1
|
Tabata K, Sudo T, Nagata Y, Ihara K, Asada K, Kinoshita A, Tanaka Y, Yamauchi Y, Sasaki T, Hachiya H, Imai Y, Fujita H, Sasano T, Furukawa T, Iwata T, Tanaka T. Rare genetic variants involved in increased risk of paroxysmal atrial fibrillation in a Japanese population. Sci Rep 2025; 15:13216. [PMID: 40240483 PMCID: PMC12003908 DOI: 10.1038/s41598-025-97794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in the world and can cause serious complications such as stroke or heart failure. Paroxysmal atrial fibrillation (PAF), a subtype of AF, accounts for approximately 25% of AF cases and is estimated to affect approximately 30 million people worldwide. Despite extensive genetic research on AF, the genetic factors involved in PAF in East Asian (EAS) populations remain unidentified. The aim of our study was to identify genetic factors associated with PAF in the Japanese population, contributing to our understanding of the genetic architecture of AF in Japanese populations. We conducted whole-exome sequencing on a cohort of 1176 PAF individuals and 1172 non-PAF control subjects in a Japanese population. We processed the sequencing data in accordance with the best practices outlined in the Genome Analysis Toolkit (GATK) and conducted gene-based association tests under three variant grouping strategies (masks) using the burden test, SKAT, and SKAT-O. We then performed a meta-analysis of the resulting P-values, which revealed that four genes-ZNF785, SMPD3, GFRA4, and LGALS1-were significantly associated with PAF, representing novel findings. These findings provide new insights into PAF pathogenesis and suggest potential biomarkers for early detection.
Collapse
Affiliation(s)
- Kanji Tabata
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takeaki Sudo
- Department of Educational Media Development, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Yuki Nagata
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Bioresource Research Support Center, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Kensuke Ihara
- Department of Bio-Informational Pharmacology, Medicine Research Institute, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
- Department of Cardiovascular Medicine, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsuhiro Kinoshita
- Department of Educational Media Development, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Yasuaki Tanaka
- Department of Cardiology, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Yasuteru Yamauchi
- Department of Cardiology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Takeshi Sasaki
- Department of Cardiology, Heart Rhythm Center, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Hitoshi Hachiya
- Cardiology Division, Cardiovascular Center, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Yasushi Imai
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Hideo Fujita
- Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medicine Research Institute, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Bioresource Research Support Center, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan.
| |
Collapse
|
2
|
Mantovani A, Lunardi G, Bonapace S, Molinero AE, Morandin R, Fiorio V, Molon G, Byrne CD, Targher G. Ceramide-based risk score CERT-1 improves risk prediction for overall mortality and adverse cardiovascular outcomes in patients with and without cardiovascular disease: A prospective cohort study. Diabetes Obes Metab 2025; 27:1488-1497. [PMID: 39726197 PMCID: PMC11802398 DOI: 10.1111/dom.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
AIMS Whether the plasma-based ceramide-based risk score CERT1 improves risk prediction for cardiovascular disease (CVD) is uncertain. MATERIALS AND METHODS Baseline and follow-up data were combined from two cohorts, 334 patients with established/suspected CVD and 196 patients with type 2 diabetes followed for a median of 74 months (interquartile range 54-79 months). For the calculation of CERT1 risk score, we measured four specific plasma ceramides [Cer(d18:1/16:0), Cer(d18:1/18:0) and Cer(d18:1/24:1)] and their ratios to Cer(d18:1/24:0). Based on the CERT1 risk score, patients were split into four risk categories (low, moderate, increased or high risk). The primary outcome was a composite of overall mortality and incident nonfatal CVD outcomes (including myocardial infarction, ischaemic stroke or permanent atrial fibrillation). RESULTS One hundred and thirty-nine patients developed the primary composite outcome (72 nonfatal CVD outcomes and 67 total deaths) during follow-up. Baseline CERT1 risk categories were significantly associated with the risk of developing the primary composite outcome (adjusted HR for high vs. low-risk category 2.43, 95% CI 1.39-4.22, p = 0.002, and adjusted HR for increased vs. low-risk category 2.16, 95% CI 1.28-3.63, p = 0.004). Receiver operator characteristic curve analysis showed that adding CERT1 risk score to traditional CVD risk factors and pre-existing CVD, improved the discriminatory capability of the regression model for predicting the primary composite outcome (AUROC 0.691 [95% CI 0.674-0.769] vs. 0.722 [95% CI 0.642-0.742], p = 0.0275). CONCLUSIONS The ceramide-based risk score CERT1 risk score improves risk prediction for long-term risk of overall mortality and adverse cardiovascular outcomes in patients with and without CVD.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Gianluigi Lunardi
- Clinical Analysis Laboratory and Transfusional Medicine, Clinical Pharmacology“IRCCS Sacro Cuore ‐ Don Calabria” HospitalNegrar di ValpolicellaItaly
| | - Stefano Bonapace
- Division of CardiologyIRCCS Sacro Cuore—Don Calabria HospitalNegrar di ValpolicellaItaly
| | - Agustin E. Molinero
- Division of CardiologyIRCCS Sacro Cuore—Don Calabria HospitalNegrar di ValpolicellaItaly
| | - Riccardo Morandin
- Section of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Veronica Fiorio
- Section of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Giulio Molon
- Division of CardiologyIRCCS Sacro Cuore—Don Calabria HospitalNegrar di ValpolicellaItaly
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General HospitalSouthamptonUK
- Nutrition and Metabolism, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Giovanni Targher
- Department of MedicineUniversity of VeronaVeronaItaly
- Metabolic Diseases Research UnitIRCCS Sacro Cuore—Don Calabria HospitalNegrar di ValpolicellaItaly
| |
Collapse
|
3
|
Moseholm KF, Meineche JT, Jensen MK. The potential of circulating nonesterified fatty acids and sphingolipids in the biological understanding of cognitive decline and dementia. Curr Opin Lipidol 2025; 36:27-37. [PMID: 39641159 DOI: 10.1097/mol.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Cognitive decline and late-onset dementia pose significant challenges in aging societies, and many dementia cases could be prevented or delayed through modification of associated risk factors, many of which are tied to cardiovascular and metabolic dysfunction. As individuals age, the blood-brain barrier becomes more permeable, easing the exchange of molecules between the bloodstream and the brain. Consequently, blood-based biological markers (so-called biomarkers) provide a minimally invasive and accessible means of accessing molecular changes associated with aging and neurodegeneration. RECENT FINDINGS Circulating free fatty acids, also called nonesterified fatty acids (NEFAs), and sphingolipids are associated with cardiovascular disease, insulin resistance, and diabetes; thus, could be promising candidates as biomarkers for cognitive decline and dementia. SUMMARY The opportunity to study such minimally invasive biomarkers further opens up potential new avenues for improved understanding of the underlying biology of diseases of the brain.
Collapse
Affiliation(s)
- Kristine F Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Josefine T Meineche
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
5
|
Feng L, Zhao X, Song J, Yang S, Xiang J, Zhang M, Tu C, Song X. Association between the plasma ceramide and coronary microvascular resistance. Cardiovasc Diabetol 2024; 23:395. [PMID: 39497178 PMCID: PMC11536972 DOI: 10.1186/s12933-024-02495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Plasma ceramide plays a potentially significant role in the pathogenesis of coronary microvascular dysfunction. However, the relationship between plasma ceramide and coronary microvascular resistance in patients remains unclear. This study aimed to evaluate the association between plasma ceramide levels, as well as their distinct ratios, and coronary microvascular resistance. METHODS This single-center observational study retrospectively enrolled patients who underwent both ceramide measurement and coronary angiography during hospitalization. The microvascular resistance of the coronary arteries was assessed in all patients using the angiography-derived index of microcirculatory resistance (Angio-IMR). The cumulative coronary microvascular resistance was calculated by summing the microvascular resistance of the three main coronary arteries. Multiple linear and logistic regression analyses were employed to evaluate the relationship between plasma ceramide and cumulative coronary microvascular resistance. Restricted cubic spline (RCS) analysis was conducted to investigate the association between plasma ceramide levels and cumulative coronary microvascular resistance. Receiver operating characteristic (ROC) curves were employed to evaluate the predictive value of plasma ceramide for coronary microvascular resistance. Additionally, subgroup analyses and interaction tests were performed. RESULTS A total of 225 patients were included in this study, with a median cumulative coronary microvascular resistance of 48.04 (40.32-56.73). After adjusting for potential confounding factors, both plasma 16:0 ceramide and the 16:0/24:0 ceramide ratio were positively associated with cumulative coronary microvascular resistance [standardized β ± standard error: 75.05 ± 8.46 (P < 0.001) and 91.72 ± 20.41 (P < 0.001), respectively]. Similar independent associations were observed in predicting high cumulative microvascular resistance [β = 8.03 ± 1.91 (P < 0.001) and 9.98 ± 3.88 (P = 0.010), respectively]. Additionally, a significant nonlinear relationship was observed between plasma 16:0 ceramide, the 16:0/24:0 ceramide ratio, and cumulative coronary microvascular resistance (P for nonlinear < 0.05). The ROC analysis revealed that the optimal cut-off for plasma 16:0 ceramide is 0.178 µmol/L, with a specificity of 57.1% and a sensitivity of 91.2%. For the 16:0/24:0 ceramide ratio, the optimal cut-off is 0.072, yielding a specificity of 73.2% and a sensitivity of 54.9%. Subgroup analysis indicated that the association between plasma ceramide and coronary microvascular resistance was trending toward non-significance in patients with acute coronary syndrome (ACS). CONCLUSIONS A significant nonlinear relationship exists between plasma ceramide and coronary microvascular resistance, which holds important clinical implications for the risk stratification of coronary microvascular disease. New insights into the potential effects of ceramides enhance our understanding of the complex mechanisms underlying coronary microvascular disease and warrant further investigation in a broader population.
