1
|
Wan G, Gu L, Chen Y, Wang Y, Sun Y, Li Z, Ma W, Bao X, Wang R. Nanobiotechnologies for stroke treatment. Nanomedicine (Lond) 2025:1-21. [PMID: 40327588 DOI: 10.1080/17435889.2025.2501514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Stroke has brought about a poor quality of life for patients and a substantial societal burden with high morbidity and mortality. Thus, the efficient stroke treatment has always been the hot topic in the research of medicine. In the past decades, nanobiotechnologies, including natural exosomes and artificial nanomaterials, have been a focus of attention for stroke treatment due to their inherent advantages, such as facile blood - brain barrier traversal and high drug encapsulation efficiency. Recently, thanks to the rapid development of nanobiotechnologies, more and more efforts have been made to study the therapeutic effects of exosomes and artificial nanomaterials as well as relevant mechanisms in stroke treatment. Herein, from recent studies and articles, the application of natural exosomes and artificial nanomaterials in stroke treatment are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingui Gu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yiqing Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenwei Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
3
|
He P, Zhang H, Wang J, Guo Y, Tian Q, Liu C, Gong P, Ye Q, Peng Y, Li M. Dental Pulp Stem Cells Attenuate Early Brain Injury After Subarachnoid Hemorrhage via miR-26a-5p/PTEN/AKT Pathway. Neurochem Res 2025; 50:91. [PMID: 39883266 DOI: 10.1007/s11064-025-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential. Therefore, we aim to investigate whether DPSCs can improve EBI after SAH, and explore the mechanisms. In our study, we utilized the endovascular perforation method to establish a SAH mouse model and investigated whether DPSCs administered via tail vein injection could improve EBI after SAH. Furthermore, we used hemin-stimulated HT22 cells to simulate neuronal cell injury induced by SAH and employed a co-culture approach to examine the effects of DPSCs on these cells. To gain insights into the potential mechanisms underlying the improvement of SAH-induced EBI by DPSCs, we conducted bioinformatics analysis. Finally, we further validated our findings through experiments. In vivo experiments, we found that DPSCs administration improved neurological dysfunction, reduced brain edema, and prevented neuronal apoptosis in SAH mice. Additionally, we observed a decrease in the expression level of miR-26a-5p in the cortical tissues of SAH mice, which was significantly increased following intravenous injection of DPSCs. Through bioinformatic analysis and luciferase reporter assay, we confirmed the target relationship between miR-26a-5p and PTEN. Moreover, we demonstrated that DPSCs exerted neuroprotective effects by modulating the miR-26a-5p/PTEN/AKT pathway. Our study demonstrates that DPSCs can improve EBI after SAH through the miR-26a-5p/PTEN/AKT pathway, laying a foundation for the application of DPSCs in SAH treatment. These findings provide a theoretical basis for further investigating the therapeutic mechanisms of DPSCs and developing novel treatment strategies in SAH.
Collapse
Affiliation(s)
- Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hui Zhang
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Youjian Peng
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
4
|
Diaz-Peregrino R, San-Juan D, Patiño-Ramirez C, Sandoval-Luna LV, Arritola-Uriarte A. Nanocarriers-based therapeutic strategy for drug-resistant epilepsy: A systematic review. Int J Pharm 2025; 668:124986. [PMID: 39580104 DOI: 10.1016/j.ijpharm.2024.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Nanocarriers have been proposed as a solution for drug-resistant epilepsy. METHODS A systematic review of animal and in vitro studies was conducted to evaluate the efficacy, toxicity, and biological properties of nanocarriers. Searches were performed in PubMed/Medline and Scopus from March 2023 to March 2024. RESULTS Eighteen studies were identified: 2 in vitro, 9 in vivo, and 7 combined. While epilepsy models and seizure control assessments were consistent, there was variability in evaluating the potential toxicity of nanocarriers. Only one study did not show a reduction in brain inflammation, seizures, and cell loss. Nanocarrier toxicity was evaluated just in six studies, all of which indicated low toxicity both in vitro and in vivo. CONCLUSIONS Nanocarriers with antiseizure drugs manage seizures, inflammation, oxidative stress, and behavior impairment in drug-resistant epilepsy. Furthermore, nanocarriers are a safe option for delivering antiseizure drugs, though more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Roberto Diaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Carlos Patiño-Ramirez
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Lenin V Sandoval-Luna
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | |
Collapse
|
5
|
Meza Monge K, Ardon-Lopez A, Pratap A, Idrovo JP. Targeting Inflammation After Hemorrhagic Shock as a Molecular and Experimental Journey to Improve Outcomes: A Review. Cureus 2025; 17:e77776. [PMID: 39981454 PMCID: PMC11841828 DOI: 10.7759/cureus.77776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Hemorrhagic shock continues to be a major contributor to trauma-related fatalities globally, posing a significant and intricate pathophysiological challenge. The condition is marked by injury and blood loss, which activate molecular cascades that can quickly become harmful. The inflammatory response exhibits a biphasic pattern, beginning with a hyper-inflammatory phase that transitions into immunosuppression, posing significant obstacles to effective therapeutic interventions. This review article explores the intricate molecular mechanisms driving inflammation in hemorrhagic shock, emphasizing cellular signaling pathways, endothelial dysfunction, and immune activation. We discuss the role of molecular biomarkers in tracking disease progression and stratifying risk, with a focus on markers of endothelial dysfunction and inflammatory mediators as potential prognostic tools. Additionally, we assess therapeutic strategies, spanning traditional approaches like hemostatic resuscitation to advanced immunomodulatory treatments. Despite promising advancements in molecular monitoring and targeted therapies, challenges persist in bridging experimental findings with clinical applications. Future efforts must prioritize understanding the dynamic progression of inflammatory pathways and refining the timing of interventions to improve outcomes in hemorrhagic shock management.
