1
|
Milenkovic D, Nuthikattu S, Norman JE, Villablanca AC. Single Nuclei Transcriptomics Reveals Obesity-Induced Endothelial and Neurovascular Dysfunction: Implications for Cognitive Decline. Int J Mol Sci 2024; 25:11169. [PMID: 39456952 PMCID: PMC11508525 DOI: 10.3390/ijms252011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity confers risk for cardiovascular disease and vascular dementia. However, genomic alterations modulated by obesity in endothelial cells in the brain and their relationship to other neurovascular unit (NVU) cells are unknown. We performed single nuclei RNA sequencing (snRNAseq) of the NVU (endothelial cells, astrocytes, microglia, and neurons) from the hippocampus of obese (ob/ob) and wild-type (WT) male mice to characterize obesity-induced transcriptomic changes in a key brain memory center and assessed blood-brain barrier permeability (BBB) by gadolinium-enhanced magnetic resonance imaging (MRI). Ob/ob mice displayed obesity, hyperinsulinemia, and impaired glucose tolerance. snRNAseq profiled 14 distinct cell types and 32 clusters within the hippocampus of ob/ob and WT mice and uncovered differentially expressed genes (DEGs) in all NVU cell types, namely, 4462 in neurons, 1386 in astrocytes, 125 in endothelial cells, and 154 in microglia. Gene ontology analysis identified important biological processes such as angiogenesis in endothelial cells and synaptic trafficking in neurons. Cellular pathway analysis included focal adhesion and insulin signaling, which were common to all NVU cell types. Correlation analysis revealed significant positive correlations between endothelial cells and other NVU cell types. Differentially expressed long non-coding RNAs (lncRNAs) were observed in cells of the NVU-affecting pathways such as TNF and mTOR. BBB permeability showed a trend toward increased signal intensity in ob/ob mice. Taken together, our study provides in-depth insight into the molecular mechanisms underlying cognitive dysfunction in obesity and may have implications for therapeutic gene targeting.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Saivageethi Nuthikattu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| | - Amparo C. Villablanca
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| |
Collapse
|
2
|
Carbone G, Bencivenga L, Santoro MA, De Lucia N, Palaia ME, Ercolano E, Scognamiglio F, Edison P, Ferrara N, Vitale DF, Rengo G, Femminella GD. Impact of serum leptin and adiponectin levels on brain infarcts in patients with mild cognitive impairment and Alzheimer's disease: a longitudinal analysis. Front Endocrinol (Lausanne) 2024; 15:1389014. [PMID: 38686200 PMCID: PMC11056582 DOI: 10.3389/fendo.2024.1389014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction The adipokines leptin and adiponectin have been associated with atherosclerosis and the risk of cerebral infarcts. Pre-clinical studies, however, suggest a protective role against ischemic brain damage. In this study we analyzed the relationship between serum leptin and adiponectin levels and the onset or progression of brain infarcts in subjects with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Methods All data were extracted from the ADNI database. The final population included 566 subjects, with 58 healthy controls, 396 MCI and 112 AD. All patients with available serum leptin and adiponectin levels at baseline were selected. Demographics, neuropsychological test results, CSF biomarkers, regional brain metabolism with FDG-PET data and the number of brain infarcts on longitudinal MRI scans were extracted. Results Leptin levels were significantly lower in patients with MCI than controls at baseline, while adiponectin levels were not different between the groups. Multivariate logistic regression analysis at baseline for the presence of brain infarcts showed a predictive value for leptin but not for adiponectin. Multivariate longitudinal analysis showed that age was the only significant predictor of brain infarcts development at 15-year follow-up, while serum leptin and adiponectin levels did not play a role in this population. Discussion The evidence on the pathogenetic or protective role of adipokines on ischemic brain damage is mixed. In this MCI and AD population, serum leptin and adiponectin were not associated with the development of brain infarcts; therefore, these results do not support the use of adipokines as biomarkers of cerebrovascular pathology in this population.
Collapse
Affiliation(s)
- Giovanni Carbone
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
| | - Maria Angela Santoro
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
| | - Natascia De Lucia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University, Naples, Italy
| | - Maria Emiliana Palaia
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
| | - Erica Ercolano
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
| | | | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Nicola Ferrara
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
| | | | - Giuseppe Rengo
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
- Laboratorio di fisiopatologia del sistema neurovegetativo, Istituti Clinici Scientifici Maugeri Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) - Scientific Institute of Telese Terme, Telese Terme, BN, Italy
| | - Grazia Daniela Femminella
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Liang J, Zhang M, Wang H, Ren Y, Wu Q, Huang R, Xie J, Yin J, Zhu J. Cholestyramine resin administration alleviated cerebral ischemic injury in obese mice by improving gut dysbiosis and modulating the bile acid profile. Exp Neurol 2023; 359:114234. [PMID: 36179877 DOI: 10.1016/j.expneurol.2022.114234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
Obesity is a risk factor for cerebrovascular diseases. Accumulating evidence has revealed that gut dysbiosis plays an important role in the pathophysiology of cerebrovascular diseases. However, little is known about the role of gut dysbiosis in stroke in obesity. In this study, we established a rodent middle cerebral artery occlusion (MCAO) model to investigate whether obesity-induced gut dysbiosis exacerbates cerebral ischemic injury and the role of the bile salt sequestrant cholestyramine resin (CR) in gut microbiota and stroke outcome in obese mice. Long-term 45% high-fat diet (HFD) diet (8 weeks) induced an obesity phenotype and caused gut dysbiosis, resulting in a larger infarct volume and higher serum levels of inflammatory cytokines after stroke, compared to those in the lean counterparts. LC-MS/MS and GC analysis revealed that obese mice with stroke developed an obviously perturbed bile acid (BA) profile characterized by higher levels of deoxycholic acid and its conjugated forms, and lower levels of butyrate in the cecal content. CR administration improved the obesity-induced dysbiotic microbiome, attenuated ischemic brain injury and modulated the stroke-perturbed BA profile. Furthermore, fecal microbiota transplantation (FMT) experiments revealed that the impact of obesity on stroke and the neuroprotective effects of CR were mediated by gut microbiota. In conclusion, Obesity induces gut dysbiosis, worsens stroke outcomes, and perturbs the BA profile. The dysbiotic microbiome is an important linkage between obesity and stroke. CR confers metabolic benefits and neuroprotective effects in obesity, perhaps by modulating gut microbial composition and BA metabolism.
Collapse
Affiliation(s)
- Jianhai Liang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingsi Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huidi Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yueran Ren
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ranshi Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiahui Xie
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jiajia Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Perez-Corredor PA, Oluwatomilayo-Ojo P, Gutierrez-Vargas JA, Cardona-Gómez GP. Obesity induces extracellular vesicle release from the endothelium as a contributor to brain damage after cerebral ischemia in rats. Nutr Neurosci 2022:1-16. [PMID: 36039918 DOI: 10.1080/1028415x.2022.2078173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Cerebral ischemia is the most common cause of disability, the second most common cause of dementia, and the fourth most common cause of death in the developed world [Sveinsson OA, Kjartansson O, Valdimarsson EM. Heilablóðþurrð/heiladrep: Faraldsfræði, orsakir og einkenni [Cerebral ischemia/infarction - epidemiology, causes and symptoms]. Laeknabladid. 2014 May;100(5):271-9. Icelandic. doi:10.17992/lbl.2014.05.543]. Obesity has been associated with worse outcomes after ischemia in rats, triggering proinflammatory cytokine production related to the brain microvasculature. The way obesity triggers these effects remains mostly unknown. Therefore, the aim of this study was to elucidate the cellular mechanisms of damage triggered by obesity in the context of cerebral ischemia. METHODS We used a rat model of obesity induced by a 20% high fructose diet (HFD) and evaluated peripheral alterations in plasma (lipid and cytokine profiles). Then, we performed cerebral ischemia surgery using two-vessel occlusion (2VO) and analyzed neurological/motor performance and glial activation. Next, we treated endothelial cell line cultures with glutamate in vitro to simulate an excitotoxic environment, and we added 20% plasma from obese rats. Subsequently, we isolated EVs released from endothelial cells and treated primary cultures of astrocytes with them. RESULTS Rats fed a HFD had an increased BMI with dyslipidemia and high levels of proinflammatory cytokines. Glia from the obese rats exhibited altered morphology, suggesting hyperreactivity related to neurological and motor deficits. Plasma from obese rats induced activation of endothelial cells, increasing proinflammatory signals and releasing more EVs. Similarly, these EVs caused an increase in NF-κB and astrocyte cytotoxicity. Together, the results suggest that obesity activates proinflammatory signals in endothelial cells, resulting in the release of EVs that simultaneously contribute to astrocyte activation.