Collapse
Affiliation(s)
- Lanxin Feng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianqiao Song
- Sun yat sen university, Zhongshan school of medicine, Guangzhou, People's Republic of China
| | - Shuwen Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianping Xiang
- ArteryFlow Technology Co., Ltd, Hangzhou, People's Republic of China
| | - Min Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chenchen Tu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
7
|
Turner DGP, De Lange WJ, Zhu Y, Coe CL, Simcox J, Ge Y, Kamp TJ, Ralphe JC, Glukhov AV. Neutral sphingomyelinase regulates mechanotransduction in human engineered cardiac tissues and mouse hearts. J Physiol 2024; 602:4387-4407. [PMID: 37889115 PMCID: PMC11052922 DOI: 10.1113/jp284807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the USA and is known to be exacerbated by elevated mechanical stress from hypertension. Caveolae are plasma membrane structures that buffer mechanical stress but have been found to be reduced in pathological conditions associated with chronically stretched myocardium. To explore the physiological implications of the loss of caveolae, we used human engineered cardiac tissue (ECT) constructs, composed of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts, to develop a long-term cyclic stretch protocol that recapitulates the effects of hypertension on caveolae expression, membrane tension, and the β-adrenergic response. Leveraging this new stretch protocol, we identified neutral sphingomyelinases (nSMase) as mechanoregulated mediators of caveolae loss, ceramide production and the blunted β-adrenergic response in this human cardiac model. Specifically, in our ECT model, nSMase inhibition via GW4869 prevented stretch-induced loss of caveolae-like structures, mitigated nSMase-dependent ceramide production, and maintained the ECT contractile kinetic response to isoprenaline. These findings are correlated with a blood lipidomic analysis in middle-aged and older adults, which revealed an increase of the circulating levels of ceramides in adults with hypertension. Furthermore, we found that conduction slowing from increased pressure loading in mouse left ventricle was abolished in the context of nSMase inhibition. Collectively, these findings identify nSMase as a potent drug target for mitigating stretch-induced effects on cardiac function. KEY POINTS: We have developed a new stretch protocol for human engineered cardiac tissue that recapitulates changes in plasma membrane morphology observed in animal models of pressure/volume overload. Stretch of engineered cardiac tissue induces activation of neutral sphingomyelinase (nSMase), generation of ceramide, and disassembly of caveolae. Activation of nSMase blunts cardiac β-adrenergic contractile kinetics and mediates stretch-induced slowing of conduction and upstroke velocity. Circulating ceramides are increased in adults with hypertension, highlighting the clinical relevance of stretch-induced nSMase activity.
Collapse
Affiliation(s)
- Daniel G P Turner
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Willem J De Lange
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J Kamp
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
9
|
Moseholm KF, Cronjé HT, Koch M, Fitzpatrick AL, Lopez OL, Otto MCDO, Longstreth WT, Hoofnagle AN, Mukamal KJ, Lemaitre RN, Jensen MK. Circulating sphingolipids in relation to cognitive decline and incident dementia: The Cardiovascular Health Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12623. [PMID: 39130802 PMCID: PMC11310412 DOI: 10.1002/dad2.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Whether circulating levels of sphingolipids are prospectively associated with cognitive decline and dementia risk is uncertain. METHODS We measured 14 sphingolipid species in plasma samples from 4488 participants (mean age 76.2 years; 40% male; and 25% apolipoprotein E (APOE) ε4 allele carriers). Cognitive decline was assessed annually across 6 years using modified Mini-Mental State Examination (3MSE) and Digital Symbol Substitution Test (DSST). Additionally, a subset of 3050 participants were followed for clinically adjudicated dementia. RESULTS Higher plasma levels of sphingomyelin-d18:1/16:0 (SM-16) were associated with a faster cognitive decline measured with 3MSE, in contrast, higher levels of sphingomyelin-d18:1/22:0 (SM-22) were associated with slower decline in cognition measured with DSST. In Cox regression, higher levels of SM-16 (hazard ration [HR] = 1.24 [95% confidence interval [CI]: 1.08-1.44]) and ceramide-d18:1/16:0 (Cer-16) (HR = 1.26 [95% CI: 1.10-1.45]) were associated with higher risk of incident dementia. DISCUSSION Several sphingolipid species appear to be involved in cognitive decline and dementia risk. Highlights Plasma levels of sphingolipids were associated with cognitive decline and dementia risk.Ceramides and sphingomyelins with palmitic acid were associated with faster annual cognitive decline and increased risk of dementia.The direction of association depended on the covalently bound saturated fatty acid chain length in analysis of cognitive decline.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | - Héléne T. Cronjé
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | - Manja Koch
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and EpidemiologySchool of Public HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Oscar L. Lopez
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - W. T. Longstreth
- Departments of Family Medicine and EpidemiologySchool of Public HealthUniversity of WashingtonSeattleWashingtonUSA
- Department of NeurologySchool of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and PathologySchool of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Kenneth J. Mukamal
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Majken K. Jensen
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
10
|
Morita SY. Phospholipid biomarkers of coronary heart disease. J Pharm Health Care Sci 2024; 10:23. [PMID: 38734675 PMCID: PMC11088770 DOI: 10.1186/s40780-024-00344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Coronary heart disease, also known as ischemic heart disease, is induced by atherosclerosis, which is initiated by subendothelial retention of lipoproteins. Plasma lipoproteins, including high density lipoprotein, low density lipoprotein (LDL), very low density lipoprotein, and chylomicron, are composed of a surface monolayer containing phospholipids and cholesterol and a hydrophobic core containing triglycerides and cholesteryl esters. Phospholipids play a crucial role in the binding of apolipoproteins and enzymes to lipoprotein surfaces, thereby regulating lipoprotein metabolism. High LDL-cholesterol is a well-known risk factor for coronary heart disease, and statins reduce the risk of coronary heart disease by lowering LDL-cholesterol levels. In contrast, the relationships of phospholipids in plasma lipoproteins with coronary heart disease have not yet been established. To further clarify the physiological and pathological roles of phospholipids, we have developed the simple high-throughput assays for quantifying all major phospholipid classes, namely phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol + cardiolipin, and sphingomyelin, using combinations of specific enzymes and a fluorogenic probe. These enzymatic fluorometric assays will be helpful in elucidating the associations between phospholipid classes in plasma lipoproteins and coronary heart disease and in identifying phospholipid biomarkers. This review describes recent progress in the identification of phospholipid biomarkers of coronary heart disease.