Collapse
Affiliation(s)
- Kenneth Meza Monge
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Astrid Ardon-Lopez
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Colorado, Aurora, USA
| | - Akshay Pratap
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| |
Collapse
|
6
|
Hey G, Mehkri I, Mehkri Y, Maqbool H, Tahirkheli M, Woodford S, Lucke-Wold B. Nanoparticle-Based Therapies for Management of Subarachnoid Hemorrhage, Neurotrauma, and Stroke. Biomedicines 2024; 13:16. [PMID: 39857600 PMCID: PMC11760890 DOI: 10.3390/biomedicines13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Neurotrauma, stroke, and subarachnoid hemorrhage (SAH) are symptomatically diverse and etiologically complex central nervous system pathologies. Despite numerous therapeutic modalities that are available to minimize neurologic damage and secondary injury, the prognosis can still be dismal and unpredictable. Nanoparticle (NP) technology allows for deliberate, modular, and minimally invasive drug delivery. This literature review encompasses pertinent information on the impact and versatility of nanoparticle therapeutics when treating neurotrauma, stroke, and SAH. Currently, notable treatments such as Perfluorooctyl-Bromide (PFOB), PLGA nanoparticles, and ischemic relief-based NPs are promising new techniques for the management of these complex pathologies.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Ilyas Mehkri
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Yusuf Mehkri
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Hasan Maqbool
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Mubariz Tahirkheli
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Samuel Woodford
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Brandon Lucke-Wold
- Lillian S. Wells Department of Neurosurgery, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Shao L, Wang C, Xu G, Tu Z, Yu X, Weng C, Liu J, Jian Z. Utilizing reactive oxygen species-scavenging nanoparticles for targeting oxidative stress in the treatment of ischemic stroke: A review. Open Med (Wars) 2024; 19:20241041. [PMID: 39588390 PMCID: PMC11587925 DOI: 10.1515/med-2024-1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 11/27/2024] Open
Abstract
Ischemic stroke, which accounts for the majority of stroke cases, triggers a complex series of pathophysiological events, prominently characterized by acute oxidative stress due to excessive production of reactive oxygen species (ROS). Oxidative stress plays a crucial role in driving cell death and inflammation in ischemic stroke, making it a significant target for therapeutic intervention. Nanomedicine presents an innovative approach to directly mitigate oxidative damage. This review consolidates existing knowledge on the role of oxidative stress in ischemic stroke and assesses the potential of various ROS-scavenging nanoparticles (NPs) as therapeutic agents. We explore the properties and mechanisms of metal, metal-oxide, and carbon-based NPs, emphasizing their catalytic activity and biocompatibility in scavenging free radicals and facilitating the delivery of therapeutic agents across the blood-brain barrier. Additionally, we address the challenges such as cytotoxicity, immunogenicity, and biodistribution that need to be overcome to translate these nanotechnologies from bench to bedside. The future of NP-based therapies for ischemic stroke holds promise, with the potential to enhance outcomes through targeted modulation of oxidative stress.
Collapse
Affiliation(s)
- Lingmin Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Can Wang
- Department of Neurosurgery, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - Gang Xu
- Department of Neurosurgery, Xiantao First People’s Hospital, Xiantao, 433000, Hubei, China
| | - Zewei Tu
- Department of Neurosurgery, Yale School of Medicine, New Haven, 06510, CT, United States of America
| | - Xinyuan Yu
- Department of Anesthesiology, Duke University Medical Center, Durham, 27710, NC, United States of America
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jia Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
8
|
Nguyen TL, Phan NM, Kim J. Administration of ROS-Scavenging Cerium Oxide Nanoparticles Simply Mixed with Autoantigenic Peptides Induce Antigen-Specific Immune Tolerance against Autoimmune Encephalomyelitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33106-33120. [PMID: 38906850 DOI: 10.1021/acsami.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The scavenging ability of cerium oxide nanoparticles (CeNPs) for reactive oxygen species has been intensively studied in the field of catalysis. However, the immunological impact of these particles has not yet been thoroughly investigated, despite intensive research indicating that modulation of the reactive oxygen species could potentially regulate cell fate and adaptive immune responses. In this study, we examined the intrinsic capability of CeNPs to induce tolerogenic dendritic cells via their reactive oxygen species-scavenging effect when the autoantigenic peptides were simply mixed with CeNPs. CeNPs effectively reduced the intracellular reactive oxygen species levels in dendritic cells in vitro, leading to the suppression of costimulatory molecules as well as NLRP3 inflammasome activation, even in the presence of pro-inflammatory stimuli. Subcutaneously administrated PEGylated CeNPs were predominantly taken up by antigen-presenting cells in lymph nodes and to suppress cell maturation in vivo. The administration of a mixture of PEGylated CeNPs and myelin oligodendrocyte glycoprotein peptides, a well-identified autoantigen associated with antimyelin autoimmunity, resulted in the generation of antigen-specific Foxp3+ regulatory T cells in mouse spleens. The induced peripheral regulatory T cells actively inhibited the infiltration of autoreactive T cells and antigen-presenting cells into the central nervous system, ultimately protecting animals from experimental autoimmune encephalomyelitis when tested using a mouse model mimicking human multiple sclerosis. Overall, our findings reveal the potential of CeNPs for generating antigen-specific immune tolerance to prevent multiple sclerosis, opening an avenue to restore immune tolerance against specific antigens by simply mixing the well-identified autoantigens with the immunosuppressive CeNPs.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Wroe W, Dienel A, Hong S, Matsumura K, Guzman J, Torres K, Bernal A, Zeineddine HA, Pandit PT, Blackburn SL, McBride DW. Incidence and Factors in Delayed Neurological Deficits after Subarachnoid Hemorrhage in Mice. BRAIN HEMORRHAGES 2024; 5:99-106. [PMID: 39830728 PMCID: PMC11741540 DOI: 10.1016/j.hest.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background Delayed cerebral ischemia (DCI) is one of the most feared complications in aneurysmal subarachnoid hemorrhage (SAH). Animal models are crucial to studying the disease mechanisms and potential treatments. DCI in rodents was thought to not exist; herein we examine literature and our experience with DCI in rodents. Methods Daily behavioral performance was assessed every day from day 1 to up to 7 days post-SAH on mice from 5 different studies that used the endovascular perforation model. Performance was graded using an 8-test sensorimotor neuroscore previously described. The daily neuroscore was then used to identify the incidence and timing of delayed neurological deficits, a clinical surrogate for DCI. A total number of 298 mice (134 males, 164 females) were subjected to SAH. Fifty-one mice had histological staining done to identify infarct volume. Results The overall incidence of DND was 33.9%; 27.6% in males and 39.0% in females, but this difference was not statistically significant. The overall incidence of delayed death was 21.1%, and there was no significant difference for delayed mortality in females versus male mice. There is a non-statistically significant trend towards increased infarct volume in mice suffering DND. Conclusions Mice with endovascular puncture induced SAH develop DND at rates comparable to human patients. Future work needs to correlate the DND seen with decreased regional cerebral blood flow, another hallmark of DCI, but in spite of this need, researchers may use the murine models to test therapies for DCI after SAH.
