ping Wang
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Yuan Mi
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Department of Emergency, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Hao Yu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Xu Teng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Sheng Jin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Hongmei Xue
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Danyang Tian
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Qi Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, China.
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, China.
| |
Collapse
|
18
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
19
|
Wang Y, Qu Z, Chu J, Han S. Aging Gut Microbiome in Healthy and Unhealthy Aging. Aging Dis 2024; 16:980-1002. [PMID: 38607737 PMCID: PMC11964416 DOI: 10.14336/ad.2024.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The characteristics of human aging manifest in tissue and organ function decline, heightening susceptibility to age-related ailments, thereby presenting novel challenges to fostering and sustaining healthy longevity. In recent years, an abundance of research on human aging has surfaced. Intriguingly, evidence suggests a pervasive correlation among gut microbiota, bodily functions, and chronic diseases. From infancy to later stages of adulthood, healthy individuals witness dynamic shifts in gut microbiota composition. This microbial community is associated with tissue and organ function deterioration (e.g., brain, bones, muscles, immune system, vascular system) and heightened risk of age-related diseases. Thus, we present a narrative review of the aging gut microbiome in both healthy and unhealthy aging contexts. Additionally, we explore the potential for adjustments to physical health based on gut microbiome analysis and how targeting the gut microbiome can potentially slow down the aging process.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| |
Collapse
|
20
|
Mirzaei S, DeVon HA, Cantor RM, Cupido AJ, Pan C, Ha SM, Silva LF, Hilser JR, Hartiala J, Allayee H, Rey FE, Laakso M, Lusis AJ. Relationships and Mendelian Randomization of Gut Microbe-Derived Metabolites with Metabolic Syndrome Traits in the METSIM Cohort. Metabolites 2024; 14:174. [PMID: 38535334 PMCID: PMC10972019 DOI: 10.3390/metabo14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/17/2024] Open
Abstract
The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (β = 0.02, p = 0.033), body mass index (BMI) (β = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (β = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (β = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (β = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (β = 0.23, p = 4.4 × 10-33), and BMI (β = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (β = -0.19, p = 3.8 × 10-51) and triglycerides (β = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.
Collapse
Affiliation(s)
- Sahereh Mirzaei
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Holli A. DeVon
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Rita M. Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arjen J. Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1007 AZ Amsterdam, The Netherlands
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Lilian Fernandes Silva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaana Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Markku Laakso
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Human Genetics and Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Dolkar P, Deyang T, Anand N, Rathipriya AG, Hediyal TA, Chandrasekaran V, Krishnamoorthy NK, Gorantla VR, Bishir M, Rashan L, Chang SL, Sakharkar MK, Yang J, Chidambaram SB. Trimethylamine-N-oxide and cerebral stroke risk: A review. Neurobiol Dis 2024; 192:106423. [PMID: 38286388 DOI: 10.1016/j.nbd.2024.106423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced by the action of gut microbiota and the hepatic enzyme Flavin Mono‑oxygenase 3 (FMO3). TMAO level has a positive correlation with the risk of cardiovascular events, including stroke, and their level is influenced mainly by dietary choice and the action of liver enzyme FMO3. TMAO plays a role in the development of atherosclerosis plaque, which is one of the causative factors of the stroke event. Preclinical and clinical investigations on the TMAO and associated stroke risk, severity, and outcomes are summarised in this review. In addition, mechanisms of TMAO-driven vascular dysfunction are also discussed, such as inflammation, oxidative stress, thrombus and foam cell formation, altered cholesterol and bile acid metabolism, etc. Post-stroke inflammatory cascades involving activation of immune cells, i.e., microglia and astrocytes, result in Blood-brain-barrier (BBB) disruption, allowing TMAO to infiltrate the brain and further aggravate inflammation. This event occurs as a result of the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway through the release of inflammatory cytokines and chemokines that further aggravate the BBB and initiate further recruitment of immune cells in the brain. Thus, it's likely that maintaining TMAO levels and associated gut microbiota could be a promising approach for treating and improving stroke complications.
Collapse
Affiliation(s)
- Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John's, Po Box W-1451, Antigua and Barbuda
| | | | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Naveen Kumar Krishnamoorthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Biomedical sciences, Research Faculty, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079, USA
| | - Luay Rashan
- Biodiversity Research Centre, Dohfar University, Salalah, Sultanate of Oman
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079, USA
| | - Meena Kishore Sakharkar
- Drug discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jian Yang
- Drug discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
22
|
Wu Y, Xie L, Liu Y, Xie L. Model Agnostic Semi-Supervised Meta-Learning Elucidates Understudied Out-of-distribution Molecular Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541172. [PMID: 37292680 PMCID: PMC10245663 DOI: 10.1101/2023.05.17.541172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many biological problems are understudied due to experimental limitations and human biases. Although deep learning is promising in accelerating scientific discovery, its power compromises when applied to problems with scarcely labeled data and data distribution shifts. We developed a semi-supervised meta learning framework - Meta Model Agnostic Pseudo Label Learning (MMAPLE) - to address these challenges by effectively exploring out-of-distribution (OOD) unlabeled data when transfer learning fails. The power of MMAPLE is demonstrated in multiple applications: predicting OOD drug-target interactions, hidden human metabolite-enzyme interactions, and understudied interspecies microbiome metabolite-human receptor interactions, where chemicals or proteins in unseen data are dramatically different from those in training data. MMAPLE achieves 11% to 242% improvement in the prediction-recall on multiple OOD benchmarks over baseline models. Using MMAPLE, we reveal novel interspecies metabolite-protein interactions that are validated by bioactivity assays and fill in missing links in microbiome-human interactions. MMAPLE is a general framework to explore previously unrecognized biological domains beyond the reach of present experimental and computational techniques.