Collapse
Affiliation(s)
- Shin-Ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
11
|
Moseholm KF, Horn JW, Fitzpatrick AL, Djoussé L, Longstreth WT, Lopez OL, Hoofnagle AN, Jensen MK, Lemaitre RN, Mukamal KJ. Circulating sphingolipids and subclinical brain pathology: the cardiovascular health study. Front Neurol 2024; 15:1385623. [PMID: 38765262 PMCID: PMC11099203 DOI: 10.3389/fneur.2024.1385623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Sphingolipids are implicated in neurodegeneration and neuroinflammation. We assessed the potential role of circulating ceramides and sphingomyelins in subclinical brain pathology by investigating their association with brain magnetic resonance imaging (MRI) measures and circulating biomarkers of brain injury, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in the Cardiovascular Health Study (CHS), a large and intensively phenotyped cohort of older adults. Methods Brain MRI was offered twice to CHS participants with a mean of 5 years between scans, and results were available from both time points in 2,116 participants (mean age 76 years; 40% male; and 25% APOE ε4 allele carriers). We measured 8 ceramide and sphingomyelin species in plasma samples and examined the associations with several MRI, including worsening grades of white matter hyperintensities and ventricular size, number of brain infarcts, and measures of brain atrophy in a subset with quantitative measures. We also investigated the sphingolipid associations with serum NfL and GFAP. Results In the fully adjusted model, higher plasma levels of ceramides and sphingomyelins with a long (16-carbon) saturated fatty acid were associated with higher blood levels of NfL [β = 0.05, false-discovery rate corrected P (PFDR) = 0.004 and β = 0.06, PFDR = < 0.001, respectively]. In contrast, sphingomyelins with very long (20- and 22-carbon) saturated fatty acids tended to have an inverse association with levels of circulating NfL. In secondary analyses, we found an interaction between ceramide d18:1/20:0 and sex (P for interaction = <0.001), such that ceramide d18:1/20:0 associated with higher odds for infarcts in women [OR = 1.26 (95%CI: 1.07, 1.49), PFDR = 0.03]. We did not observe any associations with GFAP blood levels, white matter grade, ventricular grade, mean bilateral hippocampal volume, or total brain volume. Conclusion Overall, our comprehensive investigation supports the evidence that ceramides and sphingomyelins are associated with increased aging brain pathology and that the direction of association depends on the fatty acid attached to the sphingosine backbone.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens W. Horn
- Department of Internal Medicine, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, Norway
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Luc Djoussé
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - W. T. Longstreth
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Majken K. Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
12
|
Shen Y, Wei C, Taishi Y, Zhang G, Su Z, Zhao P, Wang Y, Li M, Ji Y, Sun L. Association between the circulating very long-chain saturated fatty acid and cognitive function in older adults: findings from the NHANES. BMC Public Health 2024; 24:1061. [PMID: 38627688 PMCID: PMC11022414 DOI: 10.1186/s12889-024-18478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Age-related cognitive decline has a significant impact on the health and longevity of older adults. Circulating very long-chain saturated fatty acids (VLSFAs) may actively contribute to the improvement of cognitive function. The objective of this study was to investigate the associations between arachidic acid (20:0), docosanoic acid (22:0), tricosanoic acid (23:0), and lignoceric acid (24:0) with cognitive function in older adults. METHODS This study used a dataset derived from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). A total of 806 adults (≥ 60 years) were included who underwent comprehensive cognitive testing and plasma fatty acid measurements. Multivariable linear regression, restricted cubic spline (RCS), and interaction analyses were used to assess associations between VLSFAs and cognitive function. Partial Spearman' s correlation analysis was used to examine the correlations between VLSFAs and palmitic acid (16:0), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, triglycerides, systemic inflammatory markers, and dietary nutrients. RESULTS Multivariable linear regression analysis, adjusting for sociodemographic, clinical conditions, and lifestyle factors, showed that 22:0 and 24:0 levels were positively associated with better global cognitive function (β = 0.37, 95% confidence interval [CI] = 0.01, 0.73; β = 0.73, 95% CI = 0.29, 1.2, respectively) as well as better CEARD-DR Z-score (β = 0.82, 95% CI = 0.36, 1.3 and β = 1.2, 95% CI = 0.63, 1.8, respectively). RCS analysis showed linear associations between higher 22:0 and 24:0 levels and better cognitive performance in both global cognitive function and CERAD-DR tests. CONCLUSIONS The study suggests that higher levels of 22:0 and 24:0 are associated with better global cognitive function in older adults. 22:0 and 24:0 may be important biomarkers for recognizing cognitive impairment, and supplementation with specific VLSFAs (22:0 and 24:0) may be an important intervention to improve cognitive function. Further studies are needed to elucidate the underlying biological mechanisms between VLSFAs and cognitive function.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 1#, 130021, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 1#, 130021, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 1#, 130021, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhan Su
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 1#, 130021, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 1#, 130021, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 1#, 130021, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 1#, 130021, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yingshi Ji
- Department of Pharmacology, Physiology and Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 1#, 130021, Changchun, China.
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Liu J, Liu X, Luo Y, Huang F, Xie Y, Zheng S, Jia B, Xiao Z. Sphingolipids: drivers of cardiac fibrosis and atrial fibrillation. J Mol Med (Berl) 2024; 102:149-165. [PMID: 38015241 PMCID: PMC10858135 DOI: 10.1007/s00109-023-02391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Sphingolipids (SLs) are vital constituents of the plasma membrane of animal cells and concurrently regulate numerous cellular processes. An escalating number of research have evinced that SLs assume a crucial part in the progression of tissue fibrosis, a condition for which no efficacious cure exists as of now. Cardiac fibrosis, and in particular, atrial fibrosis, is a key factor in the emergence of atrial fibrillation (AF). AF has become one of the most widespread cardiac arrhythmias globally, with its incidence continuing to mount, thereby propelling it to the status of a major public health concern. This review expounds on the structure and biosynthesis pathways of several pivotal SLs, the pathophysiological mechanisms of AF, and the function of SLs in cardiac fibrosis. Delving into the influence of sphingolipid levels in the alleviation of cardiac fibrosis offers innovative therapeutic strategies to address cardiac fibrosis and AF.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yucheng Luo
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangze Huang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Xie
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Su H, Shi P, Shen Z, Meng H, Meng Z, Han X, Chen Y, Fan W, Fa Y, Yang C, Li F, Wang S. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun Biol 2023; 6:1125. [PMID: 37935958 PMCID: PMC10630375 DOI: 10.1038/s42003-023-05502-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Collapse
Affiliation(s)
- Hang Su
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Penghui Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhaoshuang Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Huimin Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Ziyue Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xingfeng Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanna Chen
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Weiming Fan
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Yun Fa
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
15
|
Bockus LB, Jensen PN, Fretts AM, Hoofnagle AN, McKnight B, Sitlani CM, Siscovick DS, King IB, Psaty BM, Sotoodehnia N, Lemaitre RN. Plasma Ceramides and Sphingomyelins and Sudden Cardiac Death in the Cardiovascular Health Study. JAMA Netw Open 2023; 6:e2343854. [PMID: 37976059 PMCID: PMC10656644 DOI: 10.1001/jamanetworkopen.2023.43854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Importance Sphingolipids, including ceramides and sphingomyelins, may influence the pathophysiology and risk of sudden cardiac death (SCD) through multiple biological activities. Whether the length of the fatty acid acylated to plasma sphingolipid species is associated with SCD risk is not known. Objective To determine whether the saturated fatty acid length of plasma ceramides and sphingomyelins influences the association with SCD risk. Design, Setting, and Participants In this cohort study, multivariable Cox proportional hazards regression models were used to examine the association of sphingolipid species with SCD risk. The study population included 4612 participants in the Cardiovascular Health Study followed up prospectively for a median of 10.2 (IQR, 5.5-11.6) years. Baseline data were collected from January 1992 to December 1995 during annual examinations. Data were analyzed from February 11, 2020, to September 9, 2023. Exposures Eight plasma sphingolipid species (4 ceramides and 4 sphingomyelins) with saturated fatty acids of 16, 20, 22, and 24 carbons. Main Outcome and Measure Association of plasma ceramides and sphingomyelins with saturated fatty acids of different lengths with SCD risk. Results Among the 4612 CHS participants included in the analysis (mean [SD] age, 77 [5] years; 2724 [59.1%] women; 6 [0.1%] American Indian; 4 [0.1%] Asian; 718 [15.6%] Black; 3869 [83.9%] White, and 15 [0.3%] Other), 215 SCD cases were identified. In adjusted Cox proportional hazards regression analyses, plasma ceramides and sphingomyelins with palmitic acid (Cer-16 and SM-16) were associated with higher SCD risk per higher SD of log sphingolipid levels (hazard ratio [HR] for Cer-16, 1.34 [95% CI, 1.12-1.59]; HR for SM-16, 1.37 [95% CI, 1.12-1.67]). Associations did not differ by baseline age, sex, race, or body mass index. No significant association of SCD with sphingolipids with very-long-chain saturated fatty acids was observed after correction for multiple testing (HR for ceramide with arachidic acid, 1.06 [95% CI, 0.90-1.24]; HR for ceramide with behenic acid, 0.92 [95% CI, 0.77-1.10]; HR for ceramide with lignoceric acid, 0.92 [95% CI, 0.77-1.09]; HR for sphingomyelin with arachidic acid, 0.83 [95% CI, 0.71-0.98]; HR for sphingomyelin with behenic acid, 0.84 [95% CI, 0.70-1.00]; HR for sphingomyelin with lignoceric acid, 0.86 [95% CI, 0.72-1.03]). Conclusions and Relevance The findings of this large, population-based cohort study of SCD identified that higher plasma levels of Cer-16 and SM-16 were associated with higher risk of SCD. Future studies are needed to examine the underlying mechanism of these associations.
Collapse
Affiliation(s)
- Lee B Bockus
- Department of Medicine, University of Washington, Seattle
| | - Paul N Jensen
- Department of Medicine, University of Washington, Seattle
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle
| | - Andrew N Hoofnagle
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
| | | | | | | | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Department of Health Systems and Population Health, University of Washington, Seattle
| | | | | |
Collapse
|
16
|
Lidgard B, Hoofnagle AN, Zelnick LR, de Boer IH, Fretts AM, Kestenbaum BR, Lemaitre RN, Robinson-Cohen C, Bansal N. High-Density Lipoprotein Lipidomics and Mortality in CKD. Kidney Med 2023; 5:100708. [PMID: 37731962 PMCID: PMC10507644 DOI: 10.1016/j.xkme.2023.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Rationale & Objective Patients with chronic kidney disease (CKD) have dysfunctional high-density lipoprotein (HDL) particles that lack cardioprotective properties; altered lipid composition may be associated with these changes. To investigate HDL lipids as potential cardiovascular risk factors in CKD, we tested the associations of HDL ceramides, sphingomyelins, and phosphatidylcholines with mortality. Study Design We leveraged data from a longitudinal prospective cohort of participants with CKD. Setting & Participants We included participants aged greater than 21 years with CKD, excluding those on maintenance dialysis or with prior kidney transplant. Exposure HDL particles were isolated using density gradient ultracentrifugation. We quantified the relative abundance of HDL ceramides, sphingomyelins, and phosphatidylcholines via liquid chromatography tandem mass spectrometry (LC-MS/MS). Outcomes Our primary outcome was all-cause mortality. Analytical Approach We tested associations using Cox regressions adjusted for demographics, comorbid conditions, laboratory values, medication use, and highly correlated lipids with opposed effects, controlling for multiple comparisons with false discovery rates (FDR). Results There were 168 deaths over a median follow-up of 6.12 years (interquartile range, 3.71-9.32). After adjustment, relative abundance of HDL ceramides (HR, 1.22 per standard deviation; 95% CI, 1.06-1.39), sphingomyelins with long fatty acids (HR, 1.44; 95% CI, 1.05-1.98), and saturated and monounsaturated phosphatidylcholines (HR, 1.22; 95% CI, 1.06-1.41) were significantly associated with increased risk of all-cause mortality (FDR < 5%). Limitations We were unable to test associations with cardiovascular disease given limited power. HDL lipidomics may not reflect plasma lipidomics. LC-MS/MS is unable to differentiate between glucosylceramides and galactosylceramides. The cohort was comprised of research volunteers in the Seattle area with CKD. Conclusions Greater relative HDL abundance of 3 classes of lipids was associated with higher risk of all-cause mortality in CKD; sphingomyelins with very long fatty acids were associated with a lower risk. Altered lipid composition of HDL particles may be a novel cardiovascular risk factor in CKD. Plain-Language Summary Patients with chronic kidney disease have abnormal high-density lipoprotein (HDL) particles that lack the beneficial properties associated with these particles in patients with normal kidney function. To investigate if small lipid molecules found on the surface of HDL might be associated with these changes, we tested the associations of lipid molecules found on HDL with death among patients with chronic kidney disease. We found that several lipid molecules found on the surface of HDL were associated with increased risk of death among these patients. These findings suggest that lipid molecules may be risk factors for death among patients with chronic kidney disease.