Collapse
Affiliation(s)
- P A Perez-Corredor
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellin, Colombia
| | - P Oluwatomilayo-Ojo
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellin, Colombia.,Division of Neuroendocrinology, Department of Anatomy, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Nigeria
| | - J A Gutierrez-Vargas
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellin, Colombia.,Grupo de Investigación de Neurociencias y Envejecimiento (GISAM), Corporación Universitaria Remington, Medellín, Colombia
| | - G P Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellin, Colombia
| |
Collapse
|
5
|
Zhang Y, Wang Y, Wu W, Liu P, Sun S, Hong M, Yuan Y, Xia Q, Chen Z. Elevation of neutrophil carcinoembryonic antigen-related cell adhesion molecule 1 associated with multiple inflammatory mediators was related to different clinical stages in ischemic stroke patients. J Clin Lab Anal 2022; 36:e24526. [PMID: 35657334 PMCID: PMC9279952 DOI: 10.1002/jcla.24526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND We aimed to analyze the level of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in neutrophils of ischemic stroke (IS) patients at different stages, together with its roles in neutrophils. PATIENTS AND METHODS Sixty-seven patients were classified into acute phase group (n = 19), subacute phase group (n = 28), and stable phase group (n = 20), and 20 healthy individuals who had received physical examination at the same time period as healthy control. We then analyzed the expression level of CEACAM1 and cell viability in CEACAM1 positive and CEACAM1 negative neutrophils by flow cytometry and the content of plasma CEACAM1, neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinases-9 (MMP-9) was measured using enzyme-linked immunosorbent assay (ELISA), while that of interleukin-10 (IL-10) and tumor necrosis factor (TNF) was determined using a Human Enhanced Sensitivity Flex set. RESULTS Compared with healthy control, the percentage of CEACAM1 positive neutrophils in IS patients showed a significant increase, and a significant increase was also noticed in the content of plasma CEACAM1 at the subacute stage. Reduction in cell viability was observed in CEACAM1 positive neutrophils compared with CEACAM1 negative counterparts. There was a positive correlation between CEACAM1 expression rate in neutrophils and plasma CEACAM1 and IL-10 content in the subacute group. Compared with acute group and healthy control group, there was an instinct increase in the level of plasma MMP-9 and NGAL in subacute group. CONCLUSIONS Our data showed that there was a rapid increase of CEACAM1 in neutrophils at the acute stage of IS. We speculated that CEACAM1 may serve as an inhibitory regulator involving in the progression of IS.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory MedicineThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang ProvinceHangzhouChina
| | - Yijie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Ping Liu
- Department of NeurologyThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Shanshan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yuan Yuan
- Department of NeurologyThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Qi Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
6
|
Ghoneem A, Osborne MT, Abohashem S, Naddaf N, Patrich T, Dar T, Abdelbaky A, Al-Quthami A, Wasfy JH, Armstrong KA, Ay H, Tawakol A. Association of Socioeconomic Status and Infarct Volume With Functional Outcome in Patients With Ischemic Stroke. JAMA Netw Open 2022; 5:e229178. [PMID: 35476065 PMCID: PMC9047646 DOI: 10.1001/jamanetworkopen.2022.9178] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IMPORTANCE Long-term disability after stroke is associated with socioeconomic status (SES). However, the reasons for such disparities in outcomes remain unclear. OBJECTIVE To assess whether lower SES is associated with larger admission infarct volume and whether initial infarct volume accounts for the association between SES and long-term disability. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted in a prospective, consecutive population (n = 1256) presenting with acute ischemic stroke who underwent magnetic resonance imaging (MRI) within 24 hours of admission. Patients were recruited in Massachusetts General Hospital, Boston, from May 31, 2009, to December 31, 2011. Data were analyzed from May 1, 2019, until June 30, 2020. MAIN OUTCOMES AND MEASURES Initial stroke severity (within 24 hours of presentation) was determined using clinical (National Institutes of Health Stroke Scale [NIHSS]) and imaging (infarct volume by diffusion-weighted MRI) measures. Stroke etiologic subtypes were determined using the Causative Classification of Ischemic Stroke algorithm. Long-term stroke disability was measured using the modified Rankin Scale. Socioeconomic status was estimated using zip code-derived median household income and census block group-derived area deprivation index (ADI). Regression and mediation analyses were performed. RESULTS A total of 1098 patients had imaging and SES data available (mean [SD] age, 68.1 [15.7] years; 607 men [55.3%]). Income was inversely associated with initial infarct volume (standardized β, -0.074 [95% CI, -0.127 to -0.020]; P = .007), initial NIHSS (standardized β, -0.113 [95% CI, -0.171 to -0.054]; P < .001), and long-term disability (standardized β, -0.092 [95% CI, -0.149 to -0.035]; P = .001), which remained significant after multivariable adjustments. Initial stroke severity accounted for 64% of the association between SES and long-term disability (standardized β, -0.063 [95% CI, -0.095 to -0.029]; P < .05). Findings were similar when SES was alternatively assessed using ADI. CONCLUSIONS AND RELEVANCE The findings of this cohort study suggest that lower SES is associated with larger infarct volumes on presentation. These SES-associated differences in initial stroke severity accounted for most of the subsequent disparities in long-term disability in this study. These findings shift the culpability for SES-associated disparities in poststroke disability from poststroke factors to those that precede presentation.
Collapse
Affiliation(s)
- Ahmed Ghoneem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Michael T. Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Nicki Naddaf
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Tomas Patrich
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Tawseef Dar
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Amr Abdelbaky
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Adeeb Al-Quthami
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jason H. Wasfy
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Katrina A. Armstrong
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Hakan Ay
- Anithoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
7
|
Chen X, Zhang J, Wu Y, Tucker R, Baird GL, Domonoske R, Barrios-Anderson A, Lim YP, Bath K, Walsh EG, Stonestreet BS. Inter-alpha Inhibitor Proteins Ameliorate Brain Injury and Improve Behavioral Outcomes in a Sex-Dependent Manner After Exposure to Neonatal Hypoxia Ischemia in Newborn and Young Adult Rats. Neurotherapeutics 2022; 19:528-549. [PMID: 35290609 PMCID: PMC9226254 DOI: 10.1007/s13311-022-01217-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is a major contributor to neurodevelopmental morbidities. Inter-alpha inhibitor proteins (IAIPs) have neuroprotective effects on HI-related brain injury in neonatal rats. However, the effects of treatment with IAIPs on sequential behavioral, MRI, and histopathological abnormalities in the young adult brain after treatment with IAIPs in neonates remain to be determined. The objective of this study was to examine the neuroprotective effects of IAIPs at different neurodevelopmental stages from newborn to young adults after exposure of neonates to HI injury. IAIPs were given as 11-sequential 30-mg/kg doses to postnatal (P) day 7-21 rats after right common carotid artery ligation and exposure to 90 min of 8% oxygen. The resulting brain edema and injury were examined by T2-weighted magnetic resonance imaging (MRI) and cresyl violet staining, respectively. The mean T2 values of the ipsilateral hemisphere from MRI slices 6 to 10 were reduced in IAIP-treated HI males + females on P8, P9, and P10 and females on P8, P9, P10, and P14. IAIP treatment reduced hemispheric volume atrophy by 44.5 ± 29.7% in adult male + female P42 rats and improved general locomotor abilities measured by the righting reflex over time at P7.5, P8, and P9 in males + females and males and muscle strength/endurance measured by wire hang on P16 in males + females and females. IAIPs provided beneficial effects during the learning phase of the Morris water maze with females exhibiting beneficial effects. IAIPs confer neuroprotection from HI-related brain injury in neonates and even in adult rats and beneficial MRI and behavioral benefits in a sex-dependent manner.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Jiyong Zhang
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yuqi Wu
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Grayson L Baird
- Department of Diagnostic Imaging, Biostatistics Core Lifespan Hospital System, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rose Domonoske
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Adriel Barrios-Anderson
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, USA
| | - Edward G Walsh
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
| |
Collapse
|
8
|
Ya B, Li X, Wang J, Zhao M, Yu T, Wang H, Xin Q, Wang Q, Mu X, Dong X, Gao Y, Xiong H, Zhang H. A Comorbid Rat Model of Neuroendocrine-Immune System Alterations Under the Impact of Risk Factors for Stroke. Front Aging Neurosci 2022; 13:827503. [PMID: 35126096 PMCID: PMC8811044 DOI: 10.3389/fnagi.2021.827503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Hypercholesterolemia and carotid atherosclerosis contribute to the etiology of stroke. However, there has been a lack of appropriate comorbid animal models incorporating some of the ubiquitous characteristics that precede strokes. Curcumin is a natural active polyphenolic compound extracted from the rhizoma of Curcuma longa L. which possesses comprehensive bioactivities. The present study aimed to evaluate whether neurobehavioral deficits, neuroendocrine-immune dysregulations and cerebral microcirculation dysfunction, are part of the initial stages of cerebral ischemia in individuals suffering from carotid atherosclerosis resulting from a high cholesterol diet (HCD) and if they could be tested using a comorbid animal model. Furthermore, the utility of this model will be examined following the administration of curcumin. Adult wild-type SD rats were fed a regular diet or HCD and supplemented with either vehicle or curcumin for 4 weeks. Carotid injury was induced by an air-drying endothelial denudation method at the end of the second week. Plasma cholesterol, carotid pathomorphology, neurobehavioral tests, and neuroendocrine-immune parameters were measured. We found higher plasma levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), intima and media (I/M) ratio, but lower high-density lipoprotein-cholesterol (HDL-C), spatial learning and memory capacity impairment, elevated NPY expression in the hypothalamus, increased plasma concentration of leptin, upregulated TNF-α, IL-1β, and CRP in the circulation as well as TNF-α and IL-1β in the cerebral cortex, plus enhanced ICAM-1, VCAM-1, and E-selectin in cerebral microvessels in HCD-fed model rats. All these alterations were ameliorated by curcumin. These results suggest that a comorbid rat model was effectively developed by HCD and carotid injury.
