1
|
Hussain MS, Goyal A, Goyal K, S. RJ, Nellore J, Shahwan M, Rekha A, Ali H, Dhanasekaran M, MacLoughlin R, Dua K, Gupta G. Targeting CXCR2 signaling in inflammatory lung diseases: neutrophil-driven inflammation and emerging therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025. [DOI: 10.1007/s00210-025-03970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 05/04/2025]
|
2
|
O'Connor A, Villalobos Santeli A, Nannu Shankar S, Shirkhani A, Baker TR, Wu CY, Mehrad B, Ferguson PL, Sabo-Attwood T. Toxicity of microplastic fibers containing azobenzene disperse dyes to human lung epithelial cells cultured at an air-liquid interface. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136280. [PMID: 39515142 PMCID: PMC11698483 DOI: 10.1016/j.jhazmat.2024.136280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
There is growing concern surrounding the human health effects following inhalation exposure to microplastic fibers (MPFs). MPFs can harbor chemical additives, such as azobenzene disperse dyes (ADDs), that may contribute to their toxicity. The goal of this study was to determine the acute biological effects of dyed polyethylene terephthalate MPFs to fully differentiated normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface. Cells were exposed to 2000 undyed MPFs (84.80 µg/cm2) or 2000 dyed MPFs (129.86 µg/cm2) colored with a black dye stuff containing the dye Disperse Violet 93 (DV93) using a mesh hopper delivery device. Cells were also exposed to DV93 only (1 µg/mL). Results show that the dyed MPFs caused a more pronounced decrease in cell viability and transepithelial electrical resistance compared to undyed MPFs and unexposed control cells. Additionally, the DV93 and dyed MPFs significantly upregulated the mRNA expression of CYP1A1 and CYP1B1, which was not observed in the undyed MPF group. These results support the idea that components of MPFs, specifically azobenzene disperse dyes, can leach from MPFs in biological systems and exert unique toxicity profiles. This study emphasizes the importance of considering toxicity associated with both the fibers themselves and chemical leachates in future studies.
Collapse
Affiliation(s)
- Amber O'Connor
- Department of Environmental & Global Health, University of Florida, Gainesville, FL, USA
| | | | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, OH, USA
| | - Amin Shirkhani
- Department of Chemical, Environmental and Materials Engineering, University of Miami, FL, USA
| | - Tracie R Baker
- Department of Environmental & Global Health, University of Florida, Gainesville, FL, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA; Department of Chemical, Environmental and Materials Engineering, University of Miami, FL, USA
| | - Borna Mehrad
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville 32610, FL, USA
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, USA
| | - Tara Sabo-Attwood
- Department of Environmental & Global Health, University of Florida, Gainesville, FL, USA; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
3
|
Li R, Deng H, Han Y, Tong Y, Hou Y, Huang T, Xiao M, Deng L, Zhao X, Chen Y, Feng P, Chen R, Yang Z, Qi H, Jia Z, Feng W. Therapeutic effects of Lianhua Qingke on COPD and influenza virus-induced exacerbation of COPD are associated with the inhibition of NF-κB signaling and NLRP3 inflammasome responses. Int Immunopharmacol 2024; 142:113213. [PMID: 39317049 DOI: 10.1016/j.intimp.2024.113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Lianhua Qingke (LHQK), a traditional Chinese medicine (TCM) used clinically for the treatment of respiratory diseases with acute tracheobronchitis, and cough, has demonstrated promising efficacy in suppressing inflammation, inhibitingmucin secretion, reducing goblet cell hyperplasia andmaintainingairway epithelial integrity. However, its efficacy in managing chronic obstructive pulmonary disease (COPD) progression, particularly virus-induced acute exacerbations of COPD (AECOPD),remains unclear. Here, cigarette smoke (CS)-induced COPD and CS+virus (influenza H1N1)-triggered AECOPD mouse models were employed to evaluated the therapeutic potential of LHQK. The findings demonstrated that LHQK treatment led to significant improved pulmonary function, suppressed pulmonary inflammation, alleviated lung histopathological changes, and preserved airway epithelial integrity in COPD mice. Additionally, LHQK treatment effectively inhibited viral replication in the lungs of AECOPD mice and decreased recruitment of immune cells (M1 macrophages, progenitor-exhausted T cells and CD8 + T cells) to the lungs. Western blot analysis indicated that the therapeutic effects of LHQK are associated with the inhibition ofNF-κB signaling and NLRP3 inflammasome activation. Collectively, these findings elucidate the underlying mechanisms by which LHQK mitigates COPD and AECOPD, thereby supporting its potential as a therapeutic option for individuals afflicted with these conditions.
Collapse
Affiliation(s)
- Runfeng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Huihuang Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Yu Han
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang Hebei 050031, China
| | - Yanan Tong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China
| | - Yunlong Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China
| | - Tao Huang
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Mengjie Xiao
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingzhu Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Xin Zhao
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yaorong Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Pei Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau
| | - Ruifeng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China; Guangzhou Laboratory, Guangzhou, Guangdong 510120, China
| | - Hui Qi
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China.
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China; Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, Hebei 050091, China.
| | - Wei Feng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China.
| |
Collapse
|
4
|
Zhu J, Edwards MR, Message SD, Stanciu LA, Johnston SL, Jeffery PK. Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production. Pharmaceuticals (Basel) 2024; 17:1554. [PMID: 39598462 PMCID: PMC11597196 DOI: 10.3390/ph17111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cilomilast, a phosphodiesterase-4 (PDE4) selective inhibitor, has anti-inflammatory effects in vitro and in vivo and reduces COPD exacerbations. We tested the hypothesis that cilomilast inhibits virus-induced airway epithelial intercellular adhesion molecule-1 (ICAM-1) expression and inflammatory cytokine/chemoattractants, IL-6, CXCL8, and CCL5 production in vitro. Methods: BEAS-2B bronchial epithelial cells were incubated with 0.5-2 MOI (multiplicity of infection-infectious units/cell) of rhinovirus 16 (RV16). Then, 0.1-10 μM cilomilast or 10 nM dexamethasone, as inhibition control, were added pre- or post-1 h RV16 infection. Supernatant and cells were sampled at 8, 24, 48, and 72 h after infection. Cell surface ICAM-1 expression was detected by immunogold labelling and visualised by high-resolution scanning electron microscopy (HR-SEM), while IL-6, CXCL8, and CCL5 protein release and mRNA expression were measured using an ELISA and RT-PCR. Results: Cilomilast significantly decreased RV16-induced ICAM-1 expression to approximately 45% (p < 0.01). CXCL8 protein/mRNA production was reduced by about 41% (p < 0.05), whereas IL-6 protein/mRNA production was increased to between 41-81% (p < 0.001). There was a trend to reduction by cilomilast of RV16-induced CCL5. Conclusions: Cilomilast has differential effects on RV16-induced ICAM-1 and interleukins, inhibiting virus-induced ICAM-1 expression and CXCL8 while increasing IL-6 production. These in vitro effects may help to explain the beneficial actions of this PDE4 inhibitor in vivo.
