1
|
Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D. Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis. Nat Rev Cardiol 2025; 22:443-455. [PMID: 39743563 DOI: 10.1038/s41569-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.
Collapse
Affiliation(s)
- Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
| | - Leandro Slipczuk
- Division of Cardiology, Montefiore Healthcare Network/Albert Einstein College of Medicine, New York, NY, USA
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Nitesh Nerlekar
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Salyer LG, Wang Y, Ma X, Foryst-Ludwig A, Kintscher U, Chennappan S, Kontaridis MI, McKinsey TA. Modulating the Secretome of Fat to Treat Heart Failure. Circ Res 2025; 136:1363-1381. [PMID: 40403114 DOI: 10.1161/circresaha.125.325593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/24/2025]
Abstract
Heart failure afflicts >6 million individuals in the United States alone and is associated with significant mortality (≈40% within 5 years of diagnosis) and cost (estimated to exceed $70 billion in the United States by 2030). Obesity is a major risk factor for the development of heart failure. The contribution of excess adipose tissue to heart failure pathogenesis is multifactorial. For example, adipose tissue-driven inflammation contributes to the development of other cardiometabolic comorbidities, such as hypertension, leading to left ventricular pressure overload and adverse remodeling of the heart. Adipose tissue also functions as an endocrine organ, and altered secretion of proteins, lipid mediators, metabolites, and small extracellular vesicles (collectively referred to as the secretome) from dysfunctional fat can lead to cardiac inflammation and oxidative stress, which drive changes in structure and function of the heart. In this review, we begin with an overview of current therapies for obesity and what is known about how they influence the heart. Then we focus on mechanisms by which fat communicates with the heart via secreted factors and highlight druggable nodes in this circuit that could be exploited to develop next-generation therapies for heart failure.
Collapse
Affiliation(s)
- Lorien G Salyer
- Division of Cardiology, Department of Medicine (L.G.S., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
- Consortium for Fibrosis Research & Translation (L.G.S., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL (Y.W.)
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (X.M.)
| | - Anna Foryst-Ludwig
- Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany (A.F.-L., U.K.)
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany (A.F.-L., U.K.)
| | - Ulrich Kintscher
- Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany (A.F.-L., U.K.)
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany (A.F.-L., U.K.)
| | - Saravanakkumar Chennappan
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY (S.C., M.I.K.)
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY (S.C., M.I.K.)
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (M.I.K.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA (M.I.K.)
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine (L.G.S., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
- Consortium for Fibrosis Research & Translation (L.G.S., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Goudot G, Abohashem S, Osborne MT, Aldosoky W, Ahmad TZ, Lu MT, Foldyna B, Tawakol A. Periaortic Fat Attenuation on Nongated Noncontrast Chest CT Images to Assess Changes in Arterial Inflammation: Impact of Atorvastatin. Circ Cardiovasc Imaging 2025:e017248. [PMID: 40365683 DOI: 10.1161/circimaging.124.017248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Imaging markers of atherosclerotic inflammation are needed to enhance cardiovascular risk assessment and evaluate the impact of therapies. We sought to test the hypothesis that treatments impacting arterial inflammation can be evaluated using a simplified measure of periaortic fat attenuation (FA) assessed on noncontrast, nongated computed tomography (CT) of the descending thoracic aorta. METHODS Measurements were performed on 18F-fluorodeoxyglucose positron emission tomography/CT images from a double-blind, randomized trial conducted between 2008 and 2009 that assessed the impact of statin therapy on arterial inflammation. Periaortic adipose tissue quantification was performed on the chest CT images over a 10 cm portion of the descending aorta. FA was determined as the mean attenuation of the entire volume of delineated periaortic fat. Arterial inflammation (aorta) and leukopoietic activity (bone marrow and spleen) were assessed by measuring standardized uptake values on 18F-fluorodeoxyglucose positron emission tomography images. Baseline relationships and changes from baseline to 12 weeks were assessed. All models evaluating FA were adjusted for baseline kilovoltage peak. RESULTS Sixty subjects (79.9% male, mean age 60±8.9 years) with risk factors or established atherosclerosis (32 randomized to atorvastatin 10 mg, 28 randomized to atorvastatin 80 mg) were studied. On average, it took 88±17 seconds to assess FA per subject. At baseline, FA correlated with leukopoietic activity (r=0.412; P=0.021 and r=0.442; P=0.013, for bone marrow and spleen, respectively). Furthermore, FA correlated with aortic inflammation assessed on 18F-fluorodeoxyglucose positron emission tomography as quintiles (r=0.274; P=0.043). Moreover, high dose (versus low dose) atorvastatin was associated with a significant reduction in FA after 12 weeks (standardized β=-0.603; P=0.010) after adjustment for baseline FA, kilovoltage peak, and prior statin use. CONCLUSIONS Periaortic FA is a marker of atherosclerotic inflammation that can be easily measured on nongated, nonenhanced chest CT images and be used to provide insights into the impact of therapies on atherosclerotic inflammation.
Collapse
Affiliation(s)
- Guillaume Goudot
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
| | - Shady Abohashem
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
| | - Michael T Osborne
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
| | - Wesam Aldosoky
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
| | - Taha Z Ahmad
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
| | - Michael T Lu
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
| | - Borek Foldyna
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
| | - Ahmed Tawakol
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. (G.G., S.A., M.T.O., W.A., T.Z.A., M.T.L., B.F., A.T.)
| |
Collapse
|
4
|
Zhang SJ, Wang SW, Liu SY, Li P, Huang DL, Zeng XX, Lan T, Ruan YP, Shi HJ, Zhang X. Epicardial adipose tissue: a new link between type 2 diabetes and heart failure-a comprehensive review. Heart Fail Rev 2025; 30:477-491. [PMID: 39730926 DOI: 10.1007/s10741-024-10478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Diabetic cardiomyopathy is a unique cardiomyopathy that is common in diabetic patients, and it is also a diabetic complication for which no effective treatment is currently available. Moreover, relevant studies have revealed that a link exists between type 2 diabetes and heart failure and that abnormal thickening of EAT is inextricably linked to the development of diabetic heart failure. Numerous clinical studies have demonstrated that EAT is implicated in the pathophysiologic process of diabetic myocardial disease. In this overview, we will introduce the physiology, pathophysiology of the disease and potential therapeutic strategies, knowledge gaps, and future directions of the role of epicardial adipose tissue in type 2 diabetes mellitus and heart failure to promote the development of novel therapeutic approaches to improve the prognosis of patients with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Si-Jia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - De-Lian Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Jiao Shi
- The Third Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Klinaku FT, Comi L, Giglione C, Magni P. An integrated view of the pathophysiological crosstalk between adipose tissue, bone and cardiovascular system in men and women. J Endocrinol Invest 2025; 48:1061-1074. [PMID: 39692990 DOI: 10.1007/s40618-024-02516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Obesity, bone-related and cardiovascular diseases (CVD) are among the leading global health concerns. Growing evidence suggests that these conditions share common pathophysiological pathways and disease outcomes. PATHOGENETIC INTERACTIONS OF OBESITY, CVD AND BONE-RELATED DISEASES: Obesity is a well-established risk factor for atherosclerotic CVD (ASCVD), as dysfunctional ectopic adipose tissue may produce endocrine/paracrine hormones modulating metabolic processes and inflammation, predisposing to ASCVD. Although obesityhas been considered a protective factor for bone loss, it may lead to osteoporosis development and increased fracture risk at specific sites. Biological and epidemiological evidence has demonstrated the existence of a dynamic relationship between ASCVD and osteoporosis, since atherosclerotic calcification and bone mineralization share common pathophysiological mechanisms. Therefore, addressing ASCVD, obesity, and bone-related diseases requires multiple-level approach, which involve accurate screening, lifestyle modifications and pharmacological interventions.The current evidence about the pathophysiological relationships between obesity, bone-related diseases and ASCVD is discussed herein, highlighting common risk factors, proposed biomolecular mechanisms, clinical outcomes, lifestyle changes and pharmacological treatments. CONCLUSIONS As populations become increasingly older and obese, understanding the correlation within this triad highlights an unmet clinical need. Applying this knowledge would help to reduce both societal and individual costs, while supporting the development of novel preventive, diagnostic and therapeutic strategies to reduce morbidity and disability associated with cardio-metabolic and bone-related diseases.
Collapse
Affiliation(s)
- Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Laura Comi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy.
- IRCCS MultiMedica, 20099, Sesto San Giovanni (Milan), Italy.
| |
Collapse
|
6
|
Lu J, Xu H, Zheng J, Cheng T, Han X, Wang Y, Meng X, Li X, Jiang J, Dong X, Zhang X, Wang Z, Yang Z, Xu L. Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis. Korean J Radiol 2025; 26:411-421. [PMID: 40307197 PMCID: PMC12055264 DOI: 10.3348/kjr.2024.0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVE Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown. This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity. MATERIALS AND METHODS This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAIMS, FAIOMS, and FAIRS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman's correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS The FAIMS and FAIOMS scores were significantly higher than FAIRS in three phases (all P < 0.001). The FAIMS and FAIOMS scores moderately correlated with the UCEIS score (r = 0.474-0.649 among the three phases). Additionally, FAIMS and FAIOMS identified severe UC, with AUC varying from 0.77 to 0.85. CONCLUSION Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAIMS and FAIOMS of three phases showed similar prediction accuracies for severe UC identification.
Collapse
Affiliation(s)
- Jun Lu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Zheng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianxin Cheng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinjun Han
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuxu Meng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyang Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiahui Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue Dong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xijie Zhang
- Department of General Surgery, The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Lixue Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Rahaghi FN. Epicardial Adipose Tissue and Pulmonary Arterial Hypertension. Chest 2025; 167:1265-1267. [PMID: 40348507 DOI: 10.1016/j.chest.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 05/14/2025] Open
Affiliation(s)
- Farbod N Rahaghi
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
8
|
Aburel OM, Brăescu L, Buriman DG, Merce AP, Bînă AM, Borza C, Mornoș C, Sturza A, Muntean DM. Methylene blue reduces monoamine oxidase expression and oxidative stress in human cardiovascular adipose tissue. Mol Cell Biochem 2025; 480:2413-2421. [PMID: 39167271 PMCID: PMC11961462 DOI: 10.1007/s11010-024-05092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Cardiovascular diseases represent the major cause of morbidity mainly due to chronic heart failure. Epicardial (EAT) and perivascular adipose tissues (PVAT) are considered major contributors to the pathogenesis of cardiometabolic pathologies. Monoamine oxidases (MAOs) are mitochondrial enzymes recognized as sources of reactive oxygen species (ROS) in cardiometabolic pathologies. Methylene blue (MB) is one of the oldest protective agents, yet no data are available about its effects on adipose tissue. The present pilot study was aimed at assessing the effects of MB: (i) on MAO expression and (ii) oxidative stress in EAT and PVAT harvested from patients with heart failure subjected to cardiac surgery (n = 25). Adipose tissue samples were incubated with MB (0.1 µM/24 h) and used for the assessment of MAO gene and protein expression (qPCS and immune fluorescence) and ROS production (confocal microscopy and spectrophotometry). The human cardiovascular adipose tissues contain both MAO isoforms, predominantly MAO-A. Incubation with MB reduced MAOs expression and oxidative stress; co-incubation with serotonin, the MAO-A substrate, further augmented ROS generation, an effect partially reversed by MB. In conclusion, MAO-A is the major isoform expressed in EAT and PVAT and contribute to local oxidative stress; both effects can be mitigated by methylene blue.
Collapse
Affiliation(s)
- Oana-Maria Aburel
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Laurențiu Brăescu
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Doctoral School Medicine-Pharmacy, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Department VI, Clinic of Cardiovascular Surgery, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Institute for Cardiovascular Diseases, G. Adam Str. No.13A, 300310, Timișoara, Romania
| | - Darius G Buriman
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Doctoral School Medicine-Pharmacy, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Adrian P Merce
- Institute for Cardiovascular Diseases, G. Adam Str. No.13A, 300310, Timișoara, Romania
| | - Anca M Bînă
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Claudia Borza
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Cristian Mornoș
- Institute for Cardiovascular Diseases, G. Adam Str. No.13A, 300310, Timișoara, Romania
- Department VI, 2nd Clinic of Cardiology, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Adrian Sturza
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania.
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania.
- Timișoara County Hospital, 156 L. Rebreanu Str, 300723, Timişoara, Romania.
| | - Danina M Muntean
- Chair of Pathophysiology, Department III, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041, Timişoara, Romania
| |
Collapse
|
9
|
Yang Y, Liu Z, Gao F, Ma X, Liu J, Wang Z. In-Hospital Outcomes in Patients With Acute Myocardial Infarction and No Standard Modifiable Cardiovascular Risk Factors Across Varying Body Mass Index: Findings From the CCC-ACS Project. J Am Heart Assoc 2025; 14:e037651. [PMID: 40135554 DOI: 10.1161/jaha.124.037651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/30/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Individuals who present with acute myocardial infarction in the absence of standard modifiable cardiovascular risk factors (ie, SMuRF-less) seem to have a significantly increased risk of mortality; however, it remains unclear whether the "SMuRF paradox" would be influenced by patients' baseline body mass index (BMI) status. METHODS Using data from the CCC-ACS (Improving Care for Cardiovascular Disease in China-Acute Coronary Syndrome) project from November 2014 to July 2019, we analyzed patients with acute myocardial infarction with and without SMuRFs and categorized their BMI as underweight (<18.5 kg/m2), normal weight (18.5-24 kg/m2), overweight (24-28 kg/m2), and obese (>28 kg/m2). The primary outcome was in-hospital all-cause mortality. Multivariable logistic regression models were used to estimate BMI-stratified associations between SMuRF-less status and outcomes. RESULTS The study included 44 538 patients with first-presentation acute myocardial infarction, of whom 4454 were SMuRF-less. The incidence of SMuRF-lessness declined from 16.2% to 6.5% as BMI increased by category, and it prevailed more frequently among women and older people regardless of their BMI status. Patients who were SMuRF-less had a significant increase in in-hospital mortality than patients with ≥1 SMuRF (adjusted odds ratio [OR], 1.750 [95% CI, 1.057-2.896], P<0.001). The highest mortality rate was observed in the group who were SMuRF-less and underweight (3.5%). Considering patients with ≥1 SMuRF and obesity as the reference group, the group who were SMuRF-less underweight exhibited the highest increase in mortality (adjusted OR, 3.854 [95% CI, 2.130-6.973], P<0.001). CONCLUSIONS Among patients with first-presentation acute myocardial infarction, compared with those with ≥1 SMuRF, patients who were SMuRF-less have a significantly higher risk of in-hospital mortality, especially in those underweight, whereas in-hospital survival was the most favorable among patients with ≥1 SMuRF and obesity. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT0230661.