Collapse
Affiliation(s)
- William Wroe
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kanako Matsumura
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Hussein A. Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peeyush Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Spiros L. Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Devin W. McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Jiang X, Wang W, Tang J, Han M, Xu Y, Zhang L, Wu J, Huang Y, Ding Z, Sun H, Xi K, Gu Y, Chen L. Ligand-Screened Cerium-Based MOF Microcapsules Promote Nerve Regeneration via Mitochondrial Energy Supply. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306780. [PMID: 38037294 PMCID: PMC10853750 DOI: 10.1002/advs.202306780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Indexed: 12/02/2023]
Abstract
Although mitochondria are crucial for recovery after spinal cord injury (SCI), therapeutic strategies to modulate mitochondrial metabolic energy to coordinate the immune response and nerve regeneration are lacking. Here, a ligand-screened cerium-based metal-organic framework (MOF) with better ROS scavenging and drug-loading abilities is encapsulated with polydopamine after loading creatine to obtain microcapsules (Cr/Ce@PDA nanoparticles), which reverse the energy deficits in both macrophages and neuronal cells by combining ROS scavenging and energy supplementation. It reprogrames inflammatory macrophages to the proregenerative phenotype via the succinate/HIF-1α/IL-1β signaling axis. It also promotes the regeneration and differentiation of neural cells by activating the mTOR pathway and paracrine function of macrophages. In vivo experiments further confirm the effect of the microcapsules in regulating early ROS-inflammation positive-feedback chain reactions and continuously promoting nerve regeneration. This study provides a new strategy for correcting mitochondrial energy deficiency in the immune response and nerve regeneration following SCI.
Collapse
Affiliation(s)
- Xinzhao Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Wei Wang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Jincheng Tang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Meng Han
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
- Department of Spinal SurgeryXuzhou Central HospitalXuzhou221000China
| | - Yichang Xu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Lichen Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Jie Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Yiyang Huang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Zhouye Ding
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Huiwen Sun
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Kun Xi
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Yong Gu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Liang Chen
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| |
Collapse
|
11
|
Salatin S, Farhoudi M, Farjami A, Maleki Dizaj S, Sharifi S, Shahi S. Nanoparticle Formulations of Antioxidants for the Management of Oxidative Stress in Stroke: A Review. Biomedicines 2023; 11:3010. [PMID: 38002010 PMCID: PMC10669285 DOI: 10.3390/biomedicines11113010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Stroke is currently one of the primary causes of morbidity and mortality worldwide. Unfortunately, there has been a lack of effective stroke treatment. Therefore, novel treatment strategies are needed to decrease stroke-induced morbidity and promote the patient's quality of life. Reactive oxygen species (ROS) have been recognized as one of the major causes of brain injury after ischemic stroke. Antioxidant therapy seems to be an effective treatment in the management of oxidative stress relevant to inflammatory disorders like stroke. However, the in vivo efficacy of traditional anti-oxidative substances is greatly limited due to their non-specific distribution and poor localization in the disease region. In recent years, antioxidant nanoparticles (NPs) have demonstrated a clinical breakthrough for stroke treatment. Some NPs have intrinsic antioxidant properties and act as antioxidants to scavenge ROS. Moreover, NPs provide protection to the antioxidant agents/enzymes while effectively delivering them into unreachable areas like the brain. Because of their nanoscale dimensions, NPs are able to efficiently pass through the BBB, and easily reach the damaged site. Here, we discuss the challenges, recent advances, and perspectives of antioxidant NPs in stroke treatment.
Collapse
Affiliation(s)
- Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran (M.F.)
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran (M.F.)
| | - Afsaneh Farjami
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
| |
Collapse
|
12
|
Kim M, Jeon H, Chung Y, Lee SU, Park W, Park JC, Ahn JS, Lee S. Efficacy of Acetylcysteine and Selenium in Aneurysmal Subarachnoid Hemorrhage Patients: A Prospective, Multicenter, Single Blind Randomized Controlled Trial. J Korean Med Sci 2023; 38:e161. [PMID: 37270916 DOI: 10.3346/jkms.2023.38.e161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/16/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) patients have oxidative stress results in inflammation, tissue degeneration and neuronal damage. These deleterious effects cause aggravation of the perihematomal edema (PHE), vasospasm, and even hydrocephalus. We hypothesized that antioxidants may have a neuroprotective role in acute aneurysmal SAH (aSAH) patients. METHODS We conducted a prospective, multicenter randomized (single blind) trial between January 2017 and October 2019, investigating whether antioxidants (acetylcysteine and selenium) have the potential to improve the neurologic outcome in aSAH patients. The antioxidant patient group received antioxidants of acetylcysteine (2,000 mg/day) and selenium (1,600 µg/day) intravenously (IV) for 14 days. These drugs were administrated within 24 hours of admission. The non-antioxidant patient group received a placebo IV. RESULTS In total, 293 patients were enrolled with 103 patients remaining after applying the inclusion and exclusion criteria. No significant differences were observed in the baseline characteristics between the antioxidant (n = 53) and non-antioxidant (n = 50) groups. Among clinical factors, the duration of intensive care unit (ICU) stay was significantly shortened in patients who received antioxidants (11.2, 95% confidence interval [CI], 9.7-14.5 vs. 8.3, 95% CI, 6.2-10.2 days, P = 0.008). However, no beneficial effects were observed on radiological outcomes. CONCLUSION In conclusion, antioxidant treatment failed to show the reduction of PHE volume, mid-line shifting, vasospasm and hydrocephalus in acute SAH patients. A significant reduction in ICU stay was observed but need more optimal dosing schedule and precise outcome targets are required to clarify the clinical impacts of antioxidants in these patients. TRIAL REGISTRATION Clinical Research Information Service Identifier: KCT0004628.