Collapse
Affiliation(s)
- Jie Zhu
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Michael R. Edwards
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Simon D. Message
- Thoracic Medicine, Gloucestershire Hospitals NHS Foundation Trust, Alexandra House, Sandford Road, Cheltenham GL53 7AN, UK;
| | - Luminita A. Stanciu
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Sebastian L. Johnston
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Peter K. Jeffery
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| |
Collapse
|
5
|
Nicola T, Wenger N, Xu X, Evans M, Qiao L, Rezonzew G, Yang Y, Jilling T, Margaroli C, Genschmer K, Willis K, Ambalavanan N, Blalock JE, Gaggar A, Lal CV. A lactobacilli-based inhaled live biotherapeutic product attenuates pulmonary neutrophilic inflammation. Nat Commun 2024; 15:7113. [PMID: 39160214 PMCID: PMC11333600 DOI: 10.1038/s41467-024-51169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Exposure to noxious stimuli such as hyperoxia, volutrauma, and infection in infancy can have long-reaching impacts on lung health and predispose towards the development of conditions such as chronic obstructive pulmonary disease (COPD) in adulthood. BPD and COPD are both marked by lung tissue degradation, neutrophil influx, and decreased lung function. Both diseases also express a change in microbial signature characterized by firmicute depletion. However, the relationship between pulmonary bacteria and the mechanisms of downstream disease development has yet to be elucidated. We hypothesized that murine models of BPD would show heightened acetylated proline-glycine-proline (Ac-PGP) pathway and neutrophil activity, and through gain- and loss-of-function studies we show that Ac-PGP plays a critical role in driving BPD development. We further test a inhaled live biotherapeutic (LBP) using active Lactobacillus strains in in vitro and in vivo models of BPD and COPD. The Lactobacillus-based LBP is effective in improving lung structure and function, mitigating neutrophil influx, and reducing a broad swath of pro-inflammatory markers in these models of chronic pulmonary disease via the MMP-9/PGP (matrix metalloproteinase/proline-glycine-proline) pathway. Inhaled LBPs show promise in addressing common pathways of disease progression that in the future can be targeted in a variety of chronic lung diseases.
Collapse
Grants
- R01HL156275 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35HL166433 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35HL135710 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141652 NHLBI NIH HHS
- R44HL164156 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL156275 NHLBI NIH HHS
- R35 HL135710 NHLBI NIH HHS
- R35 HL166433 NHLBI NIH HHS
- R44 HL164156 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Teodora Nicola
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nancy Wenger
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Evans
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luhua Qiao
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabriel Rezonzew
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Youfeng Yang
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Camilla Margaroli
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristopher Genschmer
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kent Willis
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Charitharth Vivek Lal
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Marnix Heersink Institute of Biomedical Innovation, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
7
|
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J. A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 2024; 11:1371064. [PMID: 39006103 PMCID: PMC11239554 DOI: 10.3389/fnut.2024.1371064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Respiratory Immunology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| |
Collapse
|
8
|
Ge L, Wang N, Chen Z, Xu S, Zhou L. Expression of Siglec-9 in peripheral blood neutrophils was increased and associated with disease severity in patients with AECOPD. Cytokine 2024; 177:156558. [PMID: 38412768 DOI: 10.1016/j.cyto.2024.156558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The pathogenesis and treatment strategies for chronic obstructive pulmonary disease (COPD) require further exploration. Abnormal neutrophil inflammation and the overexpression of neutrophil extracellular traps (NETs) are closely associated with acute exacerbations of COPD (AECOPD). Siglec-9, a specific receptor expressed on neutrophils that inhibits their function, prompted us to investigate its relationship with NETs found in induced sputum and the severity of the disease. METHODS We collected clinical data from patients with AECOPD and assessed the expression of Siglec-9 in peripheral blood neutrophils and the presence of NETs in induced sputum. We then observed the correlation between Siglec-9, the inflammatory response, and the severity of AECOPD. RESULTS We observed an increase in the expression of Siglec-9 in the peripheral blood neutrophils of patients with AECOPD. Concurrently, these patients exhibited more severe clinical symptoms, higher systemic inflammation levels, and a reduced quality of life compared to those with induced sputum NET expression. Further subgroup analysis of AECOPD patients with high Siglec-9 expression revealed worsened quality of life and more severe inflammation, particularly in indicators such as the BODE index, CRP, peripheral blood neutrophil count, IL-6, IL-8, TNF-α expression, and others. Furthermore, we noted a significant increase in NET-specific expression in the sputum of patients with high Siglec-9 expression levels. In comparison to patients with low Siglec-9 expression, those with high expression experienced more systemic inflammatory reactions and a lower quality of life. Correlation analysis of the aforementioned indicators revealed that the expression ratio of Siglec-9 in the peripheral blood of patients correlated with lung function, quality of life, and NETs in the induced sputum of patients with AECOPD. CONCLUSION The increased expression of Siglec-9 in peripheral blood neutrophils of AECOPD patients leads to elevated NET expression in induced sputum, exacerbating the systemic inflammatory response and worsening lung function and quality of life in these patients.
Collapse
Affiliation(s)
- Linyang Ge
- Department of Respiratory and Critical Care Medicine, Affiliated Gaochun Hospital, Jiangsu University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Gaochun Hospital, Jiangsu University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Integrative Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Hao Y, Wang T, Hou Y, Wang X, Yin Y, Liu Y, Han N, Ma Y, Li Z, Wei Y, Feng W, Jia Z, Qi H. Therapeutic potential of Lianhua Qingke in airway mucus hypersecretion of acute exacerbation of chronic obstructive pulmonary disease. Chin Med 2023; 18:145. [PMID: 37924136 PMCID: PMC10623880 DOI: 10.1186/s13020-023-00851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Lianhua Qingke (LHQK) is an effective traditional Chinese medicine used for treating acute tracheobronchitis. In this study, we evaluated the effectiveness of LHQK in managing airway mucus hypersecretion in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS The AECOPD model was established by subjecting male Wistar rats to 12 weeks of cigarette smoke (CS) exposure (80 cigarettes/day, 5 days/week for 12 weeks) and intratracheal lipopolysaccharide (LPS) exposure (200 μg, on days 1, 14, and 84). The rats were divided into six groups: control (room air exposure), model (CS + LPS exposure), LHQK (LHQK-L, LHQK-M, and LHQK-H), and a positive control group (Ambroxol). H&E staining, and AB-PAS staining were used to evaluate lung tissue pathology, inflammatory responses, and goblet cell hyperplasia. RT-qPCR, immunohistochemistry, immunofluorescence and ELISA were utilized to analyze the transcription, expression and secretion of proteins related to mucus production in vivo and in the human airway epithelial cell line NCI-H292 in vitro. To predict and screen the active ingredients of LHQK, network pharmacology analysis and NF-κB reporter system analysis were employed. RESULTS LHQK treatment could ameliorate AECOPD-triggered pulmonary structure damage, inflammatory cell infiltration, and pro-inflammatory cytokine production. AB-PAS and immunofluorescence staining with CCSP and Muc5ac antibodies showed that LHQK reduced goblet cell hyperplasia, probably by inhibiting the transdifferentiation of Club cells into goblet cells. RT-qPCR and immunohistochemistry of Muc5ac and APQ5 showed that LHQK modulated mucus homeostasis by suppressing Muc5ac transcription and hypersecretion in vivo and in vitro, and maintaining the balance between Muc5ac and AQP5 expression. Network pharmacology analysis and NF-κB luciferase reporter system analysis provided insights into the active ingredients of LHQK that may help control airway mucus hypersecretion and regulate inflammation. CONCLUSION LHQK demonstrated therapeutic effects in AECOPD by reducing inflammation, suppressing goblet cell hyperplasia, preventing Club cell transdifferentiation, reducing Muc5ac hypersecretion, and modulating airway mucus homeostasis. These findings support the clinical use of LHQK as a potential treatment for AECOPD.