Collapse
Affiliation(s)
- Yuxiu Yang
- Department of Cardiology, Center for Geriatric Cardiovascular Disease, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Zaiqiang Liu
- Department of Cardiology, Center for Geriatric Cardiovascular Disease, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Fei Gao
- Department of Cardiology, Center for Geriatric Cardiovascular Disease, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Xiaoteng Ma
- Department of Cardiology, Center for Geriatric Cardiovascular Disease, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Jing Liu
- Department of Epidemiology and Cardiology, Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases Beijing China
| | - Zhijian Wang
- Department of Cardiology, Center for Geriatric Cardiovascular Disease, Beijing Anzhen Hospital Capital Medical University Beijing China
| |
Collapse
|
10
|
Du J, Liu J, Wang X, Wang X, Ma Y, Zhang S, Li Z, Ma J, Liu J. The role of estrogen in the sex difference for the risk factors of heart failure with preserved ejection fraction. Biol Direct 2025; 20:28. [PMID: 40065410 PMCID: PMC11895175 DOI: 10.1186/s13062-025-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major subtype of heart failure, primarily characterized by a normal or mildly reduced left ventricular ejection fraction along with left ventricular diastolic dysfunction. Recent studies have shown that the prevalence of HFpEF is higher in women than that in men, particularly in postmenopausal women. Concurrently, it has been observed that the incidence of risk factors contributing to HFpEF (such as obesity, hypertension, diabetes, and atrial fibrillation) also notably increases post-menopause, affecting the incidence of HFpEF. This review aimed to examine the relationship between estrogen and risk factors associated with HFpEF, clarifying the underlying mechanisms through which estrogen affects these risk factors from epidemiological and pathophysiological perspectives. This review also provides a comprehensive understanding of the association between estrogen and the risk factors for HFpEF, thus helping explore potential targets for HFpEF treatment.
Collapse
Affiliation(s)
- Jun Du
- Xi'an Medical University, Xi'an, People's Republic of China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiaqi Liu
- Xi'an Medical University, Xi'an, People's Republic of China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Sipan Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
11
|
Dell’Aversana F, Tuccillo R, Monfregola A, De Angelis L, Ferrandino G, Tedeschi C, Cacciapuoti F, Tamburro F, Liguori C. Epicardial Adipose Tissue Volume Assessment in the General Population and CAD-RADS 2.0 Score Correlation Using Dual Source Cardiac CT. Diagnostics (Basel) 2025; 15:681. [PMID: 40150024 PMCID: PMC11941225 DOI: 10.3390/diagnostics15060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives: Our study aims to investigate the correlation between epicardial adipose tissue (EAT) volume assessed with non-contrast cardiac CT (NCCCT) and sex, age, coronary artery disease reporting and data system (CAD-RADS 2.0) categories, and coronary artery calcification (CAC) extent. The secondary aim is to establish the average values of EAT in a population considered healthy for coronary artery disease (CAD). Materials and Methods: We retrospectively analyzed patients who underwent coronary computed tomography angiography (CCTA) at our institution from January 2023 to August 2024. The CAD-RADS 2.0 scoring system was applied to assess the extent of CAD; CAC extent was quantified according to the Agatston score. EAT was segmented semi-automatically in NCCCT images, and its volume was subsequently measured. Correlation analyses between EAT volume, sex, patient age, CAC, and CAD-RADS categories were conducted. Results: A total of 489 consecutive patients met the inclusion criteria (63.96 ± 12.18 years; 214 females). The mean EAT volume ± SD in those categorized as CAD-RADS 0 (57.25 ± 15.45 years, 120 patients) was 117.43 ± 50.30 cm3: values were higher in men (121.07 ± 53.31 cm3) than in women (114.54 ± 47.98 cm3). EAT volumes positively correlated with age, male sex, CAD severity, and CAC scores. Conclusions: According to our results, males in all CAD-RADS categories have a greater amount of EAT than females. A positive correlation between the volume of EAT and factors such as age (p = 0.003), CAD-RADS categories (p: 0.004), and coronary calcium score (p = 0.0001) with a strong influence exerted by sex was demonstrated. Our results reinforce the observation that higher EAT volumes are associated with a more severe coronary artery disease.
Collapse
Affiliation(s)
- Federica Dell’Aversana
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.D.); (R.T.)
| | - Renato Tuccillo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.D.); (R.T.)
| | - Alessandro Monfregola
- Division of Radiology, University of Napoli “Federico II”, 80131 Naples, Italy; (A.M.); (L.D.A.)
| | - Leda De Angelis
- Division of Radiology, University of Napoli “Federico II”, 80131 Naples, Italy; (A.M.); (L.D.A.)
| | - Giovanni Ferrandino
- Department of Radiology, Ospedale del Mare-ASL Napoli 1, 80147 Naples, Italy; (G.F.); (F.T.)
| | - Carlo Tedeschi
- Operational Unit of Cardiology, Presidio Sanitario Intermedio Napoli Est, ASL-Napoli 1 Centro, 80144 Naples, Italy;
| | - Fulvio Cacciapuoti
- Department of Cardiology, Azienda Ospedaliera di Rilievo Nazionale Antonio Cardarelli, 80131 Naples, Italy;
| | - Fabio Tamburro
- Department of Radiology, Ospedale del Mare-ASL Napoli 1, 80147 Naples, Italy; (G.F.); (F.T.)
| | - Carlo Liguori
- Department of Radiology, San Giovanni Bosco-ASL Napoli 1, 80144 Naples, Italy
| |
Collapse
|
12
|
Lorusso G, Maggialetti N, De Marco L, Guerra S, Villanova I, Greco S, Morelli C, Lucarelli NM, Mariano M, Stabile Ianora AA. Evaluating Epicardial Fat Density Using ROI-Based Analysis: A Feasibility Study. J Cardiovasc Dev Dis 2025; 12:81. [PMID: 40137079 PMCID: PMC11942633 DOI: 10.3390/jcdd12030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Epicardial fat density (EFD) is implicated in cardiovascular diseases. This study aimed to assess the regional variability of epicardial fat density (EFD) using coronary computed tomography (CCT) and evaluate the feasibility of ROI-based measurements as an alternative to full segmentation. A retrospective analysis was conducted on 171 patients undergoing coronary CCT. EFD was measured on non-contrast scans acquired globally and in three predefined regions of interest (ROIs) for coronary calcium scoring: the aortic bulb, right posterolateral wall, and cardiac apex. Global EFD was quantified using semi-automated segmentation software (3D Slicer 5.6.2), while regional EFD values were manually determined. Statistical analyses were performed to compare global and regional EFD measurements. Global EFD averaged -83.92 ± 5.19 HU, while regional EFD showed significant variability. The aortic bulb had lower EFD values (-97.54 ± 12.80 HU) compared to the apex (-93.42 ± 18.94 HU) and right posterolateral wall (-94.99 ± 12.16 HU). Paired t-tests confirmed statistically significant differences between global and regional EFD values (p < 0.000). This study highlights significant regional variability in EFD across specific cardiac regions, suggesting that ROI-based assessments may not reliably reflect global EFD characteristics.
Collapse
Affiliation(s)
| | | | - Luca De Marco
- Section of Radiology and Radiation Oncology, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy (N.M.); (S.G.); (I.V.); (S.G.); (C.M.); (N.M.L.); (M.M.); (A.A.S.I.)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Qiu H, Chen J, Mei Z, Chen W, Jun L, Chen Y, Tan Y, Wang T, Chen Y, Li J. Dysregulated fatty acid metabolism in pericardiac adipose tissue of pulmonary hypertension due to left heart disease mice. FASEB J 2025; 39:e70355. [PMID: 39932146 PMCID: PMC11812284 DOI: 10.1096/fj.202402842r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Pulmonary hypertension associated with left heart disease (PH-LHD) represents the most prevalent form of pulmonary hypertension; however, being lacks precise and effective treatment strategies. Recent clinical studies have indicated a positive correlation between the volume of pericardiac adipose tissue (PAT) and the severity of PH-LHD. Nonetheless, there is a paucity of research characterizing PAT phenotypes in PH-LHD disease models. This study aimed to elucidate the gene-level characteristics of PAT in PH-LHD through RNA sequencing and targeted metabolomic analysis of PAT in order to identify potential therapeutic targets for PH-LHD by modulating PAT. This study developed a mouse model of PH-LHD through cardiac overload combined with metabolic syndrome and verified that PAT volume and adipocyte size were significantly increased in PH-LHD mice. We used RNA sequencing to reveal that DEGs in PAT were primarily enriched in fatty acid metabolism pathways. Then, real-time PCR showed no significant differences in the mRNA expression of inflammatory markers or adipocytokines; however, genes of fatty acid synthesis (Fasn, Acaca, and Scd1) and fatty acid decomposition (Ehhadh, Acot4, and Pdk1) significantly changed between the two groups. Consistently, targeted metabolomic analysis showed levels of most types of medium- and long-chain fatty acids substantially reduced in PAT, suggesting that PAT in PH-LHD mice exhibits suppressed fatty acid de novo synthesis and enhanced fatty acid breakdown, resulting in impaired fatty acid storage. These findings highlight the potential of targeting PAT fatty acid synthesis and metabolism pathways as a novel therapeutic approach for PH-LHD.
Collapse
Affiliation(s)
- Haihua Qiu
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jingyuan Chen
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhang Mei
- Xiangya School of Nursing of Central South UniversityChangshaHunanChina
| | - Wenjie Chen
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Luo Jun
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yusi Chen
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yingjie Tan
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Tianyu Wang
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yaqin Chen
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jiang Li
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
14
|
Langenbach IL, Hadzic I, Zeleznik R, Langenbach MC, Maintz D, Mayrhofer T, Lu MT, Aerts HJWL, Foldyna B, Weintraub E. Association of Epicardial Adipose Tissue Changes on Serial Chest CT Scans with Mortality: Insights from the National Lung Screening Trial. Radiology 2025; 314:e240473. [PMID: 39964263 PMCID: PMC11868846 DOI: 10.1148/radiol.240473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 03/03/2025]
Abstract
Background Individuals eligible for lung cancer screening with low-dose CT face a higher cardiovascular mortality risk. Purpose To investigate the association between changes in epicardial adipose tissue (EAT) at the 2-year interval and mortality in individuals undergoing serial low-dose CT lung cancer screening. Materials and Methods This secondary analysis of the National Lung Screening Trial obtained EAT volume and density from serial low-dose CT scans using a validated automated deep learning algorithm. EAT volume and density changes over 2 years were categorized into typical (decrease of 7% to increase of 11% and decrease of 3% to increase of 2%, respectively) and atypical (increase or decrease beyond typical) changes, which were associated with all-cause, cardiovascular, and lung cancer mortality. Uni- and multivariable Cox proportional hazard regression models-adjusted for baseline EAT values, age, sex, race, ethnicity, smoking, pack-years, heart disease or myocardial infarction, stroke, hypertension, diabetes, education status, body mass index, and coronary artery calcium-were performed. Results Among 20 661 participants (mean age, 61.4 years ± 5.0 [SD]; 12 237 male [59.2%]), 3483 (16.9%) died over a median follow-up of 10.4 years (IQR, 9.9-10.8 years) (cardiovascular related: 816 [23.4%]; lung cancer related: 705 [20.2%]). Mean EAT volume increased (2.5 cm3/m2 ± 11.0) and density decreased (decrease of 0.5 HU ± 3.0) over 2 years. Atypical changes in EAT volume were independent predictors of all-cause mortality (atypical increase: hazard ratio [HR], 1.15 [95% CI: 1.06, 1.25] [P < .001]; atypical decrease: HR, 1.34 [95% CI: 1.23, 1.46] [P < .001]). An atypical decrease in EAT volume was associated with cardiovascular mortality (HR, 1.27 [95% CI: 1.06, 1.51]; P = .009). EAT density increase was associated with all-cause, cardiovascular, and lung cancer mortality (HR, 1.29 [95% CI: 1.18, 1.40] [P < .001]; HR, 1.29 [95% CI: 1.08, 1.54] [P = .005]; HR, 1.30 [95% CI: 1.07, 1.57] [P = .007], respectively). Conclusion EAT volume increase and decrease and EAT density increase beyond typical on subsequent chest CT scans were associated with all-cause mortality in participants screened for lung cancer. EAT volume decrease and EAT density increase were associated with elevated risk of cardiovascular mortality after adjustment for baseline EAT values. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Fuss in this issue.