Collapse
|
17
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Annevelink CE, Sapp PA, Petersen KS, Shearer GC, Kris-Etherton PM. Diet-derived and diet-related endogenously produced palmitic acid: Effects on metabolic regulation and cardiovascular disease risk. J Clin Lipidol 2023; 17:577-586. [PMID: 37666689 PMCID: PMC10822025 DOI: 10.1016/j.jacl.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
Palmitic acid is the predominant dietary saturated fatty acid (SFA) in the US diet. Plasma palmitic acid is derived from dietary fat and also endogenously from de novo lipogenesis (DNL) and lipolysis. DNL is affected by excess energy intake resulting in overweight and obesity, and the macronutrient profile of the diet. A low-fat diet (higher carbohydrate and/or protein) promotes palmitic acid synthesis in adipocytes and the liver. A high-fat diet is another source of palmitic acid that is taken up by adipose tissue, liver, heart and skeletal muscle via lipolytic mechanisms. Moreover, overweight/obesity and accompanying insulin resistance increase non-esterified fatty acid (NEFA) production. Palmitic acid may affect cardiovascular disease (CVD) risk via mechanisms beyond increasing low-density lipoprotein-cholesterol (LDL-C), notably synthesis of ceramides and possibly through branched fatty acid esters of hydroxy fatty acids (FAHFAs) from palmitic acid. Ceramides are positively associated with incident CVD, whereas the role of FAHFAs is uncertain. Given the new evidence about dietary regulation of palmitic acid metabolism there is interest in learning more about how diet modulates circulating palmitic acid concentrations and, hence, potentially CVD risk. This is important because of the heightened interest in low carbohydrate (carbohydrate controlled) and high carbohydrate (low-fat) diets coupled with the ongoing overweight/obesity epidemic, all of which can increase plasma palmitic acid levels by different mechanisms. Consequently, learning more about palmitic acid biochemistry, trafficking and how its metabolites affect CVD risk will inform future dietary guidance to further lower the burden of CVD.
Collapse
Affiliation(s)
- Carmen E Annevelink
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip A Sapp
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Greg C Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
19
|
Tate BN, Van Guilder GP, Aly M, Spence LA, Diaz-Rubio ME, Le HH, Johnson EL, McFadden JW, Perry CA. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023; 15:3687. [PMID: 37686719 PMCID: PMC10489641 DOI: 10.3390/nu15173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.
Collapse
Affiliation(s)
- Brianna N. Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Gary P. Van Guilder
- High Altitude Exercise Physiology Department, Western Colorado University, Gunnison, CO 81231, USA;
| | - Marwa Aly
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - Lisa A. Spence
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - M. Elena Diaz-Rubio
- Proteomic and Metabolomics Facility, Cornell University, Ithaca, NY 14853, USA;
| | - Henry H. Le
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Elizabeth L. Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Joseph W. McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Cydne A. Perry
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| |
Collapse
|
20
|
Kovilakath A, Wohlford G, Cowart LA. Circulating sphingolipids in heart failure. Front Cardiovasc Med 2023; 10:1154447. [PMID: 37229233 PMCID: PMC10203217 DOI: 10.3389/fcvm.2023.1154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Lack of significant advancements in early detection and treatment of heart failure have precipitated the need for discovery of novel biomarkers and therapeutic targets. Over the past decade, circulating sphingolipids have elicited promising results as biomarkers that premonish adverse cardiac events. Additionally, compelling evidence directly ties sphingolipids to these events in patients with incident heart failure. This review aims to summarize the current literature on circulating sphingolipids in both human cohorts and animal models of heart failure. The goal is to provide direction and focus for future mechanistic studies in heart failure, as well as pave the way for the development of new sphingolipid biomarkers.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - George Wohlford
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Richmond Veteran's Affairs Medical Center, Richmond, VA, United States
| |
Collapse
|
21
|
Toledo E, Wittenbecher C, Razquin C, Ruiz-Canela M, Clish CB, Liang L, Alonso A, Hernández-Alonso P, Becerra-Tomás N, Arós-Borau F, Corella D, Ros E, Estruch R, García-Rodríguez A, Fitó M, Lapetra J, Fiol M, Alonso-Gomez ÁM, Serra-Majem L, Deik A, Salas-Salvadó J, Hu FB, Martínez-González MA. Plasma lipidome and risk of atrial fibrillation: results from the PREDIMED trial. J Physiol Biochem 2023; 79:355-364. [PMID: 37004634 PMCID: PMC10300169 DOI: 10.1007/s13105-023-00958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
The potential role of the lipidome in atrial fibrillation (AF) development is still widely unknown. We aimed to assess the association between lipidome profiles of the Prevención con Dieta Mediterránea (PREDIMED) trial participants and incidence of AF. We conducted a nested case-control study (512 incident centrally adjudicated AF cases and 735 controls matched by age, sex, and center). Baseline plasma lipids were profiled using a Nexera X2 U-HPLC system coupled to an Exactive Plus orbitrap mass spectrometer. We estimated the association between 216 individual lipids and AF using multivariable conditional logistic regression and adjusted the p values for multiple testing. We also examined the joint association of lipid clusters with AF incidence. Hitherto, we estimated the lipidomics network, used machine learning to select important network-clusters and AF-predictive lipid patterns, and summarized the joint association of these lipid patterns weighted scores. Finally, we addressed the possible interaction by the randomized dietary intervention.Forty-one individual lipids were associated with AF at the nominal level (p < 0.05), but no longer after adjustment for multiple-testing. However, the network-based score identified with a robust data-driven lipid network showed a multivariable-adjusted ORper+1SD of 1.32 (95% confidence interval: 1.16-1.51; p < 0.001). The score included PC plasmalogens and PE plasmalogens, palmitoyl-EA, cholesterol, CE 16:0, PC 36:4;O, and TG 53:3. No interaction with the dietary intervention was found. A multilipid score, primarily made up of plasmalogens, was associated with an increased risk of AF. Future studies are needed to get further insights into the lipidome role on AF.Current Controlled Trials number, ISRCTN35739639.
Collapse
Affiliation(s)
- Estefania Toledo
- Department of Preventive Medicine and Public Health, Edificio de Investigación, University of Navarra, Planta 2, Calle Irunlarrea 1, 31008, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Clemens Wittenbecher
- SciLifeLab & Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Cristina Razquin
- Department of Preventive Medicine and Public Health, Edificio de Investigación, University of Navarra, Planta 2, Calle Irunlarrea 1, 31008, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, Edificio de Investigación, University of Navarra, Planta 2, Calle Irunlarrea 1, 31008, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Liming Liang
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Pablo Hernández-Alonso
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Nerea Becerra-Tomás
- Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
| | - Fernando Arós-Borau
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute Osakidetza Basque Health Service, Araba University Hospital University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Dolores Corella
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
| | - Emilio Ros
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Clinic, Barcelona, Spain
| | - Ramón Estruch
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Montserrat Fitó
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - José Lapetra
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41013, Seville, Spain
| | - Miquel Fiol
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdISBa. Health Research Institute of the Balearis Islands, Palma, Spain
| | - Ángel M Alonso-Gomez
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute Osakidetza Basque Health Service, Araba University Hospital University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Luis Serra-Majem
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI) del Servicio Canario de Salud, Gobierno de Canarias, Las Palmas de Gran Canaria, Spain
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jordi Salas-Salvadó
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, Edificio de Investigación, University of Navarra, Planta 2, Calle Irunlarrea 1, 31008, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
22
|
Gharib AR, Jensen PN, Psaty BM, Hoofnagle AN, Siscovick D, Gharib SA, Sitlani CM, Sotoodehnia N, Lemaitre RN. Plasma sphingolipids, lung function and COPD: the Cardiovascular Health Study. ERJ Open Res 2023; 9:00346-2022. [PMID: 37020834 PMCID: PMC10068528 DOI: 10.1183/23120541.00346-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale COPD is the third leading cause of death in the United States. Sphingolipids, structural membrane constituents that play a role in cellular stress and apoptosis signalling, may be involved in lung function. Methods In the Cardiovascular Health Study, a prospective cohort of older adults, we cross-sectionally examined the association of plasma levels of 17 sphingolipid species with lung function and COPD. Multivariable linear regression and logistic regression were used to evaluate associations of sphingolipid concentrations with forced expiratory volume in 1 s (FEV1) and odds of COPD, respectively. Results Of the 17 sphingolipids evaluated, ceramide-18 (Cer-18) and sphingomyelin-18 (SM-18) were associated with lower FEV1 values (-0.061 L per two-fold higher Cer-18, p=0.001; -0.092 L per two-fold higher SM-18, p=0.002) after correction for multiple testing. Several other associations were significant at a 0.05 level, but did not reach statistical significance after correction for multiple testing. Specifically, Cer-18 and SM-18 were associated with higher odds of COPD (odds ratio per two-fold higher Cer-18 1.29, p=0.03 and SM-18 1.73, p=0.008). Additionally, Cer-16 and SM-16 were associated with lower FEV1 values, and Cer-14, SM-14 and SM-16 with a higher odds of COPD. Conclusion In this large cross-sectional study, specific ceramides and sphingomyelins were associated with reduced lung function in a population-based study. Future studies are needed to examine whether these biomarkers are associated with longitudinal change in FEV1 within individuals or with incident COPD.