Collapse
Affiliation(s)
- Yuanjie Hao
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tongxing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yunlong Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Xiaoqi Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Yujie Yin
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yan Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Zhen Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yaru Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Wei Feng
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Zhenhua Jia
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, 050091, Hebei, China.
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| |
Collapse
|
10
|
Baranasic J, Niazi Y, Chattopadhyay S, Rumora L, Ćorak L, Dugac AV, Jakopović M, Samaržija M, Försti A, Knežević J. Germline variants of the genes involved in NF-kB activation are associated with the risk of COPD and lung cancer development. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:243-256. [PMID: 37307368 DOI: 10.2478/acph-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer (LC) are closely related diseases associated with smoking history and dysregulated immune response. However, not all smokers develop the disease, indicating that genetic susceptibility could be important. Therefore, the aim of this study was to search for the potential overlapping genetic biomarkers, with a focus on single nucleotide polymorphisms (SNPs) located in the regulatory regions of immune-related genes. Additionally, the aim was to see if an identified SNP has potentially an effect on proinflamma-tory cytokine concentration in the serum of COPD patients. We extracted summary data of variants in 1511 immune-related genes from COPD and LC genome-wide association studies (GWAS) from the UK Biobank. The LC data had 203 cases, patients diagnosed with LC, and 360 938 controls, while COPD data had 1 897 cases and 359 297 controls. Assuming 1 association/gene, SNPs with a p-value < 3.3 × 10-5 were considered statistically significantly associated with the disease. We identified seven SNPs located in different genes (BAG6, BTNL2, TNF, HCP5, MICB, NCR3, ABCF1, TCF7L1) to be associated with the COPD risk and two with the LC risk (HLA-C, HLA-B), with statistical significance. We also identified two SNPs located in the IL2RA gene associated with LC (rs2386841; p = 1.86 × 10-4) and COPD (rs11256442; p = 9.79 × 10-3) but with lower significance. Functional studies conducted on COPD patients showed that RNA expression of IL2RA, IFNγ and related proinflammatory cytokines in blood serum did not correlate with a specific genotype. Although results presented in this study do not fully support our hypothesis, it is worth to mention that the identified genes/SNPs that were associated with either COPD or LC risk, all were involved in the activation of the NF-κB transcription factor which is closely related to the regulation of the inflammatory response, a condition associated with both pathologies.
Collapse
Affiliation(s)
- Jurica Baranasic
- 1Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Yasmeen Niazi
- 2Hopp Children's Cancer Center (KiTZ) Heidelberg, Germany
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Subhayan Chattopadhyay
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
- 4Departments of Clinical Genetics, Lund University, Lund, Sweden
| | - Lada Rumora
- 5Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb Zagreb, Croatia
| | - Lorna Ćorak
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Andrea Vukić Dugac
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Miroslav Samaržija
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Asta Försti
- 2Hopp Children's Cancer Center (KiTZ) Heidelberg, Germany
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Jelena Knežević
- 1Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
- 7Faculty of Dental Medicine and Health University of Osijek, Osijek, Croatia
| |
Collapse
|
11
|
Xie Y, Kuang W, Wang D, Yuan K, Yang P. Expanding role of CXCR2 and therapeutic potential of CXCR2 antagonists in inflammatory diseases and cancers. Eur J Med Chem 2023; 250:115175. [PMID: 36780833 DOI: 10.1016/j.ejmech.2023.115175] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
C-X-C motif chemokine receptor 2 (CXCR2) is G protein-coupled receptor (GPCR) and plays important roles in various inflammatory diseases and cancers, including chronic obstructive pulmonary disease (COPD), atherosclerosis, asthma, and pancreatic cancer. Upregulation of CXCR2 is closely associated with the migration of neutrophils and monocytes. To date, many small-molecule CXCR2 antagonists have entered clinical trials, showing favorable safety and therapeutic effects. Hence, we provide an overview containing the discovery history, protein structure, signaling pathways, biological functions, structure-activity relationships and clinical significance of CXCR2 antagonists in inflammatory diseases and cancers. According to the latest development and recent clinical progress of CXCR2 small molecule antagonists, we speculated that CXCR2 can be used as a biomarker and a new target for diabetes and that CXCR2 antagonists may also attenuate lung injury in coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Yishi Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Dawei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
12
|
Wang K, Liao Y, Li X, Wang R, Zeng Z, Cheng M, Gao L, Xu D, Wen F, Wang T, Chen J. Inhibition of neutrophil elastase prevents cigarette smoke exposure-induced formation of neutrophil extracellular traps and improves lung function in a mouse model of chronic obstructive pulmonary disease. Int Immunopharmacol 2023; 114:109537. [PMID: 36495695 DOI: 10.1016/j.intimp.2022.109537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important public health challenge worldwide, and is usually caused by significant exposure to noxious agents, particularly cigarette smoke. Recent studies have revealed that excessive production of neutrophil extracellular traps (NETs) in the airways is associated with disease severity in COPD patients. NETs are extracellular neutrophil-derived structures composed of chromatin fibers decorated with histones and granule proteases including neutrophil elastase (NE). However, the effective prevention of NET formation in COPD remains elusive. Here, we demonstrated that treatment with GW311616A, a potent and selective inhibitor of NE, prevented cigarette smoke extract (CSE)-induced NET formation in human neutrophils by blocking NE nuclear translocation and subsequent chromatin decondensation. Inhibition of NE also abrogated CSE-induced ROS production and migration impairment of neutrophils. Administration of GW311616A in vivo substantially reduced pulmonary generation of NETs while attenuating the key pathological changes in COPD, including airway leukocyte infiltration, mucus-secreting goblet cell hyperplasia, and emphysema-like alveolar destruction in a mouse model of COPD induced by chronic cigarette smoke exposure. Mice treated with GW311616A also showed significant attenuation of neutrophil numbers and percentages and the levels of neutrophil chemotactic factors (LTB4, KC, and CXCL5) and proinflammatory cytokines (IL-1β, and TNF-α) in bronchoalveolar lavage fluid compared to mice treated with cigarette smoke exposure only. Furthermore, GW311616A treatment considerably improved lung function in the COPD mouse model, including preventing the decline of FEV100/FVC and delta PEF as well as inhibiting the increase in FRC, TLC, and FRC/TLC. Overall, our study suggests that NE plays a critical role in cigarette smoke-induced NET formation by neutrophils and that inhibition of NE is a promising strategy to suppress NET-mediated pathophysiological changes in COPD.