Collapse
Affiliation(s)
- Bailiu Ya
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
- *Correspondence: Bailiu Ya,
| | - Xuezhi Li
- Shandong Key Laboratory of Behavioral Medicine, Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, School of Mental Health, Jining Medical University, Jining, China
| | - Jingyi Wang
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Ting Yu
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Haiying Wang
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Qing Xin
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Qinqin Wang
- Shandong Key Laboratory of Behavioral Medicine, Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, School of Mental Health, Jining Medical University, Jining, China
| | - Xin Mu
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Xuanyu Dong
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Yang Gao
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, China
- Yang Gao,
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Huabao Xiong,
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Hui Zhang,
| |
Collapse
|
9
|
Ishikawa M, Nagai M, Matsumoto E, Hashimoto M. Initial Progressions of Carotid Artery Plaque Are Associated with Risk Factors of Cardiovascular Disease. J Med Ultrasound 2021; 29:187-194. [PMID: 34729328 PMCID: PMC8515627 DOI: 10.4103/jmu.jmu_107_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/06/2022] Open
Abstract
Background: Carotid artery plaque, white matter disease (WMD), and silent lacunae infarcts (initial indicators) are associated with symptomatic cerebral infarction (CI) caused by atherosclerosis. We retrospectively examined the association between the initial indicators and risk factors for cerebrovascular disease, considering the primary prevention of symptomatic CI. Methods: We divided 1503 individuals who were neurologically healthy and enrolled in a brain screening program (brain dock) at our institution, into three initial plaque grades (grade 0, 1, and 2) based on having no plaques, having plaques on the right or left carotid artery, or having plaques on both carotid arteries, respectively. We analyzed the risk factors according to the presence/absence of the initial indicators. Results: WMD and the risk factors (low-density lipoprotein [LDL], hemoglobin A1c, systolic blood pressure [BP], and smoking cigarettes) were positively correlated with the initial plaque grades, even when their laboratory values were within normal ranges. Systolic BP (116.5 ± 14.0 mmHg) was significantly lower in group 00 (without carotid plaque and WMD) than that in age-adjusted others (with carotid plaque or WMD). In young participants aged between 40 and 52 years, LDL (132.8 ± 24.5 mg/dl) was significantly higher in subgroup ++ (with carotid plaque and WMD) compared to others (without carotid plaque or WMD). Conclusion: Initial plaque grade and WMD grade as clinical initial indicators of symptomatic CI are associated with risk factors. To avoid deterioration of the initial indicators, it was suggested that the risk factors should be maintained at the lower ends of normal ranges and smoking cessation should be recommended.
Collapse
Affiliation(s)
- Mami Ishikawa
- Department of Neurosurgery, Edogawa Hospital, Tokyo, Japan
| | - Mutsumi Nagai
- Department of Neurosurgery, International University Health and Welfare Graduate School, Tochigi, Japan
| | - Eiji Matsumoto
- Department of Neurosurgery, International University Health and Welfare Graduate School, Tochigi, Japan
| | - Masaaki Hashimoto
- Department of Neurosurgery, International University Health and Welfare Graduate School, Tochigi, Japan
| |
Collapse
|
10
|
Shi J, Li W, Zhang F, Park JH, An H, Guo S, Duan Y, Wu D, Hayakawa K, Lo EH, Ji X. CCL2 (C-C Motif Chemokine Ligand 2) Biomarker Responses in Central Versus Peripheral Compartments After Focal Cerebral Ischemia. Stroke 2021; 52:3670-3679. [PMID: 34587791 PMCID: PMC8545911 DOI: 10.1161/strokeaha.120.032782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background and Purpose Inflammatory mediators in blood have been proposed as potential biomarkers in stroke. However, a direct relationship between these circulating factors and brain-specific ischemic injury remains to be fully defined. Methods An unbiased screen in a nonhuman primate model of stroke was used to find out the most responsive circulating biomarker flowing ischemic stroke. Then this phenomenon was checked in human beings and mice. Finally, we observed the temporospatial responsive characteristics of this biomarker after ischemic brain injury in mice to evaluate the direct relationship between this circulating factor and central nervous system–specific ischemic injury. Results In a nonhuman primate model, an unbiased screen revealed CCL2 (C-C motif chemokine ligand 2) as a major response factor in plasma after stroke. In mouse models of focal cerebral ischemia, plasma levels of CCL2 showed a transient response, that is, rapidly elevated by 2 to 3 hours postischemia but then renormalized back to baseline levels by 24 hours. However, a different CCL2 temporal profile was observed in whole brain homogenate, cerebrospinal fluid, and isolated brain microvessels, with a progressive increase over 24 hours, demonstrating a mismatch between brain versus plasma responses. In contrast to the lack of correlation with central nervous system responses, 2 peripheral compartments showed transient profiles that matched circulating plasma signatures. CCL2 protein in lymph nodes and adipose tissue was significantly increased at 2 hours and renormalized by 24 hours. Conclusions These findings may provide a cautionary tale for biomarker pursuits in plasma. Besides a direct central nervous system response, peripheral organs may also contribute to blood signatures in complex and indirect ways.
Collapse
Affiliation(s)
- Jingfei Shi
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Zhang
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ji Hyun Park
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong An
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunxia Duan
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xunming Ji
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Departments of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Pramitasuri TI, Laksmidewi AAAP, Putra IBK, Dalimartha FA. Neutrophil Extracellular Traps in Coronavirus Disease-19-Associated Ischemic Stroke: A Novel Avenue in Neuroscience. Exp Neurobiol 2021; 30:1-12. [PMID: 33632982 PMCID: PMC7926042 DOI: 10.5607/en20048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/26/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is one of the catastrophic neurological events that are being increasingly recognized among Coronavirus Disease (COVID)-19 patients. The recent studies have revealed about a possible connection among COVID-19, ischemic stroke, and excessive Neutrophil Extracellular Traps (NETs) formation. This paper establishes an overview of coronaviruses and NETs, NETs in pathogenesis of COVID-19 induced-ischemic stroke, and future directions using related recent literatures. NETs are normally functioned for a defense against pathogens, but in immoderate amount, they can trigger series of destructive events. Vasculopathy and neuroinflammation are the pathological mechanisms of NETs suggested to link COVID-19 and ischemic stroke. Based on newly discovered possible mechanisms, the potential clinical implications that could be applied consists of inhibition of NET formation, disrupting cholesterol synthesis, and interfering inflammatory pathway. A considerable number of scientific works are needed in order to complete the current understanding of the emerging relationship among COVID-19, NETs, and ischemic stroke. Although the exact mechanism is still unknown, these novel findings are a worthwhile contribution in defining future studies, suitable future frameworks, and therapeutic strategies.
Collapse
Affiliation(s)
| | - Anak Agung Ayu Putri Laksmidewi
- Department of Neurology, Faculty of Medicine Udayana University-Sanglah Academic General Hospital, Denpasar 80232, Indonesia
| | - Ida Bagus Kusuma Putra
- Department of Neurology, Faculty of Medicine Udayana University-Sanglah Academic General Hospital, Denpasar 80232, Indonesia
| | | |
Collapse
|
12
|
Gomez-Pinilla F, Cipolat RP, Royes LFF. Dietary fructose as a model to explore the influence of peripheral metabolism on brain function and plasticity. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166036. [PMID: 33508421 DOI: 10.1016/j.bbadis.2020.166036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
High consumption of fructose has paralleled an explosion in metabolic disorders including obesity and type 2 diabetes. Even more problematic, sustained consumption of fructose is perceived as a threat for brain function and development of neurological disorders. The action of fructose on peripheral organs is an excellent model to understand how systemic physiology impacts the brain. Given the recognized action of fructose on liver metabolism, here we discuss mechanisms by which fructose can impact the brain by interacting with liver and other organs. The interaction between peripheral and central mechanisms is a suitable target to reduce the pathophysiological consequences of neurological disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Neurosurgery, UCLA Brain Injury Research Center, University of California Los Angeles, USA; Department of Integrative Biology and Physiology, UCLA Brain Injury Research Center, University of California Los Angeles, USA.
| | - Rafael Parcianello Cipolat
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| |
Collapse
|
13
|
Yawoot N, Govitrapong P, Tocharus C, Tocharus J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021; 47:41-58. [PMID: 33135223 DOI: 10.1002/biof.1690] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a predominant risk factor in ischemic stroke and is commonly comorbid with it. Pathologies following these conditions are associated with systemic and local inflammation. Moreover, there is increasing evidence that the susceptibility for ischemic brain damage increases substantially in experimental models of ischemic stroke with concomitant obesity. Herein, we explore the proinflammatory events that occur during ischemic stroke and obesity, and we discuss the influence of obesity on the inflammatory response and cerebral damage outcomes in experimental models of brain ischemia. In addition, because melatonin is a neurohormone widely reported to exhibit protective effects in various diseases, this study also demonstrates the anti-inflammatory role and possible mechanistic actions of melatonin in both epidemic diseases. A summary of research findings suggests that melatonin administration has great potential to exert an anti-inflammatory role and provide protection against obesity and ischemic stroke conditions. However, the efficacy of this hormonal treatment on ischemic stroke with concomitant obesity, when more serious inflammation is generated, is still lacking.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Patience Ojo O, Perez-Corredor PA, Gutierrez-Vargas JA, Busayo Akinola O, Cardona-Gómez GP. Lasting metabolic effect of a high-fructose diet on global cerebral ischemia. Nutr Neurosci 2020; 25:1159-1172. [PMID: 33164710 DOI: 10.1080/1028415x.2020.1841482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Obesity is a public health problem that is associated with cerebrovascular diseases, such as ischemic stroke. The coexistence of obesity with cerebral ischemia has been suggested to be considerably detrimental to the neurological system. Objective: Hence, in this study, we evaluated the long-term effects of a 20% high fructose diet (HFD) and global cerebral ischemia on neurological, cognitive and emotional performance in three-month-old male Wistar rats. Results: Our results demonstrated that fructose intake led to increases in body weight and blood glucose, as well as reduced insulin sensitivity. The co-morbidity of fructose intake and cerebral ischemia resulted to hyperlipidemia, as well as increases in liver and adipocyte damage, which worsened neurological performance and resulted in alterations in learning and emotional skills at two weeks post-ischemia. No significant biochemical changes in autophagy and plasticity markers at the late stage of ischemia were observed. Conclusion: These results suggested that obesity causes a lasting effect on metabolic disorders that can contribute to increased neurological impairment after cerebral ischemia.