Collapse
Affiliation(s)
- Arya R Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paul N Jensen
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Borges MC, Haycock P, Zheng J, Hemani G, Howe LJ, Schmidt AF, Staley JR, Lumbers RT, Henry A, Lemaitre RN, Gaunt TR, Holmes MV, Davey Smith G, Hingorani AD, Lawlor DA. The impact of fatty acids biosynthesis on the risk of cardiovascular diseases in Europeans and East Asians: a Mendelian randomization study. Hum Mol Genet 2022; 31:4034-4054. [PMID: 35796550 PMCID: PMC9703943 DOI: 10.1093/hmg/ddac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk.
Collapse
Affiliation(s)
- Maria-Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Phillip Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Laurence J Howe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - A Floriaan Schmidt
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Department of Cardiology, Division Heart and Lungs, UMC Utrecht, Utrecht 3584 CX, The Netherlands
| | - James R Staley
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London NW1 2DA, UK
- Health Data Research UK London, University College London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Albert Henry
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Institute of Health Informatics, University College London, London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA WA 98101, USA
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Aroon D Hingorani
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Health Data Research UK London, University College London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
- NIHR Bristol Biomedical Research Centre, Bristol BS8 2BN, UK
| |
Collapse
|
24
|
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, Cudnoch-Jȩdrzejewska A, Czarzasta K. Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med 2022; 9:915961. [PMID: 36119733 PMCID: PMC9471951 DOI: 10.3389/fcvm.2022.915961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are a structural component of the cell membrane, derived from sphingosine, an amino alcohol. Its sphingoid base undergoes various types of enzymatic transformations that lead to the formation of biologically active compounds, which play a crucial role in the essential pathways of cellular signaling, proliferation, maturation, and death. The constantly growing number of experimental and clinical studies emphasizes the pivotal role of sphingolipids in the pathophysiology of cardiovascular diseases, including, in particular, ischemic heart disease, hypertension, heart failure, and stroke. It has also been proven that altering the sphingolipid metabolism has cardioprotective properties in cardiac pathologies, including myocardial infarction. Recent studies suggest that selected sphingolipids may serve as valuable biomarkers useful in the prognosis of cardiovascular disorders in clinical practice. This review aims to provide an overview of the current knowledge of sphingolipid metabolism and signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Sonia Borodzicz-Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Wojciech Łysik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jȩdrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Jensen PN, Fretts AM, Hoofnagle AN, McKnight B, Howard BV, Umans JG, Sitlani CM, Siscovick DS, King IB, Sotoodehnia N, Lemaitre RN. Circulating ceramides and sphingomyelins and the risk of incident cardiovascular disease among people with diabetes: the strong heart study. Cardiovasc Diabetol 2022; 21:167. [PMID: 36042511 PMCID: PMC9429431 DOI: 10.1186/s12933-022-01596-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasma ceramides and sphingomyelins have been independently linked to diabetes risk, glucose and insulin levels, and the risk of several cardiovascular (CVD) outcomes. However, whether individual ceramide and sphingomyelin species contribute to CVD risk among people with type 2 diabetes is uncertain. Our goal was to evaluate associations of 4 ceramide and 4 sphingomyelin species with incident CVD in a longitudinal population-based study among American Indians with diabetes. METHODS This analysis included participants with prevalent type 2 diabetes from two cohorts: a prospective cohort of 597 participants in the Strong Heart Family Study (116 incident CVD cases; mean age: 49 years; average length of follow-up: 14 years), and a nested case-control sample of 267 participants in the Strong Heart Study (78 cases of CVD and 189 controls; mean age: 61 years; average time until incident CVD in cases: 3.8 years). The average onset of diabetes was 7 years prior to sphingolipid measurement. Sphingolipid species were measured using liquid chromatography and mass spectrometry. Cox regression and logistic regression were used to assess associations of sphingolipid species with incident CVD; results were combined across cohorts using inverse-variance weighted meta-analysis. RESULTS There were 194 cases of incident CVD in the two cohorts. In meta-analysis of the 2 cohort results, higher plasma levels of Cer-16 (ceramide with acylated palmitic acid) were associated with higher CVD risk (HR per two-fold higher Cer-16: 1.85; 95% CI 1.05-3.25), and higher plasma levels of sphingomyelin species with a very long chain saturated fatty acid were associated with lower CVD risk (HR per two-fold higher SM-22: 0.48; 95% CI 0.26-0.87), although none of the associations met our pre-specified threshold for statistical significance of p = 0.006. CONCLUSIONS While replication of the findings from the SHS in other populations is warranted, our findings add to a growing body of research suggesting that ceramides, in particular Cer-16, not only are associated with higher diabetes risk, but may also be associated with higher CVD risk after diabetes onset. We also find support for the hypothesis that sphingomyelins with a very long chain saturated fatty acid are associated with lower CVD risk among adults with type 2 diabetes.
Collapse
Affiliation(s)
- Paul N Jensen
- Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA. .,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA.,Georgetown and Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | | | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Nona Sotoodehnia
- Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Rozenn N Lemaitre
- Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Qin X, Zhang Y, Zheng Q. Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23158291. [PMID: 35955426 PMCID: PMC9368187 DOI: 10.3390/ijms23158291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, is closely intertwined with metabolic abnormalities. Recently, a metabolic paradox in AF pathogenesis has been suggested: under different forms of pathogenesis, the metabolic balance shifts either towards (e.g., obesity and diabetes) or away from (e.g., aging, heart failure, and hypertension) fatty acid oxidation, yet they all increase the risk of AF. This has raised the urgent need for a general consensus regarding the metabolic changes that predispose patients to AF. “Metabolic flexibility” aptly describes switches between substrates (fatty acids, glucose, amino acids, and ketones) in response to various energy stresses depending on availability and requirements. AF, characterized by irregular high-frequency excitation and the contraction of the atria, is an energy challenge and triggers a metabolic switch from preferential fatty acid utilization to glucose metabolism to increase the efficiency of ATP produced in relation to oxygen consumed. Therefore, the heart needs metabolic flexibility. In this review, we will briefly discuss (1) the current understanding of cardiac metabolic flexibility with an emphasis on the specificity of atrial metabolic characteristics; (2) metabolic heterogeneity among AF pathogenesis and metabolic inflexibility as a common pathological basis for AF; and (3) the substrate-metabolism mechanism underlying metabolic inflexibility in AF pathogenesis.
Collapse
Affiliation(s)
- Xinghua Qin
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Yudi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- Correspondence: or
| |
Collapse
|
27
|
Huang SY, Lu YY, Lin YK, Chen YC, Chen YA, Chung CC, Lin WS, Chen SA, Chen YJ. Ceramide modulates electrophysiological characteristics and oxidative stress of pulmonary vein cardiomyocytes. Eur J Clin Invest 2022; 52:e13690. [PMID: 34662431 DOI: 10.1111/eci.13690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ceramide is involved in regulating metabolism and energy expenditure, and its abnormal myocardial accumulation may contribute to heart injury or lipotoxic cardiomyopathy. Whether ceramide can modulate the electrophysiology of pulmonary veins (PVs) remains unknown. MATERIALS AND METHODS We used conventional microelectrodes to measure the electrical activity of isolated rabbit PV tissue preparations before and after treatment with various concentrations of ceramide with or without H2 O2 (2 mM), MitoQ, wortmannin or 740 YP. A whole-cell patch clamp and fluorescence imaging were used to record the ionic currents, calcium (Ca2+ ) transients, and intracellular reactive oxygen species (ROS) and sodium (Na+ ) in isolated single PV cardiomyocytes before and after ceramide (1 μM) treatment. RESULTS Ceramide (0.1, 0.3, 1 and 3 μM) reduced the beating rate of PV tissues. Furthermore, ceramide (1 μM) suppressed the 2 mM H2 O2 -induced faster PV beating rate, triggered activities and burst firings, which were further reduced by MitoQ. In the presence of wortmannin, ceramide did not change the PV beating rate. The H2 O2 -induced faster PV beating rate could be counteracted by MitoQ or wortmannin with no additive effect from the ceramide. Ceramide inhibited pPI3K. Ceramide reduced Ca2+ transients, sarcoplasmic reticulum Ca2+ contents, L-type Ca2+ currents, Na+ currents, late Na+ currents, Na+ -hydrogen exchange currents, and intracellular ROS and Na+ in PV cardiomyocytes, but did not change Na+ -Ca2+ exchange currents. CONCLUSION C2 ceramide may exert the distinctive electrophysiological effect of modulating PV activities, which may be affected by PI3K pathway-mediated oxidative stress, and might play a role in the pathogenesis of PV arrhythmogenesis.