Collapse
Affiliation(s)
- Isabel L. Langenbach
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - Ibrahim Hadzic
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - Roman Zeleznik
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - Marcel C. Langenbach
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - David Maintz
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - Thomas Mayrhofer
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - Michael T. Lu
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - Hugo J. W. L. Aerts
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - Borek Foldyna
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| | - Elizabeth Weintraub
- From the Cardiovascular Imaging Research Center, Massachusetts
General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA
02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and
Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L.,
M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General
Brigham, Harvard Medical School, Boston, Mass (I.H., R.Z., H.J.W.L.A.);
Department of Radiation Oncology, Brigham and Women’s Hospital,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (I.H., R.Z.,
H.J.W.L.A.); Department of Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (I.H., H.J.W.L.A.); and
School of Business Studies, Stralsund University of Applied Sciences, Stralsund,
Germany (T.M.)
| |
Collapse
|
15
|
Lin S, Zhang Y, Wang S, Ding X, Wu J, Wang X, Sun J. Prognostic utility of dynamic changes in epicardial adipose tissue in patients undergoing transcatheter aortic valve replacement. Int J Cardiol 2025; 419:132697. [PMID: 39532258 DOI: 10.1016/j.ijcard.2024.132697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Epicardial Adipose Tissue (EAT) volume is associated with the risk of cardiovascular events, which can be assessed by cardiac computed tomography. However, he optimal method and their prognostic utility in patients following transcatheter aortic valve replacement (TAVR) is unknown. METHODS We evaluated 258 participants, focusing on changes in EAT volume using cardiac CT enhancement. EAT volume was automatically computed as three-dimensional voxels between -190 to -30 HU on contrast-enhanced slices. Univariate and multivariable Cox regression analyses were conducted to assess the association of various clinical parameters and EAT volume indices with major adverse cardiovascular events (MACE). RESULTS During a median follow-up of 2.0 years [IQR, 1.8-2.3 years], 34 participants (median age 73 [IQR: -13.1 to -8.3) years, 55.4 % male) experiencing MACE. The optimal cutoff values for EAT volume change fraction (EATVCF) was 15.2 %, determined by the Youden-index. Kaplan-Meier curve analysis revealed that patients with high EATVCF were at higher risk (p < .01). In Cox regression, EATVCF (hazard ratio [HR]: 0.92, 95 % CI: 0.87 to 0.97, p = .001) remained significantly associated with MACE after adjusting for clinical factors. The addition of EATVCF to the clinical model increased the net Reclassification Improvement (NRI) by 30.1 % (95 % CI: 0.07-1.16). CONCLUSION EAT volume change fraction emerged as a significant predictor of MACE post-TAVR, highlighting the clinical value of EAT volume assessment in cardiovascular risk stratification.
Collapse
Affiliation(s)
- Shuangxiang Lin
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xingfa Ding
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaxing Wu
- Siemens Healthineers, No.399, West Haiyang Road, Shanghai 200126, China
| | - Xinhong Wang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianzhong Sun
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Asteria C, Secchi F, Morricone L, Malavazos AE, Simona, Francesconi 1, Milani V, Giovanelli A. Open-bore MRI Scanner Assessment of Epicardial Adipose Tissue after Bariatric Surgery: A Pilot Study. Endocr Metab Immune Disord Drug Targets 2025; 25:173-188. [PMID: 39171595 PMCID: PMC11826907 DOI: 10.2174/0118715303310680240607114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The recognition of epicardial adipose tissue (EAT) as a cardiac risk factor has increased the interest in strategies that target cardiac adipose tissue. AIM The effect of bariatric and metabolic surgery (BMS)-induced weight loss on EAT volume was evaluated in this study. METHODS Fifteen bariatric patients, with (MS) or without (wMS) Metabolic Syndrome, underwent magnetic resonance imaging (MRI) using an open-bore scanner to assess EAT volume, visceral adipose tissue (VAT) thickness, and other cardiac morpho-functional parameters at baseline and 12 months after BMS. Nine patients underwent laparoscopic sleeve gastrectomy (LSG), and 6 patients underwent Roux-en-Y Gastric Bypass (RYGBP). RESULTS EAT volume significantly decreased in all the patients 12 months post-BMS from 91.6 cm3 to 67.1 cm3; p = 0.0002 in diastole and from 89.4 cm3 to 68.2 cm3; p = 0.0002 in systole. No significant difference was found between the LSG and RYGBP group. Moreover, EAT volume was significantly reduced among wMS compared with MS. In particular, EAT volume in diastole was significantly reduced from 80.9 cm3 to 54.4 cm3; p = 0.0156 in wMS and from 98.3 cm3 to 79.5 cm3; p = 0.031 in MS. The reduction was also confirmed in systole from 81.2 cm3 to 54.1 cm3; p = 0.0156 in wMS and from 105.7 cm3 to 75.1 cm3; p = 0.031 in MS. Finally, a positive correlation was found between EAT loss, BMI (r = 0.52; p = 0.0443) and VAT (r = 0.66; p = 0.008) reduction after BMS. CONCLUSION These findings suggest that EAT reduction may be a fundamental element for improving the cardio-metabolic prognosis of bariatric patients. Moreover, this is the first study performed with an open-bore MRI scanner to measure EAT volume.
Collapse
Affiliation(s)
- Carmela Asteria
- National Institute of Obesity Cure (INCO)-Bariatric Unit, IRCCS, Policlinico San Donato, Piazza Edmondo Malan, 2, 20097, San Donato Milanese, Milan, Italy
| | - Francesco Secchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milano, Italy
- Department of Radiology, IRCCS Policlinico San Donato, piazza Edmondo Malan, 2, 20097, San Donato Milanese, Italy
- Head of Cardiovascular Imaging, IRCCS Multimedica, via Milanese, 300, Sesto San Giovanni, 20099, Milan, Italy
| | - Lelio Morricone
- Metabolic Diseases Service, Palazzo della Salute, Gruppo San Donato (GSD), via Teodorico, 25, 20149, Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS, Policlinico San Donato, piazza Edmondo Malan, 2, 20097, San Donato Milanese, Milan, Italy
| | - Simona
- National Institute of Obesity Cure (INCO)-Bariatric Unit, IRCCS, Policlinico San Donato, Piazza Edmondo Malan, 2, 20097, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milano, Italy
- Department of Radiology, IRCCS Policlinico San Donato, piazza Edmondo Malan, 2, 20097, San Donato Milanese, Italy
- Head of Cardiovascular Imaging, IRCCS Multimedica, via Milanese, 300, Sesto San Giovanni, 20099, Milan, Italy
- Metabolic Diseases Service, Palazzo della Salute, Gruppo San Donato (GSD), via Teodorico, 25, 20149, Milan, Italy
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS, Policlinico San Donato, piazza Edmondo Malan, 2, 20097, San Donato Milanese, Milan, Italy
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS, Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Francesconi1
- National Institute of Obesity Cure (INCO)-Bariatric Unit, IRCCS, Policlinico San Donato, Piazza Edmondo Malan, 2, 20097, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milano, Italy
- Department of Radiology, IRCCS Policlinico San Donato, piazza Edmondo Malan, 2, 20097, San Donato Milanese, Italy
- Head of Cardiovascular Imaging, IRCCS Multimedica, via Milanese, 300, Sesto San Giovanni, 20099, Milan, Italy
- Metabolic Diseases Service, Palazzo della Salute, Gruppo San Donato (GSD), via Teodorico, 25, 20149, Milan, Italy
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS, Policlinico San Donato, piazza Edmondo Malan, 2, 20097, San Donato Milanese, Milan, Italy
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS, Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Valentina Milani
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS, Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Alessandro Giovanelli
- National Institute of Obesity Cure (INCO)-Bariatric Unit, IRCCS, Policlinico San Donato, Piazza Edmondo Malan, 2, 20097, San Donato Milanese, Milan, Italy
| |
Collapse
|
17
|
Liu L, Jia C, Xing C, Fu X, Liu Z, Ma A. Predictive Value of Epicardial Adipose Tissue for Hemorrhagic Transformation and Functional Outcomes in Acute Ischemic Stroke Patients Undergoing Intravenous Thrombolysis Therapy. J Inflamm Res 2024; 17:11915-11929. [PMID: 39758939 PMCID: PMC11699849 DOI: 10.2147/jir.s499351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose Hemorrhagic transformation (HT) is a severe complication in patients with acute ischemic stroke (AIS) undergoing intravenous thrombolysis therapy (IVT). Epicardial adipose tissue (EAT) contributes to the development of AIS and the disruption of the blood-brain barrier. This study aims to investigate the relationship between EAT and the risk of HT, as well as functional outcomes, in AIS patients treated with IVT. Patients and Methods 230 AIS patients were included. Epicardial adipose tissue volume (EATV) and EAT attenuation were measured from chest CT scans. Follow-up cranial CT or magnetic resonance imaging (MRI) assessed HT occurrence. Patients were stratified into groups based on the presence of HT or parenchymal hematoma (PH), and their 90-day functional outcomes (evaluated by the modified Rankin Scale). Results HT occurred in 52 (22.61%) patients, including 28 (12.17%) patients with PH, 85 (37.00%) patients had poor 90-day functional prognosis. Compared to the first quartile of EATV, the third quartile (OR 9.254, 95% CI 1.533-55.853) and the fourth quartile (OR 11.117, 95% CI 1.925-64.211) of EATV were independent predictors of HT; and EATV as a continuous variable (OR 1.022, 95% CI 1.005-1.040) was an independent risk factor for PH. Higher EAT attenuation was independently associated with poor prognosis (OR 1.170, 95% CI 1.056-1.297). The area under curve for predicting HT, PH and 90-day poor functional outcome was 0.705 (95% CI 0.632-0.778), 0.693 (95% CI 0.597-0.789), and 0.720 (95% CI 0.653-0.787). Conclusion The study demonstrates that EAT is associated with HT and poor 90-day outcomes in AIS patients undergoing IVT.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
- School of Neurology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Chunyan Jia
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Chengfeng Xing
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
- School of Neurology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Xinyi Fu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
- School of Neurology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Zhen Liu
- Department of Endocrinology, Jimo People’s Hospital, Qingdao, 266200, People’s Republic of China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
18
|
Meulendijks ER, Janssen-Telders C, Hulsman EL, Lobe N, Zappala P, Terpstra MM, Wesselink R, de Vries TAC, Al-Shama RF, van Veen RN, de Castro SMM, de Vries CEE, Nijland LMG, Planken RN, Krul SPJ, de Groot JR. The change of epicardial adipose tissue characteristics and vulnerability for atrial fibrillation upon drastic weight loss. Adipocyte 2024; 13:2395565. [PMID: 39248109 PMCID: PMC11385166 DOI: 10.1080/21623945.2024.2395565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Obesity increases the risk of atrial fibrillation (AF). We hypothesize that 'obese' epicardial adipose tissue (EAT) is, regardless of comorbidities, associated with markers of AF vulnerability. METHODS Patients >40y of age undergoing bariatric surgery and using <2 antihypertensive drugs and no insulin were prospectively included. Study investigations were conducted before and 1y after surgery. Heart rhythm and p-wave duration were measured through ECGs and 7-d-holters. EAT-volume and attenuation were determined on non-enhanced CT scans. Serum markers were quantified by ELISA. RESULTS Thirty-seven patients underwent surgery (age: 52.1 ± 5.9y; 27 women; no AF). Increased p-wave duration correlated with higher BMI, larger EAT volumes, and lower EAT attenuations (p < 0.05). Post-surgery, p-wave duration decreased from 109 ± 11 to 102 ± 11ms. Concurrently, EAT volume decreased from 132 ± 49 to 87 ± 52ml, BMI from 43.2 ± 5.2 to 28.9 ± 4.6kg/m2, and EAT attenuation increased from -76.1 ± 4.0 to -71.7 ± 4.4HU (p <0.001). Adiponectin increased from 8.7 ± 0.8 to 14.2 ± 1.0 μg/ml (p <0.001). However, decreased p-wave durations were not related to changed EAT characteristics, BMI or adiponectin. CONCLUSION In this explorative study, longer p-wave durations related to higher BMIs, larger EAT volume, and lower EAT attenuations. P-wave duration and EAT volume decreased, and EAT attenuation increased upon drastic weightloss. However, there was no relation between decreased p-wave duration and changed BMI or EAT characteristics.
Collapse
Affiliation(s)
- Eva R Meulendijks
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Carolina Janssen-Telders
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Departments of Cardiology, Heart Centre, Vrije Universiteit, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elise L Hulsman
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nick Lobe
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pietro Zappala
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Marc M Terpstra
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Robin Wesselink
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Tim A C de Vries
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Departments of Cardiology, Heart Centre, Vrije Universiteit, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Cardiology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Rushd F Al-Shama
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Ruben N van Veen
- Department of Surgery, Onze Lieve Vrouwe Gasthuis, locatie West, Amsterdam, The Netherlands
| | - Steve M M de Castro
- Department of Surgery, Onze Lieve Vrouwe Gasthuis, locatie West, Amsterdam, The Netherlands
| | - Claire E E de Vries
- Department of Surgery, Onze Lieve Vrouwe Gasthuis, locatie West, Amsterdam, The Netherlands
- Department of Plastic surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Leontien M G Nijland
- Department of Surgery, Onze Lieve Vrouwe Gasthuis, locatie West, Amsterdam, The Netherlands
| | - R Nils Planken
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Joris R de Groot
- Departments of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Heart Centre, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Wang M, Qin L, Bao W, Xu Z, Han L, Yan F, Yang W. Epicardial and pericoronary adipose tissue and coronary plaque burden in patients with Cushing's syndrome: a propensity score-matched study. J Endocrinol Invest 2024; 47:1995-2005. [PMID: 38308163 DOI: 10.1007/s40618-023-02295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/28/2023] [Indexed: 02/04/2024]
Abstract
PURPOSE To assess coronary inflammation by measuring the volume and density of the epicardial adipose tissue (EAT), perivascular fat attenuation index (FAI) and coronary plaque burden in patients with Cushing's syndrome (CS) based on coronary computed tomography angiography (CCTA). METHODS This study included 29 patients with CS and 58 matched patients without CS who underwent CCTA. The EAT volume, EAT density, FAI and coronary plaque burden were measured. The high-risk plaque (HRP) was also evaluated. CS duration from diagnosis, 24-h urinary free cortisol (UFC), and abdominal visceral adipose tissue volume (VAT) of CS patients were recorded. RESULTS The CS group had higher EAT volume (146.9 [115.4, 184.2] vs. 119.6 [69.0, 147.1] mL, P = 0.006), lower EAT density (- 78.79 ± 5.89 vs. - 75.98 ± 6.03 HU, P = 0.042), lower FAI (- 84.0 ± 8.92 vs. - 79.40 ± 10.04 HU, P = 0.038), higher total plaque volume (88.81 [36.26, 522.5] vs. 44.45 [0, 198.16] mL, P = 0.010) and more HRP plaques (7.3% vs. 1.8%, P = 0.026) than the controls. The multivariate analysis suggested that CS itself (β [95% CI], 29.233 [10.436, 48.03], P = 0.014), CS duration (β [95% CI], 0.176 [0.185, 4.242], P = 0.033), and UFC (β [95% CI], 0.197 [1.803, 19.719], P = 0.019) were strongly associated with EAT volume but not EAT density, and EAT volume (β [95% CI] - 0.037[- 0.058, - 0.016], P = 0.001) not CS was strongly associated with EAT density. EAT volume, FAI and plaque burden increased (all P < 0.05) in 6 CS patients with follow-up CCTA. The EAT volume had a moderate correlation with abdominal VAT volume (r = 0.526, P = 0.008) in CS patients. CONCLUSIONS Patients with CS have higher EAT volume and coronary plaque burden but less inflammation as detected by EAT density and FAI. The EAT density is associated with EAT volume but not CS itself.