Collapse
Affiliation(s)
- Oluwatomilayo Patience Ojo
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia.,Division of Neuroendocrinology, Department of Anatomy, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Nigeria
| | - Paula Andrea Perez-Corredor
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | - Johanna Andrea Gutierrez-Vargas
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia.,Grupo de Investigación en Saluddel Adulto Mayor (GISAM), Corporación Universitaria Remington, Medellín, Colombia
| | - Oluwole Busayo Akinola
- Division of Neuroendocrinology, Department of Anatomy, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Nigeria
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
15
|
Hao Y, Xin M, Feng L, Wang X, Wang X, Ma D, Feng J. Review Cerebral Ischemic Tolerance and Preconditioning: Methods, Mechanisms, Clinical Applications, and Challenges. Front Neurol 2020; 11:812. [PMID: 33071923 PMCID: PMC7530891 DOI: 10.3389/fneur.2020.00812] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide, and it is increasing in prevalence. The limited therapeutic window and potential severe side effects prevent the widespread clinical application of the venous injection of thrombolytic tissue plasminogen activator and thrombectomy, which are regarded as the only approved treatments for acute ischemic stroke. Triggered by various types of mild stressors or stimuli, ischemic preconditioning (IPreC) induces adaptive endogenous tolerance to ischemia/reperfusion (I/R) injury by activating a multitude cascade of biomolecules, for example, proteins, enzymes, receptors, transcription factors, and others, which eventually lead to transcriptional regulation and epigenetic and genomic reprogramming. During the past 30 years, IPreC has been widely studied to confirm its neuroprotection against subsequent I/R injury, mainly including local ischemic preconditioning (LIPreC), remote ischemic preconditioning (RIPreC), and cross preconditioning. Although LIPreC has a strong neuroprotective effect, the clinical application of IPreC for subsequent cerebral ischemia is difficult. There are two main reasons for the above result: Cerebral ischemia is unpredictable, and LIPreC is also capable of inducing unexpected injury with only minor differences to durations or intensity. RIPreC and pharmacological preconditioning, an easy-to-use and non-invasive therapy, can be performed in a variety of clinical settings and appear to be more suitable for the clinical management of ischemic stroke. Hoping to advance our understanding of IPreC, this review mainly focuses on recent advances in IPreC in stroke management, its challenges, and the potential study directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Schuffels S, Nakada S, Wu Y, Lim YP, Chen X, Stonestreet BS. Effects of inter-alpha inhibitor proteins on brain injury after exposure of neonatal rats to severe hypoxia-ischemia. Exp Neurol 2020; 334:113442. [PMID: 32896573 DOI: 10.1016/j.expneurol.2020.113442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
Abstract
Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in premature and full-term infants after perinatal complications. Hypothermia is the only treatment approved for HI encephalopathy in newborns. However, this treatment is only partially protective, cannot be used to treat premature infants, and has limited efficacy to treat severe HI encephalopathy. Inflammation contributes to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins that have neuroprotective properties after exposure to moderate HI in neonatal rats. The objective of the current study was to determine the neuroprotective efficacy of treatment with IAIPs starting immediately after or with a delay of one hour after exposure to severe HI of 120 min duration. One hundred and forty-six 7-day-old rat pups were randomized to sham control, HI and immediate treatment with IAIPs (60 mg/kg) or placebo (PL), and sham, HI and delayed treatment with IAIPs or PL. IAIPs or PL were given at zero, 24, and 48 h after HI or 1, 24 and 48 h after HI. Total brain infarct volume was determined 72 h after exposure to HI. Treatment with IAIPs immediately after HI decreased (P < 0.05) infarct volumes by 58.0% and 44.5% in male and female neonatal rats, respectively. Delayed treatment with IAIPs after HI decreased (P < 0.05) infarct volumes by 23.7% in male, but not in female rats. We conclude that IAIPs exert neuroprotective effects even after exposure to severe HI in neonatal rats and appear to exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Stephanie Schuffels
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Yuqi Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, The Alpert Medical School of Brown University, Providence, RI, United States of America; Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America.
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America.
| |
Collapse
|
17
|
Seo WJ, Ahn JH, Lee TK, Kim B, Lee JC, Park JH, Yoo YH, Shin MC, Cho JH, Won MH, Park Y. High fat diet accelerates and exacerbates microgliosis and neuronal damage/death in the somatosensory cortex after transient forebrain ischemia in gerbils. Lab Anim Res 2020; 36:28. [PMID: 32832423 PMCID: PMC7439675 DOI: 10.1186/s42826-020-00061-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023] Open
Abstract
Obesity has been known as an independent risk factor for stroke. Effects of high-fat diet (HFD)-induced obesity on neuronal damage in the somatosensory cortex of animal models of cerebral ischemia have not been studied yet. In this study, HFD-induced obesity was used to study the impact of obesity on neuronal damage/loss and microgliosis in the somatosensory cortex of a gerbil model of 5-min transient forebrain ischemia. We used gerbils fed normal diet (ND) and HFD and chronologically examined microgliosis (microglial cell activation) by ionized calcium-binding adapter molecule 1 (Iba-1) immunohistochemistry. In addition, we examined neuronal damage or death by using neuronal nuclear protein (NeuN, a neuronal marker) immunohistochemistry and Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining. We found that ischemia-induced microgliosis in ND-fed gerbils was increased from 2 days post-ischemia; however, ischemia-mediated microgliosis in HFD-fed gerbils increased from 1 day post-ischemia and more accelerated with time than that in the ND-fed gerbils. Ischemia-induced neuronal death/loss in the somatosensory cortex in the ND-fed gerbils was apparently found at 5 days post-ischemia. However, in the HFD-fed gerbils, neuronal death/loss was shown from 2 days post-ischemia and progressively exacerbated at 5 days post-ischemia. Our findings indicate that HFD can evoke earlier microgliosis and more detrimental neuronal death/loss in the somatosensory cortex after transient ischemia than ND evokes.
Collapse
Affiliation(s)
- Won Joo Seo
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Oriental Medicine, Dongguk University-Gyeongju, Gyeongju, Gyeongbuk 38066 Republic of Korea
| | - Yeon Ho Yoo
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
18
|
Hung WT, Wang CH, Lin SY, Cheng SY, Liao LY, Lu LY, Chen YJ, Huang YZ, Lin CH, Hsueh CM. Leptin protects brain from ischemia/reperfusion-induced infarction by stabilizing the blood-brain barrier to block brain infiltration by the blood-borne neutrophils. Eur J Neurosci 2020; 52:4890-4907. [PMID: 32638449 DOI: 10.1111/ejn.14896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The cellular and molecular mechanisms underlying leptin-mediated brain protection against cerebral ischemia were investigated at the blood-brain barrier (BBB) and neutrophil level. Through the ischemia/reperfusion (I/R) animal model, we found that leptin expression level was significantly decreased in ischemic hemisphere. Brain injection with leptin (15 μg/kg, intracisternally) could block the I/R-increased BBB permeability, activation of matrix metallopeptidase 9 (MMP-9) and brain infiltration of blood-borne neutrophils to reduce the infarct volume of ischemic brain. The brain expression level of tight junction protein ZO-1 as well as number and motility of neutrophils in blood was all increased by the same injection, indicating BBB stability (rather than reduction in neutrophils) played a major role in the leptin-inhibited brain infiltration of neutrophils. Leptin-mediated protection of BBB was further confirmed in vitro, through a BBB cellular model under the in vitro ischemic condition (G/R: glucose-oxygen-serum deprivation followed by GOS restoration). The results showed that leptin again could block the G/R-increased neutrophil adherence to EC layer as well as BBB permeability, likely by stimulating the endothelial expression of ZO-1 and VE-Cadherin. The study has demonstrated that leptin could protect ischemic brain via multiple ways (other than neuronal protection), by inhibiting the BBB permeability, brain infiltration of the blood-borne neutrophils and neutrophil adherence to vascular ECs. The role of leptin in vascular biology of stroke could further support its therapeutic potential in other neurodegenerative diseases, associated with BBB disorder.
Collapse
Affiliation(s)
- Wan-Ting Hung
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Chen-Hsuan Wang
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan.,Department of Adapted Physical Education, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Shu-Yun Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Li-Ya Liao
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Li-Yu Lu
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Ju Chen
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Zhen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Chi-Mei Hsueh
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
19
|
Cheng Y, Buchan M, Vitanova K, Aitken L, Gunn-Moore FJ, Ramsay RR, Doherty G. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function. J Neurochem 2020; 155:191-206. [PMID: 32157699 DOI: 10.1111/jnc.15003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has a recognised role in the progression of Alzheimer's disease (AD) pathophysiology. Cerebral perfusion becomes increasingly inefficient throughout ageing, leading to unbalanced mitochondrial dynamics. This effect is exaggerated by amyloid β (Aβ) and phosphorylated tau, two hallmark proteins of AD pathology. A neuroprotective role for the adipose-derived hormone, leptin, has been demonstrated in neuronal cells. However, its effects with relation to mitochondrial function in AD remain largely unknown. To address this question, we have used both a glucose-serum-deprived (CGSD) model of ischaemic stroke in SH-SY5Y cells and a Aβ1-42 -treatment model of AD in differentiated hippocampal cells. Using a combination of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and MitoRed staining techniques, we show that leptin prevents depolarisation of the mitochondrial membrane and excessive mitochondrial fragmentation induced by both CGSD and Aβ1-42 . Thereafter, we used ELISAs and a number of activity assays to reveal the biochemical underpinnings of these processes. Specifically, leptin was seen to inhibit up-regulation of the mitochondrial fission protein Fis1 and down-regulation of the mitochondrial fusion protein, Mfn2. Furthermore, leptin was seen to up-regulate the expression and activity of the antioxidant enzyme, monoamine oxidase B. Herein we provide the first demonstration that leptin is sufficient to protect against aberrant mitochondrial dynamics and resulting loss of function induced by both CGSD and Aβ1-42 . We conclude that the established neuroprotective actions of leptin may be facilitated through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Ying Cheng
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Matthew Buchan
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Karina Vitanova
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Laura Aitken
- School of Biology, University of St Andrews, St Andrews, UK
| | | | - Rona R Ramsay
- School of Biology, University of St Andrews, St Andrews, UK
| | - Gayle Doherty
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
20
|
Zera KA, Buckwalter MS. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020; 17:414-435. [PMID: 32193840 PMCID: PMC7283378 DOI: 10.1007/s13311-020-00844-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking, suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment. Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design therapeutics.