Collapse
Affiliation(s)
- You Wu
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, New York, USA
| | - Li Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, USA
| | - Yang Liu
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, USA
| | - Lei Xie
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, New York, USA
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, USA
- Helen & Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
23
|
Luo Z, Yu X, Wang C, Zhao H, Wang X, Guan X. Trimethylamine N-oxide promotes oxidative stress and lipid accumulation in macrophage foam cells via the Nrf2/ABCA1 pathway. J Physiol Biochem 2024; 80:67-79. [PMID: 37932654 DOI: 10.1007/s13105-023-00984-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Recently, trimethylamine N-oxide (TMAO) has been considered a risk factor for cardiovascular disease and has a proatherogenic effect. Many studies have found that TMAO is involved in plaque oxidative stress and lipid metabolism, but the specific mechanism is still unclear. In our study, meta-analysis and bioinformatic analysis were firstly conducted in the database, and found that the effect of high plasma TMAO levels on promoting atherosclerotic plaque may be related to the expression of key antioxidant genes nuclear factor erytheroid-derived-2-like 2 (NFE2L2/Nrf2) decreased. Next, we assessed the role of Nrf2-mediated signaling pathway in TMAO-treated foam cells. Our results showed that TMAO can inhibit the expression of Nrf2 and its downstream antioxidant response element such as heme oxygenase-1 (HO-1) and glutathione peroxidase4 (GPX4), resulting in increased production of reactive oxygen species and decreased activity of superoxide dismutase, promoting oxidative stress. And TMAO can also promote lipid accumulation in foam cells by inhibiting cholesterol efflux protein expression. In addition, upregulation of Nrf2 expression partially rescues TMAO-induced oxidative stress and reduces ATP-binding cassette A1 (ABCA1)-mediated lipid accumulation. Therefore, TMAO promotes oxidative stress and lipid accumulation in macrophage foam cells through the Nrf2/ABCA1 pathway, which may provide a potential mechanism for the proatherogenic effect of TMAO.
Collapse
Affiliation(s)
- ZhiSheng Luo
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - XiaoChen Yu
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Chao Wang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - HaiYan Zhao
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Xinming Wang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - XiuRu Guan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
24
|
Maksymiuk KM, Szudzik M, Samborowska E, Chabowski D, Konop M, Ufnal M. Mice, rats, and guinea pigs differ in FMOs expression and tissue concentration of TMAO, a gut bacteria-derived biomarker of cardiovascular and metabolic diseases. PLoS One 2024; 19:e0297474. [PMID: 38266015 PMCID: PMC10807837 DOI: 10.1371/journal.pone.0297474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Increased plasma trimethylamine oxide (TMAO) is observed in cardiovascular and metabolic diseases, originating from the gut microbiota product, trimethylamine (TMA), via flavin-containing monooxygenases (FMOs)-dependent oxidation. Numerous studies have investigated the association between plasma TMAO and various pathologies, yet limited knowledge exists regarding tissue concentrations of TMAO, TMAO precursors, and interspecies variability. METHODS Chromatography coupled with mass spectrometry was employed to evaluate tissue concentrations of TMAO and its precursors in adult male mice, rats, and guinea pigs. FMO mRNA and protein levels were assessed through PCR and Western blot, respectively. RESULTS Plasma TMAO levels were similar among the studied species. However, significant differences in tissue concentrations of TMAO were observed between mice, rats, and guinea pigs. The rat renal medulla exhibited the highest TMAO concentration, while the lowest was found in the mouse liver. Mice demonstrated significantly higher plasma TMA concentrations compared to rats and guinea pigs, with the highest TMA concentration found in the mouse renal medulla and the lowest in the rat lungs. FMO5 exhibited the highest expression in mouse liver, while FMO3 was highly expressed in rats. Guinea pigs displayed low expression of FMOs in this tissue. CONCLUSION Despite similar plasma TMAO levels, mice, rats, and guinea pigs exhibited significant differences in tissue concentrations of TMA, TMAO, and FMO expression. These interspecies variations should be considered in the design and interpretation of experimental studies. Furthermore, these findings may suggest a diverse importance of the TMAO pathway in the physiology of the evaluated species.
Collapse
Affiliation(s)
- Klaudia M. Maksymiuk
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Emilia Samborowska
- Mass spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Chabowski
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Konop
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Han JM, Guo L, Chen XH, Xie Q, Song XY, Ma YL. Relationship between trimethylamine N-oxide and the risk of hypertension in patients with cardiovascular disease: A meta-analysis and dose-response relationship analysis. Medicine (Baltimore) 2024; 103:e36784. [PMID: 38181288 PMCID: PMC10766215 DOI: 10.1097/md.0000000000036784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The gut microbiota-dependent metabolite trimethylamine N-oxide (TMAO) has recently been recognized to be one of the risk factors for cardiovascular disease (CVD). However, there is a scarcity of data on the relationship between circulating TMAO levels and hypertension in patients with CVD. Meta analysis and a dose-response relationship were used in this study to assess the relationship between circulating trimethylamine N-oxide levels and the risk of hypertension in patients with CVD. METHODS CNKI, Wanfang Database, Pubmed, Embase, Cochrane Library, and Web of Science were searched up to June 01, 2023. Meta-analysis and dose-response analysis of relative risk data from prospective cohort studies reporting on the relationship between circulating TMAO levels and hypertension risk in patients with CVD were conducted. RESULTS Fifteen studies with a total of 15,498 patients were included in the present meta-analysis. Compared with a lower circulating TMAO level, a higher TMAO level was associated with a higher risk of hypertension in patients with CVD (RR = 1.14,95%CI (1.08, 1.20)). And the higher the TMAO level, the greater the risk of hypertension. The dose-response analysis revealed a linear dose-response relationship between circulating TMAO levels and the risk of hypertension in patients with CVD. The risk of hypertension increased by 1.014% when the circulating TMAO level increased by 1 μ mol/L. CONCLUSION In patients with CVD, the level of circulating TMAO is significantly related to the risk of hypertension. The risk of hypertension increased by 1.014% for every 1 μ mol/L increase in circulating TMAO levels.
Collapse
Affiliation(s)
- Jia-Ming Han
- Medical College of Qinghai University, Xining, China
| | - Lu Guo
- Medical College of Qinghai University, Xining, China
| | - Xian-Hui Chen
- Medical College of Qinghai University, Xining, China
| | - Qian Xie
- Medical College of Qinghai University, Xining, China
| | - Xiu-Ying Song
- Medical College of Qinghai University, Xining, China
| | - Yu-Lan Ma
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
26
|
Gungor O, Hasbal NB, Alaygut D. Trimethylamine N-oxide and kidney diseases: what do we know? J Bras Nefrol 2024; 46:85-92. [PMID: 38039494 PMCID: PMC10962421 DOI: 10.1590/2175-8239-jbn-2023-0065en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 12/03/2023] Open
Abstract
In the human gut, there is a metabolically active microbiome whose metabolic products reach various organs and are used in the physiological activities of the body. When dysbiosis of intestinal microbial homeostasis occurs, pathogenic metabolites may increase and one of them is trimethyl amine-N-oxide (TMAO). TMAO is thought to have a role in the pathogenesis of insulin resistance, diabetes, hyperlipidemia, atherosclerotic heart diseases, and cerebrovascular events. TMAO level is also associated with renal inflammation, fibrosis, acute kidney injury, diabetic kidney disease, and chronic kidney disease. In this review, the effect of TMAO on various kidney diseases is discussed.