Collapse
Affiliation(s)
- M Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - L Qin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - W Bao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Z Xu
- Siemens Healthineers CT Collaboration, Shanghai, China
| | - L Han
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - F Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - W Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
20
|
Liu D, Ren B, Tian Y, Chang Z, Zou T. Association of the TyG index with prognosis in surgical intensive care patients: data from the MIMIC-IV. Cardiovasc Diabetol 2024; 23:193. [PMID: 38844938 PMCID: PMC11157750 DOI: 10.1186/s12933-024-02293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index, a tool for assessing insulin resistance, is increasingly recognized for its ability to predict cardiovascular and metabolic risks. However, its relationship with trauma and surgical patient prognosis is understudied. This study investigated the correlation between the TyG index and mortality risk in surgical/trauma ICU patients to identify high-risk individuals and improve prognostic strategies. METHODS This study identified patients requiring trauma/surgical ICU admission from the Medical Information Mart for Intensive Care (MIMIC-IV) database, and divided them into tertiles based on the TyG index. The outcomes included 28-day mortality and 180-day mortality for short-term and long-term prognosis. The associations between the TyG index and clinical outcomes in patients were elucidated using Cox proportional hazards regression analysis and RCS models. RESULTS A total of 2103 patients were enrolled. The 28-day mortality and 180-day mortality rates reached 18% and 24%, respectively. Multivariate Cox proportional hazards analysis revealed that an elevated TyG index was significantly related to 28-day and 180-day mortality after covariates adjusting. An elevated TyG index was significantly associated with 28-day mortality (adjusted hazard ratio, 1.19; 95% confidence interval 1.04-1.37) and 180-day mortality (adjusted hazard ratio, 1.24; 95% confidence interval 1.11-1.39). RCS models revealed that a progressively increasing risk of mortality was related to an elevated TyG index. According to our subgroup analysis, an elevated TyG index is associated with increased risk of 28-day and 180-day mortality in critically ill patients younger than 60 years old, as well as those with concomitant stroke or cardiovascular diseases. Additionally, in nondiabetic patients, an elevated TyG index is associated with 180-day mortality. CONCLUSION An increasing risk of mortality was related to an elevated TyG index. In critically ill patients younger than 60 years old, as well as those with concomitant stroke or cardiovascular diseases, an elevated TyG index is associated with adverse short-term and long-term outcomes. Furthermore, in non-diabetic patients, an elevated TyG index is associated with adverse long-term prognosis.
Collapse
Affiliation(s)
- Donghao Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
- Beijing Hospital, Institute of Geriatric Medicine, Peking University Fifth School of Clinical Medicine, Beijing, People's Republic of China
| | - Bingkui Ren
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People's Republic of China
- Department of Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yuqing Tian
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zhigang Chang
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People's Republic of China.
- Department of Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Tong Zou
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People's Republic of China.
- Beijing Hospital, Institute of Geriatric Medicine, Peking University Fifth School of Clinical Medicine, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Thangavel H, Dhanyalayam D, Kim M, Lizardo K, Sidrat T, Lopez JG, Wang X, Bansal S, Nagajyothi JF. Adipocyte-released adipomes in Chagas cardiomyopathy: Impact on cardiac metabolic and immune regulation. iScience 2024; 27:109672. [PMID: 38660407 PMCID: PMC11039351 DOI: 10.1016/j.isci.2024.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic Trypanosoma cruzi infection leads to Chagas cardiomyopathy (CCM), with varying manifestations such as inflammatory hypertrophic cardiomyopathy, arrhythmias, and dilated cardiomyopathy. The factors responsible for the increasing risk of progression to CCM are not fully understood. Previous studies link adipocyte loss to CCM progression, but the mechanism triggering CCM pathogenesis remains unexplored. Our study uncovers that T. cruzi infection triggers adipocyte apoptosis, leading to the release of extracellular vesicles named "adipomes". We developed an innovative method to isolate intact adipomes from infected mice's adipose tissue and plasma, showing they carry unique lipid cargoes. Large and Small adipomes, particularly plasma-derived infection-associated L-adipomes (P-ILA), regulate immunometabolic signaling and induce cardiomyopathy. P-ILA treatment induces hypertrophic cardiomyopathy in wild-type mice and worsens cardiomyopathy severity in post-acute-infected mice by regulating adipogenic/lipogenic and mitochondrial functions. These findings highlight adipomes' pivotal role in promoting inflammation and impairing myocardial function during cardiac remodeling in CD.
Collapse
Affiliation(s)
- Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michelle Kim
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | | | - Xiang Wang
- Rutgers University Molecular Imaging Core (RUMIC), Rutgers Translational Sciences, Piscataway, NJ 08854, USA
| | - Shivani Bansal
- Departnment of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
22
|
Mehta H, Narang T, Dogra S, Handa S, Hatwal J, Batta A. Cardiovascular Considerations and Implications for Treatment in Psoriasis: An Updated Review. Vasc Health Risk Manag 2024; 20:215-229. [PMID: 38745849 PMCID: PMC11093123 DOI: 10.2147/vhrm.s464471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Psoriasis, a prevalent chronic inflammatory skin disorder affecting 2-3% of the global population, has transcended its dermatological confines, revealing a profound association with cardiovascular diseases (CVD). This comprehensive review explores the intricate interplay between psoriasis and cardiovascular system, delving into genetic links, immune pathways, and adipose tissue dysfunction beyond conventional CVD risk factors. The pathophysiological connections unveil unique signatures, distinct from other inflammatory skin conditions, in particular psoriasis-specific genetic polymorphisms in IL-23 and TNF-α have consistently been linked to CVD. The review navigates the complex landscape of psoriasis treatments, addressing challenges and future directions in particular relevance to CVDs in psoriasis. Therapeutic interventions, including TNF inhibitors (TNFi), present promise in reducing cardiovascular risks, and methotrexate could constitute a favourable choice. Conversely, the relationship between IL-12/23 inhibitors and cardiovascular risk remains uncertain, while recent evidence indicates that Janus kinase inhibitors may not carry CVD risks. Emerging evidence supports the safety and efficacy of IL-17 and IL-23 inhibitors in patients with CVDs, hinting at evolving therapeutic paradigms. Lifestyle modifications, statins, and emerging therapies offer preventive strategies. Dedicated screening guidelines for CVD risk assessment in psoriasis are however lacking. Further, the impact of different disease phenotypes and treatment hierarchies in cardiovascular outcomes remains elusive, demanding ongoing research at the intersection of dermatology, rheumatology, and cardiology. In conclusion, unraveling the intricate connections between psoriasis and CVD provides a foundation for a holistic approach to patient care. Collaboration between specialties, advancements in screening methodologies, and a nuanced understanding of treatment impacts are essential for comprehensive cardiovascular risk management in individuals with psoriasis.
Collapse
Affiliation(s)
- Hitaishi Mehta
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjeev Handa
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juniali Hatwal
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital (DMCH), Ludhiana, 141001, India
| |
Collapse
|
23
|
Rizzuto AS, Gelpi G, Mangini A, Carugo S, Ruscica M, Macchi C. Exploring the role of epicardial adipose-tissue-derived extracellular vesicles in cardiovascular diseases. iScience 2024; 27:109359. [PMID: 38510143 PMCID: PMC10951984 DOI: 10.1016/j.isci.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a fat depot located between the myocardium and the visceral layer of the epicardium, which, owing to its location, can influence surrounding tissues and can act as a local transducer of systemic inflammation. The mechanisms upon which such influence depends on are however unclear. Given the role EAT undoubtedly has in the scheme of cardiovascular diseases (CVDs), understanding the impact of its cellular components is of upmost importance. Extracellular vesicles (EVs) constitute promising candidates to fill the gap in the knowledge concerning the unexplored mechanisms through which EAT promotes onset and progression of CVDs. Owing to their ability of transporting active biomolecules, EAT-derived EVs have been reported to be actively involved in the pathogenesis of ischemia/reperfusion injury, coronary atherosclerosis, heart failure, and atrial fibrillation. Exploring the precise functions EVs exert in this context may aid in connecting the dots between EAT and CVDs.
Collapse
Affiliation(s)
| | - Guido Gelpi
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Mangini
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Arderiu G, Bejar MT, Civit-Urgell A, Peña E, Badimon L. Crosstalk of human coronary perivascular adipose-derived stem cells with vascular cells: role of tissue factor. Basic Res Cardiol 2024; 119:291-307. [PMID: 38430261 DOI: 10.1007/s00395-024-01037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
The coronary perivascular adipose tissue (cPVAT) has been associated to the burden of cardiovascular risk factors and to the underlying vessel atherosclerotic plaque severity. Although the "outside to inside" hypothesis of PVAT-derived-adipokine regulation of vessel function is currently accepted, whether the resident mesenchymal stem cells (ASCs) in PVAT have a regulatory role on the underlying vascular arterial smooth muscle cells (VSMCs) is not known. Here, we investigated the interactions between resident PVAT-ASCs and VSMCs. ASCs were obtained from PVAT overlying the left anterior descending (LAD) coronary artery of hearts removed at heart transplant operations. PVAT was obtained both from patients with non-ischemic and ischemic heart disease as the cause of heart transplant. ASCs were isolated from PVAT, phenotypically characterized by flow cytometry, functionally tested for proliferation, and differentiation. Crosstalk between ASCs and VSMCs was investigated by co-culture studies. ASCs were detected in the adventitia of the LAD-PVAT showing differentiation capacity and angiogenic potential. ASCs obtained from PVAT of non-ischemic and ischemic hearts showed different tissue factor (TF) expression levels, different VSMCs recruitment capacity through the axis ERK1/2-ETS1 signaling and different angiogenic potential. Induced upregulation of TF in ASCs isolated from ischemic PVAT rescued their angiogenic capacity in subcutaneously implanted plugs in mice, whereas silencing TF in ASCs decreased the proangiogenic capacity of non-ischemic ASCs. The results indicate for the first time a novel mechanism of regulation of VSMCs by PVAT-ASCs in angiogenesis, mediated by TF expression in ASCs. Regulation of TF in ASCs may become a therapeutic intervention to increase cardiac protection.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain.
- Ciber CV, Instituto Carlos III, Madrid, Spain.
| | - Maria Teresa Bejar
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Anna Civit-Urgell
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
| | - Esther Peña
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Ciber CV, Instituto Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Ciber CV, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Foldyna B, Hadzic I, Zeleznik R, Langenbach MC, Raghu VK, Mayrhofer T, Lu MT, Aerts HJWL. Deep learning analysis of epicardial adipose tissue to predict cardiovascular risk in heavy smokers. COMMUNICATIONS MEDICINE 2024; 4:44. [PMID: 38480863 PMCID: PMC10937640 DOI: 10.1038/s43856-024-00475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Heavy smokers are at increased risk for cardiovascular disease and may benefit from individualized risk quantification using routine lung cancer screening chest computed tomography. We investigated the prognostic value of deep learning-based automated epicardial adipose tissue quantification and compared it to established cardiovascular risk factors and coronary artery calcium. METHODS We investigated the prognostic value of automated epicardial adipose tissue quantification in heavy smokers enrolled in the National Lung Screening Trial and followed for 12.3 (11.9-12.8) years. The epicardial adipose tissue was segmented and quantified on non-ECG-synchronized, non-contrast low-dose chest computed tomography scans using a validated deep-learning algorithm. Multivariable survival regression analyses were then utilized to determine the associations of epicardial adipose tissue volume and density with all-cause and cardiovascular mortality (myocardial infarction and stroke). RESULTS Here we show in 24,090 adult heavy smokers (59% men; 61 ± 5 years) that epicardial adipose tissue volume and density are independently associated with all-cause (adjusted hazard ratios: 1.10 and 1.38; P < 0.001) and cardiovascular mortality (adjusted hazard ratios: 1.14 and 1.78; P < 0.001) beyond demographics, clinical risk factors, body habitus, level of education, and coronary artery calcium score. CONCLUSIONS Our findings suggest that automated assessment of epicardial adipose tissue from low-dose lung cancer screening images offers prognostic value in heavy smokers, with potential implications for cardiovascular risk stratification in this high-risk population.