Collapse
Affiliation(s)
- Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford Univeristy School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Pérez-Corredor PA, Gutiérrez-Vargas JA, Ciro-Ramírez L, Balcazar N, Cardona-Gómez GP. High fructose diet-induced obesity worsens post-ischemic brain injury in the hippocampus of female rats. Nutr Neurosci 2020; 25:122-136. [DOI: 10.1080/1028415x.2020.1724453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- P. A. Pérez-Corredor
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, SIU, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - J. A. Gutiérrez-Vargas
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, SIU, Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Faculty of Health Sciences, Corporación Universitaria Remington, Medellin, Colombia
| | - L. Ciro-Ramírez
- Faculty of Health Sciences, Corporación Universitaria Remington, Medellin, Colombia
| | - Norman Balcazar
- Molecular Genetics Group, University of Antioquia, Medellin, Colombia
- Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - G. P. Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, SIU, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| |
Collapse
|
22
|
Haley MJ, Krishnan S, Burrows D, de Hoog L, Thakrar J, Schiessl I, Allan SM, Lawrence CB. Acute high-fat feeding leads to disruptions in glucose homeostasis and worsens stroke outcome. J Cereb Blood Flow Metab 2019; 39:1026-1037. [PMID: 29171775 PMCID: PMC6545621 DOI: 10.1177/0271678x17744718] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic consumption of diets high in fat leads to obesity and can negatively affect brain function. Rodents made obese by long-term maintenance on a high-fat diet have worse outcome after experimental stroke. High-fat consumption for only three days does not induce obesity but has rapid effects on the brain including memory impairment. However, the effect of brief periods of high-fat feeding or high-fat consumption in the absence of obesity on stroke is unknown. We therefore tested the effect of an acute period of high-fat feeding (three days) in C57B/6 mice on outcome after middle cerebral artery occlusion (MCAo). In contrast to a chronic high-fat diet (7.5 months), an acute high-fat diet had no effect on body weight, adipose tissue, lipid profile or inflammatory markers (in periphery and the brain). Three days of high-fat feeding impaired glucose tolerance, increased plasma glucose and insulin and brain expression of the glucose transporter GLUT-1. Ischaemic damage was increased (48%) in mice fed an acute high-fat diet, and was associated with a further reduction in GLUT-1 in the ischaemic hemisphere. These data demonstrate that only a brief period of high-fat consumption has a negative effect on glucose homeostasis and worsens outcome after ischaemic stroke.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Siddharth Krishnan
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - David Burrows
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Leon de Hoog
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Jamie Thakrar
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Ingo Schiessl
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| |
Collapse
|
23
|
Shimada T, Shindo A, Matsuyama H, Yata K, Niwa A, Sasaki R, Ayaki T, Maki T, Wakita H, Tomimoto H. Chronic cerebral hypoperfusion upregulates leptin receptor expression in astrocytes and tau phosphorylation in tau transgenic mice. Neurosci Lett 2019; 704:133-140. [DOI: 10.1016/j.neulet.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/18/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
|
24
|
Phillipson M, Kubes P. The Healing Power of Neutrophils. Trends Immunol 2019; 40:635-647. [PMID: 31160208 DOI: 10.1016/j.it.2019.05.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 11/28/2022]
Abstract
Neutrophils promptly accumulate in large numbers at sites of tissue injury. Injuries to the skin or mucosae disrupt barriers against the external environment, and the bactericidal actions of neutrophils are important in preventing microbial invasion. Neutrophils have also been associated with exacerbated inflammation, for example in non-healing wounds or in conditions such as inflammatory bowel disease (IBD). However, additional neutrophil functions important for angiogenesis and tissue restoration have been uncovered in models of sterile and ischemic injury, as well as in tumors. These functions are also relevant in healing skin and mucosal wounds, and can be impaired in conditions associated with non-healing wounds, such as diabetes. Here, we discuss our current understanding of neutrophil contributions to healing, and how the latter can be compromised in disease.
Collapse
Affiliation(s)
- Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Paul Kubes
- Snyder Institute of Infection, Immunity, and Inflammation, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
25
|
Fifield KE, Rowe TM, Raman-Nair JB, Hirasawa M, Vanderluit JL. Prolonged High Fat Diet Worsens the Cellular Response to a Small, Covert-like Ischemic Stroke. Neuroscience 2019; 406:637-652. [DOI: 10.1016/j.neuroscience.2019.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/08/2019] [Accepted: 01/26/2019] [Indexed: 12/18/2022]
|
26
|
Obesity Paradox in Ischemic Stroke: Clinical and Molecular Insights. Transl Stroke Res 2019; 10:639-649. [PMID: 30980283 DOI: 10.1007/s12975-019-00695-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/21/2023]
Abstract
It has recently emerged the concept of "obesity paradox," a term used to describe the unexpected improved prognosis and lower mortality rates found in several diseases in patients with higher body weight. Concerning stroke, few clinical studies have assessed this obesity paradox showing contradictory results. Therefore, our aim was to compare clinical evolution and inflammatory balance of obese and non-obese patients after ischemic stroke. We designed a prospective case-control study in patients with acute ischemic stroke categorized into obese (body mass index, BMI ≥ 30 kg/m2) and non-obese (BMI < 30 kg/m2). We compared clinical, anthropometric, radiological, and laboratory variables. The main outcome variable was the functional outcome at 3 months. We included 98 patients (48 non-obese and 50 obese). No differences in functional outcome at 3 months were found (p = 0.882) although a tendency of a greater recovery on neurological impairments was seen in obese subjects. Importantly, obese patients (p = 0.007) and patients who experienced poor outcome (p = 0.006) exhibited a higher reduction in body weight at 3 months after stroke. Moreover, pro-inflammatory IL-6 levels (p = 0.002) were higher in the obese group. However, IL-6 levels decreased over the first week in obese while increased in non-obese. On the contrary, levels of the anti-inflammatory IL-10 rose over the first week in obese patients, whereas remained stable in non-obese. In summary, despite exhibiting several factors associated with poor outcome, obese patients do not evolve worse than non-obese after ischemic stroke. Obesity may counterbalance the inflammatory reaction through an anti-inflammatory stream enhanced in the first moments of stroke.
Collapse
|
27
|
Yu HL, Wang LZ, Zhang LL, Chen BL, Zhang HJ, Li YP, Xiao GD, Chen YZ. ESE1 expression correlates with neuronal apoptosis in the hippocampus after cerebral ischemia/reperfusion injury. Neural Regen Res 2019; 14:841-849. [PMID: 30688270 PMCID: PMC6375036 DOI: 10.4103/1673-5374.249232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial-specific ETS-1 (ESE1), a member of the ETS transcription factor family, is widely expressed in multiple tissues and performs various functions in inflammation. During neuroinflammation, ESE1 promotes neuronal apoptosis; however, the expression and biological functions of ESE1 remain unclear after cerebral ischemia/reperfusion. We performed in vivo and in vitro experiments to explore the role of ESE1 in cerebral ischemic injury. A modified four vessel occlusion method was used in adult Sprague-Dawley rats. At 6, 12, 24, 48, and 72 hours after model induction, the hippocampus was collected for analysis. Western blot assays and immunohistochemistry showed that the expression of ESE1, phosphorylated p65 and active caspase-3 was significantly up-regulated after ischemia. Double immunofluorescence staining indicated that ESE1 and NeuN were mostly co-located in the hippocampus after ischemia. Furthermore, ESE1 was also co-expressed with active caspase-3. PC12 cells were stimulated with cobalt chloride (CoCl2) to establish a chemical hypoxia model. After ESE1 knockdown by siRNA for 6 hours, cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. The levels of ESE1, phosphorylated p65 and active caspase-3 were also remarkably increased in PC12 cells after CoCl2 stimulation. After ESE1 knockdown, PC12 cell viability was increased after hypoxia. siRNA knockdown of ESE1 decreased the level of p-p65 and active caspase-3 after CoCl2 stimulation. These data reveal that ESE1 levels are elevated in the hippocampus after cerebral ischemia/reperfusion injury. This may play a role in neuronal apoptosis via activation of the nuclear factor-κB pathway.