Collapse
Affiliation(s)
- Moinay Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeongu Chung
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Si Un Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Wonhyoung Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Toljan K, Ashok A, Labhasetwar V, Hussain MS. Nanotechnology in Stroke: New Trails with Smaller Scales. Biomedicines 2023; 11:biomedicines11030780. [PMID: 36979759 PMCID: PMC10045028 DOI: 10.3390/biomedicines11030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for effective treatment. During acute phase, intravenous administration of recombinant tissue plasminogen activator (tPA), a thrombolytic agent, and endovascular thrombectomy (EVT), a mechanical intervention to retrieve clots, are the only FDA-approved treatments to re-establish cerebral blood flow. Due to a short therapeutic time window and high potential risk of cerebral hemorrhage, a limited number of acute stroke patients benefit from tPA treatment. EVT can be performed within an extended time window, but such intervention is performed only in patients with occlusion in a larger, anatomically more proximal vasculature and is carried out at specialty centers. Regardless of the method, in case of successful recanalization, ischemia-reperfusion injury represents an additional challenge. Further, tPA disrupts the blood-brain barrier integrity and is neurotoxic, aggravating reperfusion injury. Nanoparticle-based approaches have the potential to circumvent some of the above issues and develop a thrombolytic agent that can be administered safely beyond the time window for tPA treatment. Different attributes of nanoparticles are also being explored to develop a multifunctional thrombolytic agent that, in addition to a thrombolytic agent, can contain therapeutics such as an anti-inflammatory, antioxidant, neuro/vasoprotective, or imaging agent, i.e., a theragnostic agent. The focus of this review is to highlight these advances as they relate to cerebrovascular conditions to improve clinical outcomes in stroke patients.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| | - M. Shazam Hussain
- Cerebrovascular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| |
Collapse
|
14
|
Li H, Wang Z, Xie X, Luo M, Shen H, Li X, Li H, Wang Z, Li X, Chen G. Peroxiredoxin-3 plays a neuroprotective role in early brain injury after experimental subarachnoid hemorrhage in rats. Brain Res Bull 2023; 193:95-105. [PMID: 36566946 DOI: 10.1016/j.brainresbull.2022.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke, is a neurological emergency associated with a high morbidity and mortality rate. After SAH, early brain injury (EBI) is the leading cause of poor prognosis in SAH patients. Peroxiredoxins (PRDXs) are a family of sulphhydryl-dependent peroxidases. Peroxiredoxin-3 (PRDX3) is mainly located in the mitochondria of neurons, which can remove hydrogen peroxide (H2O2); however, the effect of PRDX3 on EBI after SAH remains unclear. In this study, an endovascular perforation model was used to mimic SAH in Sprague Dawley rats in vivo. The results revealed that after SAH, PRDX3 levels decreased in the neurons. PRDX3 overexpression by neuron-specific adeno-associated viruses upregulated PRDX3 levels. Furthermore, PRDX3 overexpression improved long- and short-term behavioral outcomes and alleviated neuronal impairment in rats. Nissl staining revealed that the upregulation of PRDX3 promoted cortical neuron survival. PRDX3 overexpression decreased the H2O2 content and downregulated caspase-9 expression. In conclusion, PRDX3 participates in neuronal protection by inhibiting the neuronal mitochondria-mediated death pathway; PRDX3 may be an important target for EBI intervention after SAH.
Collapse
Affiliation(s)
- Haibo Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Muyun Luo
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou 341000, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiangdong Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
15
|
Zhang X, Khan S, Wei R, Zhang Y, Liu Y, Wee Yong V, Xue M. Application of nanomaterials in the treatment of intracerebral hemorrhage. J Tissue Eng 2023; 14:20417314231157004. [PMID: 37032735 PMCID: PMC10074624 DOI: 10.1177/20417314231157004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 04/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a non-traumatic hemorrhage caused by the rupture of blood vessels in the brain parenchyma, with an acute mortality rate of 30%‒40%. Currently, available treatment options that include surgery are not promising, and new approaches are urgently needed. Nanotechnology offers new prospects in ICH because of its unique benefits. In this review, we summarize the applications of various nanomaterials in ICH. Nanomaterials not only enhance the therapeutic effects of drugs as delivery carriers but also contribute to several facets after ICH such as repressing detrimental neuroinflammation, resisting oxidative stress, reducing cell death, and improving functional deficits.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Feng D, Zhou J, Liu H, Wu X, Li F, Zhao J, Zhang Y, Wang L, Chao M, Wang Q, Qin H, Ge S, Liu Q, Zhang J, Qu Y. Astrocytic NDRG2-PPM1A interaction exacerbates blood-brain barrier disruption after subarachnoid hemorrhage. SCIENCE ADVANCES 2022; 8:eabq2423. [PMID: 36179025 PMCID: PMC9524825 DOI: 10.1126/sciadv.abq2423] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Blood-brain barrier (BBB) injury critically exacerbates the poor prognosis of patients with subarachnoid hemorrhage (SAH). The massively increased matrix metalloproteinases 9 (MMP-9) plays a deleterious role in BBB. However, the main source and mechanism of MMP-9 production after SAH remain unclear. We reported that the increased MMP-9 was mainly derived from reactive astrocytes after SAH. Ndrg2 knockout in astrocytes inhibited MMP-9 expression after SAH and attenuated BBB damage. Astrocytic Ndrg2 knockout decreased the phosphorylation of Smad2/3 and the transcription of MMP-9. Notably, cytoplasmic NDRG2 bound to the protein phosphatase PPM1A and restricted the dephosphorylation of Smad2/3. Accordingly, TAT-QFNP12, a novel engineered peptide that could block the NDRG2-PPM1A binding and reduce Smad2/3 dephosphorylation, decreased astrocytic MMP-9 production and BBB disruption after SAH. In conclusion, this study identified NDRG2-PPM1A signaling in reactive astrocytes as a key switch for MMP-9 production and provided a novel therapeutic avenue for BBB protection after SAH.