Collapse
Affiliation(s)
- Shih-Yu Huang
- Division of Cardiac Electrophysiology, Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yen-Yu Lu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ann Chen
- Division of Nephrology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shiang Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Effect of Empagliflozin on Sphingolipid Catabolism in Diabetic and Hypertensive Rats. Int J Mol Sci 2022; 23:ijms23052883. [PMID: 35270028 PMCID: PMC8910883 DOI: 10.3390/ijms23052883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
The profile of sphingomyelin and its metabolites shows changes in the plasma, organs, and tissues of patients with cardiovascular, renal, and metabolic diseases. The objective of this study was to investigate the effect of empagliflozin on the levels of sphingomyelin and its metabolites, as well as on the activity of acid and neutral sphingomyelinase (aSMase and nSMase) and neutral ceramidase (nCDase) in the plasma, kidney, heart, and liver of streptozotocin-induced diabetic and Angiotensin II (Ang II)-induced hypertension rats. Empagliflozin treatment decreased hyperglycemia in diabetic rats whereas blood pressure remained elevated in hypertensive rats. In diabetic rats, empagliflozin treatment decreased sphingomyelin in the plasma and liver, ceramide in the heart, sphingosine-1-phosphate (S1P) in the kidney, and nCDase activity in the plasma, heart, and liver. In hypertensive rats, empagliflozin treatment decreased sphingomyelin in the plasma, kidney, and liver; S1P in the plasma and kidney; aSMase in the heart, and nCDase activity in the plasma, kidney, and heart. Our results suggest that empagliflozin downregulates the interaction of the de novo pathway and the catabolic pathway of sphingolipid metabolism in the diabetes, whereas in Ang II-dependent hypertension, it only downregulates the sphingolipid catabolic pathway.
Collapse
|
29
|
Yang H, Yang F, Luo M, Chen Q, Liu X, Zhang Y, Zhu G, Chen W, Li T, Shu C, Zhou Z. Metabolomic Profile Reveals That Ceramide Metabolic Disturbance Plays an Important Role in Thoracic Aortic Dissection. Front Cardiovasc Med 2022; 9:826861. [PMID: 35211530 PMCID: PMC8861291 DOI: 10.3389/fcvm.2022.826861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Aims Thoracic aortic dissection (TAD) is a life-threatening disease with no effective drug therapy thus far. New therapeutic targets and indications for timely surgical intervention are urgently needed. Our aim is to investigate new pathological mechanisms and potential biomarkers of TAD through global metabolomic profiling of aortic aneurysm and dissection patients. Methods and Results We performed untargeted metabolomics to determine plasma metabolite concentrations in an aortic disease cohort, including 70 thoracic aortic aneurysm (TAA) and 70 TAD patients, as well as 70 healthy controls. Comparative analysis revealed that sphingolipid, especially its core metabolite C18-ceramide, was significantly distinguished in TAD patients but not in TAA patients, which was confirmed by subsequent quantitative analysis of C18-ceramide in a validation cohort. By analyzing our existing multiomics data in aortic tissue in a murine TAD model and TAD patients, we found that an enhanced ceramide de novo synthesis pathway in macrophages might contribute to the elevated ceramide. Inhibition of the ceramide de novo synthesis pathway by myriocin markedly alleviated BAPN-induced aortic inflammation and dissection in mice. In vitro studies demonstrated that exogenous C18-ceramide promoted macrophage inflammation and matrix metalloprotein (MMP) expression through the NLRP3-caspase 1 pathway. In contrast, inhibition of endogenous ceramide synthesis by myriocin attenuated lipopolysaccharide (LPS)-induced macrophage inflammation. Conclusions Our findings demonstrated that ceramide metabolism disturbance might play a vital role in TAD development by aggravating aortic inflammation through the NLRP3 pathway, possibly providing a new target for pharmacological therapy and a potential biomarker of TAD.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoyan Zhu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianjiao Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang Shu
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW In contrast to other saturated fatty acids, very long-chain saturated fatty acids (VLSFAs) have received limited attention The purpose of this review is to summarize the associations of VLSFAs, including arachidic acid, behenic acid, and lignoceric acid, with cardiovascular disease outcomes and type 2 diabetes; to discuss the findings implications; and to call for future studies of the VLSFAs. RECENT FINDINGS Increased levels of circulating VLSFAs have been found associated with lower risks of incident heart failure, atrial fibrillation, coronary heart disease, mortality, sudden cardiac arrest, type 2 diabetes, and with better aging. The VLSFA associations are paralleled by associations of plasma ceramide and sphingomyelin species carrying a VLSFA with lower risks of heart failure, atrial fibrillation, and mortality, suggesting VLSFAs affect the biological activity of ceramides and sphingomyelins thereby impacting health. For diabetes, there is no such parallel and the associations of VLSFAs with diabetes may be confounded or mediated by triglyceride and circulating palmitic acid, possible biomarkers of de novo lipogenesis. SUMMARY In many ways, the epidemiology has preceded our knowledge of VLSFAs biology. We hope this review will spur interest from the research community in further studying these potentially beneficial fatty acids.
Collapse
Affiliation(s)
- Rozenn N. Lemaitre
- University of Washington, Department of Medicine, Cardiovascular Health Research Unit, Seattle, Washington
| | | |
Collapse
|
31
|
Fretts AM, Jensen PN, Hoofnagle AN, McKnight B, Sitlani CM, Siscovick DS, King IB, Psaty BM, Sotoodehnia N, Lemaitre RN. Circulating Ceramides and Sphingomyelins and Risk of Mortality: The Cardiovascular Health Study. Clin Chem 2021; 67:1650-1659. [PMID: 34580702 PMCID: PMC8634404 DOI: 10.1093/clinchem/hvab182] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies suggest that associations of ceramides (Cer) and sphingomyelins (SM) with health outcomes differ according to the fatty acid acylated to the sphingoid backbone. The purpose of this study was to assess associations of Cer and SM species with mortality. METHODS The study population included participants from the Cardiovascular Health Study (CHS), a community-based cohort of adults aged ≥65 years who were followed from 1992-2015 (n = 4612). Associations of plasma Cer and SM species carrying long-chain (i.e., 16:0) and very-long-chain (i.e., 20:0, 22:0, 24:0) saturated fatty acids with mortality were assessed using Cox proportional hazards models. RESULTS During a median follow-up of 10.2 years, 4099 deaths occurred. High concentrations of Cer and SM carrying fatty acid 16:0 were each associated with an increased risk of mortality. Conversely, high concentrations of several ceramide and sphingomyelin species carrying longer fatty acids were each associated with a decreased risk of mortality. The hazard ratios for total mortality per 2-fold difference in each Cer and SM species were: 1.89 (95% CI), 1.65-2.17 for Cer-16, 0.79 (95% CI, 0.70-0.88) for Cer-22, 0.74 (95% CI, 0.65-0.84) for Cer-24, 2.51 (95% CI, 2.01-3.14) for SM-16, 0.68 (95% CI, 0.58-0.79) for SM-20, 0.57 (95% CI, 0.49-0.67) for SM-22, and 0.66 (0.57-0.75) for SM-24. We found no association of Cer-20 with risk of death. CONCLUSIONS Associations of Cer and SM with the risk of death differ according to the length of their acylated saturated fatty acid. Future studies are needed to explore mechanisms underlying these relationships.
Collapse
Affiliation(s)
- Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Paul N Jensen
- Department of Medicine, University of Washington, Seattle, WA
| | - Andrew N Hoofnagle
- Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, WA
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA
| | | | | | - Irena B King
- Department of Medicine, University of New Mexico, Albuquerque, NM
| | - Bruce M Psaty
- Department of Medicine , University of Washington, Seattle, WA
| | | | | |
Collapse
|
32
|
Signori C, Meessen JMTA, Laaksonen R, Maggioni AP, Novelli D, Blanda A, Jylhä A, Nicolis E, Targher G, Tavazzi L, Tognoni G, Hilvo M, Latini R. Coffee, Atrial Fibrillation, and Circulating Ceramides in Patients with Chronic Heart Failure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11236-11245. [PMID: 34533314 DOI: 10.1021/acs.jafc.1c03741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ceramides are sphingolipids that play roles as structural lipids and as second messengers in biological processes. Circulating ceramides are influenced by diet/food and predict major cardiovascular (CV) events, such as atrial fibrillation (AF). In 1227 patients with symptomatic chronic heart failure (HF), an association between diet and ceramides was found for coffee consumption of ≥3 cups and Cer(d18:1/24:0). Increased Cer(d18:1/24:0) was associated with lower incident AF (24.3% vs 15.4% tertile 1 vs 3, P = 0.016) and lower CV mortality (28.4% vs 12.0% tertile 1 vs 3, P < 0.0001). For coffee consumption, only an association with incident AF was found (24.5% never, 5.2% ≥3 cups). These inverse associations with AF were confirmed in survival analyses corrected for biomarkers (Cer(d18:1/24:0) HR: 0.79, P = 0.018; coffee consumption HR: 0.22, P = 0.001). In conclusion, higher coffee intake was associated with a lower risk of incident AF and with higher concentrations of Cer(d18:1/24:0). Cer(d18:1/24:0) was inversely associated to risk of AF.