Collapse
Affiliation(s)
- Hai-Long Yu
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital; Institute of Neuroscience, Northern Jiangsu People's Hospital, Yangzhou; Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Liang-Zhu Wang
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Ling-Ling Zhang
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Bei-Lei Chen
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Hui-Juan Zhang
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Yu-Ping Li
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Guo-Dong Xiao
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ying-Zhu Chen
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| |
Collapse
|
28
|
Song M, Ahn JH, Kim H, Kim DW, Lee TK, Lee JC, Kim YM, Lee CH, Hwang IK, Yan BC, Won MH, Park JH. Chronic high-fat diet-induced obesity in gerbils increases pro-inflammatory cytokines and mTOR activation, and elicits neuronal death in the striatum following brief transient ischemia. Neurochem Int 2018; 121:75-85. [PMID: 30267768 DOI: 10.1016/j.neuint.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have shown that obesity and its related metabolic dysfunction exacerbate outcomes of ischemic brain injuries in some brain areas, such as the hippocampus and cerebral cortex when they are subjected to transient ischemia. However, the impact of obesity in the striatum after brief transient ischemia has not yet been addressed. The objective of this study was to investigate effects of obesity on neuronal damage and inflammation in the striatum after transient ischemia and to examine the role of mTOR which is involved in the pathogenesis of metabolic and neurological diseases. Gerbils were fed with normal diet (ND) or high-fat diet (HFD) for 12 weeks and subjected to 5 min of transient ischemia. HFD-fed gerbils showed significant increase in body weight, blood glucose level, serum triglycerides, total cholesterol and low-density lipoprotein cholesterol without affecting food intake. Neuronal death/loss in the HFD-fed gerbils occurred in the dorsolateral striatum 2 days after transient ischemia, and neuronal loss was increased 5 days after transient ischemia, although no neuronal loss was observed in ND-fed gerbils at any time after transient ischemia. The HFD-fed gerbils showed hypertrophied microglia and further increased expressions of tumor necrosis factor-alpha, interukin-1beta, mammalian target of rapamycin (mTOR) and phosphorylated-mTOR during pre- and post-ischemic phases compared with the ND-fed gerbils. Additionally, we found that treatment with mTOR inhibitor rapamycin in the HFD-fed gerbils significantly attenuated transient ischemia-induced neuronal death in the dorsolateral striatum. These findings reveal that chronic HFD-induced obesity results in severe neuroinflammation and significant increase of mTOR activation, which could contribute to neuronal death in the stratum following 5 min of transient ischemia. Especially, abnormal mTOR activation would play a key role in mediating obesity-induced severe ischemic brain injury.
Collapse
Affiliation(s)
- Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon, 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese, Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu, 225001, PR China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
29
|
Mubarak HA, Mahmoud MM, Shoukry HS, Merzeban DH, Sayed SS, Rashed LA. Protective effects of melatonin and glucagon-like peptide-1 receptor agonist (liraglutide) on gastric ischaemia-reperfusion injury in high-fat/sucrose-fed rats. Clin Exp Pharmacol Physiol 2018; 45:934-942. [PMID: 29697857 DOI: 10.1111/1440-1681.12956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/18/2018] [Accepted: 04/18/2018] [Indexed: 01/13/2023]
Abstract
Ischaemia-reperfusion (I-R) injury is a serious pathology that is often encountered with thrombotic events, during surgery when blood vessels are cross-clamped, and in organs for transplantation. Increased oxidative stress is the main pathology in I-R injury, as assessed in studies on the heart, kidney, and brain with little data available on gastric I-R (GI-R). Liraglutide is a GLP-1 receptor agonist that has insulinotropic and weight reducing actions, and melatonin that has been much studied as a chronotropic hormone; have also studied as being anti-oxidative stress agents. Herein, we aimed to explore the effects of liraglutide and melatonin on GI-R injury with high-fat/sucrose diet. Rats were divided into six groups; two diet-control, two melatonin- and two liraglutide-pretreated groups. All rats were subjected to 30 minutes of gastric ischaemia followed by 1 hour of reperfusion. Gastric tissues were assessed for the percentage of DNA fragmentation, myeloperoxidase activity, total oxidant status, total antioxidant capacity, oxidative stress index, BMI and histopathological examination. We showed that high-fat feeding for four weeks prior to GI-R significantly increased BMI, oxidative stress indices and decreased total antioxidant capacity, with a neutral effect on apoptosis compared to controls. Pretreatment with either melatonin (10 mg/kg per day orally) or liraglutide (25 μg/kg per day ip) reverses these effects. Furthermore, both drugs reduced weight only in HFS-fed rats. Both liraglutide and melatonin have nearly similar protective effects on gastric I-R injury through decreasing the oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hanan A Mubarak
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manal M Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba S Shoukry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina H Merzeban
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Safinaz S Sayed
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
30
|
Wei LL, Chen Y, Yu QY, Wang Y, Liu G. Patchouli alcohol protects against ischemia/reperfusion-induced brain injury via inhibiting neuroinflammation in normal and obese mice. Brain Res 2018; 1682:61-70. [DOI: 10.1016/j.brainres.2017.12.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/27/2022]
|
31
|
Wu G, McBride DW, Zhang JH. Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after MCAO in rats. Neurobiol Dis 2017; 110:59-67. [PMID: 29196212 DOI: 10.1016/j.nbd.2017.11.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Ischemic stroke activates Toll-like receptors (TLRs), triggering rapid inflammatory cytokine production. Axl signaling has multiple roles, including regulating cytokine secretion, clearing apoptotic cells, and maintaining cell survival, however, its role in inflammation after ischemic stroke has not been examined. We hypothesized that activation of Axl by recombinant Growth-arrest-specific protein 6 (rGas6) attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after middle cerebral artery occlusion (MCAO) in rats. METH: Sprague-Dawley rats were subjected to 2h of MCAO. One hour after reperfusion, the rats were given an intranasal injection of rGas6, vehicle, or R428 (Axl receptor inhibitor). Neurological scores, infarct volumes, immunofluorescence staining, Morris Water Maze, rotarod test and histology alterations were analyzed. The expressions of proinflammatory cytokines, including IL-1β, IL-6, TNF-α, and Gas6, Axl, STAT1, SOCS1, SOCS3 and the TLR/TRAF/NF-κB pathway were quantified using Western blot. RESULTS Endogenous expressions of Gas6 and Axl decreased significantly by 24h after MCAO. rGas6 reduced brain infarction and improved neurologic deficits scores, and increased expression of Axl and decreased the expressions of TRAF3, TRAF6 and inflammatory factors IL-1β, IL-6, and TNF-α. Four weeks after MCAO, rGas6 improved long-term neurological behavior and memory. Inhibition of the Axl/TLR/TRAF/NF-κB pathway reversed the brain protection by rGas6. CONCLUSION rGas6 reduced the neurological deficits by inhibiting neuroinflammation via the TLR/TRAF/NF-κB signaling pathway. rGas6 can be used as potential treatment to ischemic stroke.
Collapse
Affiliation(s)
- Guangyong Wu
- Departments of Anesthesiology, Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Devin W McBride
- Departments of Anesthesiology, Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Anesthesiology, Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
32
|
Jalsrai A, Reinhold A, Becker A. EthanolIris tenuifoliaextract reduces brain damage in a mouse model of cerebral ischaemia. Phytother Res 2017; 32:333-339. [DOI: 10.1002/ptr.5981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/21/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Aldarmaa Jalsrai
- Institute of Traditional Medicine and Technology; Ministry of Education, Culture, Science, and Sports; 17041 Ulaanbaatar Mongolia
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Faculty of Medicine; Otto von Guericke University; Leipziger Strasse 44 39120 Magdeburg Germany
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine; Otto von Guericke University; Leipziger Strasse 44 39120 Magdeburg Germany
| |
Collapse
|
33
|
Haley MJ, Mullard G, Hollywood KA, Cooper GJ, Dunn WB, Lawrence CB. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice. Dis Model Mech 2017; 10:1229-1243. [PMID: 28798136 PMCID: PMC5665457 DOI: 10.1242/dmm.030411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids). Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery. Summary: Obesity, a co-morbidity for stroke, affected the acute metabolic and inflammatory response to stroke, highlighting the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Graham Mullard
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
| | - Katherine A Hollywood
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Garth J Cooper
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland 1020, New Zealand.,Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Warwick B Dunn
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine B Lawrence
- Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
34
|
Che N, Ma Y, Xin Y. Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway. Biomol Ther (Seoul) 2017; 25:272-278. [PMID: 27871155 PMCID: PMC5424637 DOI: 10.4062/biomolther.2016.098] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 01/23/2023] Open
Abstract
Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-1β, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-α), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signalregulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.
Collapse
Affiliation(s)
- Nan Che
- Department of Neurology, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi, China
| | - Yijie Ma
- Department of Neurological Surgery, Hospital of Xinjiang Production and Construction Corps, Urumchi 830002, Xinjiang, China
| | - Yinhu Xin
- Department of Encephalopathy, Shaanxi Traditional Chinese Medicine Hospital, Xi'an 710003, Shaanxi, China
| |
Collapse
|
35
|
Harada S, Nozaki Y, Matsuura W, Yamazaki Y, Tokuyama S. RETRACTED: Cerebral ischemia-induced elevation of hepatic inflammatory factors accompanied by glucose intolerance suppresses hypothalamic orexin-A-mediated vagus nerve activation. Brain Res 2017; 1661:100-110. [DOI: 10.1016/j.brainres.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 01/04/2023]
|
36
|
Haley MJ, Lawrence CB. The blood-brain barrier after stroke: Structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab 2017; 37:456-470. [PMID: 26823471 PMCID: PMC5322831 DOI: 10.1177/0271678x16629976] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 01/14/2023]
Abstract
Blood-brain barrier breakdown worsens ischaemic damage, but it is unclear how molecules breach the blood-brain barrier in vivo. Using the obese ob/ob mouse as a model of enhanced blood-brain barrier breakdown, we investigated how stroke-induced structural changes to the microvasculature related to blood-brain barrier permeability. Ob/ob mice underwent middle cerebral artery occlusion, followed by 4 or 24 h reperfusion. Blood-brain barrier integrity was assessed using IgG and horseradish peroxidase staining, and blood-brain barrier structure by two-dimensional and three-dimensional electron microscopy. At 4 and 24 h post-stroke, ob/ob mice had increased ischaemic damage and blood-brain barrier breakdown compared to ob/- controls, and vessels from both genotypes showed astrocyte end-foot swelling and increased endothelial vesicles. Ob/ob mice had significantly more endothelial vesicles at 4 h in the striatum, where blood-brain barrier breakdown was most severe. Both stroke and genotype had no effect on tight junction structure visualised by electron microscopy, or protein expression in isolated microvessels. Astrocyte swelling severity did not correlate with tissue outcome, being unaffected by genotype or reperfusion times. However, the rare instances of vessel lumen collapse were always associated with severe astrocyte swelling in two-dimensional and three-dimensional electron microscopy. Endothelial vesicles were therefore the best spatial and temporal indicators of blood-brain barrier breakdown after cerebral ischaemia.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
37
|
Lack of collagen XV is protective after ischemic stroke in mice. Cell Death Dis 2017; 8:e2541. [PMID: 28079884 PMCID: PMC5386367 DOI: 10.1038/cddis.2016.456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023]
Abstract
Collagens are key structural components of basement membranes, providing a scaffold for other components or adhering cells. Collagens and collagen-derived active fragments contribute to biological activities such as cell growth, differentiation and migration. Here, we report that collagen XV knock-out (ColXV KO) mice are resistant to experimental ischemic stroke. Interestingly, the infarcts of ColXV KO mice were as small as those of wild-type (WT) mice thrombolysed with recombinant tissue plasminogen activator (rtPA), the actual treatment for ischemic stroke. Importantly, there were no differences in the architecture of cerebrovascular anatomy between WT and ColXV KO mice. We found a twofold increase of the most potent pro-angiogenic factor, type A vascular growth endothelial factor (VEGF-A) in the ipsilateral cortex of rtPA-treated ischemic WT mice compared with untreated ischemic and sham-operated counterparts. A similar increase of VEGF-A was also found in both rtPA and untreated ischemic ColXV KO mice compared with sham ColXV KO mice. Finally, we evidenced that the levels of ColXV were increased in the plasma of WT mice treated with rtPA compared with untreated ischemic counterparts. Altogether, this study indicates that the lack ColXV is protective after stroke and that the degradation of endothelial ColXV may contribute to the beneficial effect of rtPA after ischemic stroke. The neuroprotection observed in ColXV KO mice may be attributed to the increased VEGF-A production following stroke in the ischemic territory.