Collapse
Affiliation(s)
- Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Jinpeng Zhou
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Junlong Zhao
- Department of Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an 710032, China
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lei Wang
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Qiang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Huaizhou Qin
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an 710032, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| |
Collapse
|
17
|
Kang DW, Cha BG, Lee JH, Yang W, Ki SK, Han JH, Cho HY, Park E, Jeon S, Lee SH. Ultrasmall polymer-coated cerium oxide nanoparticles as a traumatic brain injury therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102586. [PMID: 35868519 DOI: 10.1016/j.nano.2022.102586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
No medication has been approved for secondary injuries after traumatic brain injury (TBI). While free radicals are considered a major mediator of secondary injury, conventional antioxidants only have modest clinical efficacy. Here, we synthesized CX201 consisting of core cerium oxide nanoparticles coated with 6-aminocaproic acid and polyvinylpyrrolidone in aqueous phase. CX201 with 3.49 ± 1.11 nm of core and 6.49 ± 0.56 nm of hydrodynamic diameter showed multi-enzymatic antioxidant function. Owing to its excellent physiological stability and cell viability, CX201 had a neuroprotective effect in vitro. In a TBI animal model, an investigator-blinded randomized experiment showed a single intravenously injected CX201 significantly improved functional recovery compared to the control. CX201 reduced lipid peroxidation and inflammatory cell recruitment at the damaged brain. These suggest ultrasmall CX201 can efficiently reduce secondary brain injuries after TBI. Given the absence of current therapies, CX201 may be proposed as a novel therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Dong-Wan Kang
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Jee Hoon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Wookjin Yang
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seul Ki Ki
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Ju Hee Han
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Ha Yoon Cho
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Eunchae Park
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Sohyun Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Seung-Hoon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea; Korean Cerebrovascular Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Tian B, Tian B, Zhang Y. The Efficacy of Mannitol Combined with 6-Aminocaproic Acid in the Treatment of Patients with Cerebral Hemorrhage and Its Impact on Immune Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7396310. [PMID: 35865345 PMCID: PMC9296274 DOI: 10.1155/2022/7396310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022]
Abstract
Objective To determine the efficacy of Mannitol combined with 6-aminocaproic acid in the treatment of patients with cerebral hemorrhage, as well as its impact on the immune system. Methods The study subjects consisted of 122 patients with early intracerebral hemorrhage treated in our hospital from April 2019 to April 2022. Based on the different admission times, the participants were randomly divided into the control group and the study group in a ratio of 1:1. 6-Aminocaproic acid was used to treat patients in the control group, while Mannitol along with 6-aminocaproic acid was used to treat patients in the study group. Short form-36 health survey (SF-36) scores, hematoma volume changes, National Institutes of Health Stroke Scale (NIHSS), and Mini-Mental State Examination (MMSE) scores, clinical efficacy, and changes in the immune function in patients from the two groups were analyzed and compared. Results The total efficacy of treatment in the study group was significantly higher than that in the control group (x 2 = 9,375, P < 0.001). Patients in the study group had significantly higher scores in social function, mental health, physical function, and physiological function compared to those in the control group (P < 0.05). After treatment, there was a significant reduction in NIHSS scores in patients from both groups, but a greater reduction was seen in patients from the study group (P < 0.05). After 2 weeks of treatment, the volume of cerebral edema was significantly smaller in patients from the study group than in those from the control group (P < 0.05). Before treatment, there was no significant difference in the number of CD4+ and CD8+ T lymphocytes between patients in the two groups. However, after treatment, patients in the study group had higher numbers of CD4+ T lymphocytes and lower numbers of CD8+ T lymphocytes compared to those in the control group (P < 0.05). Conclusions The combination of Mannitol and 6-aminocaproic acid appears to be very efficacious in the treatment of cerebral hemorrhage. It improves immune function, reduces neurological damage, and minimizes the volume of cerebral edema.
Collapse
Affiliation(s)
- Buxian Tian
- Department of Neurology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Bohan Tian
- Class 2017 imaging department, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Yuhong Zhang
- Department of Neurology, Jinzhou General Hospital, Jinzhou, Liaoning, China
| |
Collapse
|
19
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
20
|
Jiang Y, Kang Y, Liu J, Yin S, Huang Z, Shao L. Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. J Nanobiotechnology 2022; 20:265. [PMID: 35672765 PMCID: PMC9171999 DOI: 10.1186/s12951-022-01434-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overproduced reactive oxygen and reactive nitrogen species (RONS) in the brain are involved in the pathogenesis of several neurological diseases, such as Alzheimer's disease, Parkinson's disease, traumatic brain injury, and stroke, as they attack neurons and glial cells, triggering cellular redox stress. Neutralizing RONS, and, thus, alleviating redox stress, can slow down or stop the progression of neurological diseases. Currently, an increasing number of studies are applying nanomaterials (NMs) with anti-redox activity and exploring the potential mechanisms involved in redox stress-related neurological diseases. In this review, we summarize the anti-redox mechanisms of NMs, including mimicking natural oxidoreductase activity and inhibiting RONS generation at the source. In addition, we propose several strategies to enhance the anti-redox ability of NMs and highlight the challenges that need to be resolved in their application. In-depth knowledge of the mechanisms and potential application of NMs in alleviating redox stress will help in the exploration of the therapeutic potential of anti-redox stress NMs in neurological diseases.
Collapse
Affiliation(s)
- Yanping Jiang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Suhan Yin
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Zhendong Huang
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Yang W, Zhang M, He J, Gong M, Sun J, Yang X. Central nervous system injury meets nanoceria: opportunities and challenges. Regen Biomater 2022; 9:rbac037. [PMID: 35784095 PMCID: PMC9245649 DOI: 10.1093/rb/rbac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) injury, induced by ischemic/hemorrhagic or traumatic damage, is one of the most common causes of death and long-term disability worldwide. Reactive oxygen and nitrogen species (RONS) resulting in oxidative/nitrosative stress play a critical role in the pathological cascade of molecular events after CNS injury. Therefore, by targeting RONS, antioxidant therapies have been intensively explored in previous studies. However, traditional antioxidants have achieved limited success thus far, and the development of new antioxidants to achieve highly effective RONS modulation in CNS injury still remains a great challenge. With the rapid development of nanotechnology, novel nanomaterials provided promising opportunities to address this challenge. Within these, nanoceria has gained much attention due to its regenerative and excellent RONS elimination capability. To promote its practical application, it is important to know what has been done and what has yet to be done. This review aims to present the opportunities and challenges of nanoceria in treating CNS injury. The physicochemical properties of nanoceria and its interaction with RONS are described. The applications of nanoceria for stroke and neurotrauma treatment are summarized. The possible directions for future application of nanoceria in CNS injury treatment are proposed.