Collapse
Affiliation(s)
- Chiara Signori
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20157, Italy
| | - Jennifer M T A Meessen
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20157, Italy
| | | | | | - Deborah Novelli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20157, Italy
| | - Adriana Blanda
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20157, Italy
| | | | - Enrico Nicolis
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20157, Italy
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona 37126, Italy
| | - Luigi Tavazzi
- Maria Cecilia Hospital, GVM Care & Research, Cotignola 48033, Italy
| | - Gianni Tognoni
- Department of Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Mika Hilvo
- Zora Biosciences Oy, Espoo 02150, Finland
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20157, Italy
| |
Collapse
|
33
|
Fretts AM, Jensen PN, Hoofnagle AN, McKnight B, Howard BV, Umans J, Sitlani CM, Siscovick DS, King IB, Djousse L, Sotoodehnia N, Lemaitre RN. Plasma Ceramides containing Saturated Fatty Acids are Associated with Risk of Type 2 Diabetes. J Lipid Res 2021; 62:100119. [PMID: 34555371 PMCID: PMC8517199 DOI: 10.1016/j.jlr.2021.100119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggest that the type of saturated fatty acid bound to sphingolipids influences the biological activity of those sphingolipids. However, it is unknown whether associations of sphingolipids with diabetes may differ by the identity of bound lipid species. Here, we investigated associations of 15 ceramide (Cer) and SM species (i.e., all sphingolipids, measured with coefficient of variation less than 20%) with incident type 2 diabetes in the Cardiovascular Health Study (n = 3,645), a large cohort study of cardiovascular disease among elderly adults who were followed from 1989 to 2015. Diabetes incidence was defined as fasting glucose ≥126 mg/dl or nonfasting glucose ≥200 mg/dl; reported use of insulin or oral hypoglycemic medication; or documentation of diabetes diagnosis through the Centers for Medicare and Medicaid Services records. Associations of each sphingolipid with incident diabetes were assessed using a Cox proportional hazards regression model. We found that higher circulating levels of Cer with acylated palmitic acid (Cer-16), stearic acid containing Cer (Cer-18), arachidic acid containing Cer (Cer-20), and behenic acid containing Cer (Cer-22) were each associated with a higher risk of diabetes. The hazard ratios for incident diabetes per 1 SD higher log levels of each Cer species were as follows: 1.21 (95% CI: 1.09–1.34) for Cer-16, 1.23 (95% CI: 1.10–1.37) for Cer-18, 1.14 (95% CI: 1.02–1.26) for Cer-20, and 1.18 (95% CI: 1.06–1.32) for Cer-22. In conclusion, higher levels of Cer-16, Cer-18, Cer-20, and Cer-22 were associated with a higher risk of diabetes.
Collapse
Affiliation(s)
- Amanda M Fretts
- University of Washington Departments of Epidemiology, 1410 NE Campus Parkway, Seattle WA, 98105 USA; University of Washington Cardiovascular Health Research Unit, 1730 Minor Ave #1360 Seattle, WA 98101 USA.
| | - Paul N Jensen
- University of Washington Cardiovascular Health Research Unit, 1730 Minor Ave #1360 Seattle, WA 98101 USA; Medicine, 1410 NE Campus Parkway, Seattle WA, 98105 USA
| | - Andrew N Hoofnagle
- Medicine, 1410 NE Campus Parkway, Seattle WA, 98105 USA; Laboratory Medicine, 1410 NE Campus Parkway, Seattle WA, 98105 USA
| | - Barbara McKnight
- University of Washington Cardiovascular Health Research Unit, 1730 Minor Ave #1360 Seattle, WA 98101 USA; Biostatistics, 1410 NE Campus Parkway, Seattle WA, 98105 USA
| | - Barbara V Howard
- MedStar Health Research Institute, 6525 Belcrest Rd #700c, Hyattsville, MD, 20782 USA; Georgetown and Howard Universities Center for Clinical and Translational Science, 4000 Reservoir Road NW Washington DC 20057 USA
| | - Jason Umans
- MedStar Health Research Institute, 6525 Belcrest Rd #700c, Hyattsville, MD, 20782 USA
| | - Colleen M Sitlani
- University of Washington Cardiovascular Health Research Unit, 1730 Minor Ave #1360 Seattle, WA 98101 USA; Medicine, 1410 NE Campus Parkway, Seattle WA, 98105 USA
| | | | - Irena B King
- Department of Internal Medicine, University of New Mexico, 915 Camino de Salud NE Albuquerque, NM 87106 USA
| | - Luc Djousse
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St,Boston, MA 02115 USA
| | - Nona Sotoodehnia
- University of Washington Cardiovascular Health Research Unit, 1730 Minor Ave #1360 Seattle, WA 98101 USA; Medicine, 1410 NE Campus Parkway, Seattle WA, 98105 USA
| | - Rozenn N Lemaitre
- University of Washington Cardiovascular Health Research Unit, 1730 Minor Ave #1360 Seattle, WA 98101 USA; Medicine, 1410 NE Campus Parkway, Seattle WA, 98105 USA
| |
Collapse
|
34
|
Liu F, Chen X, Liu Y, Niu Z, Tang H, Mao S, Li N, Chen G, Xiang H. Serum cardiovascular-related metabolites disturbance exposed to different heavy metal exposure scenarios. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125590. [PMID: 33740723 PMCID: PMC8204224 DOI: 10.1016/j.jhazmat.2021.125590] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 05/23/2023]
Abstract
Health effects induced by heavy metal components of particulate matter need further research. A total of 32 healthy volunteers were recruited to walk for 4 h in two different exposure scenarios in Wuhan from May 1 to Jun 30, 2019. Metabolomics technology was used to identify serum cardiovascular-related metabolites disturbance, and the health risk assessment model was employed to assess the non-carcinogenic and carcinogenic risks associated with airborne heavy metals. The results showed that the average mass concentrations of Co, Ni, Cd, Cu, Ag and Ba in PM10 from May 1 to Jun 30, 2019 were 0.22, 0.49, 11.53, 2.23, 34.47 and 4.19 ng/m3, respectively, and were 0.86, 128.47, 291.85, 291.94, 98.55 and 422.62 ng/m3 in PM2.5, respectively. Healthy young adults briefly exposed to heavy metals were associated with serum cardiovascular-related metabolites disturbance, including increased SM(d18:1/17:0) and Sphingomyelin, and decreased GlcCer(d16:1/18:0) and Galabiosylceramide, simultaneously accompanied by activation of the sphingolipid metabolism pathway. Non-carcinogenic and carcinogenic risks of airborne heavy metals via the inhalation route were observed, Ni and Cd most influenced to potential health risks. Findings indicated exposure to increment of heavy metals may increase health risks by causing cardiovascular-related metabolites disturbance via activating the sphingolipid metabolism pathway.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Yisi Liu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China.
| |
Collapse
|
35
|
Cui S, Li L, Zhang Y, Lu J, Wang X, Song X, Liu J, Li K. Machine Learning Identifies Metabolic Signatures that Predict the Risk of Recurrent Angina in Remitted Patients after Percutaneous Coronary Intervention: A Multicenter Prospective Cohort Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003893. [PMID: 34026445 PMCID: PMC8132066 DOI: 10.1002/advs.202003893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Recurrent angina (RA) after percutaneous coronary intervention (PCI) has few known risk factors, hampering the identification of high-risk populations. In this multicenter study, plasma samples are collected from patients with stable angina after PCI, and these patients are followed-up for 9 months for angina recurrence. Broad-spectrum metabolomic profiling with LC-MS/MS followed by multiple machine learning algorithms is conducted to identify the metabolic signatures associated with future risk of angina recurrence in two large cohorts (n = 750 for discovery set, and n = 775 for additional independent discovery cohort). The metabolic predictors are further validated in a third cohort from another center (n = 130) using a clinically-sound quantitative approach. Compared to angina-free patients, the remitted patients with future RA demonstrates a unique chemical endophenotype dominated by abnormalities in chemical communication across lipid membranes and mitochondrial function. A novel multi-metabolite predictive model constructed from these latent signatures can stratify remitted patients at high-risk for angina recurrence with over 89% accuracy, sensitivity, and specificity across three independent cohorts. Our findings revealed reproducible plasma metabolic signatures to predict patients with a latent future risk of RA during post-PCI remission, allowing them to be treated in advance before an event.