Collapse
Affiliation(s)
- Ozkan Gungor
- Kahramanmaras Sutcu Imam University, School of Medicine, Department
of Internal Medicine, Kahramanmaras, Turkey
| | - Nuri Baris Hasbal
- Koc University, School of Medicine, Department of Internal Medicine,
Istanbul, Turkey
| | - Demet Alaygut
- Izmir Katip Celebi University, School of Medicine, Department of
Pediatrics, Izmir, Turkey
| |
Collapse
|
27
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, Yaqinuddin A, Tchkonia T, Kirkland JL, Hashmi SK. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci 2023; 15:1281581. [PMID: 38076538 PMCID: PMC10702235 DOI: 10.3389/fnagi.2023.1281581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
Cellular senescence is a biological aging hallmark that plays a key role in the development of neurodegenerative diseases. Clinical trials are currently underway to evaluate the effectiveness of senotherapies for these diseases. However, the impact of senescence on brain aging and cognitive decline in the absence of neurodegeneration remains uncertain. Moreover, patient populations like cancer survivors, traumatic brain injury survivors, obese individuals, obstructive sleep apnea patients, and chronic kidney disease patients can suffer age-related brain changes like cognitive decline prematurely, suggesting that they may suffer accelerated senescence in the brain. Understanding the role of senescence in neurocognitive deficits linked to these conditions is crucial, especially considering the rapidly evolving field of senotherapeutics. Such treatments could help alleviate early brain aging in these patients, significantly reducing patient morbidity and healthcare costs. This review provides a translational perspective on how cellular senescence plays a role in brain aging and age-related cognitive decline. We also discuss important caveats surrounding mainstream senotherapies like senolytics and senomorphics, and present emerging evidence of hyperbaric oxygen therapy and immune-directed therapies as viable modalities for reducing senescent cell burden.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Clinical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Medicine, SSMC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
29
|
Clottes P, Benech N, Dumot C, Jarraud S, Vidal H, Mechtouff L. Gut microbiota and stroke: New avenues to improve prevention and outcome. Eur J Neurol 2023; 30:3595-3604. [PMID: 36897813 DOI: 10.1111/ene.15770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Despite major recent therapeutic advances, stroke remains a leading cause of disability and death. Consequently, new therapeutic targets need to be found to improve stroke outcome. The deleterious role of gut microbiota alteration (often mentioned as "dysbiosis") on cardiovascular diseases, including stroke and its risk factors, has been increasingly recognized. Gut microbiota metabolites, such as trimethylamine-N-oxide, short chain fatty acids and tryptophan, play a key role. Evidence of a link between alteration of the gut microbiota and cardiovascular risk factors exists, with a possible causality link supported by several preclinical studies. Gut microbiota alteration also seems to be implicated at the acute phase of stroke, with observational studies showing more non-neurological complications, higher infarct size and worse clinical outcome in stroke patients with altered microbiota. Microbiota targeted strategies have been developed, including prebiotics/probiotics, fecal microbiota transplantation, short chain fatty acid and trimethylamine-N-oxide inhibitors. Research teams have been using different time windows and end-points for their studies, with various results. Considering the available evidence, it is believed that studies focusing on microbiota-targeted strategies in association with conventional stroke care should be conducted. Such strategies should be considered according to three therapeutic time windows: first, at the pre-stroke (primary prevention) or post-stroke (secondary prevention) phases, to enhance the control of cardiovascular risk factors; secondly, at the acute phase of stroke, to limit the infarct size and the systemic complications and enhance the overall clinical outcome; thirdly, at the subacute phase of stroke, to prevent stroke recurrence and promote neurological recovery.
Collapse
Affiliation(s)
- Paul Clottes
- Stroke Department, Hospices Civils de Lyon, Lyon, France
- CarMeN Laboratoire, INSERM, INRAER, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Nicolas Benech
- Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France
- French Fecal Transplant Group, Lyon, France
| | - Chloé Dumot
- CarMeN Laboratoire, INSERM, INRAER, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
- Department of Neurosurgery, Hospices Civils de Lyon, Lyon, France
| | - Sophie Jarraud
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Centre National de Référence Des Légionelles, Hospices Civils de Lyon, Institut Des Agents Infectieux, Lyon, France
| | - Hubert Vidal
- CarMeN Laboratoire, INSERM, INRAER, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, Lyon, France
- CarMeN Laboratoire, INSERM, INRAER, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
30
|
Mihuta MS, Paul C, Borlea A, Roi CM, Pescari D, Velea-Barta OA, Mozos I, Stoian D. Connections between serum Trimethylamine N-Oxide (TMAO), a gut-derived metabolite, and vascular biomarkers evaluating arterial stiffness and subclinical atherosclerosis in children with obesity. Front Endocrinol (Lausanne) 2023; 14:1253584. [PMID: 37850094 PMCID: PMC10577381 DOI: 10.3389/fendo.2023.1253584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Childhood obesity leads to early subclinical atherosclerosis and arterial stiffness. Studying biomarkers like trimethylamine N-oxide (TMAO), linked to cardio-metabolic disorders in adults, is crucial to prevent long-term cardiovascular issues. Methods The study involved 70 children aged 4 to 18 (50 obese, 20 normal-weight). Clinical examination included BMI, waist measurements, puberty stage, the presence of acanthosis nigricans, and irregular menstrual cycles. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (CIMT), and the arterial stiffness was evaluated through surrogate markers like the pulse wave velocity (PWV), augmentation index (AIx), and peripheral and central blood pressures. The blood biomarkers included determining the values of TMAO, HOMA-IR, and other usual biomarkers investigating metabolism. Results The study detected significantly elevated levels of TMAO in obese children compared to controls. TMAO presented positive correlations to BMI, waist circumference and waist-to-height ratio and was also observed as an independent predictor of all three parameters. Significant correlations were observed between TMAO and vascular markers such as CIMT, PWV, and peripheral BP levels. TMAO independently predicts CIMT, PWV, peripheral BP, and central SBP levels, even after adding BMI, waist circumference, waist-to-height ratio, puberty development and age in the regression model. Obese children with high HOMA-IR presented a greater weight excess and significantly higher vascular markers, but TMAO levels did not differ significantly from the obese with HOMA-IR Conclusion Our study provides compelling evidence supporting the link between serum TMAO, obesity, and vascular damage in children. These findings highlight the importance of further research to unravel the underlying mechanisms of this connection.