Collapse
Affiliation(s)
- Borek Foldyna
- Cardiovascular Imaging Research Center (CIRC), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ibrahim Hadzic
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| | - Roman Zeleznik
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Marcel C Langenbach
- Cardiovascular Imaging Research Center (CIRC), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Vineet K Raghu
- Cardiovascular Imaging Research Center (CIRC), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Mayrhofer
- Cardiovascular Imaging Research Center (CIRC), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany
| | - Michael T Lu
- Cardiovascular Imaging Research Center (CIRC), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hugo J W L Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
26
|
Cheng P, Rashad A, Gangrade A, Barros NRD, Khademhosseini A, Tam J, Varadarajan P, Agrawal DK, Thankam FG. Stem Cell-Derived Cardiomyocyte-Like Cells in Myocardial Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:1-14. [PMID: 37294202 DOI: 10.1089/ten.teb.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Myocardial infarction results in the significant loss of cardiomyocytes (CMs) due to the ischemic injury following coronary occlusion leading to impaired contractility, fibrosis, and ultimately heart failure. Stem cell therapy emerged as a promising regenerative strategy to replenish the otherwise terminally differentiated CM to restore cardiac function. Multiple strategies have been applied to successfully differentiate diverse stem cell populations into CM-like phenotypes characterized by the expression status of signature biomarkers and observable spontaneous contractions. This article discusses the current understanding and applications of various stem cell phenotypes to drive the differentiation machinery toward CM-like lineage. Impact Statement Ischemic heart disease (IHD) extensively affects a large proportion of the population worldwide. Unfortunately, current treatments for IHD are insufficient to restore cardiac effectiveness and functionality. A growing field in regenerative cardiology explores the potential for stem cell therapy following cardiovascular ischemic episodes. The thorough understanding regarding the potential and shortcomings of translational approaches to drive versatile stem cells to cardiomyocyte lineage paves the way for multiple opportunities for next-generation cardiac management.
Collapse
Affiliation(s)
- Pauline Cheng
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Padmini Varadarajan
- University of California Riverside School of Medicine, Riverside, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
27
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Tong Y, Zuo Z, Li X, Li M, Wang Z, Guo X, Wang X, Sun Y, Chen D, Zhang Z. Protective role of perivascular adipose tissue in the cardiovascular system. Front Endocrinol (Lausanne) 2023; 14:1296778. [PMID: 38155947 PMCID: PMC10753176 DOI: 10.3389/fendo.2023.1296778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This review provides an overview of the key role played by perivascular adipose tissue (PVAT) in the protection of cardiovascular health. PVAT is a specific type of adipose tissue that wraps around blood vessels and has recently emerged as a critical factor for maintenance of vascular health. Through a profound exploration of existing research, this review sheds light on the intricate structural composition and cellular origins of PVAT, with a particular emphasis on combining its regulatory functions for vascular tone, inflammation, oxidative stress, and endothelial function. The review then delves into the intricate mechanisms by which PVAT exerts its protective effects, including the secretion of diverse adipokines and manipulation of the renin-angiotensin complex. The review further examines the alterations in PVAT function and phenotype observed in several cardiovascular diseases, including atherosclerosis, hypertension, and heart failure. Recognizing the complex interactions of PVAT with the cardiovascular system is critical for pursuing breakthrough therapeutic strategies that can target cardiovascular disease. Therefore, this review aims to augment present understanding of the protective role of PVAT in cardiovascular health, with a special emphasis on elucidating potential mechanisms and paving the way for future research directions in this evolving field.
Collapse
Affiliation(s)
- Yi Tong
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zheng Zuo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinqi Li
- Center for Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Minghua Li
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhenggui Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Guo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xishu Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dongmei Chen
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Aurigemma GP, Gentile BA, Dickey JB, Fitzgibbons TP, Tighe DA, Kakouros N, Kovell LC, Gottbrecht MF, Narvaez-Guerra O, Qureshi W, Gerson DS, Parker MW. Insights Into the Standard Echocardiographic Views From Multimodality Imaging: Ventricles, Pericardium, Valves, and Atria. J Am Soc Echocardiogr 2023; 36:1266-1289. [PMID: 37549797 DOI: 10.1016/j.echo.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
The widespread use of cardiac computed tomography and cardiac magnetic resonance imaging in patients undergoing echocardiography presents an opportunity to correlate the images side by side. Accordingly, the aim of this report is to review aspects of the standard echocardiographic examination alongside similarly oriented images from the two tomographic imaging modalities. It is hoped that this exercise will enhance understanding of the structures depicted by echocardiography as they relate to other structures in the thorax. In addition to reviewing basic cardiac anatomy, the authors take advantage of these correlations with computed tomography and cardiac magnetic resonance imaging to better understand the issue of foreshortening, a common pitfall in transthoracic echocardiography. The authors also highlight an important role that three-dimensional echocardiography can potentially play in the future, especially as advances in image processing permit higher fidelity multiplanar reconstruction images.
Collapse
Affiliation(s)
- Gerard P Aurigemma
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts.
| | - Bryon A Gentile
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - John B Dickey
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - Timothy P Fitzgibbons
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - Dennis A Tighe
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - Nikolaos Kakouros
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - Lara C Kovell
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - Matthew F Gottbrecht
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - Offdan Narvaez-Guerra
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - Waqas Qureshi
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - David S Gerson
- Department of Radiology, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| | - Matthew W Parker
- Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School and UMass Memorial Healthcare, Worcester, Massachusetts
| |
Collapse
|
30
|
Zhang WZ, Li PL, Gao Y, Chen XY, He LY, Zhang Q, Yu JQ. Relationships between the coronary fat attenuation index for patients with heart-related disease measured automatically on coronary computed tomography angiography and coronary adverse events and degree of coronary stenosis. Quant Imaging Med Surg 2023; 13:8218-8229. [PMID: 38106238 PMCID: PMC10722073 DOI: 10.21037/qims-23-326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/04/2023] [Indexed: 12/19/2023]
Abstract
Background Pericoronary artery coronary tissue (PACT) is a type of epicardial fat that can reflect the state of the coronary artery (inflammation, etc.). However, it cannot be reasonably and efficiently utilized in routine computed tomography (CT) examination. The aim of this study was to use artificial intelligence (AI) software to analyze coronary computed tomography angiography (CCTA) and measure the coronary perivascular fat attenuation index (FAI) of patients. The relationship between FAI and the occurrence of coronary adverse events and the degree of coronary stenosis were further analyzed. Methods This study involved patients who experienced CCTA in West China Hospital, Sichuan University, from January 2012 to December 2012. These patients were followed up to 2020 and classified according to the occurrence of coronary adverse events and the degree of stenosis of the lumen. For all patients, AI software was used to analyze the CCTA images of patients, and the FAI of 3 coronary arteries, the left anterior descending artery (LAD), the left circumflex artery (LCX), and the right coronary artery (RCA), was measured. Moreover, the relationship between FAI and patients with different degrees of coronary stenosis and adverse coronary events was determined. Results Comparisons between any 2 groups showed that the differences in the FAI among the 4 groups for the LAD were significant (all P values <0.05). There were no significant differences between the group with less-than-moderate stenosis (Mb) without adverse events and the group with moderate-or-above stenosis (M) with no adverse events for the LCX (P>0.05). For the remaining groups, FAI values exhibited statistically significant differences (P<0.05). According to the degree of lumen stenosis, the patients were divided into groups according to LAD, LCX, and RCA and the sum of the 3 vessels. There were significant differences in coronary FAI among the groups with different degrees of lumen stenosis for the sum of the 3 vessels, the LAD, and the LCX (P<0.05). Conclusions FAI can reflect the state of the coronary artery, which is related to inflammation of the coronary lumen. Moreover, there is a relationship between FAI and the degree of stenosis in the coronary lumen: the narrower the coronary lumen is, the higher the FAI around the lumen.
Collapse
Affiliation(s)
- Wen-Zhao Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pei-Ling Li
- Department of Critical Care Medicine, Chengdu Shangjinnanfu Hospital, Chengdu, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Yue Chen
- CT Collaboration, Siemens Healthineers, Chengdu, China
| | - Li-Yi He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jian-Qun Yu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Zhu J, Xie Z, Huang H, Li W, Zhuo K, Bai Z, Huang R. Association of Epicardial Adipose Tissue With Left Ventricular Strain and MR Myocardial Perfusion in Patients With Known Coronary Artery Disease. J Magn Reson Imaging 2023; 58:1490-1498. [PMID: 36794488 DOI: 10.1002/jmri.28619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) may have a paracrine effect on coronary microcirculation and myocardium. However, it is unclear whether EAT is linked to cardiac function and perfusion. PURPOSE To investigate the association of EAT with left ventricular (LV) strain and myocardial perfusion in patients with coronary artery disease (CAD). STUDY TYPE Retrospective. POPULATION A total of 78 patients with CAD and 20 healthy controls. The patients were further divided into high (n = 39) and low EAT volume (n = 39) groups according to median EAT volume. FIELD STRENGTH/SEQUENCE A 1.5 T, balanced steady-state free precession, inversion recovery prepared echo-planar, and segmented-turbo fast low-angle shot (FLASH) phase-sensitive inversion recovery (PSIR) sequences. ASSESSMENT EAT volume was measured by manually tracing the epicardial border and the visceral layer of pericardium on the short-axis cine stacks. LV strain parameters included global radial (GRS), circumferential (GCS), and longitudinal peak strain (GLS). Perfusion indices included upslope, perfusion index, time-to-maximum signal intensity (TTM), and maximum signal intensity (MaxSI). STATISTICAL TESTS One-way analysis of variance or Kruskal-Wallis rank tests, Chi-squared or Fisher exact tests. Multivariate linear regression analyses. A P value < 0.05 was considered statistically significant. RESULTS The parameters of GRS GCS, GLS, upslope, perfusion index, and MaxSI were significantly lower in the patients when compared to the controls. Moreover, the high EAT volume group presented significantly longer TTM values and lower GRS, GCS, GLS, upslope, perfusion index, and MaxSI than the low EAT volume group. Multivariate linear regression analyses demonstrated that EAT was independently associated with GRS, GCS, GLS, upslope, perfusion index, TTM, and MaxSI in patients. EAT and upslope were independently associated with GRS, while EAT and perfusion index were both independently associated with GCS and GLS. DATA CONCLUSION EAT was associated with parameters of LV function and perfusion, and myocardial perfusion was independently associated with LV strain in patients with CAD. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhen Xie
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hao Huang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjia Li
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kaimin Zhuo
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhicheng Bai
- Department of Radiology, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Ruijue Huang
- Department of Basic Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| |
Collapse
|
32
|
Ma GJ, Guo FQ, Hu J, Liu XW, Chen C, Gao B, Li CY. Association of pericoronary adipose tissue with atrial fibrillation recurrence after ablation based on computed tomographic angiography. Jpn J Radiol 2023; 41:955-964. [PMID: 37040024 DOI: 10.1007/s11604-023-01426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Quantitative measurement of pericoronary adipose tissue volume (PCATV) and fat attenuation index (FAI) has mostly been used in the study of coronary artery related diseases but rarely in the relationship with atrial fibrillation (AF). This study was conducted to investigate the correlation of PCATV and FAI with the AF recurrence after ablation and the clinical significance. MATERIALS AND METHODS Patients with continuous AF who underwent radiofrequency ablation and computed tomographic angiography (CTA) were retrospectively enrolled. The PCATV, FAI, epicardial adipose tissue volume (EATV) and EAT density (EATD) arround the three main branches of the coronary arteries (LAD, LCX, and RCA) were measured quantitatively with cardiac function software and analyzed. RESULTS 189 patients with continuous AF who underwent radiofrequency ablation for the first time were enrolled. After 12-month follow-up with a mean follow-up time of 10.93 ± 0.16 months, 47 (24.9%) patients were confirmed to have AF recurrence. The 3 V-FAI (- 81.17 ± 4.27 vs. - 83.31 ± 4.59 HU, P = 0.005), LCX-FAI (median - 77 vs. median - 81HU, P < 0.001), EATV (median 141.14vs. median 125.39 ml, P = 0.010), and EATVI (median 70.77 vs. 66.73 ml/m2, P = 0.008) were significantly increased in the recurrence group. EATVI (OR 1.043, 95% CI 1.020-1.066) and LCX-FAI (OR 1.254, 95% CI 1.145-1.374) were two significant independent risk factors for AF recurrence. In the comparison of ROC, the predictive value of LCX-FAI (cut-off value of >- 81.5 HU, area under the curve (AUC) of 0.722) was higher than that of EATVI (cut-off value > 81.07 ml/m2, AUC of 0.630). CONCLUSION EATVI and LCX-FAI were related to recurrence of AF after ablation and have important clinical value in predicting the AF recurrence.
Collapse
Affiliation(s)
- Guo-Jing Ma
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, Hebei Province, China
- Hebei General Hospital, Shijiazhuang, China
| | - Fu-Qian Guo
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, Hebei Province, China
| | - Jie Hu
- The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Xiao-Wei Liu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, Hebei Province, China
| | - Chen Chen
- Hebei General Hospital, Shijiazhuang, China
| | - Bulang Gao
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, Hebei Province, China
| | - Cai-Ying Li
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, Hebei Province, China.
| |
Collapse
|
33
|
El Shahawy ES, Hassan AA, El Shahawy MS. Epicardial Fat Volume as a Good Predictor for Multivessel Coronary Artery Disease. High Blood Press Cardiovasc Prev 2023; 30:427-434. [PMID: 37726552 DOI: 10.1007/s40292-023-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 09/21/2023] Open
Abstract
INTRODUCTION Epicardial adipose tissue may have an important role in the pathogenesis of coronary artery disease (CAD). AIM We aimed to study the association between epicardial fat volume (EFV) and presence of obstructive as well as multivessel CAD. METHODS A total of 87 adult subjects with suspected CAD who underwent both quantified by multidetector computerized tomography (MDCT) and Invasive Coronary Angiography (ICA) were enrolled in this observational study. EVF was measured by MDCT by calculating the sum of cross- sectional areas of fat multiplied by slice thickness. EFV measurement and its association with the presence of obstructive CAD (defined as coronary artery stenosis > 70%) was evaluated. RESULTS Overall, 89.6% patients had obstructive CAD with higher EFV as compared to 10.3% patients with non-obstructive CAD (57 ± 20.14 cm3 vs. 44 ± 7.4 cm3; P < 0.001). Furthermore, EFV was significantly increased in group II as compared with group I (74 ± 24.3 ml vs. 53 ± 16.2 ml; P < 0.003). On the hand, the coronary calcium score (CAC) was insignificantly increased in group II as compared with group I (486.1 vs. 211.2; P = 0.10). Multivariate analysis revealed that, EFV might be an independent risk factor for not only the presence of obstructive CAD (odds ratio [OR], 1.062; 95% CI 1.018- 1.108; P < 0.005) but also in predicting multivessel disease affection. CONCLUSIONS Our results demonstrated that, EFV was significantly increased not only with obstructive CAD, independent of other traditional risk factors and CAC score, but also it can be considered a good predictor of multivessel disease occurrence.