Collapse
Affiliation(s)
- Song Cui
- Department of CardiologyBeijing Anzhen HospitalCapital University of Medical SciencesBeijing100029China
| | - Li Li
- Department of CardiologyQufu People's HospitalQufuShandong273100China
| | - Yongjiang Zhang
- Department of CardiologyQufu People's HospitalQufuShandong273100China
| | - Jianwei Lu
- Department of CardiologyQufu People's HospitalQufuShandong273100China
| | - Xiuzhen Wang
- Department of CardiologyQufu People's HospitalQufuShandong273100China
| | - Xiantao Song
- Department of CardiologyBeijing Anzhen HospitalCapital University of Medical SciencesBeijing100029China
| | - Jinghua Liu
- Department of CardiologyBeijing Anzhen HospitalCapital University of Medical SciencesBeijing100029China
| | - Kefeng Li
- School of MedicineUniversity of CaliforniaSan DiegoCA92093USA
| |
Collapse
|
36
|
Al‐Sari N, Schmidt S, Suvitaival T, Kim M, Trošt K, Ranjan AG, Christensen MB, Overgaard AJ, Pociot F, Nørgaard K, Legido‐Quigley C. Changes in the lipidome in type 1 diabetes following low carbohydrate diet: Post-hoc analysis of a randomized crossover trial. Endocrinol Diabetes Metab 2021; 4:e00213. [PMID: 33855215 PMCID: PMC8029500 DOI: 10.1002/edm2.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/14/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Lipid metabolism might be compromised in type 1 diabetes, and the understanding of lipid physiology is critically important. This study aimed to compare the change in plasma lipid concentrations during carbohydrate dietary changes in individuals with type 1 diabetes and identify links to early-stage dyslipidaemia. We hypothesized that (1) the lipidomic profiles after ingesting low or high carbohydrate diet for 12 weeks would be different; and (2) specific annotated lipid species could have significant associations with metabolic outcomes. Methods Ten adults with type 1 diabetes (mean ± SD: age 43.6 ± 13.8 years, diabetes duration 24.5 ± 13.4 years, BMI 24.9 ± 2.1 kg/m2, HbA1c 57.6 ± 2.6 mmol/mol) using insulin pumps participated in a randomized 2-period crossover study with a 12-week intervention period of low carbohydrate diet (< 100 g carbohydrates/day) or high carbohydrate diet (> 250 g carbohydrates/day), respectively, separated by a 12-week washout period. A large-scale non-targeted lipidomics was performed with mass spectrometry in fasting plasma samples obtained before and after each diet intervention. Longitudinal lipid levels were analysed using linear mixed-effects models. Results In total, 289 lipid species were identified from 14 major lipid classes. Comparing the two diets, 11 lipid species belonging to sphingomyelins, phosphatidylcholines and LPC(O-16:0) were changed. All the 11 lipid species were significantly elevated during low carbohydrate diet. Two lipid species were most differentiated between diets, namely SM(d36:1) (β ± SE: 1.44 ± 0.28, FDR = 0.010) and PC(P-36:4)/PC(O-36:5) (β ± SE: 1.34 ± 0.25, FDR = 0.009) species. Polyunsaturated PC(35:4) was inversely associated with BMI and positively associated with HDL cholesterol (p < .001). Conclusion Lipidome-wide outcome analysis of a randomized crossover trial of individuals with type 1 diabetes following a low carbohydrate diet showed an increase in sphingomyelins and phosphatidylcholines which are thought to reduce dyslipidaemia. The polyunsaturated phosphatidylcholine 35:4 was inversely associated with BMI and positively associated with HDL cholesterol (p < .001). Results from this study warrant for more investigation on the long-term effect of single lipid species in type 1 diabetes.
Collapse
Affiliation(s)
| | - Signe Schmidt
- Steno Diabetes Center CopenhagenGentofteDenmark
- Danish Diabetes AcademyOdenseDenmark
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | | | - Min Kim
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Kajetan Trošt
- Steno Diabetes Center CopenhagenGentofteDenmark
- Present address:
Novo Nordisk foundation Center for Basic Metabolic ResearchKøbenhavn NDenmark
| | - Ajenthen G. Ranjan
- Steno Diabetes Center CopenhagenGentofteDenmark
- Danish Diabetes AcademyOdenseDenmark
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Merete B. Christensen
- Steno Diabetes Center CopenhagenGentofteDenmark
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | | | - Flemming Pociot
- Steno Diabetes Center CopenhagenGentofteDenmark
- Department of Clinical MedicineUniversity of CopenhagenKøbenhavnDenmark
| | - Kirsten Nørgaard
- Steno Diabetes Center CopenhagenGentofteDenmark
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Cristina Legido‐Quigley
- Steno Diabetes Center CopenhagenGentofteDenmark
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| |
Collapse
|
37
|
Insight on the Genetics of Atrial Fibrillation in Puerto Rican Hispanics. Stroke Res Treat 2021; 2021:8819896. [PMID: 33505650 PMCID: PMC7810540 DOI: 10.1155/2021/8819896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Non-Hispanic whites present with higher atrial fibrillation (AF) prevalence than other racial minorities living in the mainland USA. In two hospital-based studies, Puerto Rican Hispanics had a lower prevalence of atrial fibrillation of 2.5% than non-Hispanic Whites with 5.7%. This data is particularly controversial because Hispanics possess a higher prevalence of traditional risk factors for developing AF yet have a lower AF prevalence. This phenomenon is known as the atrial fibrillation paradox. Despite recent advancements in understanding AF, its pathogenesis remains unclear. In this study, we compared a genetic dataset of Puerto Rican Hispanics to 111 SNP known to be associated with AF in a large European cohort and determine if they are associated with AF susceptibility in our cohort. To achieve this aim, we performed a secondary analysis of existing data using the following two studies: (1) The Pharmacogenetics of Warfarin in Puerto Ricans study and the (2) A Genomic Approach for Clopidogrel in Caribbean Hispanics, and assess for the presence of European SNPs associated with AF from the genome-wide association study of 1 million people identifies 111 loci for atrial fibrillation. We used data from 555 cardiovascular Puerto Rican Hispanic patients, consisting of 486 control and 69 cases. We found that the following SNPs showed significant association with AF in PHR: rs2834618, rs6462079, rs7508, rs2040862, and rs10458660. Some of these SNPs are proteins involved in lysosomal activities responsible for breaking ceramides to sphingosines and collagen deposition around atrial cardiomyocytes. Furthermore, we performed a machine learning analysis and determined that Native American admixture and heart failure were strongly predictive of AF in PHR. For the first time, this study provides some genetic insight into AF's mechanisms in a Puerto Rican Hispanic cohort.
Collapse
|
38
|
Jensen PN, Fretts AM, Hoofnagle AN, Sitlani CM, McKnight B, King IB, Siscovick DS, Psaty BM, Heckbert SR, Mozaffarian D, Sotoodehnia N, Lemaitre RN. Plasma Ceramides and Sphingomyelins in Relation to Atrial Fibrillation Risk: The Cardiovascular Health Study. J Am Heart Assoc 2020; 9:e012853. [PMID: 32019406 PMCID: PMC7070192 DOI: 10.1161/jaha.119.012853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Ceramides exhibit multiple biological activities that may influence the pathophysiological characteristics of atrial fibrillation (AF). Whether the length of the saturated fatty acid carried by the ceramide or their sphingomyelin precursors are associated with AF risk is not known. Methods and Results Among 4206 CHS (Cardiovascular Health Study) participants (mean age, 76 years; 40% men) who were free of prevalent AF at baseline, we identified 1198 incident AF cases over a median 8.7 years of follow‐up. We examined 8 sphingolipid species: ceramide and sphingomyelin species with palmitic acid and species with very‐long‐chain saturated fatty acids: arachidic; behenic; and lignoceric. In adjusted Cox regression analyses, ceramides and sphingomyelins with very‐long‐chain saturated fatty acids were associated with reduced AF risk (ie, per 2‐fold higher ceramide with behenic acid hazard ratio, 0.71; 95% CI, 0.59–0.86; sphingomyelin with behenic acid hazard ratio, 0.60; 95% CI, 0.46–0.77). In contrast, ceramides and sphingomyelins with palmitic acid were associated with increased AF risk (ceramide with palmitic acid hazard ratio, 1.31; 95% CI, 1.03–1.66; sphingomyelin with palmitic acid hazard ratio, 1.73; 95% CI, 1.18–2.55). Associations were attenuated with adjustment for NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide), but did not differ significantly by age, sex, race, body mass index, or history of coronary heart disease. Conclusions Our findings suggest that several ceramide and sphingomyelin species are associated with incident AF, and that these associations differ on the basis of the fatty acid. Ceramides and sphingomyelins with palmitic acid were associated with increased AF risk, whereas ceramides and sphingomyelins with very‐long‐chain saturated fatty acids were associated with reduced AF risk.
Collapse
Affiliation(s)
- Paul N Jensen
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA
| | - Amanda M Fretts
- Department of Epidemiology University of Washington Seattle WA
| | | | - Colleen M Sitlani
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA
| | | | - Irena B King
- Department of Internal Medicine University of New Mexico Albuquerque NM
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA.,Department of Epidemiology University of Washington Seattle WA.,Department of Health Services University of Washington Seattle WA.,Kaiser Permanente Washington Health Research Institute Seattle WA
| | | | | | - Nona Sotoodehnia
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA.,Department of Epidemiology University of Washington Seattle WA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA
| |
Collapse
|