Collapse
Affiliation(s)
- Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Liao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoou Li
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Ran Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Mengxin Cheng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Gao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Cavallazzi R, Ramirez JA. How and when to manage respiratory infections out of hospital. Eur Respir Rev 2022; 31:31/166/220092. [PMID: 36261157 DOI: 10.1183/16000617.0092-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Lower respiratory infections include acute bronchitis, influenza, community-acquired pneumonia, acute exacerbation of COPD and acute exacerbation of bronchiectasis. They are a major cause of death worldwide and often affect the most vulnerable: children, elderly and the impoverished. In this paper, we review the clinical presentation, diagnosis, severity assessment and treatment of adult outpatients with lower respiratory infections. The paper is divided into sections on specific lower respiratory infections, but we also dedicate a section to COVID-19 given the importance of the ongoing pandemic. Lower respiratory infections are heterogeneous entities, carry different risks for adverse events, and require different management strategies. For instance, while patients with acute bronchitis are rarely admitted to hospital and generally do not require antimicrobials, approximately 40% of patients seen for community-acquired pneumonia require admission. Clinicians caring for patients with lower respiratory infections face several challenges, including an increasing population of patients with immunosuppression, potential need for diagnostic tests that may not be readily available, antibiotic resistance and social aspects that place these patients at higher risk. Management principles for patients with lower respiratory infections include knowledge of local surveillance data, strategic use of diagnostic tests according to surveillance data, and judicious use of antimicrobials.
Collapse
Affiliation(s)
- Rodrigo Cavallazzi
- Division of Pulmonary, Critical Care Medicine, and Sleep Disorders, University of Louisville, Louisville, KY, USA
| | - Julio A Ramirez
- Norton Infectious Diseases Institute, Norton Healthcare, Louisville, KY, USA
| |
Collapse
|
14
|
Cheng Y, Li G, Smedley CJ, Giel MC, Kitamura S, Woehl JL, Bianco G, Forli S, Homer JA, Cappiello JR, Wolan DW, Moses JE, Sharpless KB. Diversity oriented clicking delivers β-substituted alkenyl sulfonyl fluorides as covalent human neutrophil elastase inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2208540119. [PMID: 36070343 PMCID: PMC9478681 DOI: 10.1073/pnas.2208540119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented β-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.
Collapse
Affiliation(s)
- Yunfei Cheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Gencheng Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, Melbourne, VIC 3086, Australia
| | - Seiya Kitamura
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jordan L. Woehl
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - John R. Cappiello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
15
|
Love ME, Proud D. Respiratory Viral and Bacterial Exacerbations of COPD—The Role of the Airway Epithelium. Cells 2022; 11:cells11091416. [PMID: 35563722 PMCID: PMC9099594 DOI: 10.3390/cells11091416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
COPD is a leading cause of death worldwide, with acute exacerbations being a major contributor to disease morbidity and mortality. Indeed, exacerbations are associated with loss of lung function, and exacerbation frequency predicts poor prognosis. Respiratory infections are important triggers of acute exacerbations of COPD. This review examines the role of bacterial and viral infections, along with co-infections, in the pathogenesis of COPD exacerbations. Because the airway epithelium is the initial site of exposure both to cigarette smoke (or other pollutants) and to inhaled pathogens, we will focus on the role of airway epithelial cell responses in regulating the pathophysiology of exacerbations of COPD. This will include an examination of the interactions of cigarette smoke alone, and in combination with viral and bacterial exposures in modulating epithelial function and inflammatory and host defense pathways in the airways during COPD. Finally, we will briefly examine current and potential medication approaches to treat acute exacerbations of COPD triggered by respiratory infections.
Collapse
|
16
|
Carboxyhemoglobin Does Not Predict the Need of Mechanical Ventilation and Prognosis during COPD Exacerbation. Can Respir J 2022; 2022:6689805. [PMID: 35469243 PMCID: PMC9034945 DOI: 10.1155/2022/6689805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 07/21/2021] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Background Carboxyhemoglobin (COHb) is a complex formed by the binding of carbon monoxide to hemoglobin in blood. Higher COHb levels have been associated with poor prognosis in a variety of pulmonary disorders. However, little is known regarding the prognostic significance of COHb among individuals with chronic obstructive pulmonary disease (COPD) exacerbation. Methods In a retrospective study, we evaluated associations of venous COHb levels on hospital admission with the need for invasive mechanical ventilation, in-hospital mortality, and rehospitalization, among 300 patients hospitalized for COPD exacerbation in internal medical wards. Results Rates of in-hospital death and 1-year recurrent hospitalizations were 11.0% and 59.6%, respectively. COHb levels were not significantly associated with in-hospital mortality (OR = 0.82, P=0.25, 95% CI 0.59–1.15) or with 1-year rehospitalizations (OR = 0.91, P=0.18, 95% CI 0.79–1.04). The mean COHb level did not differ significantly between patients who needed invasive mechanical ventilation and those who were not invasively mechanically ventilated during the current hospitalization (2.01 ± 1.42% vs. 2.19 ± 1.68%, P=0.49). Conclusions Among patients hospitalized with COPD exacerbation in internal medicine wards, COHb levels on admission were not associated with invasive mechanical ventilation treatment, rehospitalizations, or mortality.
Collapse
|
17
|
Meng H, Long Q, Wang R, Zhou X, Su H, Wang T, Li Y. Identification of the Key Immune-Related Genes in Chronic Obstructive Pulmonary Disease Based on Immune Infiltration Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:13-24. [PMID: 35018096 PMCID: PMC8742581 DOI: 10.2147/copd.s333251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a major cause of death and morbidity worldwide. A better understanding of new biomarkers for COPD patients and their complex mechanisms in the progression of COPD are needed. Methods An algorithm was conducted to reveal the proportions of 22 subsets of immune cells in COPD samples. Differentially expressed immune-related genes (DE-IRGs) were obtained based on the differentially expressed genes (DEGs) of the GSE57148 dataset, and 1509 immune-related genes (IRGs) were downloaded from the ImmPort database. Functional enrichment analyses of DE-IRGs were conducted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and Ingenuity Pathway Analysis (IPA). We defined the DE-IRGs that had correlations with immune cells as hub genes. The potential interactions among the hub genes were explored by a protein-protein interaction (PPI) network. Results The CIBERSORT results showed that lung tissue of COPD patients contained a greater number of resting NK cells, activated dendritic cells, and neutrophils than normal samples. However, the fractions of follicular helper T cells and resting dendritic cells were relatively lower. Thirty-eight DE-IRGs were obtained for further analysis. Functional enrichment analysis revealed that these DE-IRGs were significantly enriched in several immune-related biological processes and pathways. Notably, we also observed that DE-IRGs were associated with the coronavirus disease COVID-19 in the progression of COPD. After correlation analysis, six DE-IRGs associated with immune cells were considered hub genes, including AHNAK, SLIT2 TNFRRSF10C, CXCR1, CXCR2, and FCGR3B. Conclusion In the present study, we investigated immune-related genes as novel diagnostic biomarkers and explored the potential mechanism for COPD based on CIBERSORT analysis, providing a new understanding for COPD treatment.