Collapse
Affiliation(s)
- Wang Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
- Army Health Service Training Base, Army Medical University, Chongqing 400038, China
| | - Maoting Zhang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Jian He
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Mingfu Gong
- Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Jian Sun
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| |
Collapse
|
22
|
Xu Y, Chen A, Wu J, Wan Y, You M, Gu X, Guo H, Tan S, He Q, Hu B. Nanomedicine: An Emerging Novel Therapeutic Strategy for Hemorrhagic Stroke. Int J Nanomedicine 2022; 17:1927-1950. [PMID: 35530973 PMCID: PMC9075782 DOI: 10.2147/ijn.s357598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yating Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Sengwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Correspondence: Bo Hu; Quanwei He, Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China, Tel +86-27-87542857, Fax +86-27-87547063, Email ;
| |
Collapse
|
23
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
24
|
Wang Z, Li X, Huang L, Liu G, Chen Y, Li B, Zhao X, Xie R, Li Y, Fang W. Long Non-coding RNAs (lncRNAs), A New Target in Stroke. Cell Mol Neurobiol 2022; 42:501-519. [PMID: 32865676 PMCID: PMC11441288 DOI: 10.1007/s10571-020-00954-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Stroke has become the most disabling and the second most fatal disease in the world. It has been a top priority to reveal the pathophysiology of stroke at cellular and molecular levels. A large number of long non-coding RNAs (lncRNAs) are identified to be abnormally expressed after stroke. Here, we summarize 35 lncRNAs associated with stroke, and clarify their functions on the prognosis through signal transduction and predictive values as biomarkers. Changes in the expression of these lncRNAs mediate a wide range of pathological processes in stroke, including apoptosis, inflammation, angiogenesis, and autophagy. Based on the exploration of the functions and mechanisms of lncRNAs in stroke, more timely, accurate predictions and more effective, safer treatments for stroke could be developed.
Collapse
Affiliation(s)
- Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xueyan Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Mailbox 207, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and in vitro. Brain Res Bull 2022; 183:184-200. [PMID: 35304287 DOI: 10.1016/j.brainresbull.2022.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a hemorrhagic stroke with a high mortality and disability rate. Nitric oxide (NO) can promote blood supply through vasodilation, leading to protein S-nitrosylation. However, the function of S-nitrosylation in neurons after SAH remains unclear. Excessive NO in the pathological state is converted into S-nitrosoglutathione (GSNO) and stored in cells, which leads to high S-nitrosylation of intracellular proteins and causes nitrosative stress. S-nitrosoglutathione reductase (GSNOR) promotes GSNO degradation and protects cells from excessive S-nitrosylation. We conducted an in vivo rat carotid puncture model and an in vitro neuron hemoglobin intervention. The results showed that SAH induction increased NO, GSNO, neuron protein S-nitrosylation, and neuronal apoptosis, while decreasing the level and activity of GSNOR. GSNOR overexpression by lentivirus decreased GSNO but had little effect on NO. GSNOR overexpression also improved short- and long-term neurobehavioral outcomes in rats and alleviated nitrosative stress. Furthermore, GSNOR reduced neuronal apoptosis and played a neuroprotective role by alleviating Drp1 S-nitrosylation, reducing mitochondrial division. Thus, the regulation of GSNOR in early brain injury and neuronal denitrosylation may play an important role in neuroprotection.
Collapse
|
26
|
Youn DH, Jung H, Tran NM, Jeon JP, Yoo H. The Therapeutic Role of Nanoparticle Shape in Traumatic Brain Injury : An in vitro Comparative Study. J Korean Neurosurg Soc 2022; 65:196-203. [PMID: 35108773 PMCID: PMC8918243 DOI: 10.3340/jkns.2021.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 11/27/2022] Open
Abstract
Objective To perform a comparative analysis of therapeutic effects associated with two different shapes of ceria nanoparticles, ceria nanorods (Ceria NRs) and ceria nanospheres (Ceria NSs), in an in vitro model of traumatic brain injury (TBI). Methods In vitro TBI was induced using six-well confluent plates by manually scratching with a sterile pipette tip in a 6×6-square grid. The cells were then incubated and classified into cells with scratch injury without nanoparticles and cells with scratch injury, which were treated separately with 1.16 mM of Ceria NSs and Ceria NRs. Antioxidant activities and anti-inflammatory effects were analyzed. Results Ceria NRs and Ceria NSs significantly reduced the level of reactive oxygen species compared with the control group of SH-SY5Y cells treated with Dulbecco's phosphate-buffered saline. The mRNA expression of superoxide dismutases was also reduced in nanoparticle-treated SH-SY5Y cells, but apparently the degree of mRNA expression decrease was not dependent on the nanoparticle shape. Exposure to ceria nanoparticles also decreased the cyclooxygenase-2 expression, especially prominent in Ceria NR-treated group than that in Ceria NS-treated group. Conclusion Ceria nanoparticles exhibit antioxidant and anti-inflammatory effects in TBI models in vitro. Ceria NRs had better antiinflammatory effect than Ceria NSs, but showed similar antioxidant activity.
Collapse
Affiliation(s)
- Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Korea
| |
Collapse
|
27
|
Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | | | - Sanjay Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
28
|
Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke. Antioxidants (Basel) 2021; 10:antiox10121886. [PMID: 34942989 PMCID: PMC8698986 DOI: 10.3390/antiox10121886] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022] Open
Abstract
The production of free radicals is inevitably associated with metabolism and other enzymatic processes. Under physiological conditions, however, free radicals are effectively eliminated by numerous antioxidant mechanisms. Oxidative stress occurs due to an imbalance between the production and elimination of free radicals under pathological conditions. Oxidative stress is also associated with ageing. The brain is prone to oxidative damage because of its high metabolic activity and high vulnerability to ischemic damage. Oxidative stress, thus, plays a major role in the pathophysiology of both acute and chronic pathologies in the brain, such as stroke, traumatic brain injury or neurodegenerative diseases. The goal of this article is to summarize the basic concepts of oxidative stress and its significance in brain pathologies, as well as to discuss treatment strategies for dealing with oxidative stress in stroke.