Collapse
Affiliation(s)
- Monica Simina Mihuta
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Borlea
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Mihaela Roi
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Denisa Pescari
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Alexandra Velea-Barta
- 3rd Department of Odontotherapy and Endodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Mozos
- Department of Functional Sciences—Pathophysiology, Center for Translational Research and Systems Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
31
|
Huang PY, Hsu BG, Lai YH, Wang CH, Tsai JP. Serum Trimethylamine N-Oxide Level Is Positively Associated with Aortic Stiffness Measured by Carotid-Femoral Pulse Wave Velocity in Patients Undergoing Maintenance Hemodialysis. Toxins (Basel) 2023; 15:572. [PMID: 37755998 PMCID: PMC10538077 DOI: 10.3390/toxins15090572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a biomarker that is effective in predicting major adverse cardiovascular (CV) events. Age-related vascular problems are significantly affected by aortic stiffness (AS), which is independently linked to CV morbidity and mortality. This study aimed to determine the association between serum TMAO levels and carotid-femoral pulse wave velocity (cfPWV) in patients receiving hemodialysis (HD) therapy. In total, 115 patients with HD were enrolled in this study. The AS group included patients whose cfPWV was >10 m/s. Using high-performance liquid chromatography and mass spectrometry, the levels of serum TMAO were measured. The AS group included 42 (36.5%) patients, and compared with the non-AS group, the rates of diabetes, hypertension, older age, systolic blood pressure, serum glucose, and TMAO levels were high. In the multivariate logistic regression analysis, serum TMAO and age were independently linked with AS after correcting for the factors significantly associated with AS. Following multivariate stepwise linear regression analysis, serum TMAO in these individuals was found to be strongly correlated with cfPWV values (p < 0.001). In patients on chronic HD, serum TMAO level is an independent measure of AS and strongly correlated with cfPWV.
Collapse
Affiliation(s)
- Po-Yu Huang
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (B.-G.H.); (Y.-H.L.); (C.-H.W.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Hsien Lai
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (B.-G.H.); (Y.-H.L.); (C.-H.W.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chih-Hsien Wang
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (B.-G.H.); (Y.-H.L.); (C.-H.W.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
32
|
Golubeva JA, Sheptulina AF, Elkina AY, Liusina EO, Kiselev AR, Drapkina OM. Which Comes First, Nonalcoholic Fatty Liver Disease or Arterial Hypertension? Biomedicines 2023; 11:2465. [PMID: 37760906 PMCID: PMC10525922 DOI: 10.3390/biomedicines11092465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and arterial hypertension (AH) are widespread noncommunicable diseases in the global population. Since hypertension and NAFLD are diseases associated with metabolic syndrome, they are often comorbid. In fact, many contemporary published studies confirm the association of these diseases with each other, regardless of whether other metabolic factors, such as obesity, dyslipidemia, and type 2 diabetes mellites, are present. This narrative review considers the features of the association between NAFLD and AH, as well as possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Julia A. Golubeva
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu. Elkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Ekaterina O. Liusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
33
|
Kijpaisalratana N, Ament Z, Bevers MB, Bhave VM, Garcia Guarniz AL, Couch CA, Irvin MR, Kimberly WT. Trimethylamine N-Oxide and White Matter Hyperintensity Volume Among Patients With Acute Ischemic Stroke. JAMA Netw Open 2023; 6:e2330446. [PMID: 37610752 PMCID: PMC10448304 DOI: 10.1001/jamanetworkopen.2023.30446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/15/2023] [Indexed: 08/24/2023] Open
Abstract
Importance Although increasing evidence suggests that trimethylamine N-oxide (TMAO) is associated with atherosclerosis, little is known about whether TMAO and its related metabolites (ie, choline, betaine, and carnitine) are associated with small vessel disease. Objective To evaluate the association between TMAO and its related metabolites with features of cerebral small vessel disease, including white matter hyperintensity volume (WMHV) and acute lacunar infarction. Design, Setting, and Participants This cross-sectional study included patients enrolled in the Specialized Programs of Translational Research in Acute Stroke biorepository. The registry included 522 patients with acute ischemic stroke who were 18 years or older who presented at the Massachusetts General Hospital or Brigham and Women's Hospital within 9 hours after onset between January 2007 and April 2010. The analyses in this study were conducted between November 2022 and April 2023. Exposures Plasma TMAO, choline, betaine, and carnitine were measured by liquid chromatography-tandem mass spectrometry. Main Outcomes and Measures WMHV was quantified by a semiautomated approach using signal intensity threshold with subsequent manual editing. Ischemic stroke subtype was classified using the Causative Classification System. Results Among 351 patients included in this study, the mean (SD) age was 69 (15) years; 209 patients (59.5%) were male and had a median (IQR) admission National Institute of Health Stroke Scale of 6 (3-13). The magnetic resonance imaging subgroup consisted of 291 patients with a mean (SD) age of 67 (15) years. Among these, the median (IQR) WMHV was 3.2 (1.31-8.4) cm3. TMAO was associated with WMHV after adjustment for age and sex (β, 0.15; 95% CI, 0.01-0.29; P < .001). TMAO remained significant in a multivariate analysis adjusted for age, sex, hypertension, diabetes, and smoking (β, 0.14; 95% CI, 0-0.29; P = .05). TMAO was associated with lacunar stroke but not other ischemic stroke subtypes in a model adjusted for age, sex, hypertension, diabetes, and smoking (OR, 1.67; 95% CI, 1.05-2.66; P = .03). Conclusions and Relevance In this observational study, TMAO was associated with cerebral small vessel disease determined by WMHV and acute lacunar infarction. The association was independent of traditional vascular risk factors.