Collapse
|
38
|
|
39
|
Haley MJ, Lawrence CB. Obesity and stroke: Can we translate from rodents to patients? J Cereb Blood Flow Metab 2016; 36:2007-2021. [PMID: 27655337 PMCID: PMC5134197 DOI: 10.1177/0271678x16670411] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for stroke and is consequently one of the most common co-morbidities found in patients. There is therefore an identified need to model co-morbidities preclinically to allow better translation from bench to bedside. In preclinical studies, both diet-induced and genetically obese rodents have worse stroke outcome, characterised by increased ischaemic damage and an altered inflammatory response. However, clinical studies have reported an 'obesity paradox' in stroke, characterised by reduced mortality and morbidity in obese patients. We discuss the potential reasons why the preclinical and clinical studies may not agree, and review the mechanisms identified in preclinical studies through which obesity may affects stroke outcome. We suggest inflammation plays a central role in this relationship, as obesity features increases in inflammatory mediators such as C-reactive protein and interleukin-6, and chronic inflammation has been linked to worse stroke risk and outcome.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Busija DW, Rutkai I, Dutta S, Katakam PV. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone. Compr Physiol 2016; 6:1529-48. [PMID: 27347901 DOI: 10.1002/cphy.c150051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
41
|
McGuire MJ, Ishii M. Leptin Dysfunction and Alzheimer's Disease: Evidence from Cellular, Animal, and Human Studies. Cell Mol Neurobiol 2016; 36:203-17. [PMID: 26993509 DOI: 10.1007/s10571-015-0282-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
There is accumulating evidence from epidemiological studies that changes in body weight are associated with Alzheimer's disease (AD) from mid-life obesity increasing the risk of developing AD to weight loss occurring at the earliest stages of AD. Therefore, factors that regulate body weight are likely to influence the development and progression of AD. The adipocyte-derived hormone leptin has emerged as a major regulator of body weight mainly by activating hypothalamic neural circuits. Leptin also has several pleotropic effects including regulating cognitive function and having neuroprotective effects, suggesting a potential link between leptin and AD. Here, we will examine the relationship between leptin and AD by reviewing the recent evidence from cellular and animal models to human studies. We present a model where leptin has a bidirectional role in AD. Not only can alterations in leptin levels and function worsen cognitive decline and progression of AD pathology, but AD pathology, in of itself, can disrupt leptin signaling, which together would lead to a downward spiral of progressive neurodegeneration and worsening body weight and systemic metabolic deficits. Collectively, these studies serve as a framework to highlight the importance of understanding the molecular mechanisms underlying the body weight and systemic metabolic deficits in AD, which has the potential to open new avenues that may ultimately lead to novel therapeutic targets and diagnostic tools.
Collapse
Affiliation(s)
- Matthew J McGuire
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
42
|
Electroacupunctre improves motor impairment via inhibition of microglia-mediated neuroinflammation in the sensorimotor cortex after ischemic stroke. Life Sci 2016; 151:313-322. [PMID: 26979777 DOI: 10.1016/j.lfs.2016.01.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/09/2016] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
Abstract
AIMS Electroacupuncture (EA) is one of the safety and effective therapies for improving neurological and sensorimotor impairment via blockade of inappropriate inflammatory responses. However, the mechanisms of anti-inflammation involved is far from been fully elucidated. MAIN METHODS Focal cerebral ischemic stroke was administered by the middle cerebral artery occlusion and reperfusion (MCAO/R) surgery. The MCAO/R rats were accepted EA treatment at the LI 11 and ST 36 acupoints for consecutive 3days. The neurological outcome, animal behaviors test and molecular biology assays were used to evaluate the MCAO/R model and therapeutic effect of EA. KEY FINDINGS EA treatment for MCAO rats showed a significant reduction in the infarct volumes accompanied by functional recovery in mNSS outcomes, motor function performances. The possible mechanisms that EA treatment attenuated the over-activation of Iba-1 and ED1 positive microglia in the peri-infract sensorimotor cortex. Simultaneously, both tissue and serum protein levels of the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were decreased by EA treatment in MCAO/R injured rats. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were decreased in the peri-infract sensorimotor cortex and blood serum of MCAO/R injured rats after EA treatment. Furthermore, we found that EA treatment prevented from the nucleus translocation of NF-κB p65 and suppressed the expression of p38 mitogen-activated protein kinase (p38 MAPK) and myeloid differentiation factor 88 (MyD88) in the peri-infract sensorimotor cortex. SIGNIFICANCE The findings from this study indicated that EA improved the motor impairment via inhibition of microglia-mediated neuroinflammation that invoked NF-κB p65, p38 MAPK and MyD88 produced proinflammatory cytokine in the peri-infract sensorimotor cortex of rats following ischemic stroke.
Collapse
|
43
|
Li C, Jiang Z, Lu W, Arrick D, McCarter K, Sun H. Effect of obesity on early blood–brain barrier disruption following transient focal cerebral ischemia. Obes Sci Pract 2016. [DOI: 10.1002/osp4.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- C. Li
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - Z. Jiang
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - W. Lu
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - D. Arrick
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - K. McCarter
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - H. Sun
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| |
Collapse
|
44
|
Ishii M, Iadecola C. Adipocyte-derived factors in age-related dementia and their contribution to vascular and Alzheimer pathology. Biochim Biophys Acta Mol Basis Dis 2015; 1862:966-74. [PMID: 26546479 DOI: 10.1016/j.bbadis.2015.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
Age-related dementia is increasingly recognized as having a mixed pathology, with contributions from both cerebrovascular factors and pathogenic factors associated with Alzheimer's disease (AD). Furthermore, there is accumulating evidence that vascular risk factors in midlife, e.g., obesity, diabetes, and hypertension, increase the risk of developing late-life dementia. Since obesity and changes in body weight/adiposity often drive diabetes and hypertension, understanding the relationship between adiposity and age-related dementia may reveal common underlying mechanisms. Here we offer a brief appraisal of how changes in body weight and adiposity are related to both AD and dementia on vascular basis, and examine the involvement of two key adipocyte-derived hormones: leptin and adiponectin. The evidence suggests that in midlife increased body weight/adiposity and subsequent changes in adipocyte-derived hormones may increase the long-term susceptibility to dementia. On the other hand, later in life, decreases in body weight/adiposity and related hormonal changes are early manifestations of disease that precede the onset of dementia and may promote AD and vascular pathology. Understanding the contribution of adiposity to age-related dementia may help identify the underlying pathological mechanisms common to both vascular dementia and AD, and provide new putative targets for early diagnosis and therapy. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, USA.
| |
Collapse
|
45
|
Dhandapani S, Aggarwal A, Srinivasan A, Meena R, Gaudihalli S, Singh H, Dhandapani M, Mukherjee KK, Gupta SK. Serum lipid profile spectrum and delayed cerebral ischemia following subarachnoid hemorrhage: Is there a relation? Surg Neurol Int 2015; 6:S543-8. [PMID: 26664869 PMCID: PMC4653325 DOI: 10.4103/2152-7806.168067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/18/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Serum lipid abnormalities are known to be important risk factors for vascular disorders. However, their role in delayed cerebral ischemia (DCI), the major cause of morbidity after subarachnoid hemorrhage (SAH) remains unclear. This study was an attempt to evaluate the spectrum of lipid profile changes in SAH compared to matched controls, and their relation with the occurrence of DCI. METHODS Admission serum lipid profile levels were measured in patients of SAH and prospectively studied in relation to various factors and clinical development of DCI. RESULTS Serum triglyceride (TG) levels were significantly lower among SAH patients compared to matched controls (mean [±standard deviation (SD)] mg/dL: 117.3 [±50.4] vs. 172.8 [±89.1], P = 0.002), probably because of energy consumption due to hypermetabolic response. Patients who developed DCI had significantly higher TG levels compared to those who did not develop DCI (mean [±SD] mg/dL: 142.1 [±56] vs. 111.9 [±54], P = 0.05). DCI was noted in 62% of patients with TG >150 mg/dL, compared to 22% among the rest (P = 0.01). Total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and lipoprotein (a) neither showed a significant difference between SAH and controls and nor any significant association with DCI. Multivariate analysis using binary logistic regression adjusting for the effects of age, sex, systemic disease, World Federation of Neurosurgical Societies grade, Fisher grade, and clipping/coiling, revealed higher TG levels to have significant independent association with DCI (P = 0.01). CONCLUSIONS Higher serum TG levels appear to be significantly associated with DCI while other lipid parameters did not show any significant association. This may be due to their association with remnant cholesterol or free fatty acid-induced lipid peroxidation.