Collapse
Affiliation(s)
- Eman S El Shahawy
- Department of Cardiology, Faculty of Medicine (for girls), Al-Azhar University, Cairo, Nasr city, 11651, Egypt.
| | - Asmaa A Hassan
- Department of Cardiology, Faculty of Medicine (for girls), Al-Azhar University, Cairo, Nasr city, 11651, Egypt
| | - Mohamed S El Shahawy
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
34
|
Ceasovschih A, Sorodoc V, Shor A, Haliga RE, Roth L, Lionte C, Onofrei Aursulesei V, Sirbu O, Culis N, Shapieva A, Tahir Khokhar MAR, Statescu C, Sascau RA, Coman AE, Stoica A, Grigorescu ED, Banach M, Thomopoulos C, Sorodoc L. Distinct Features of Vascular Diseases in COVID-19. J Inflamm Res 2023; 16:2783-2800. [PMID: 37435114 PMCID: PMC10332421 DOI: 10.2147/jir.s417691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic was declared in early 2020 after several unexplained pneumonia cases were first reported in Wuhan, China, and subsequently in other parts of the world. Commonly, the disease comprises several clinical features, including high temperature, dry cough, shortness of breath, and hypoxia, associated with findings of interstitial pneumonia on chest X-ray and computer tomography. Nevertheless, severe forms of acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are not limited to the respiratory tract but also may be extended to other systems, including the cardiovascular system. The bi-directional relationship between atherosclerosis and COVID-19 is accompanied by poor prognosis. The immune response hyperactivation due to SARS-CoV-2 infection causes an increased secretion of cytokines, endothelial dysfunction, and arterial stiffness, which promotes the development of atherosclerosis. Also, due to the COVID-19 pandemic, access to healthcare amenities was reduced, resulting in increased morbidity and mortality in patients at risk. Furthermore, as lockdown measures were largely adopted worldwide, the sedentary lifestyle and the increased consumption of processed nutrients or unhealthy food increased, and in the consequence, we might observe even 70% of overweight and obese population. Altogether, with the relatively low ratio of vaccinated people in many countries, and important health debt appeared, which is now and will be for next decade a large healthcare challenge. However, the experience gained in the COVID-19 pandemic and the new methods of patients' approaching have helped the medical system to overcome this crisis and will hopefully help in the case of new possible epidemics.
Collapse
Affiliation(s)
- Alexandr Ceasovschih
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Victorita Sorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Annabelle Shor
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Raluca Ecaterina Haliga
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Lynn Roth
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Catalina Lionte
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | | | - Oana Sirbu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Nicolae Culis
- Nottingham University Hospitals NHS Trust, Queen’s Medical Center, Nottingham, NG72UH, UK
| | - Albina Shapieva
- Cardiac Electrophysiology Department, Petrovsky National Research Center of Surgery, Moscow, 119991, Russia
| | | | - Cristian Statescu
- Department of Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iasi, 700503, Romania
| | - Radu A Sascau
- Department of Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iasi, 700503, Romania
| | - Adorata Elena Coman
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Alexandra Stoica
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Elena-Daniela Grigorescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, 93338, Poland
| | - Costas Thomopoulos
- Department of Cardiology, Elena Venizelou General Hospital, Athens, GR-11522, Greece
| | - Laurentiu Sorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| |
Collapse
|
35
|
Navarro-Perez J, Vidal-Puig A, Carobbio S. Recent developments in adipose tissue-secreted factors and their target organs. Curr Opin Genet Dev 2023; 80:102046. [PMID: 37099831 DOI: 10.1016/j.gde.2023.102046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
The white adipose tissue's primary roles are to store and mobilise energy, which is very different from the brown adipose tissue's function of using fuel to generate heat and maintain the body temperature. The adipose tissues (ATs), co-ordinately with the other organs, sense energetic demands and inform of their reserves before embarking on energetically demanding physiological functions. It is not surprising that ATs exhibit highly integrated regulatory mechanisms mediated by a diversified secretome, including adipokines, lipokines, metabolites and a repertoire of extracellular miRNAs that contribute to integrating the function of the AT niche and connect the AT through paracrine and endocrine effects with the whole organism. Characterising the adipose secretome, its changes in health and disease, regulation by ageing and gender and their contribution to energy homoeostasis is necessary to optimise its use for personalised strategies to prevent or reverse metabolic diseases.
Collapse
Affiliation(s)
- Jaime Navarro-Perez
- Centro de Investigacion Principe Felipe, Valencia, Spain. https://twitter.com/@JaimeNavarroPr1
| | - Antonio Vidal-Puig
- Centro de Investigacion Principe Felipe, Valencia, Spain; Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
36
|
Agnese M, Toia P, Sollami G, Militello C, Rundo L, Vitabile S, Maffei E, Agnello F, Gagliardo C, Grassedonio E, Galia M, Cademartiri F, Midiri M, La Grutta L. Epicardial and thoracic subcutaneous fat texture analysis in patients undergoing cardiac CT. Heliyon 2023; 9:e15984. [PMID: 37215845 PMCID: PMC10196784 DOI: 10.1016/j.heliyon.2023.e15984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The aim of our study was to evaluate the feasibility of texture analysis of epicardial fat (EF) and thoracic subcutaneous fat (TSF) in patients undergoing cardiac CT (CCT). Materials and methods We compared a consecutive population of 30 patients with BMI ≤25 kg/m2 (Group A, 60.6 ± 13.7 years) with a control population of 30 patients with BMI >25 kg/m2 (Group B, 63.3 ± 11 years). A dedicated computer application for quantification of EF and a texture analysis application for the study of EF and TSF were employed. Results The volume of EF was higher in group B (mean 116.1 cm3 vs. 86.3 cm3, p = 0.014), despite no differences were found neither in terms of mean density (-69.5 ± 5 HU vs. -68 ± 5 HU, p = 0.28), nor in terms of quartiles distribution (Q1, p = 0.83; Q2, p = 0.22, Q3, p = 0.83, Q4, p = 0.34). The discriminating parameters of the histogram class were mean (p = 0.02), 0,1st (p = 0.001), 10th (p = 0.002), and 50th percentiles (p = 0.02). DifVarnc was the discriminating parameter of the co-occurrence matrix class (p = 0.007).The TSF thickness was 15 ± 6 mm in group A and 19.5 ± 5 mm in group B (p = 0.003). The TSF had a mean density of -97 ± 19 HU in group A and -95.8 ± 19 HU in group B (p = 0.75). The discriminating parameters of texture analysis were 10th (p = 0.03), 50th (p = 0.01), 90th percentiles (p = 0.04), S(0,1)SumAverg (p = 0.02), S(1,-1)SumOfSqs (p = 0.02), S(3,0)Contrast (p = 0.03), S(3,0)SumAverg (p = 0.02), S(4,0)SumAverg (p = 0.04), Horzl_RLNonUni (p = 0.02), and Vertl_LngREmph (p = 0.0005). Conclusions Texture analysis provides distinctive radiomic parameters of EF and TSF. EF and TSF had different radiomic features as the BMI varies.
Collapse
Affiliation(s)
- Manfredi Agnese
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | - Patrizia Toia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | - Giulia Sollami
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | - Carmelo Militello
- Institute for High-Performance Computing and Networking, National Research Council (ICAR-CNR), Palermo, Italy
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Salerno, Italy
| | - Salvatore Vitabile
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio, Pisa, Italy
| | - Francesco Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | - Emanuele Grassedonio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | - Massimo Galia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | | | - Massimo Midiri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BIND, University of Palermo, Via del Vespro 127, 90100, Palermo, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties - ProMISE, University of Palermo, Palermo, Italy
| |
Collapse
|
37
|
Kim IK, Song BW, Lim S, Kim SW, Lee S. The Role of Epicardial Adipose Tissue-Derived MicroRNAs in the Regulation of Cardiovascular Disease: A Narrative Review. BIOLOGY 2023; 12:498. [PMID: 37106699 PMCID: PMC10135702 DOI: 10.3390/biology12040498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Cardiovascular diseases have been leading cause of death worldwide for many decades, and obesity has been acknowledged as a risk factor for cardiovascular diseases. In the present review, human epicardial adipose tissue-derived miRNAs reported to be differentially expressed under pathologic conditions are discussed and summarized. The results of the literature review indicate that some of the epicardial adipose tissue-derived miRNAs are believed to be cardioprotective, while some others show quite the opposite effects depending on the underlying pathologic conditions. Furthermore, they suggest that that the epicardial adipose tissue-derived miRNAs have great potential as both a diagnostic and therapeutic modality. Nevertheless, mainly due to highly limited availability of human samples, it is very difficult to make any generalized claims on a given miRNA in terms of its overall impact on the cardiovascular system. Therefore, further functional investigation of a given miRNA including, but not limited to, the study of its dose effect, off-target effects, and potential toxicity is required. We hope that this review can provide novel insights to transform our current knowledge on epicardial adipose tissue-derived miRNAs into clinically viable therapeutic strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Sang-Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| |
Collapse
|
38
|
Cheng CK, Ding H, Jiang M, Yin H, Gollasch M, Huang Y. Perivascular adipose tissue: Fine-tuner of vascular redox status and inflammation. Redox Biol 2023; 62:102683. [PMID: 36958248 PMCID: PMC10038789 DOI: 10.1016/j.redox.2023.102683] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Perivascular adipose tissue (PVAT) refers to the aggregate of adipose tissue surrounding the vasculature, exhibiting the phenotypes of white, beige and brown adipocytes. PVAT has emerged as an active modulator of vascular homeostasis and pathogenesis of cardiovascular diseases in addition to its structural role to provide mechanical support to blood vessels. More specifically, PVAT is closely involved in the regulation of reactive oxygen species (ROS) homeostasis and inflammation along the vascular tree, through the tight interaction between PVAT and cellular components of the vascular wall. Furthermore, the phenotype-genotype of PVAT at different regions of vasculature varies corresponding to different cardiovascular risks. During ageing and obesity, the cellular proportions and signaling pathways of PVAT vary in favor of cardiovascular pathogenesis by promoting ROS generation and inflammation. Physiological means and drugs that alter PVAT mass, components and signaling may provide new therapeutic insights in the treatment of cardiovascular diseases. In this review, we aim to provide an updated understanding towards PVAT in the context of redox regulation, and to highlight the therapeutic potential of targeting PVAT against cardiovascular complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Huanyu Ding
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minchun Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huiyong Yin
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487, Greifswald, Germany
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
39
|
Huesca-Gómez C, Torres-Paz YE, Fuentevilla-Álvarez G, González-Moyotl NJ, Ramírez-Marroquín ES, Vásquez-Jiménez X, Sainz-Escarrega V, Soto ME, Samano R, Gamboa R. Expressions of mRNA and encoded proteins of mitochondrial uncoupling protein genes ( UCP1, UCP2, and UCP3) in epicardial and mediastinal adipose tissue and associations with coronary artery disease. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:214-223. [PMID: 36651711 PMCID: PMC10689038 DOI: 10.20945/2359-3997000000582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023]
Abstract
Objective To evaluate the expression of UCP1, UCP2, and UCP3 mRNA and encoded proteins in epicardial and mediastinal adipose tissues in patients with coronary artery disease (CAD). Subjects and methods We studied 60 patients with CAD and 106 patients undergoing valve replacement surgery (controls). Expression levels of UCP1, UCP2, and UCP3 mRNA and encoded proteins were measured by quantitative real-time PCR and Western blot analysis, respectively. Results : We found increased UCP1, UCP2, and UCP3 mRNA levels in the epicardial adipose tissue in the CAD versus the control group, and higher UCP1 and UCP3 mRNA expression in the epicardial compared with the mediastinal tissue in the CAD group. There was also increased expression of UCP1 protein in the epicardial tissue and UCP2 protein in the mediastinum tissue in patients with CAD. Finally, UCP1 expression was associated with levels of fasting plasma glucose, and UCP3 expression was associated with levels of high-density lipoprotein cholesterol and low-density cholesterol in the epicardial tissue. Conclusion Our study supports the hypothesis that higher mRNA expression by UCP genes in the epicardial adipose tissue could be a protective mechanism against the production of reactive oxygen species and may guard the myocardium against damage. Thus, UCP levels are essential to maintain the adaptive phase of cardiac injury in the presence of metabolic disorders.