Collapse
Affiliation(s)
- Naruchorn Kijpaisalratana
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Zsuzsanna Ament
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Matthew B. Bevers
- Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | | | - Catharine A. Couch
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham
| | - M. Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham
| | - W. Taylor Kimberly
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Longtine AG, Venkatasubramanian R, Zigler MC, Lindquist AJ, Mahoney SA, Greenberg NT, VanDongen NS, Ludwig KR, Moreau KL, Seals DR, Clayton ZS. Female C57BL/6N mice are a viable model of aortic aging in women. Am J Physiol Heart Circ Physiol 2023; 324:H893-H904. [PMID: 37115626 PMCID: PMC10202480 DOI: 10.1152/ajpheart.00120.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
The aorta stiffens with aging in both men and women, which predicts cardiovascular mortality. Aortic wall structural and extracellular matrix (ECM) remodeling, induced in part by chronic low-grade inflammation, contribute to aortic stiffening. Male mice are an established model of aortic aging. However, there is little information regarding whether female mice are an appropriate model of aortic aging in women, which we aimed to elucidate in the present study. We assessed two strains of mice and found that in C57BL/6N mice, in vivo aortic stiffness (pulse wave velocity, PWV) was higher with aging in both sexes, whereas in B6D2F1 mice, PWV was higher in old versus young male mice, but not in old versus young female mice. Because the age-related stiffening that occurs in men and women was reflected in male and female C57BL/6N mice, we examined the mechanisms of stiffening in this strain. In both sexes, aortic modulus of elasticity (pin myography) was lower in old mice, occurred in conjunction with and was related to higher plasma levels of the elastin-degrading enzyme matrix metalloproteinase-9 (MMP-9), and was accompanied by higher numbers of aortic elastin breaks and higher abundance of adventitial collagen-1. Plasma levels of the inflammatory cytokines interferon-γ, interleukin 6, and monocyte chemoattractant protein-1 were higher in both sexes of old mice. In conclusion, female C57BL/6N mice exhibit aortic stiffening, reduced modulus of elasticity and structural/ECM remodeling, and associated increases in MMP-9 and systemic inflammation with aging, and thus are an appropriate model of aortic aging in women.NEW & NOTEWORTHY Our study demonstrates that with aging, female C57BL/6N mice exhibit higher in vivo aortic stiffness, reduced modulus of elasticity, aortic wall structural and extracellular matrix remodeling, and elevations in systemic inflammation. These changes are largely reflective of those that occur with aging in women. Thus, female C57BL/6N mice are a viable model of human aortic aging and the utility of these animals should be considered in future biomedical investigations.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | | | - Melanie C Zigler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Alexandra J Lindquist
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nicholas S VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kerrie L Moreau
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
35
|
Baranwal G, Goodlett BL, Arenaz CM, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Alaniz RC, Mitchell BM. Indole Propionic Acid Increases T Regulatory Cells and Decreases T Helper 17 Cells and Blood Pressure in Mice with Salt-Sensitive Hypertension. Int J Mol Sci 2023; 24:9192. [PMID: 37298145 PMCID: PMC10252743 DOI: 10.3390/ijms24119192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Hypertension affects over a billion adults worldwide and is a major risk factor for cardiovascular disease. Studies have reported that the microbiota and its metabolites regulate hypertension pathophysiology. Recently, tryptophan metabolites have been identified to contribute to and inhibit the progression of metabolic disorders and cardiovascular diseases, including hypertension. Indole propionic acid (IPA) is a tryptophan metabolite with reported protective effects in neurodegenerative and cardiovascular diseases; however, its involvement in renal immunomodulation and sodium handling in hypertension is unknown. In the current study, targeted metabolomic analysis revealed decreased serum and fecal IPA levels in mice with L-arginine methyl ester hydrochloride (L-NAME)/high salt diet-induced hypertension (LSHTN) compared to normotensive control mice. Additionally, kidneys from LSHTN mice had increased T helper 17 (Th17) cells and decreased T regulatory (Treg) cells. Dietary IPA supplementation in LSHTN mice for 3 weeks resulted in decreased systolic blood pressure, along with increased total 24 h and fractional sodium excretion. Kidney immunophenotyping demonstrated decreased Th17 cells and a trend toward increased Treg cells in IPA-supplemented LSHTN mice. In vitro, naïve T cells from control mice were skewed into Th17 or Treg cells. The presence of IPA decreased Th17 cells and increased Treg cells after 3 days. These results identify a direct role for IPA in attenuating renal Th17 cells and increasing Treg cells, leading to improved sodium handling and decreased blood pressure. IPA may be a potential metabolite-based therapeutic option for hypertension.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | - Cristina M. Arenaz
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| |
Collapse
|
36
|
Ishimwe JA, Kirabo A. Editorial: Gut microbiome and metabolic physiology. Front Physiol 2023; 14:1216411. [PMID: 37260590 PMCID: PMC10227567 DOI: 10.3389/fphys.2023.1216411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Affiliation(s)
- Jeanne A. Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical, Nashville, TN, United States
- Center and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
37
|
Mutengo KH, Masenga SK, Mweemba A, Mutale W, Kirabo A. Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol 2023; 14:1075641. [PMID: 37089429 PMCID: PMC10118022 DOI: 10.3389/fphys.2023.1075641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The human gut microbiota environment is constantly changing and some specific changes influence the host's metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota's role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Aggrey Mweemba
- Department of Medicine, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Wilbroad Mutale
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
38
|
Abstract
A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.
Collapse
|
39
|
Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montaño AR, Hernández-Ruiz P, Amezcua-Guerra LM, Amedei A, Aguirre-García MM. Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines 2023; 11:431. [PMID: 36830968 PMCID: PMC9952918 DOI: 10.3390/biomedicines11020431] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a metabolite produced by the gut microbiota and has been mainly associated with an increased incidence of cardiovascular diseases (CVDs) in humans. There are factors that affect one's TMAO level, such as diet, drugs, age, and hormones, among others. Gut dysbiosis in the host has been studied recently as a new approach to understanding chronic inflammatory and degenerative diseases, including cardiovascular diseases, metabolic diseases, and Alzheimer's disease. These disease types as well as COVID-19 are known to modulate host immunity. Diabetic and obese patients have been observed to have an increase in their level of TMAO, which has a direct correlation with CVDs. This metabolite is attributed to enhancing the inflammatory pathways through cholesterol and bile acid dysregulation, promoting foam cell formation. Additionally, TMAO activates the transcription factor NF-κB, which, in turn, triggers cytokine production. The result can be an exaggerated inflammatory response capable of inducing endoplasmic reticulum stress, which is responsible for various diseases. Due to the deleterious effects that this metabolite causes in its host, it is important to search for new therapeutic agents that allow a reduction in the TMAO levels of patients and that, thus, allow patients to be able to avoid a severe cardiovascular event. The present review discussed the synthesis of TMAO and its contribution to the pathogenesis of various inflammatory diseases.