Collapse
Affiliation(s)
- Hongqiong Meng
- Department of General Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Qionghua Long
- Department of General Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Ruiping Wang
- Department of General Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Xian Zhou
- Department of General Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Huipeng Su
- Department of General Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Tingting Wang
- Department of General Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Ya Li
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
18
|
Guo L, Li N, Yang Z, Li H, Zheng H, Yang J, Chen Y, Zhao X, Mei J, Shi H, Worthen GS, Liu L. Role of CXCL5 in Regulating Chemotaxis of Innate and Adaptive Leukocytes in Infected Lungs Upon Pulmonary Influenza Infection. Front Immunol 2021; 12:785457. [PMID: 34868067 PMCID: PMC8637413 DOI: 10.3389/fimmu.2021.785457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Respirovirus such as influenza virus infection induces pulmonary anti-viral immune response, orchestration of innate and adaptive immunity restrain viral infection, otherwise causes severe diseases such as pneumonia. Chemokines regulate leukocyte recruitment to the inflammation site. One chemokine CXCL5, plays a scavenging role to regulate pulmonary host defense against bacterial infection, but its role in pulmonary influenza virus infection is underdetermined. Here, using an influenza (H1N1) infected CXCL5-/- mouse model, we found that CXCL5 not only responds to neutrophil infiltration into infected lungs at the innate immunity stage, but also affects B lymphocyte accumulation in the lungs by regulating the expression of the B cell chemokine CXCL13. Inhibition of CXCL5-CXCR2 axis markedly induces CXCL13 expression in CD64+CD44hiCD274hi macrophages/monocytes in infected lungs, and in vitro administration of CXCL5 to CD64+ alveolar macrophages suppresses CXCL13 expression via the CXCL5-CXCR2 axis upon influenza challenge. CXCL5 deficiency leads to increased B lymphocyte accumulation in infected lungs, contributing to an enhanced B cell immune response and facilitating induced bronchus-associated lymphoid tissue formation in the infected lungs during the late infection and recovery stages. These data highlight multiple regulatory roles of CXCL5 in leukocyte chemotaxis during pulmonary influenza infection.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Research Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jinxi Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yanli Chen
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Junjie Mei
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - G Scott Worthen
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
19
|
Dey S, Eapen MS, Chia C, Gaikwad AV, Wark PAB, Sohal SS. Pathogenesis, clinical features of asthma COPD overlap (ACO), and therapeutic modalities. Am J Physiol Lung Cell Mol Physiol 2021; 322:L64-L83. [PMID: 34668439 DOI: 10.1152/ajplung.00121.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both asthma and COPD are heterogeneous diseases identified by characteristic symptoms and functional abnormalities, with airway obstruction common in both diseases. Asthma COPD overlap (ACO) does not define a single disease but is a descriptive term for clinical use that includes several overlapping clinical phenotypes of chronic airways disease with different underlying mechanisms. This literature review was initiated to describe published studies, identify gaps in knowledge, and propose future research goals regarding the disease pathology of ACO, especially the airway remodelling changes and inflammation aspects. Airway remodelling occurs in asthma and COPD, but there are differences in the structures affected and the prime anatomic site at which they occur. Reticular basement membrane thickening and cellular infiltration with eosinophils and T-helper (CD4+) lymphocytes are prominent features of asthma. Epithelial squamous metaplasia, airway wall fibrosis, emphysema, bronchoalveolar lavage (BAL) neutrophilia and (CD8+) T-cytotoxic lymphocyte infiltrations in the airway wall are features of COPD. There is no universally accepted definition of ACO, nor are there clearly defined pathological characteristics to differentiate from asthma and COPD. Understanding etiological concepts within the purview of inflammation and airway remodelling changes in ACO would allow better management of these patients.
Collapse
Affiliation(s)
- Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia.,Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia.,Department of Respiratory and Sleep Medicine John Hunter Hospital, New Lambton Heights, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
20
|
Brito A, Santos T, Herculano K, Miranda M, Sá AK, Carvalho JL, Albertini R, Castro-Faria-Neto H, Ligeiro-de-Oliveira AP, Aimbire F. The MAPKinase Signaling and the Stimulatory Protein-1 (Sp1) Transcription Factor Are Involved in the Phototherapy Effect on Cytokines Secretion from Human Bronchial Epithelial Cells Stimulated with Cigarette Smoke Extract. Inflammation 2021; 44:1643-1661. [PMID: 33730343 DOI: 10.1007/s10753-021-01448-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2019] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
The present study was aimed to investigate the phototherapy effect with low-level laser on human bronchial epithelial cells activated by cigarette smoke extract (CSE). Phototherapy has been reported to actuate positively for controlling the generation/release of anti-inflammatory and pro-inflammatory mediators from different cellular type activated by distinct stimuli. It is not known whether the IL-8 and IL-10 release from CSE-stimulated human bronchial epithelium (BEAS) cells can be influenced by phototherapy. Human bronchial epithelial cell (BEAS) line was cultured in a medium with CSE and irradiated (660 nm) at 9 J. Apoptosis index was standardized with Annexin V and the cellular viability was evaluated by MTT. IL-8, IL-10, cAMP, and NF-κB were measured by ELISA as well as the Sp1, JNK, ERK1/2, and p38MAPK. Phototherapy effect was studied in the presence of mithramycin or the inhibitors of JNK or ERK. The IL-8, cAMP, NF-κB, JNK, p38, and ERK1/2 were downregulated by phototherapy. Both the JNK and the ERK inhibitors potentiated the phototherapy effect on IL-8 as well as on cAMP secretion from BEAS. On the contrary, IL-10 and Sp1 were upregulated by phototherapy. The mithramycin blocked the phototherapy effect on IL-10. The results suggest that phototherapy has a dual effect on BEAS cells because it downregulates the IL-8 secretion by interfering with CSE-mediated signaling pathways, and oppositely upregulates the IL-10 secretion through of Sp1 transcription factor. The manuscript provides evidence that the phototherapy can interfere with MAPK signaling via cAMP in order to attenuate the IL-8 secretion from CSE-stimulated BEAS. In addition, the present study showed that phototherapy effect is driven to downregulation of the both the IL-8 and the ROS secretion and at the same time the upregulation of IL-10 secretion. Besides it, the increase of Sp-1 transcription factor was crucial for laser effect in upregulating the IL-10 secretion. The dexamethasone corticoid produces a significant inhibitory effect on IL-8 as well as ROS secretion, but on the other hand, the corticoid blocked the IL-10 secretion. Taking it into consideration, it is reasonable to suggest that the beneficial effect of laser therapy on lung diseases involves its action on unbalance between pro-inflammatory and anti-inflammatory mediators secreted by human bronchial epithelial cells through different signaling pathway.
Collapse
Affiliation(s)
- A Brito
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - T Santos
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - K Herculano
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - M Miranda
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - A K Sá
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, São Paulo, Brazil
| | - J L Carvalho
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, São Paulo, Brazil
| | - R Albertini
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, São Paulo, Brazil
| | - H Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation - FioCruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P Ligeiro-de-Oliveira
- Pos-graduation in Biophotonic, University Nove de Julho - Uninove, São Paulo, São Paulo, Brazil
| | - Flávio Aimbire
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
21
|
A Fragile Balance: Does Neutrophil Extracellular Trap Formation Drive Pulmonary Disease Progression? Cells 2021; 10:cells10081932. [PMID: 34440701 PMCID: PMC8394734 DOI: 10.3390/cells10081932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.