Collapse
Affiliation(s)
- Claudia Huesca-Gómez
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| | - Yazmín Estela Torres-Paz
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| | | | | | | | - Xicótencatl Vásquez-Jiménez
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Cirugía Cardiotorácica, Ciudad de México, México
| | - Víctor Sainz-Escarrega
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Cirugía Cardiotorácica, Ciudad de México, México
| | - María Elena Soto
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Inmunología, Ciudad de México, México
| | - Reyna Samano
- Instituto Nacional de Perinatología, Coordinación de Nutrición y Bioprogramación, Ciudad de México, México
| | - Ricardo Gamboa
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| |
Collapse
|
40
|
Zheng Y, Chen B, Zhang M, Ma Y, Wang L, Zhang J, Jiang J. Autophagic degradation of LOX-1 is involved in the maintenance of vascular integrity injured by oxLDL and protected by Berberine. Int J Biol Sci 2023; 19:1813-1830. [PMID: 37063419 PMCID: PMC10092756 DOI: 10.7150/ijbs.80958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Damage to vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) caused by oxidized low-density lipoprotein (oxLDL) contributes to cardiovascular and cerebrovascular diseases. Protection effects of Berberine (BBR) on the cardiovascular system have been reported, however, the molecular mechanism of vascular protection is still unclear. In this study, we established two hyperlipidemia models in zebrafish and VEC-VSMC co-culture using high-cholesterol food (HCF) and oxLDL, respectively. We demonstrated that HCF doubled total cholesterol and total glyceride levels, and BBR decreased these indices in a concentration-dependent manner. Lipid staining and hematoxylin-eosin staining revealed that BBR inhibited oxLDL-induced VSMC bulge-like proliferation and migration toward VECs and prevented the HCF-induced trunk vascular obstruction in zebrafish. Immunoblot analysis, cell immunofluorescence, co-immunoprecipitation assays, and transmission electron microscopy showed that oxLDL/HCF increased lectin-like oxLDL receptor-1 (LOX-1) expression at least 5-fold and significantly inhibited autophagolysosome formation in the blood vessel cells and in zebrafish. These observations were associated with endothelial-to-mesenchymal transition (EMT) in VECs and triggered VE-cadherin ectopic expression in VSMCs, and they were responsible for aberrant VSMC migration and vascular occlusion. However, BBR, by promoting autolysosome formation and degradation of LOX-1, reversed the above events and maintained intracellular homeostasis of vessel cells and vascular integrity. In conclusion, regulation of autophagy may be an effective approach to treating oxLDL-induced cardiovascular diseases by reducing LOX-1 protein level. BBR can protect blood vessels by adjusting the oxLDL-LOX-1-EMT-autophagy axis. This study is a step toward the development of new applications of BBR.
Collapse
Affiliation(s)
| | | | | | | | - Lulu Wang
- ✉ Corresponding authors: Lulu Wang, & Jingpu Zhang, ; . Tel.: 0861063186645
| | - Jingpu Zhang
- ✉ Corresponding authors: Lulu Wang, & Jingpu Zhang, ; . Tel.: 0861063186645
| | | |
Collapse
|
41
|
Willar B, Tran KV, Fitzgibbons TP. Epicardial adipocytes in the pathogenesis of atrial fibrillation: An update on basic and translational studies. Front Endocrinol (Lausanne) 2023; 14:1154824. [PMID: 37020587 PMCID: PMC10067711 DOI: 10.3389/fendo.2023.1154824] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Epicardial adipose tissue (EAT) is an endocrine organ containing a host of cell types and undoubtedly serving a multitude of important physiologic functions. Aging and obesity cause hypertrophy of EAT. There is great interest in the possible connection between EAT and cardiovascular disease, in particular, atrial fibrillation (AF). Increased EAT is independently associated with AF and adverse events after AF ablation (e.g., recurrence of AF, and stroke). In general, the amount of EAT correlates with BMI or visceral adiposity. Yet on a molecular level, there are similarities and differences between epicardial and abdominal visceral adipocytes. In comparison to subcutaneous adipose tissue, both depots are enriched in inflammatory cells and chemokines, even in normal conditions. On the other hand, in comparison to visceral fat, epicardial adipocytes have an increased rate of fatty acid release, decreased size, and increased vascularity. Several studies have described an association between fibrosis of EAT and fibrosis of the underlying atrial myocardium. Others have discovered paracrine factors released from EAT that could possibly mediate this association. In addition to the adjacent atrial cardiomyocytes, EAT contains a robust stromal-vascular fraction and surrounds the ganglionic plexi of the cardiac autonomic nervous system (cANS). The importance of the cANS in the pathogenesis of atrial fibrillation is well known, and it is quite likely that there is feedback between EAT and the cANS. This complex interplay may be crucial to the maintenance of normal sinus rhythm or the development of atrial fibrillation. The extent the adipocyte is a microcosm of metabolic health in the individual patient may determine which is the predominant rhythm.
Collapse
|
42
|
Charpentier E, Redheuil A, Bourron O, Boussouar S, Lucidarme O, Zarai M, Kachenoura N, Bouazizi K, Salem JE, Hekimian G, Kerneis M, Amoura Z, Allenbach Y, Hatem S, Jeannin AC, Andreelli F, Phan F, COVID-19 APHP. SU Group TilmontRomainChenuRomainMeyfroitLouisePasiNicolettaLarbi-MessaoudSchahrazedLarocheSuzanneCianguraCécilePopelierMarcJacqueminetSophieHalbronMarineHartemannAgnès. Cardiac adipose tissue volume assessed by computed tomography is a specific and independent predictor of early mortality and critical illness in COVID-19 in type 2-diabetic patients. Cardiovasc Diabetol 2022; 21:294. [PMID: 36587209 PMCID: PMC9805370 DOI: 10.1186/s12933-022-01722-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Patients with type 2-diabetes mellitus (T2D), are characterized by visceral and ectopic adipose tissue expansion, leading to systemic chronic low-grade inflammation. As visceral adiposity is associated with severe COVID-19 irrespective of obesity, we aimed to evaluate and compare the predictive value for early intensive care or death of three fat depots (cardiac, visceral and subcutaneous) using computed tomography (CT) at admission for COVID-19 in consecutive patients with and without T2D. METHODS Two hundred and two patients admitted for COVID-19 were retrospectively included between February and June 2020 and distributed in two groups: T2D or non-diabetic controls. Chest CT with cardiac (CATi), visceral (VATi) and subcutaneous adipose tissue (SATi) volume measurements were performed at admission. The primary endpoint was a composite outcome criteria including death or ICU admission at day 21 after admission. Threshold values of adipose tissue components predicting adverse outcome were determined. RESULTS One hundred and eight controls [median age: 76(IQR:59-83), 61% male, median BMI: 24(22-27)] and ninety-four T2D patients [median age: 70(IQR:61-77), 70% male, median BMI: 27(24-31)], were enrolled in this study. At day 21 after admission, 42 patients (21%) had died from COVID-19, 48 (24%) required intensive care and 112 (55%) were admitted to a conventional care unit (CMU). In T2D, CATi was associated with early death or ICU independently from age, sex, BMI, dyslipidemia, CRP and coronary calcium (CAC). (p = 0.005). Concerning T2D patients, the cut-point for CATi was > 100 mL/m2 with a sensitivity of 0.83 and a specificity of 0.50 (AUC = 0.67, p = 0.004) and an OR of 4.71 for early ICU admission or mortality (p = 0.002) in the fully adjusted model. Other adipose tissues SATi or VATi were not significantly associated with early adverse outcomes. In control patients, age and male sex (OR = 1.03, p = 0.04) were the only predictors of ICU or death. CONCLUSIONS Cardiac adipose tissue volume measured in CT at admission was independently predictive of early intensive care or death in T2D patients with COVID-19 but not in non-diabetics. Such automated CT measurement could be used in routine in diabetic patients presenting with moderate to severe COVID-19 illness to optimize individual management and prevent critical evolution.
Collapse
Affiliation(s)
- Etienne Charpentier
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Unité d’imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France
| | - Alban Redheuil
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Unité d’imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France
| | - Olivier Bourron
- grid.462844.80000 0001 2308 1657Sorbonne Université, Département de diabétologie, Hôpital La Pitié Salpêtrière (AP-HP), Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France ,grid.417925.cCentre de Recherche Des Cordeliers, INSERM, UMR_S 1138, Paris, France
| | - Samia Boussouar
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Unité d’imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France
| | - Olivier Lucidarme
- grid.462844.80000 0001 2308 1657Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France ,grid.462844.80000 0001 2308 1657Service d’imagerie specialisee et d’urgence SISU, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Mohamed Zarai
- grid.477396.80000 0004 3982 4357Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Nadjia Kachenoura
- grid.462844.80000 0001 2308 1657Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Khaoula Bouazizi
- grid.462844.80000 0001 2308 1657Laboratoire d’Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Joe-Elie Salem
- grid.462844.80000 0001 2308 1657Department of Pharmacology, CIC-1901, INSERM, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Guillaume Hekimian
- grid.462844.80000 0001 2308 1657Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital La Pitié-Salpêtrière, Service de Médecine Intensive Réanimation, Sorbonne Université, Paris, France
| | - Matthieu Kerneis
- grid.462844.80000 0001 2308 1657AP-HP, Hôpital La Pitié-Salpêtrière, ACTION Study Group, Département de Cardiologie, Sorbonne Université, Paris, France
| | - Zahir Amoura
- grid.462844.80000 0001 2308 1657Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares et Histiocytoses, Institut e3M, Hôpital de La Pitié-Salpêtrière, AP-HP, Sorbonne Université, 75013 Paris, France
| | - Yves Allenbach
- grid.462844.80000 0001 2308 1657AP-HP, Département de Médecine Interne Et Immunologie Clinique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Stephane Hatem
- grid.477396.80000 0004 3982 4357Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Anne-Caroline Jeannin
- grid.462844.80000 0001 2308 1657Sorbonne Université, Département de diabétologie, Hôpital La Pitié Salpêtrière (AP-HP), Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France
| | - Fabrizio Andreelli
- grid.462844.80000 0001 2308 1657Sorbonne Université, Département de diabétologie, Hôpital La Pitié Salpêtrière (AP-HP), Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France ,grid.462844.80000 0001 2308 1657Nutrition and ObesitiesSystemic Approaches (NutriOmics) Research Unit, INSERM, UMRS U1269, Sorbonne Université, Paris, France
| | - Franck Phan
- grid.462844.80000 0001 2308 1657Sorbonne Université, Département de diabétologie, Hôpital La Pitié Salpêtrière (AP-HP), Institute of Cardiometabolism and Nutrition, Paris, France, Paris, France ,grid.417925.cCentre de Recherche Des Cordeliers, INSERM, UMR_S 1138, Paris, France
| | | |
Collapse
|
43
|
Huang S, Shi K, Jiang L, Ren Y, Wang J, Yan WF, Qian WL, Li Y, Yang ZG. Adverse association of epicardial adipose tissue accumulation with cardiac function and atrioventricular coupling in postmenopausal women assessed by cardiac magnetic resonance imaging. Front Cardiovasc Med 2022; 9:1015983. [DOI: 10.3389/fcvm.2022.1015983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
BackgroundThis study aims to investigate the association of epicardial adipose tissue (EAT) accumulation with cardiac function and atrioventricular coupling in a cohort of postmenopausal women assessed by cardiac magnetic resonance imaging (CMR).Materials and methodsOverall, 283 postmenopausal women (mean age 61.5 ± 9.1 years) who underwent CMR examination were enrolled. Participants were classified into four groups by the quartile of EAT volume. EAT volume was quantified on short-axis cine stacks covering the entire epicardium. CMR-derived cardiac structure and function, including left atrial (LA)- volume, emptying fraction, deformation, and left ventricular (LV)- mass, volume, ejection fraction, and deformation, were compared among the four groups of graded EAT volume.ResultsLeft ventricular mass (LVM) and LV remodeling index were both increased in the group with the highest EAT volume, compared to those in the lowest quartile (p = 0.016 and p = 0.003). The LV global longitudinal strain (LV-GLS), circumferential strain (LV-GCS), and LA- reservoir strain (LA-RS), conduit strain (LA-CS), and booster strain (LA-BS), were all progressively decreased from the lowest quartile of EAT volume to the highest (all p < 0.05). Multivariable linear regression analyses showed that EAT was independently associated with LV-GLS, LA-RS, LA-CS, and LA-BS after adjusting for body mass index and other clinical factors.ConclusionEpicardial adipose tissue accumulation is independently associated with subclinical LV and LA function in postmenopausal women. These associations support the role of EAT in mediating deleterious effects on cardiac structure and function.