Collapse
Affiliation(s)
- Luis A. Constantino-Jonapa
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Yoshua Espinoza-Palacios
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Alma R. Escalona-Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Paulina Hernández-Ruiz
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Luis M. Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - María M. Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| |
Collapse
|
40
|
Brunt VE, Ikoba AP, Ziemba BP, Ballak DB, Hoischen A, Dinarello CA, Ehringer MA, Seals DR. Circulating interleukin-37 declines with aging in healthy humans: relations to healthspan indicators and IL37 gene SNPs. GeroScience 2023; 45:65-84. [PMID: 35622271 PMCID: PMC9137444 DOI: 10.1007/s11357-022-00587-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/06/2022] [Indexed: 02/03/2023] Open
Abstract
Aging is characterized by declines in physiological function that increase risk of age-associated diseases and limit healthspan, mediated in part by chronic low-grade inflammation. Interleukin (IL)-37 suppresses inflammation in pathophysiological states but has not been studied in the context of aging in otherwise healthy humans. Thus, we investigated associations between IL-37 and markers of healthspan in 271 young (18-39 years; n = 41), middle-aged (40-64 years; n = 162), and older (65 + years; n = 68) adults free of overt clinical disease. After conducting a thorough validation of AdipoGen's IL-37 ELISA, we found that plasma IL-37 is lower in older adults (young: 339 ± 240, middle-aged: 345 ± 234; older: 258 ± 175 pg/mL; P = 0.048), despite elevations in pro-inflammatory markers. As such, the ratios of circulating IL-37 to pro-inflammatory markers were considerably lower in older adults (e.g., IL-37 to C-reactive protein: young, 888 ± 918 vs. older, 337 ± 293; P = 0.02), indicating impaired IL-37 responsiveness to a pro-inflammatory state with aging and consistent with the notion of immunosenescence. These ratios were related to multiple indicators of healthspan, including positively to cardiorespiratory fitness (P < 0.01) and negatively to markers of adiposity, blood pressure, and blood glucose (all P < 0.05). Lastly, we correlated single-nucleotide polymorphisms (SNPs) in the IL37 and ILR8 (the co-receptor for IL-37) genes and found that variants in IL37 SNPs tended to be associated with blood pressure and adiposity (P = 0.08-0.09) but did not explain inter-individual variability in circulating IL-37 concentrations across age (P ≥ 0.23). Overall, our findings provide novel insights into a possible role of IL-37 in biological aging in humans.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, CO, 80045, Aurora, USA.
| | - Akpevweoghene P Ikoba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Dov B Ballak
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, CO, 80045, Aurora, USA
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics & Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, CO, 80045, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
41
|
Does the Composition of Gut Microbiota Affect Hypertension? Molecular Mechanisms Involved in Increasing Blood Pressure. Int J Mol Sci 2023; 24:ijms24021377. [PMID: 36674891 PMCID: PMC9863380 DOI: 10.3390/ijms24021377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Arterial hypertension is a chronic disease which is very prevalent contemporarily. The aim of this review was to investigate the impact of gut microbiota on the development and potential treatment of hypertension, taking into consideration underlying molecular mechanisms. The bacteria present in the intestines have the ability to secrete different metabolites, which might play a significant role in the regulation of blood pressure. The most important include short-chain fatty acids (SCFAs), vasoactive hormones, trimethylamine (TMA) and trimethylamine N-oxide (TMAO) and uremic toxins, such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Their action in regulating blood pressure is mainly based on their pro- or anti-inflammatory function. The use of specifically formulated probiotics to modify the composition of gut microbiota might be a beneficial way of supportive treatment of hypertension; however, further research on this topic is needed to choose the species of bacteria that could induce the hypotensive pattern.
Collapse
|
42
|
Nabeh OA. Gut microbiota and cardiac arrhythmia: a pharmacokinetic scope. Egypt Heart J 2022; 74:87. [PMID: 36583819 PMCID: PMC9803803 DOI: 10.1186/s43044-022-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dealing with cardiac arrhythmia is a difficult challenge. Choosing between different anti-arrhythmic drugs (AADs) while being cautious about the pro-arrhythmic characteristics of some of these drugs and their diverse interaction with other drugs is a real obstacle. MAIN BODY Gut microbiota (GM), in our bodies, are now being considered as a hidden organ which can regulate our immune system, digest complex food, and secrete bioactive compounds. Yet, GM are encountered in the pathophysiology of arrhythmia and can affect the pharmacokinetics of AADs, as well as some anti-thrombotics, resulting in altering their bioavailability, therapeutic function and may predispose to some of their unpleasant adverse effects. CONCLUSIONS Knowledge of the exact role of GM in the pharmacokinetics of these drugs is now essential for better understanding of the art of arrhythmia management. Also, it will help deciding when to consider probiotics as an adjunctive therapy while treating arrhythmia. This should be discovered in the near future.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- grid.7776.10000 0004 0639 9286Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Obrenovich M, Singh SK, Li Y, Perry G, Siddiqui B, Haq W, Reddy VP. Natural Product Co-Metabolism and the Microbiota-Gut-Brain Axis in Age-Related Diseases. Life (Basel) 2022; 13:41. [PMID: 36675988 PMCID: PMC9865576 DOI: 10.3390/life13010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Complementary alternative medicine approaches are growing treatments of diseases to standard medicine practice. Many of these concepts are being adopted into standard practice and orthomolecular medicine. Age-related diseases, in particular neurodegenerative disorders, are particularly difficult to treat and a cure is likely a distant expectation for many of them. Shifting attention from pharmaceuticals to phytoceuticals and "bugs as drugs" represents a paradigm shift and novel approaches to intervention and management of age-related diseases and downstream effects of aging. Although they have their own unique pathologies, a growing body of evidence suggests Alzheimer's disease (AD) and vascular dementia (VaD) share common pathology and features. Moreover, normal metabolic processes contribute to detrimental aging and age-related diseases such as AD. Recognizing the role that the cerebral and cardiovascular pathways play in AD and age-related diseases represents a common denominator in their pathobiology. Understanding how prosaic foods and medications are co-metabolized with the gut microbiota (GMB) would advance personalized medicine and represents a paradigm shift in our view of human physiology and biochemistry. Extending that advance to include a new physiology for the advanced age-related diseases would provide new treatment targets for mild cognitive impairment, dementia, and neurodegeneration and may speed up medical advancements for these particularly devastating and debilitating diseases. Here, we explore selected foods and their derivatives and suggest new dementia treatment approaches for age-related diseases that focus on reexamining the role of the GMB.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Department of Veteran's Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| | - Yi Li
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, MO 63103, USA
| | - George Perry
- Department of Neuroscience Developmental and Regenerative Biology, University of Texas, San Antonio, TX 78249, USA
| | - Bushra Siddiqui
- School of Medicine, Northeast Ohio College of Medicine, Rootstown, OH 44272, USA
| | - Waqas Haq
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
44
|
Casso AG, VanDongen NS, Gioscia-Ryan RA, Clayton ZS, Greenberg NT, Ziemba BP, Hutton DA, Neilson AP, Davy KP, Seals DR, Brunt VE. Initiation of 3,3-dimethyl-1-butanol at midlife prevents endothelial dysfunction and attenuates in vivo aortic stiffening with ageing in mice. J Physiol 2022; 600:4633-4651. [PMID: 36111692 PMCID: PMC10069444 DOI: 10.1113/jp283581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular dysfunction: develops progressively with ageing; increases the risk of cardiovascular diseases (CVD); and is characterized by endothelial dysfunction and arterial stiffening, which are primarily mediated by superoxide-driven oxidative stress and consequently reduced nitric oxide (NO) bioavailability and arterial structural changes. Interventions initiated before vascular dysfunction manifests may have more promise for reducing CVD risk than interventions targeting established dysfunction. Gut microbiome-derived trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk, and can be suppressed by 3,3-dimethyl-1-butanol (DMB). We investigated whether DMB supplementation could prevent age-related vascular dysfunction in C57BL/6N mice when initiated prior to development of dysfunction. Mice received drinking water with 1% DMB or normal drinking water (control) from midlife (18 months) until being studied at 21, 24 or 27 months of age, and were compared to young adult (5 month) mice. Endothelial function [carotid artery endothelium-dependent dilatation (EDD) to acetylcholine; pressure myography] progressively declined with age in control mice, which was fully prevented by DMB via higher NO-mediated EDD and lower superoxide-related suppression of EDD (normalization of EDD with the superoxide dismutase mimetic TEMPOL). In vivo aortic stiffness (pulse wave velocity) increased progressively with age in controls, but DMB attenuated stiffening by ∼ 70%, probably due to preservation of endothelial function, as DMB did not affect aortic intrinsic mechanical (structural) stiffness (stress-strain testing) nor adventitial abundance of the arterial structural protein collagen. Our findings indicate that long-term DMB supplementation prevents/attenuates age-related vascular dysfunction, and therefore has potential for translation to humans for reducing CV risk with ageing. KEY POINTS: Vascular dysfunction, characterized by endothelial dysfunction and arterial stiffening, develops progressively with ageing and increases the risk of cardiovascular diseases (CVD). Interventions aimed at preventing the development of CV risk factors have more potential for preventing CVD relative to those aimed at reversing established dysfunction. The gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk and can be suppressed by supplementation with 3,3-dimethyl-1-butanol (DMB). In mice, DMB prevented the development of endothelial dysfunction and delayed and attenuated in vivo arterial stiffening with ageing when supplementation was initiated in midlife, prior to the development of dysfunction. DMB supplementation or other TMAO-suppressing interventions have potential for translation to humans for reducing CV risk with ageing.