Collapse
|
29
|
Choi S, Kim J. Facile Room-Temperature Synthesis of Cerium Carbonate and Cerium Oxide Nano- and Microparticles Using 1,1'-Carbonyldiimidazole and Imidazole in a Nonaqueous Solvent. ACS OMEGA 2021; 6:26477-26488. [PMID: 34661003 PMCID: PMC8515608 DOI: 10.1021/acsomega.1c03700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Ceria nanoparticles (CeONPs) are versatile materials due to their unique catalytic properties, and cerium carbonate particles (CeCbPs) have been widely used as precursors for cerium oxide due to their ease of production. Urea is a widely used precipitant and a source of carbonate ions for the synthesis of CeONPs and CeCbPs, and the reaction temperature is important for controlling the rate of urea decomposition. However, the precise control of the temperature is often difficult, especially in large-scale reactions. Herein, we propose a homogeneous precipitation method that uses 1,1'-carbonyldiimidazole (CDI) and imidazole in acetone without heating. The decomposition rate of CDI can be controlled by the amount of water in the reaction mixture. In the synthesis of CeCbPs, unique particle morphologies of plate-, flying-saucer-, and macaron-like shapes and a wide range of sizes from 180 nm to 13 μm can be achieved by adjusting the amount of CDI, imidazole, and water in the reaction. These CeCbPs are transformed into ceria particles by calcination while maintaining their characteristic morphology. Moreover, the direct synthesis of 130 nm spherical CeONPs was possible by decreasing the amount of CDI in the reaction and the mixing time. These nanoparticles exhibited higher production efficiency and superior reactive oxygen species (ROS) scavenging properties compared to the other CeONPs obtained from calcination. These results demonstrate a novel method using CDI and imidazole in the synthesis of CeONPs and CeCbPs without the aid of a heating process, which may be useful in the large-scale synthesis and application of CeO nanomaterials.
Collapse
Affiliation(s)
- Seung
Woo Choi
- Department
of Health Sciences and Technology, Samsung Advanced Institute for
Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic
of Korea
| | - Jaeyun Kim
- Department
of Health Sciences and Technology, Samsung Advanced Institute for
Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic
of Korea
- School
of Chemical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
- Biomedical
Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
- Institute
of Quantum Biophysics (IQB), Sungkyunkwan
University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8857486. [PMID: 33815664 PMCID: PMC7990543 DOI: 10.1155/2021/8857486] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Stroke has a high rate of morbidity and disability, which seriously endangers human health. In stroke, oxidative stress leads to further damage to the brain tissue. Therefore, treatment for oxidative stress is urgently needed. However, antioxidative drugs have demonstrated obvious protective effects in preclinical studies, but the clinical studies have not seen breakthroughs. Nanomaterials, with their characteristically small size, can be used to deliver drugs and have demonstrated excellent performance in treating various diseases. Additionally, some nanomaterials have shown potential in scavenging reactive oxygen species (ROS) in stroke according to the nature of nanomaterials. The drugs' delivery ability of nanomaterials has great significance for the clinical translation and application of antioxidants. It increases drug blood concentration and half-life and targets the ischemic brain to protect cells from oxidative stress-induced death. This review summarizes the characteristics and progress of nanomaterials in the application of antioxidant therapy in stroke, including ischemic stroke, hemorrhagic stroke, and neural regeneration. We also discuss the prospect of nanomaterials for the treatment of oxidative stress in stroke and the challenges in their application, such as the toxicity and the off-target effects of nanomaterials.
Collapse
|
31
|
Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination. J Neuroinflammation 2021; 18:43. [PMID: 33588866 PMCID: PMC7883579 DOI: 10.1186/s12974-021-02101-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) can induce excessive accumulation of reactive oxygen species (ROS) that may subsequently cause severe white matter injury. The process of oligodendrocyte progenitor cell (OPC) differentiation is orchestrated by microglia and astrocytes, and ROS also drives the activation of microglia and astrocytes. In light of the potent ROS scavenging capacity of ceria nanoparticles (CeNP), we aimed to investigate whether treatment with CeNP ameliorates white matter injury by modulating ROS-induced microglial polarization and astrocyte alteration. Methods ICH was induced in vivo by collagenase VII injection. Mice were administered with PLX3397 for depleting microglia. Primary microglia and astrocytes were used for in vitro experiments. Transmission electron microscopy analysis and immunostaining were performed to verify the positive effects of CeNP in remyelination and OPC differentiation. Flow cytometry, real-time polymerase chain reaction, immunofluorescence and western blotting were used to detect microglia polarization, astrocyte alteration, and the underlying molecular mechanisms. Results CeNP treatment strongly inhibited ROS-induced NF-κB p65 translocation in both microglia and astrocytes, and significantly decreased the expression of M1 microglia and A1 astrocyte. Furthermore, we found that CeNP treatment promoted remyelination and OPC differentiation after ICH, and such effects were alleviated after microglial depletion. Interestingly, we also found that the number of mature oligodendrocytes was moderately increased in ICH + CeNP + PLX3397-treated mice compared to the ICH + vehicle + PLX3397 group. Therefore, astrocytes might participate in the pathophysiological process. The subsequent phagocytosis assay indicated that A1 astrocyte highly expressed C3, which could bind with microglia C3aR and hinder microglial engulfment of myelin debris. This result further replenished the feedback mechanism from astrocytes to microglia. Conclusion The present study reveals a new mechanism in white matter injury after ICH: ICH induces M1 microglia and A1 astrocyte through ROS-induced NF-κB p65 translocation that hinders OPC maturation. Subsequently, A1 astrocytes inhibit microglial phagocytosis of myelin debris via an astrocytic C3-microglial C3aR axis. Polyethylene glycol-CeNP treatment inhibits this pathological process and ultimately promotes remyelination. Such findings enlighten us that astrocytes and microglia should be regarded as a functional unit in future works. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02101-6.
Collapse
|
32
|
Barpujari A, Patel C, Zelmonovich R, Clark A, Patel D, Pierre K, Scott K, Lucke Wold B. Pharmaceutical Management for Subarachnoid Hemorrhage. RECENT TRENDS IN PHARMACEUTICAL SCIENCES AND RESEARCH 2021; 3:16-30. [PMID: 34984419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Aneurysmal subarachnoid hemorrhage can have deleterious consequences. Vasospasm, delayed cerebral ischemia, and re-hemorrhage can all cause delayed sequelae. Furthermore, severe headaches are common and require careful modulation of pain medications. Limited treatment options currently exist and are becoming more complex with the rising use of oral anticoagulants needing reversal. In this review, we highlight the current treatment options currently employed and address avenues of future discovery based on emerging preclinical data. Furthermore, we dive into the best treatment approach for managing headaches following subarachnoid hemorrhage. The review is designed to serve as a catalyst for further prospective investigation into this important topic.