Collapse
Affiliation(s)
- Sivashanmugam Dhandapani
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anirudh Srinivasan
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajesh Meena
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Gaudihalli
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harnarayan Singh
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manju Dhandapani
- Department of Neurosurgery, Neuro-nursing Division, National Institute of Nursing Education, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan K Mukherjee
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil K Gupta
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
46
|
Maysami S, Haley MJ, Gorenkova N, Krishnan S, McColl BW, Lawrence CB. Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke. J Neuroinflammation 2015; 12:140. [PMID: 26239227 PMCID: PMC4524371 DOI: 10.1186/s12974-015-0359-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/03/2015] [Indexed: 12/05/2022] Open
Abstract
Background Obesity increases the risk for ischaemic stroke and is associated with worse outcome clinically and experimentally. Most experimental studies have used genetic models of obesity. Here, a more clinically relevant model, diet-induced obesity, was used to study the impact of obesity over time on the outcome and inflammatory response after stroke. Methods Male C57BL/6 mice were maintained on a high-fat (60 % fat) or control (12 % fat) diet for 2, 3, 4 and 6 months when experimental stroke was induced by transient occlusion of the middle cerebral artery (MCAo) for either 20 (6-month diet) or 30 min (2-, 3-, 4- and 6-month diet). Ischaemic damage, blood–brain barrier (BBB) integrity, neutrophil number and chemokine expression in the brain were assessed at 24 h. Plasma chemokine levels (at 4 and 24 h) and neutrophil number in the liver (at 24 h) were measured. Physiological parameters (body weight and blood glucose) were measured in naïve control- and high-fat-fed mice at all time points and blood pressure at 3 and 6 months. Blood cell counts were also assessed in naïve 6-month control- and high-fat-fed mice. Results Mice fed a high-fat diet for 6 months had greater body weight, blood glucose and white and red blood cell count but no change in systolic blood pressure. After 4 and 6 months of high-fat feeding, and in the latter group with a 30-min (but not 20-min) occlusion of the MCA, obese mice had greater ischaemic brain damage. An increase in blood–brain barrier permeability, chemokine expression (CXCL-1 and CCL3), neutrophil number and microglia/macrophage cells was observed in the brains of 6-month high-fat-fed mice after 30-min MCAo. In response to stroke, chemokine (CXCL-1) expression in the plasma and liver was significantly different in obese mice (6-month high-fat fed), and a greater number of neutrophils were detected in the liver of control but not obese mice. Conclusions The detrimental effects of diet-induced obesity on stroke were therefore dependent on the severity of obesity and length of ischaemic challenge. The altered inflammatory response in obese mice may play a key role in its negative impact on stroke.
Collapse
Affiliation(s)
- Samaneh Maysami
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Michael J Haley
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Natalia Gorenkova
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Siddharth Krishnan
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Barry W McColl
- The Roslin Institute and R(D)SVS, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, UK
| | - Catherine B Lawrence
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
47
|
ZHANG YUQIN, ZHANG SHENGNAN, LI HUANG, HUANG MEI, XU WEI, CHU KEDAN, CHEN LIDIAN, CHEN XIANWEN. Ameliorative effects of Gualou Guizhi decoction on inflammation in focal cerebral ischemic-reperfusion injury. Mol Med Rep 2015; 12:988-94. [PMID: 25815894 PMCID: PMC4438940 DOI: 10.3892/mmr.2015.3515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
Gualou Guizhi decoction (GLGZD) is a well-established Traditional Chinese Medicinal formulation which has long been used to treat stroke in a clinical setting in China. The present study investigated the ameliorative effects of GLGZD on inflammation in focal cerebral ischemic-reperfusion injury. A rat model of middle cerebral artery occlusion (MCAO) was employed. Rats were administrated GLGZD (7.2 and 14.4 g/kg per day) or saline as control 2 h after reperfusion and daily over the following seven days. Neurological deficit score and screen test were evaluated at 1, 3, 5 and 7 days after MCAO. Brain infarct size and brain histological changes were observed via 2,3,5-triphenyltetrazolium chloride staining and regular hematoxylin & eosin staining. Furthermore, inflammation mediators and nuclear factor-κB (NF-κB) were investigated using ELISA and immunohistochemistry. GLGZD treatment significantly improved neurological function, ameliorated histological changes to the brain and decreased infarct size in focal cerebral ischemic-reperfusion injury. GLGZD was found to significantly reduce interleukin (IL)-1, tumor necrosis factor-α and NF-κB levels, while increasing levels of IL-10. In conclusion, the present study suggested that GLGZD has a neuroprotective effect on focal cerebral ischemic-reperfusion injury and this effect is likely to be associated with the anti-inflammatory function of GLGZD.
Collapse
Affiliation(s)
- YUQIN ZHANG
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - SHENGNAN ZHANG
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - HUANG LI
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - MEI HUANG
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - WEI XU
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - KEDAN CHU
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - LIDIAN CHEN
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - XIANWEN CHEN
- College of Pharmacy Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
48
|
Interleukin-6 mediates enhanced thrombus development in cerebral arterioles following a brief period of focal brain ischemia. Exp Neurol 2015; 271:351-7. [PMID: 26054883 DOI: 10.1016/j.expneurol.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The cerebral microvasculature is rendered more vulnerable to thrombus formation following a brief (5.0 min) period of focal ischemia. This study examined the contribution of interleukin-6 (IL-6), a neuroprotective and prothrombotic cytokine produced by the brain, to transient ischemia-induced thrombosis in cerebral arterioles. APPROACH & RESULTS The middle cerebral artery of C57BL/6J mice was occluded for 5 min, followed by 24h of reperfusion (MCAo/R). Intravital fluorescence microscopy was used to monitor thrombus development in cerebral arterioles induced by light/dye photoactivation. Thrombosis was quantified as the time of onset of platelet aggregation on the vessel wall and the time for complete blood flow cessation. MCAo/R in wild type (WT) mice yielded an acceleration of thrombus formation that was accompanied by increased IL-6 levels in plasma and in post-ischemic brain tissue. The exaggerated thrombosis response to MCAo/R was blunted in WT mice receiving an IL-6 receptor-blocking antibody and in IL-6 deficient (IL-6(-/-)) mice. Bone marrow chimeras, produced by transplanting IL-6(-/-) marrow into WT recipients, did not exhibit protection against MCAo/R-induced thrombosis. CONCLUSIONS The increased vulnerability of the cerebral vasculature to thrombus development after MCAo/R is mediated by IL-6, which is likely derived from brain cells rather than circulating blood cells. These findings suggest that anti-IL-6 therapy may reduce the likelihood of cerebral thrombus development after a transient ischemic attack.
Collapse
|
49
|
Abstract
Acute systemic inflammatory reaction superimposed on chronic low-grade inflammation accompanies acute ischemic stroke. Elevated blood levels of systemic inflammatory markers such as IL-6 or C-reactive protein are associated with an unfavorable functional outcome and increased mortality after stroke. Animal studies have demonstrated a causal relationship between systemic inflammation and ischemic brain damage. The mechanisms linking systemic inflammation with poor outcome include increased neutrophil infiltration of cerebral cortex, disruption of the blood-brain barrier, impaired tissue reperfusion, increased platelet activation and microvascular coagulation and complement-dependent brain injury. Non-selective (e.g., by statins) or selective (e.g., by inhibition of IL-6) attenuation of systemic inflammation, enhancement of systemic anti-inflammatory response (e.g., by infusion of IL-1 receptor antagonist), prevention of infections that exacerbate systemic inflammation or inhibition of neuronal pathways triggering inflammatory reaction are potential therapeutic targets in stroke patients. This review discusses the relationship between systemic inflammation, cerebral ischemia and prognosis in the context of therapeutic strategies.
Collapse
Affiliation(s)
- Tomasz Dziedzic
- Department of Neurology, Jagiellonian University Medical Collage, ul. Botaniczna 3, 31-503 Kraków, Poland
| |
Collapse
|
50
|
Dorrance AM, Matin N, Pires PW. The effects of obesity on the cerebral vasculature. Curr Vasc Pharmacol 2015; 12:462-72. [PMID: 24846235 DOI: 10.2174/1570161112666140423222411] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/08/2013] [Accepted: 05/01/2013] [Indexed: 12/18/2022]
Abstract
The incidence of obesity in the population is increasing at an alarming rate, with this comes an increased risk of insulin resistance (IR). Obesity and IR increase an individual's risk of having a stroke and they have been linked to several forms of dementia. Stroke and dementia are associated with, or exacerbated by, reduced cerebral blood flow, which has recently been described in obese patients. In this review we will discuss the effects of obesity on cerebral artery function and structure. Regarding their function, we will focus on the endothelium and nitric oxide (NO) dependent dilation. NO dependent dilation is impaired in cerebral arteries from obese rats, and the majority of evidence suggests this is a result of increased oxidative stress. We will also describe the limited studies showing that inward cerebral artery remodeling occurs in models of obesity, and that the remodeling is associated with an increase in the damage caused by cerebral ischemia. We will also discuss some of the more paradoxical findings associated with stroke and obesity, including the evidence that obesity is a positive factor for stroke survival. Finally we will discuss the evidence that links these changes in vascular structure and function to cognitive decline and dementia.
Collapse
Affiliation(s)
| | | | - Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA.
| |
Collapse
|