Collapse
Affiliation(s)
- Abigail G. Casso
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Nicholas S. VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Rachel A. Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Nathan T. Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Brian P. Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - David A. Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Andrew P. Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin P. Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Vienna E. Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
45
|
Identifying a metabolomics profile associated with masked hypertension in two independent cohorts: Data from the African-PREDICT and SABPA studies. Hypertens Res 2022; 45:1781-1793. [PMID: 36056205 DOI: 10.1038/s41440-022-01010-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Individuals with masked hypertension (MHT) have a greater risk of adverse cardiovascular outcomes than normotensive (NT) individuals. Exploring metabolomic differences between NT and MHT individuals may help provide a better understanding of the etiology of MHT. We analyzed data from 910 young participants (83% NT and 17% MHT) (mean age 24 ± 3 years) from the African-PREDICT and 210 older participants (63% NT and 37% MHT) from the SABPA (mean age 42 ± 9.6 years) studies. Clinic and ambulatory blood pressures (BPs) were used to define BP phenotypes. Urinary amino acids and acylcarnitines were measured using liquid chromatography time-of-flight mass spectrometry in SABPA and liquid chromatography tandem mass spectrometry in the African-PREDICT studies. In the SABPA study, amino acids (leucine/isoleucine, valine, methionine, phenylalanine), free carnitine (C0-carnitine), and acylcarnitines C3 (propionyl)-, C4 (butyryl)-carnitine and total acylcarnitine) were higher in MHT than NT adults. In the African-PREDICT study, C0- and C5-carnitines were higher in MHT individuals. With unadjusted analyses in NT adults from the SABPA study, ambulatory SBP correlated positively with only C3-carnitine. In MHT individuals, positive correlations of ambulatory SBP with leucine/isoleucine, valine, methionine, phenylalanine, C0-carnitine and C3-carnitine were evident (all p < 0.05). In the African-PREDICT study, ambulatory SBP correlated positively with C0-carnitine (r = 0.101; p = 0.006) and C5-carnitine (r = 0.195; p < 0.001) in NT adults and C5-carnitine in MHT individuals (r = 0.169; p = 0.034). We demonstrated differences between the metabolomic profiles of NT and MHT adults, which may reflect different stages in the alteration of branched-chain amino acid metabolism early on and later in life.
Collapse
|
46
|
Longoria CR, Guers JJ, Campbell SC. The Interplay between Cardiovascular Disease, Exercise, and the Gut Microbiome. Rev Cardiovasc Med 2022; 23:365. [PMID: 39076202 PMCID: PMC11269073 DOI: 10.31083/j.rcm2311365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with physical inactivity being a known contributor to the global rates of CVD incidence. The gut microbiota has been associated with many diseases including CVD and other comorbidities such at type 2 diabetes and obesity. Researchers have begun to examine the gut microbiome as a predictor of early disease states by detecting disruptions, or dysbiosis, in the microbiota. Evidence is lacking to investigate the potential link between the gut microbiota, exercise, and CVD risk and development. Research supports that diets with whole food have reduced instances of CVD and associated diseases, increased abundances of beneficial gut bacteria, and altered gut-derived metabolite production. Further, exercise and lifestyle changes to increase physical activity demonstrate improved health outcomes related to CVD risk and comorbidities and gut microbial diversity. It is difficult to study an outcome such as CVD when including multiple factors; however, it is evident that exercise, lifestyle, and the gut microbiota contribute to improved health in their own ways. This review will highlight current research findings and what potential treatments of CVD may be generated by manipulation of the gut microbiota and/or exercise.