Collapse
Affiliation(s)
- Arnav Barpujari
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Chhaya Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | | | - Alec Clark
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Devan Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Kevin Pierre
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Kyle Scott
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | | |
Collapse
|
33
|
Sim TM, Tarini D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Technology Approaches to the Management of Neurological Disorders. Int J Mol Sci 2020; 21:E6070. [PMID: 32842530 PMCID: PMC7503838 DOI: 10.3390/ijms21176070] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Neurological disorders are the most devastating and challenging diseases associated with the central nervous system (CNS). The blood-brain barrier (BBB) maintains homeostasis of the brain and contributes towards the maintenance of a very delicate microenvironment, impairing the transport of many therapeutics into the CNS and making the management of common neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebrovascular diseases (CVDs) and traumatic brain injury (TBI), exceptionally complicated. Nanoparticle (NP) technology offers a platform for the design of tissue-specific drug carrying systems owing to its versatile and modifiable nature. The prospect of being able to design NPs capable of successfully crossing the BBB, and maintaining a high drug bioavailability in neural parenchyma, has spurred much interest in the field of nanomedicine. NPs, which also come in an array of forms including polymeric NPs, solid lipid nanoparticles (SLNs), quantum dots and liposomes, have the flexibility of being conjugated with various macromolecules, such as surfactants to confer the physical or chemical property desired. These nanodelivery strategies represent potential novel and minimally invasive approaches to the treatment and diagnosis of these neurological disorders. Most of the strategies revolve around the ability of the NPs to cross the BBB via various influx mechanisms, such as adsorptive-mediated transcytosis (AMT) and receptor-mediated transcytosis (RMT), targeting specific biomarkers or lesions unique to that pathological condition, thereby ensuring high tissue-specific targeting and minimizing off-target side effects. In this article, insights into common neurological disorders and challenges of delivering CNS drugs due to the presence of BBB is provided, before an in-depth review of nanoparticle-based theranostic strategies.
Collapse
Affiliation(s)
- Tao Ming Sim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Dinesh Tarini
- Government Kilpauk Medical College, The Tamilnadu Dr MGR Medical University, Chennai, Tamilnadu 600032, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| |
Collapse
|
34
|
Choi SW, Cha BG, Kim J. Therapeutic Contact Lens for Scavenging Excessive Reactive Oxygen Species on the Ocular Surface. ACS NANO 2020; 14:2483-2496. [PMID: 31935066 DOI: 10.1021/acsnano.9b10145] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Excessive reactive oxygen species (ROS) play a significant role in the pathogenesis of many eye diseases. Controlling oxidative stress by reducing the amount of ROS is a potential therapeutic strategy for the prevention and treatment of eye diseases, particularly ocular surface diseases. Ceria nanoparticles (CeNPs) have been investigated owing to their efficient ROS-scavenging properties. To overcome the disadvantages of eyedrop administration due to rapid elimination on the surface of the eye and to retain the intrinsic properties of contact lenses, we developed an ROS-scavenging water-soluble CeNP-embedded contact lens (CeNP-CL) for the prevention of ocular surface diseases. The intrinsic ROS-scavenging property of the CeNPs, which mimicked the activities of superoxide dismutase and catalase, was incorporated into polyhydroxyethyl methacrylate-based contact lenses. The CeNP-CL exhibited high transparency and physical properties comparable to those of a commercial contact lens, along with excellent extracellular ROS-scavenging properties. The viabilities of human conjunctival epithelial cells and human meibomian gland epithelial cells were significantly enhanced in the presence of CeNP-CLs, even in media with high H2O2 contents (100 and 500 μM). Additionally, the wearing of CeNP-CLs on the eyes had a protective effect in a mouse model when 3% H2O2 eyedrops were administered. These results indicate the salvaging effect of the CeNP-CL in a high-ROS environment on the ocular surface, which may be helpful for the treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Bong Geun Cha
- School of Chemical Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- School of Chemical Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Institute of Quantum Biophysics (IQB) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
35
|
Alkaff SA, Radhakrishnan K, Nedumaran AM, Liao P, Czarny B. Nanocarriers for Stroke Therapy: Advances and Obstacles in Translating Animal Studies. Int J Nanomedicine 2020; 15:445-464. [PMID: 32021190 PMCID: PMC6982459 DOI: 10.2147/ijn.s231853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
The technology of drug delivery systems (DDS) has expanded into many applications, such as for treating neurological disorders. Nanoparticle DDS offer a unique strategy for targeted transport and improved outcomes of therapeutics. Stroke is likely to benefit from the emergence of this technology though clinical breakthroughs are yet to manifest. This review explores the recent advances in this field and provides insight on the trends, prospects and challenges of translating this technology to clinical application. Carriers of diverse material compositions are presented, with special focus on the surface properties and emphasis on the similarities and inconsistencies among in vivo experimental paradigms. Research attention is scattered among various nanoparticle DDS and various routes of drug administration, which expresses the lack of consistency among studies. Analysis of current literature reveals lipid- and polymer-based DDS as forerunners of DDS for stroke; however, cell membrane-derived vesicles (CMVs) possess the competitive edge due to their innate biocompatibility and superior efficacy. Conversely, inorganic and carbon-based DDS offer different functionalities as well as varied capacity for loading but suffer mainly from poor safety and general lack of investigation in this area. This review supports the existing literature by systematizing presently available data and accounting for the differences in drugs of choice, carrier types, animal models, intervention strategies and outcome parameters.
Collapse
Affiliation(s)
- Syed Abdullah Alkaff
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Krishna Radhakrishnan
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute 308433, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University 639798, Singapore
| |
Collapse
|
36
|
Baranoski JF, Ducruet AF. Nanoparticle-Facilitated Delivery of Antioxidant Therapy following Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2019; 85:E174-E175. [DOI: 10.1093/neuros/nyz031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jacob F Baranoski
- Department of Neurosurgery Barrow Neurological Institute Phoenix, Arizona
| | - Andrew F Ducruet
- Department of Neurosurgery Barrow Neurological Institute Phoenix, Arizona
| |
Collapse
|