Collapse
|
44
|
Toth PP, Schwartz GG, Nicholls SJ, Khan A, Szarek M, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, Kulikowski E, Lebioda K, Wong NC, Sweeney M, Ray KK. Reduction in the risk of major adverse cardiovascular events with the BET protein inhibitor apabetalone in patients with recent acute coronary syndrome, type 2 diabetes, and moderate to high likelihood of non-alcoholic fatty liver disease. Am J Prev Cardiol 2022; 11:100372. [PMID: 36039183 PMCID: PMC9419281 DOI: 10.1016/j.ajpc.2022.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is common among patients with type 2 diabetes mellitus (T2DM) and is associated with increased risk for coronary atherosclerosis and acute cardiovascular (CV) events. We employed the validated, non-invasive Angulo NAFLD fibrosis score (FS) in an intervention study in patients with T2DM and recent acute coronary syndrome (ACS) to determine the association of FS with CV risk and treatment response to apabetalone. Apabetalone is a novel selective inhibitor of the second bromodomain of bromodomain and extra-terminal (BET) proteins, epigenetic regulators of gene expression. Methods The Phase 3 BETonMACE trial compared apabetalone with placebo in 2,425 patients with T2DM and recent ACS. In this post hoc analysis, we evaluated the impact of apabetalone therapy on CV risk, defined as a composite of major adverse cardiovascular events (MACE: CV death, non-fatal myocardial infarction [MI], or stroke) and hospitalization for heart failure (HHF) in two patient categories of FS that reflect the likelihood of underlying NAFLD. Patients were initially classified into three mutually exclusive categories according to a baseline Angulo FS <-1.455 (F0-F2), -1.455 to 0.675 (indeterminant), and >0.675 (F3-F4), where F0 through F4 connote fibrosis severity none, mild, moderate, severe, and cirrhosis, respectively. The composite of ischemic MACE and HHF in the placebo group was higher in indeterminant and F3-F4 categories compared to the F0-F2 category (17.2% vs 15.0% vs 9.7%). Therefore, for the present analysis, the former two categories were combined into an elevated NAFLD CVD risk group (FS+) that was compared with the F0-F2 group (lower NAFLD risk, FS0-2). Results In 73.7% of patients, FS was elevated and consistent with a moderate-to-high likelihood of advanced liver fibrosis (FS+); 26.3% of patients had a lower FS (FS0-2). In the placebo group, FS+ patients had a higher incidence of ischemic MACE and HHF (15.4%) than FS0-2 patients (9.7%). In FS+ patients, addition of apabetalone to standard of care treatment lowered the rate of ischemic MACE compared with placebo (HR = 0.79; 95% CI 0.60-1.05; p=0.10), HHF (HR = 0.53; 95% CI 0.33-0.86; p=0.01), and the composite of ischemic MACE and HHF (HR = 0.76; 95% CI 0.59-0.98; p=0.03). In contrast, there was no apparent benefit of apabetalone in FS0-2 patients (HR 1.24; 95% CI 0.75-2.07; p=0.40; HR 1.12; 95% CI 0.30-4.14; p=0.87; and HR 1.13; 95% CI 0.69-1.86; p=0.62, respectively). Over a median duration of 26.5 months, FS increased from baseline in both treatment groups, but the increase was smaller in patients assigned to apabetalone than to placebo (p=0.04). Conclusions Amongst patients with T2DM, recent ACS, and a moderate-to-high likelihood of advanced liver fibrosis, apabetalone was associated with a significantly lower rate of ischemic MACE and HHF and attenuated the increase in hepatic FS over time.
Collapse
|
45
|
Shibasaki I, Nakajima T, Fukuda T, Hasegawa T, Ogawa H, Tsuchiya G, Takei Y, Tezuka M, Kato T, Kanazawa Y, Kano Y, Kuwata T, Ouchi M, Toyoda S, Aso Y, Fukuda H. Serum and Adipose Dipeptidyl Peptidase 4 in Cardiovascular Surgery Patients: Influence of Dipeptidyl Peptidase 4 Inhibitors. J Clin Med 2022; 11:jcm11154333. [PMID: 35893426 PMCID: PMC9331841 DOI: 10.3390/jcm11154333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP-4) is a novel adipokine and may be involved in the association between adipose tissue and metabolic syndrome. We investigated DPP-4 and adiponectin levels in the serum, subcutaneous adipose tissue (SAT), and epicardial adipose tissue (EAT), and their relationship with preoperative factors, as well as comparing the DPP-4 levels in SAT and EAT with and without DPP-4 inhibitors. This study included 40 patients (25 men, age 67.5 ± 13.8 years). The serum adipokine, DPP-4, and adiponectin levels in SAT and EAT were measured using ELISA and Western blotting. The DPP-4 and adiponectin levels were significantly higher in the SAT than in the EAT. The serum DPP-4 and DPP-4 activity levels had no correlation with the DPP-4 levels in the SAT and EAT, but the DPP-4 levels in the SAT and EAT had a positive correlation. The DPP-4 levels in the SAT were positively correlated with atherosclerosis, diabetes mellitus, DPP-4-inhibitor use, and fasting blood glucose. The DPP-4 levels in the EAT showed a negative correlation with eGFR and a positive correlation with atrial fibrillation. The DPP-4 activity in the serum had a lower tendency in the group taking DPP-4 inhibitors than in the group not taking them. DPP-4 inhibitors may suppress angiogenesis and adipose-tissue hypertrophy.
Collapse
Affiliation(s)
- Ikuko Shibasaki
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
- Correspondence:
| | - Toshiaki Nakajima
- Department of Medical KAATSU Training, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (T.N.); (T.H.)
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Taira Fukuda
- Department of Liberal Arts and Human Development, Kanagawa University of Human Services, Yokosuka 238-8522, Kanagawa, Japan;
| | - Takaaki Hasegawa
- Department of Medical KAATSU Training, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (T.N.); (T.H.)
| | - Hironaga Ogawa
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Go Tsuchiya
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Yusuke Takei
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Masahiro Tezuka
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Takashi Kato
- Department of Cardiovascular Surgery, Maebashi Red Cross Hospital, Maebashi 371-0811, Gunma, Japan; (T.K.); (T.K.)
| | - Yuta Kanazawa
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Yasuyuki Kano
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Toshiyuki Kuwata
- Department of Cardiovascular Surgery, Maebashi Red Cross Hospital, Maebashi 371-0811, Gunma, Japan; (T.K.); (T.K.)
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Hirotsugu Fukuda
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| |
Collapse
|
46
|
Krishnan A, Sharma H, Yuan D, Trollope AF, Chilton L. The Role of Epicardial Adipose Tissue in the Development of Atrial Fibrillation, Coronary Artery Disease and Chronic Heart Failure in the Context of Obesity and Type 2 Diabetes Mellitus: A Narrative Review. J Cardiovasc Dev Dis 2022; 9:jcdd9070217. [PMID: 35877579 PMCID: PMC9318726 DOI: 10.3390/jcdd9070217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant burden globally and are especially prevalent in obese and/or diabetic populations. Epicardial adipose tissue (EAT) surrounding the heart has been implicated in the development of CVDs as EAT can shift from a protective to a maladaptive phenotype in diseased states. In diabetic and obese patients, an elevated EAT mass both secretes pro-fibrotic/pro-inflammatory adipokines and forms intramyocardial fibrofatty infiltrates. This narrative review considers the proposed pathophysiological roles of EAT in CVDs. Diabetes is associated with a disordered energy utilization in the heart, which promotes intramyocardial fat and structural remodeling. Fibrofatty infiltrates are associated with abnormal cardiomyocyte calcium handling and repolarization, increasing the probability of afterdepolarizations. The inflammatory phenotype also promotes lateralization of connexin (Cx) proteins, undermining unidirectional conduction. These changes are associated with conduction heterogeneity, together creating a substrate for atrial fibrillation (AF). EAT is also strongly implicated in coronary artery disease (CAD); inflammatory adipokines from peri-vascular fat can modulate intra-luminal homeostasis through an “outside-to-inside” mechanism. EAT is also a significant source of sympathetic neurotransmitters, which promote progressive diastolic dysfunction with eventual cardiac failure. Further investigations on the behavior of EAT in diabetic/obese patients with CVD could help elucidate the pathogenesis and uncover potential therapeutic targets.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Harman Sharma
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Daniel Yuan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| |
Collapse
|
47
|
Leandro AC, Michael LF, Almeida M, Kuokkanen M, Huynh K, Giles C, Duong T, Diego VP, Duggirala R, Clarke GD, Blangero J, Meikle PJ, Curran JE. Influence of the Human Lipidome on Epicardial Fat Volume in Mexican American Individuals. Front Cardiovasc Med 2022; 9:889985. [PMID: 35734277 PMCID: PMC9207321 DOI: 10.3389/fcvm.2022.889985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Cardiovascular disease (CVD) is the leading cause of mortality worldwide and is the leading cause of death in the US. Lipid dysregulation is a well-known precursor to metabolic diseases, including CVD. There is a growing body of literature that suggests MRI-derived epicardial fat volume, or epicardial adipose tissue (EAT) volume, is linked to the development of coronary artery disease. Interestingly, epicardial fat is also actively involved in lipid and energy homeostasis, with epicardial adipose tissue having a greater capacity for release and uptake of free fatty acids. However, there is a scarcity of knowledge on the influence of plasma lipids on EAT volume. Aim The focus of this study is on the identification of novel lipidomic species associated with CMRI-derived measures of epicardial fat in Mexican American individuals. Methods We performed lipidomic profiling on 200 Mexican American individuals. High-throughput mass spectrometry enabled rapid capture of precise lipidomic profiles, providing measures of 799 unique species from circulating plasma samples. Because of our extended pedigree design, we utilized a standard quantitative genetic linear mixed model analysis to determine whether lipids were correlated with EAT by formally testing for association between each lipid species and the CMRI epicardial fat phenotype. Results After correction for multiple testing using the FDR approach, we identified 135 lipid species showing significant association with epicardial fat. Of those, 131 lipid species were positively correlated with EAT, where increased circulating lipid levels were correlated with increased epicardial fat. Interestingly, the top 10 lipid species associated with an increased epicardial fat volume were from the deoxyceramide (Cer(m)) and triacylglycerol (TG) families. Deoxyceramides are atypical and neurotoxic sphingolipids. Triacylglycerols are an abundant lipid class and comprise the bulk of storage fat in tissues. Pathologically elevated TG and Cer(m) levels are related to CVD risk and, in our study, to EAT volume. Conclusion Our results indicate that specific lipid abnormalities such as enriched saturated triacylglycerols and the presence of toxic ceramides Cer(m) in plasma of our individuals could precede CVD with increased EAT volume.
Collapse
Affiliation(s)
- Ana Cristina Leandro
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| | | | - Marcio Almeida
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| | - Mikko Kuokkanen
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Thy Duong
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Vincent P. Diego
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| | - Geoffrey D. Clarke
- Department of Radiology and Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| |
Collapse
|
48
|
Kawai Y, Banno H, Sato T, Ikeda S, Tsuruoka T, Sugimoto M, Niimi K, Kodama A, Matsui K, Matsui S, Komori K. Epicardial adipose tissue volume is associated with abdominal aortic aneurysm expansion. J Vasc Surg 2022; 76:1253-1260. [PMID: 35661742 DOI: 10.1016/j.jvs.2022.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Epicardial adipose tissue volume (EATV) is associated with cardiovascular diseases such as coronary artery disease. However, no information is available regarding the relationship between EATV and abdominal aortic aneurysm (AAA) expansion. This study aimed to evaluate the association between EATV and the growth of AAA, and to identify predictors of AAA expansion. METHODS Between June 2009 and December 2019, a total of 906 patients underwent endovascular or open repair of AAA at our institution. Patients with previous cardiac surgery, previous ascending thoracic aortic surgery, ruptured AAA, infected AAA, inflammatory AAA, saccular aneurysm, solitary iliac aneurysm, or reintervention after treatment for AAA were excluded. Two hundred and thirty-seven patients with at least two preoperative computed tomography (CT) scans performed more than 180 days apart were included in this study. EATV within the pericardium was retrospectively quantified from preoperative non-contrast CT images using a 3D workstation. The EATV index was defined as EATV divided by body surface area. The AAA expansion rate was defined as the increase in AAA diameter per year, and patients were divided into the slow-expansion group, with an expansion rate < 5 mm/year, and the fast-expansion group, with an expansion rate ≥ 5 mm/year. The correlation between expansion rate and the EATV index was analyzed, and the cut-off value of the EATV index was determined using a receiver operating characteristics curve. Multivariate analysis was used to assess predictors of the AAA expansion rate. RESULTS The expansion rate of AAA was positively correlated with the EATV index (R = .237, P < .001). The initial aneurysm diameter (P < .001) and EATV index (P = .009) differed significantly between the two groups. The cut-off value of the EATV index was 60.3 cm3/m2 (area under the curve, .658; 95% confidence interval [CI], .568-.749; sensitivity, 1.000; specificity, .309). Multivariate analysis revealed that the initial aneurysm diameter and an EATV index > 60.3 cm3/m2 were significantly associated with the AAA expansion rate. CONCLUSIONS This study demonstrated that the EATV index was associated with AAA expansion.
Collapse
Affiliation(s)
- Yohei Kawai
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroshi Banno
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Sato
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuta Ikeda
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Tsuruoka
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Sugimoto
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoaki Niimi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Kodama
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kota Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Komori
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Association of Non-Alcoholic Fatty Liver Disease and Hepatic Fibrosis with Epicardial Adipose Tissue Volume and Atrial Deformation Mechanics in a Large Asian Population Free from Clinical Heart Failure. Diagnostics (Basel) 2022; 12:diagnostics12040916. [PMID: 35453964 PMCID: PMC9033151 DOI: 10.3390/diagnostics12040916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease share several cardiometabolic risk factors. Excessive visceral fat can manifest as ectopic fat depots over vital organs, such as the heart and liver. This study assessed the associations of NAFLD and liver fibrosis with cardiac structural and functional disturbances. We assessed 2161 participants using ultrasound, and categorized them as per the NAFLD Fibrosis Score into three groups: (1) non-fatty liver; (2) fatty liver with low fibrosis score; and (3) fatty liver with high fibrosis score. Epicardial fat volume (EFV) was measured through multidetector computed tomography. All participants underwent echocardiographic study, including tissue Doppler-based E/e’ ratio and speckle tracking-based left ventricular global longitudinal strain, peak atrial longitudinal strain (PALS), and atrial longitudinal strain rates during systolic, early and late-diastolic phases (ALSRsyst, ALSRearly. ALSRlate). Larger EFV, decreased e’ velocity, PALS, ALSRsyst, and ALSRearly, along with elevated E/e’ ratio, were seen in all groups, especially in those with high fibrosis scores. After multivariate adjustment for traditional risk factors and EFV, fibrosis scores remained significantly associated with elevated E/e’ ratio, LA stiffness, and decreased PALS (β: 0.06, 1.4, −0.01, all p < 0.05). Thus, NAFLD is associated with LV diastolic dysfunction and subclinical changes in LA contractile mechanics.
Collapse
|
50
|
Erdöl MA, Eser FC, Aslan AN, Erdoğan M, Aypak AA, Beşler MS, Kalem AK, Ertem AG, Güner HR. The predictive value of epicardial fat volume for clinical severity of COVID-19. Rev Port Cardiol 2022; 41:729-737. [PMID: 35505820 PMCID: PMC9050585 DOI: 10.1016/j.repc.2021.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
|