Collapse
Affiliation(s)
- Candace R. Longoria
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - John J. Guers
- Department of Biology, Behavioral Neuroscience and Health Science, Rider University, Lawrenceville, NJ 08646, USA
| | - Sara C. Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
47
|
Brunt VE, Greenberg NT, Sapinsley ZJ, Casso AG, Richey JJ, VanDongen NS, Gioscia-Ryan RA, Ziemba BP, Neilson AP, Davy KP, Seals DR. Suppression of trimethylamine N-oxide with DMB mitigates vascular dysfunction, exercise intolerance, and frailty associated with a Western-style diet in mice. J Appl Physiol (1985) 2022; 133:798-813. [PMID: 35952350 PMCID: PMC9512113 DOI: 10.1152/japplphysiol.00350.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Consumption of a Western-style diet (WD; high fat, high sugar, low fiber) is associated with impaired vascular function and increased risk of cardiovascular diseases (CVD), which could be mediated partly by increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). We investigated if suppression of TMAO with 3,3-dimethyl-1-butanol (DMB; inhibitor of microbial TMA lyase) in mice could prevent: 1) WD-induced vascular endothelial dysfunction and aortic stiffening and 2) WD-induced reductions in endurance exercise tolerance and increases in frailty, as both are linked to WD, vascular dysfunction, and increased CVD risk. C57BL/6N mice were fed standard chow or WD (41% fat, ∼25% sugar, 4% fiber) for 5 mo beginning at ∼2 mo of age. Within each diet, mice randomly received (n = 11-13/group) normal drinking water (control) or 1% DMB in drinking water for the last 8 wk (from 5 to 7 mo of age). Plasma TMAO was increased in WD-fed mice but suppressed by DMB. WD induced endothelial dysfunction, assessed as carotid artery endothelium-dependent dilation to acetylcholine, and progressive increases in aortic stiffness (measured serially in vivo as pulse wave velocity), both of which were fully prevented by supplementation with DMB. Endurance exercise tolerance, assessed as time to fatigue on a rotarod test, was impaired in WD-fed mice but partially recovered by DMB. Lastly, WD-induced increases in frailty (31-point index) were prevented by DMB. Our findings indicate DMB or other TMAO-lowering therapies may be promising for mitigating the adverse effects of WD on physiological function, and thereby reducing risk of chronic diseases.NEW & NOTEWORTHY We provide novel evidence that increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) contribute to vascular dysfunction associated with consumption of a Western-style diet and that this dysfunction can be prevented by suppressing TMAO with DMB, thereby supporting translation of this compound to humans. Furthermore, to our knowledge, we present the first evidence of the role of TMAO in mediating impairments in endurance exercise tolerance and increased frailty in any context.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Zachary J Sapinsley
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Abigail G Casso
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - James J Richey
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | | | | | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
48
|
Polyphenols and Small Phenolic Acids as Cellular Metabolic Regulators. Curr Issues Mol Biol 2022; 44:4152-4166. [PMID: 36135197 PMCID: PMC9498149 DOI: 10.3390/cimb44090285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Polyphenols and representative small phenolic acids and molecules derived from larger constituents are dietary antioxidants from fruits, vegetables and largely other plant-based sources that have ability to scavenge free radicals. What is often neglected in polyphenol metabolism is bioavailability and the role of the gut microbiota (GMB), which has an essential role in health and disease and participates in co-metabolism with the host. The composition of the gut microbiota is in constant flux and is modified by multiple intrinsic and extrinsic factors, including antibiotics. Dietary or other factors are key modulators of the host gut milieu. In this review, we explore the role of polyphenols and select phenolic compounds as metabolic or intrinsic biochemistry regulators and explore this relationship in the context of the microbiota–gut–target organ axis in health and disease.
Collapse
|
49
|
Yang Y, Zeng Q, Gao J, Yang B, Zhou J, Li K, Li L, Wang A, Li X, Liu Z, Luo Q, Zhao Z, Liu B, Xue J, Jiang X, Konerman MC, Zheng L, Xiong C. High-circulating gut microbiota-dependent metabolite trimethylamine N-oxide is associated with poor prognosis in pulmonary arterial hypertension. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac021. [PMID: 36071697 PMCID: PMC9442843 DOI: 10.1093/ehjopen/oeac021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/17/2022] [Indexed: 12/30/2022]
Abstract
Aims We aimed to examine the hypothesis that circulating trimethylamine-N-oxide (TMAO) levels serve as a biomarker in pulmonary arterial hypertension (PAH), and to determine whether 3,3-dimethyl-1-butanol (DMB), a TMAO inhibitor, exerted a protective effect in monocrotaline (MCT)-induced PAH rats. Methods and results In-patients with PAH were prospectively recruited from the Fuwai Hospital. Fasting blood samples were obtained to assess the TMAO levels and other laboratory values during the initial and second hospitalization. In a MCT-induced PAH rat, a normal diet and water supplemented with or without 1% DMB were administered for 4 weeks. The TMAO levels, haemodynamic examinations, changes in organ-tissue, and molecular levels were evaluated. In total, 124 patients with PAH were enrolled in this study. High TMAO levels were correlated with increased disease severity and poor prognosis even after adjusting for confounders. The TMAO levels in the rats decreased in the MCT + DMB group, accompanied by improved haemodynamic parameters, decreased right ventricular hypertrophy, and amelioration of pulmonary vascular remodelling. The decrease in abnormal apoptosis, excessive cell proliferation, transforming growth factor-β expression, and restoration of endothelial nitric oxide synthase after DMB treatment further explained the amelioration of PAH. Conclusion Increased TMAO levels were associated with poor prognosis in patients with PAH, and DMB played a protective effect in MCT-induced PAH rat.
Collapse
Affiliation(s)
- Yicheng Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qixian Zeng
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing, China
| | - Beilan Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhou
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Li
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Li Li
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Xin Li
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Liu
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Luo
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhao
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingyang Liu
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xue
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Xue Jiang
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Matthew C Konerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute for Health Care Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
- VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Changming Xiong
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Mutalub YB, Abdulwahab M, Mohammed A, Yahkub AM, AL-Mhanna SB, Yusof W, Tang SP, Rasool AHG, Mokhtar SS. Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods 2022; 11:2575. [PMID: 36076760 PMCID: PMC9455664 DOI: 10.3390/foods11172575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
The human gut harbors microbial ecology that is in a symbiotic relationship with its host and has a vital function in keeping host homeostasis. Inimical alterations in the composition of gut microbiota, known as gut dysbiosis, have been associated with cardiometabolic diseases. Studies have revealed the variation in gut microbiota composition in healthy individuals as compared to the composition of those with cardiometabolic diseases. Perturbation of host-microbial interaction attenuates physiological processes and may incite several cardiometabolic disease pathways. This imbalance contributes to cardiometabolic diseases via metabolism-independent and metabolite-dependent pathways. The aim of this review was to elucidate studies that have demonstrated the complex relationship between the intestinal microbiota as well as their metabolites and the development/progression of cardiometabolic diseases. Furthermore, we systematically itemized the potential therapeutic approaches for cardiometabolic diseases that target gut microbiota and/or their metabolites by following the pathophysiological pathways of disease development. These approaches include the use of diet, prebiotics, and probiotics. With the exposition of the link between gut microbiota and cardiometabolic diseases, the human gut microbiota therefore becomes a potential therapeutic target in the development of novel cardiometabolic agents.
Collapse
Affiliation(s)
- Yahkub Babatunde Mutalub
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
- Department of Clinical Pharmacology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Monsurat Abdulwahab
- Department of Midwifery, College of Nursing Sciences, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi 74027, Nigeria
| | - Alkali Mohammed
- Department of Medicine, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Aishat Mutalib Yahkub
- College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Sameer Badri AL-Mhanna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wardah Yusof
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Suk Peng Tang
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| |
Collapse
|