Collapse
|
22
|
Meikle CKS, Creeden JF, McCullumsmith C, Worth RG. SSRIs: Applications in inflammatory lung disease and implications for COVID-19. Neuropsychopharmacol Rep 2021; 41:325-335. [PMID: 34254465 PMCID: PMC8411309 DOI: 10.1002/npr2.12194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have anti-inflammatory properties that may have clinical utility in treating severe pulmonary manifestations of COVID-19. SSRIs exert anti-inflammatory effects at three mechanistic levels: (a) inhibition of proinflammatory transcription factor activity, including NF-κB and STAT3; (b) downregulation of lung tissue damage and proinflammatory cell recruitment via inhibition of cytokines, including IL-6, IL-8, TNF-α, and IL-1β; and (c) direct suppression inflammatory cells, including T cells, macrophages, and platelets. These pathways are implicated in the pathogenesis of COVID-19. In this review, we will compare the pathogenesis of lung inflammation in pulmonary diseases including COVID-19, ARDS, and chronic obstructive pulmonary disease (COPD), describe the anti-inflammatory properties of SSRIs, and discuss the applications of SSRIS in treating COVID-19-associated inflammatory lung disease.
Collapse
Affiliation(s)
- Claire Kyung Sun Meikle
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.,Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cheryl McCullumsmith
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Randall G Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
23
|
Du Y, Luan J, Jiang RP, Liu J, Ma Y. Myrcene exerts anti-asthmatic activity in neonatal rats via modulating the matrix remodeling. Int J Immunopathol Pharmacol 2021; 34:2058738420954948. [PMID: 32962470 PMCID: PMC7517990 DOI: 10.1177/2058738420954948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myrcene (MC), an organic hydrocarbon, was found to exert anti-inflammatory, analgesic, antimutagenic and antioxidant properties. However, the protective role of MC has not been reported against neonatal asthma. Wistar rats induced with asthma were administered with MC; while asthma control and vehicle control were maintained without MC administration. At the end of the experimental period, lung histology, inflammatory cell counts, cytokine analysis, matrix protein expressions were elucidated. Rats administered with MC exerted significant (P < 0.05) defense in protecting the lung tissue with the evidenced restoration of alveolar thickening of the lung tissues. Also, the present study elicited the anti-asthmatic activity of MC, especially via modulating the extracellular matrix protein expression in the asthma-induced animals, while a significant reduction (P < 0.05) in the fibrotic markers were found in MC treated animals. Moreover, the protective effect of MC was evidenced with reduced leukocyte infiltration in BALF, hypersensitive specific IgE levels with a profound decrease in the inflammatory cytokines such as IL-2, IL-4, IL-18, and IL-21 in MC administered animals compared to the asthma-induced group. To an extent, the markers of asthmatic inflammation such as CD14, MCP-1, and TARC were also found to be attenuated in MC exposed animals. The possible application of MC is a promising drug for the treatment of asthma-mediated complications.
Collapse
Affiliation(s)
- Yanhui Du
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Luan
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ren Peng Jiang
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Liu
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Ma
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Impact of human rhinoviruses on gene expression in pediatric patients with severe acute respiratory infection. Virus Res 2021; 300:198408. [PMID: 33878402 DOI: 10.1016/j.virusres.2021.198408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022]
Abstract
Human rhinovirus (HRV) is one of the most common viruses, causing mild to severe respiratory tract infections in children and adults. Moreover, it can lead to patients' hospitalization. Nowadays, evaluation of gene expression alterations in host cells due to viral respiratory infections considered essential to understand the viral effects on cells. OBJECTIVE In this study, we aimed to find important differentially expressed genes (DEGs) related to rhinitis and asthma exacerbation stimulated with Poly (I: C) and then to validate their expression in clinical samples of children how were less than 5 years old, hospitalized with severe acute respiratory infection (SARI) due to HRV infection in comparison with healthy cases. METHODS Eight candidate genes involved in immunity, viral defense, inflammation, P53 pathway, and viral release processes were selected based on the analysis of a gene expression data set (GSE51392) and gene enrichment analysis. Then quantitative real-time PCR on cDNAs was performed for selected genes. The results were analyzed by Livak method and visualized by GraphPad prism software (8.4.3). RESULT CXCL10, CMPK2, RSAD2, SERPINA3, TNFAIP6, CXCL14, IVNS1AB, and ZMAT3 were selected based on the enrichment and topological analysis of the constructed protein-protein interaction (PPI) network. Laboratory validation by real-time PCR showed CXCL10, CMPK2, RSAD2, SERPINA3, and TNFAIP6 (belonged to immunity, inflammatory responses and viral defense) were up-regulated, whereas CXCL14 (related to immunity) and IVNS1AB, ZMAT3 (associated to Influenza and P53 pathway) were down-regulated. CONCLUSION Our results showed, that in children less than 5 years old affected by HRV and hospitalized with SARI, the inflammatory responses, antiviral defense, and type 1 interferon-signaling pathway have significantly affected by viral infection.
Collapse
|
25
|
Cao M, Huang W, Chen Y, Li G, Liu N, Wu Y, Wang G, Li Q, Kong D, Xue T, Yang N, Liu Y. Chronic restraint stress promotes the mobilization and recruitment of myeloid-derived suppressor cells through β-adrenergic-activated CXCL5-CXCR2-Erk signaling cascades. Int J Cancer 2021; 149:460-472. [PMID: 33751565 DOI: 10.1002/ijc.33552] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play an important role in tumor immune escape. Recent studies have shown that MDSCs contribute to tumor progression under psychological stress, but the underlying mechanism of MDSCs mobilization and recruitment remains largely unknown. In the present study, a chronic restraint stress paradigm was applied to the H22 hepatocellular carcinoma (HCC) bearing mice to mimic the psychological stress. We observed that chronic restraint stress significantly promoted HCC growth, as well as the mobilization of MDSCs to spleen and tumor sites from bone marrow. Meanwhile, chronic restraint stress enhanced the expression of C-X-C motif chemokine receptor 2 (CXCR2) and pErk1/2 in bone marrow MDSCs, together with elevated chemokine (C-X-C motif) ligand 5 (CXCL5) expression in tumor tissues. In vitro, the treatments of MDSCs with epinephrine (EPI) and norepinephrine (NE) but not corticosterone (CORT)-treated H22 conditioned medium obviously inhibited T-cell proliferation, as well as enhanced CXCR2 expression and extracellular signal-regulated kinase (Erk) phosphorylation. In vivo, β-adrenergic blockade with propranolol almost completely reversed the accelerated tumor growth induced by chronic restraint stress and inactivated CXCL5-CXCR2-Erk signaling pathway. Our findings support the crucial role of β-adrenergic signaling cascade in the mobilization and recruitment of MDSCs under chronic restraint stress.
Collapse
Affiliation(s)
- Mingyue Cao
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yuzhu Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Gaoxiang Li
- Medical College, Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Nasi Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Youming Wu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Guiping Wang
- Medical College, Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Qian Li
- Medical College, Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Dexin Kong
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tongtong Xue
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China.,Medical College, Tibet University, Lhasa, Tibet Autonomous Region, China
| |
Collapse
|
26
|
Bchir S, Boumiza S, Ben Nasr H, Garrouch A, Kallel I, Tabka Z, Chahed K. Impact of cathepsin D activity and C224T polymorphism (rs17571) on chronic obstructive pulmonary disease: correlations with oxidative and inflammatory markers. Clin Exp Med 2021; 21:457-465. [PMID: 33611777 DOI: 10.1007/s10238-021-00692-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cathepsin D (CTSD) is an aspartyl proteinase that plays an important role in protein degradation, antigen processing and apoptosis. It has been associated with several pathologies such as cancer, Alzheimer's disease and inflammatory disorders. Its function in lung diseases remains, however, controversial. In the current study, we determined CTSD activity in serum of patients with chronic obstructive pulmonary disease (COPD) and evaluated the correlations between this proteinase and inflammatory and oxidative parameters. We also investigated the impact of a CTSD C224T polymorphism on enzyme activity and clinicopathological parameters. METHODS Our population included 211 healthy controls and 138 patients with COPD. CTSD activity, MMPs (-1/-7/-12), cytokines (IL-6, TNF-α), malondialdehyde (MDA), nitric oxide and peroxynitrite levels were measured in patients and controls using standard methods. Genotyping of CTSD C224T polymorphism was determined using PCR-RFLP. RESULTS Our results showed an increased CTSD activity in COPD patients compared to healthy controls (4.87 [3.99-6.07] vs. 3.94 [2.91-5.84], respectively, p < 0.001). COPD smokers presented also a higher CTSD activity when compared to nonsmokers (4.91[3.98-6.18] vs. 4.65[4.16-5.82], respectively, p = 0.01), while no differences were found when subjects were compared according to their GOLD stages. The activity of this proteinase was not dependent on the C224T polymorphism because we did not found any influence of this SNP on proteinase activity among patients and controls. Furthermore, our data provide the first evidence of the interrelationships between CTSD activity and both MMPs and TNF-α levels (MMP-1[r = - 0.4; p = 0.02], MMP-7[r = 0.37; p = 0.04], MMP-12[r = 0.43; p = 0.02], TNF-α [r = 0.89, p = 0.001]) in COPD smokers. There were no correlations, however, between CTSD activity and oxidative stress parameters in controls and patients. CONCLUSION Our findings suggest that CTSD could be a relevant marker for COPD disease. Alteration of CTSD activity may be related to increased MMPs and TNF-α levels, particularly in COPD smokers.
Collapse
Affiliation(s)
- Sarra Bchir
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie : de L'Intégré Au Moléculaire Biologie, Médecine Et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.
| | - Soumaya Boumiza
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie : de L'Intégré Au Moléculaire Biologie, Médecine Et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Hela Ben Nasr
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie : de L'Intégré Au Moléculaire Biologie, Médecine Et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.,Institut Des Sciences Infirmières, Sousse, Tunisia
| | | | - Imen Kallel
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale Et Santé LR17ES06, Faculté Des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Zouhair Tabka
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie : de L'Intégré Au Moléculaire Biologie, Médecine Et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Karim Chahed
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie : de L'Intégré Au Moléculaire Biologie, Médecine Et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.,Faculté Des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
27
|
Zangouei AS, Hamidi AA, Rahimi HR, Saburi E, Mojarrad M, Moghbeli M. Chemokines as the critical factors during bladder cancer progression: an overview. Int Rev Immunol 2021; 40:344-358. [PMID: 33591855 DOI: 10.1080/08830185.2021.1877287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bladder cancer (BCa) is one of the most frequent urogenital malignancies which is mainly observed among men. There are various genetic and environmental risk factors associated with BCa progression. Transurethral endoscopic resection and open ablative surgery are the main treatment options for muscle invasive BCa. BCG therapy is also employed following the endoscopic resection to prevent tumor relapse. The tumor microenvironment is the main interaction site of tumor cells and immune system in which the immune cells are recruited via chemokines and chemokine receptors. In present review we summarized the main chemokines and chemokine receptors which have been associated with histopathological features of BCa patients in the world. This review highlights the chemokines and chemokine receptors as critical markers in early detection and therapeutic purposes among BCa patients and clarifies their molecular functions during BCa progression and metastasis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Trivedi A, Khan MA, Bade G, Talwar A. Orchestration of Neutrophil Extracellular Traps (Nets), a Unique Innate Immune Function during Chronic Obstructive Pulmonary Disease (COPD) Development. Biomedicines 2021; 9:53. [PMID: 33435568 PMCID: PMC7826777 DOI: 10.3390/biomedicines9010053] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Morbidity, mortality and economic burden caused by chronic obstructive pulmonary disease (COPD) is a significant global concern. Surprisingly, COPD is already the third leading cause of death worldwide, something that WHO had not predicted to occur until 2030. It is characterized by persistent respiratory symptoms and airway limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles of gases. Neutrophil is one of the key infiltrated innate immune cells in the lung during the pathogenesis of COPD. Neutrophils during pathogenic attack or injury decide to undergo for a suicidal death by releasing decondensed chromatin entangled with antimicrobial peptides to trap and ensnare pathogens. Casting neutrophil extracellular traps (NETs) has been widely demonstrated to be an effective mechanism against invading microorganisms thus controlling overwhelming infections. However, aberrant and massive NETs formation has been reported in several pulmonary diseases, including chronic obstructive pulmonary disease. Moreover, NETs can directly induce epithelial and endothelial cell death resulting in impairing pulmonary function and accelerating the progression of the disease. Therefore, understanding the regulatory mechanism of NET formation is the need of the hour in order to use NETs for beneficial purpose and controlling their involvement in disease exacerbation. For example, DNA neutralization of NET proteins using protease inhibitors and disintegration with recombinant human DNase would be helpful in controlling excess NETs. Targeting CXC chemokine receptor 2 (CXCR2) would also reduce neutrophilic inflammation, mucus production and neutrophil-proteinase mediated tissue destruction in lung. In this review, we discuss the interplay of NETs in the development and pathophysiology of COPD and how these NETs associated therapies could be leveraged to disrupt NETopathic inflammation as observed in COPD, for better management of the disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Meraj A. Khan
- Translational Medicine, SickKids Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geetanjali Bade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| |
Collapse
|
29
|
Maxwell AJ, Ding J, You Y, Dong Z, Chehade H, Alvero A, Mor Y, Draghici S, Mor G. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J Leukoc Biol 2021; 109:35-47. [PMID: 33242368 PMCID: PMC7753679 DOI: 10.1002/jlb.4covr0920-552rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2 pandemic has led to hundreds of thousands of deaths and billions of dollars in economic damage. The immune response elicited from this virus is poorly understood. An alarming number of cases have arisen where COVID-19 patients develop complications on top of the symptoms already associated with SARS, such as thrombosis, injuries of vascular system, kidney, and liver, as well as Kawasaki disease. In this review, a bioinformatics approach was used to elucidate the immune response triggered by SARS-CoV-2 infection in primary human lung epithelial and transformed human lung alveolar. Additionally, examined the potential mechanism behind several complications that have been associated with COVID-19 and determined that a specific cytokine storm is leading to excessive neutrophil recruitment. These neutrophils are directly leading to thrombosis, organ damage, and complement activation via neutrophil extracellular trap release.
Collapse
Affiliation(s)
- Anthony J Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Zhong Dong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ayesha Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yechiel Mor
- Department of Internal Medicine Wayne State University, Detroit, Michigan, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
30
|
Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin Chest Med 2020; 41:421-438. [PMID: 32800196 PMCID: PMC7423341 DOI: 10.1016/j.ccm.2020.06.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andrew I Ritchie
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, Dovehouse Street, London SW3 6JY, United Kingdom
| | - Jadwiga A Wedzicha
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, Dovehouse Street, London SW3 6JY, United Kingdom.
| |
Collapse
|
31
|
Mattos MS, Ferrero MR, Kraemer L, Lopes GAO, Reis DC, Cassali GD, Oliveira FMS, Brandolini L, Allegretti M, Garcia CC, Martins MA, Teixeira MM, Russo RC. CXCR1 and CXCR2 Inhibition by Ladarixin Improves Neutrophil-Dependent Airway Inflammation in Mice. Front Immunol 2020; 11:566953. [PMID: 33123138 PMCID: PMC7566412 DOI: 10.3389/fimmu.2020.566953] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale Increased IL-8 levels and neutrophil accumulation in the airways are common features found in patients affected by pulmonary diseases such as Asthma, Idiopathic Pulmonary Fibrosis, Influenza-A infection and COPD. Chronic neutrophilic inflammation is usually corticosteroid insensitive and may be relevant in the progression of those diseases. Objective To explore the role of Ladarixin, a dual CXCR1/2 antagonist, in several mouse models of airway inflammation with a significant neutrophilic component. Findings Ladarixin was able to reduce the acute and chronic neutrophilic influx, also attenuating the Th2 eosinophil-dominated airway inflammation, tissue remodeling and airway hyperresponsiveness. Correspondingly, Ladarixin decreased bleomycin-induced neutrophilic inflammation and collagen deposition, as well as attenuated the corticosteroid resistant Th17 neutrophil-dominated airway inflammation and hyperresponsiveness, restoring corticosteroid sensitivity. Finally, Ladarixin reduced neutrophilic airway inflammation during cigarette smoke-induced corticosteroid resistant exacerbation of Influenza-A infection, improving lung function and mice survival. Conclusion CXCR1/2 antagonist Ladarixin offers a new strategy for therapeutic treatment of acute and chronic neutrophilic airway inflammation, even in the context of corticosteroid-insensitivity.
Collapse
Affiliation(s)
- Matheus Silverio Mattos
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Lucas Kraemer
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Augusto Oliveira Lopes
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego Carlos Reis
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio Marcus Silva Oliveira
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Cristiana Couto Garcia
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
32
|
Croston TL, Lemons AR, Barnes MA, Goldsmith WT, Orandle MS, Nayak AP, Germolec DR, Green BJ, Beezhold DH. Inhalation of Stachybotrys chartarum Fragments Induces Pulmonary Arterial Remodeling. Am J Respir Cell Mol Biol 2020; 62:563-576. [PMID: 31671270 DOI: 10.1165/rcmb.2019-0221oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stachybotrys chartarum is a fungal contaminant within the built environment and a respiratory health concern in the United States. The objective of this study was to characterize the mechanisms influencing pulmonary immune responses to repeatedly inhaled S. chartarum. Groups of B6C3F1/N mice repeatedly inhaled viable trichothecene-producing S. chartarum conidia (strain A or strain B), heat-inactivated conidia, or high-efficiency particulate absolute-filtered air twice per week for 4 and 13 weeks. Strain A was found to produce higher amounts of respirable fragments than strain B. Lung tissue, serum, and BAL fluid were collected at 24 and 48 hours after final exposure and processed for histology, flow cytometry, and RNA and proteomic analyses. At 4 weeks after exposure, a T-helper cell type 2-mediated response was observed. After 13 weeks, a mixed T-cell response was observed after exposure to strain A compared with a T-helper cell type 2-mediated response after strain B exposure. After exposure, both strains induced pulmonary arterial remodeling at 13 weeks; however, strain A-exposed mice progressed more quickly than strain B-exposed mice. BAL fluid was composed primarily of eosinophils, neutrophils, and macrophages. Both the immune response and the observed pulmonary arterial remodeling were supported by specific cellular, molecular, and proteomic profiles. The immunopathological responses occurred earlier in mice exposed to high fragment-producing strain A. The rather striking induction of pulmonary remodeling by S. chartarum appears to be related to the presence of fungal fragments during exposure.
Collapse
Affiliation(s)
| | | | | | | | | | - Ajay P Nayak
- Allergy and Clinical Immunology Branch.,Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine, and Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Dori R Germolec
- Toxicology Branch, National Toxicology Program Division, National Institute of Environmental Health Sciences, Durham, North Carolina
| | | | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
33
|
Zhu J, Mallia P, Footitt J, Qiu Y, Message SD, Kebadze T, Aniscenko J, Barnes PJ, Adcock IM, Kon OM, Johnson M, Contoli M, Stanciu LA, Papi A, Jeffery PK, Johnston SL. Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD. J Allergy Clin Immunol 2020; 146:840-850.e7. [PMID: 32283204 PMCID: PMC7173046 DOI: 10.1016/j.jaci.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 01/03/2023]
Abstract
Background Respiratory viral infection causes chronic obstructive pulmonary disease (COPD) exacerbations. We previously reported increased bronchial mucosa eosinophil and neutrophil inflammation in patients with COPD experiencing naturally occurring exacerbations. But it is unclear whether virus per se induces bronchial mucosal inflammation, nor whether this relates to exacerbation severity. Objectives We sought to determine the extent and nature of bronchial mucosal inflammation following experimental rhinovirus (RV)-16–induced COPD exacerbations and its relationship to disease severity. Methods Bronchial mucosal inflammatory cell phenotypes were determined at preinfection baseline and following experimental RV infection in 17 Global Initiative for Chronic Obstructive Lung Disease stage II subjects with COPD and as controls 20 smokers and 11 nonsmokers with normal lung function. No subject had a history of asthma/allergic rhinitis: all had negative results for aeroallergen skin prick tests. Results RV infection increased the numbers of bronchial mucosal eosinophils and neutrophils only in COPD and CD8+ T lymphocytes in patients with COPD and nonsmokers. Monocytes/macrophages, CD4+ T lymphocytes, and CD20+ B lymphocytes were increased in all subjects. At baseline, compared with nonsmokers, subjects with COPD and smokers had increased numbers of bronchial mucosal monocytes/macrophages and CD8+ T lymphocytes but fewer numbers of CD4+ T lymphocytes and CD20+ B lymphocytes. The virus-induced inflammatory cells in patients with COPD were positively associated with virus load, illness severity, and reductions in lung function. Conclusions Experimental RV infection induces bronchial mucosal eosinophilia and neutrophilia only in patients with COPD and monocytes/macrophages and lymphocytes in both patients with COPD and control subjects. The virus-induced inflammatory cell phenotypes observed in COPD positively related to virus load and illness severity. Antiviral/anti-inflammatory therapies could attenuate bronchial inflammation and ameliorate virus-induced COPD exacerbations.
Collapse
Affiliation(s)
- Jie Zhu
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Joseph Footitt
- National Heart and Lung Institute, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Yusheng Qiu
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Simon D Message
- National Heart and Lung Institute, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Tatiana Kebadze
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Julia Aniscenko
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Onn M Kon
- National Heart and Lung Institute, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Marco Contoli
- National Heart and Lung Institute, Imperial College, London, United Kingdom; Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Luminita A Stanciu
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Alberto Papi
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Peter K Jeffery
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Sebastian L Johnston
- National Heart and Lung Institute, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
34
|
SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc Natl Acad Sci U S A 2019; 116:18808-18814. [PMID: 31484779 DOI: 10.1073/pnas.1909972116] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Collapse
|
35
|
Chen J, Dai L, Wang T, He J, Wang Y, Wen F. The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD. Ann Med 2019; 51:314-329. [PMID: 31269827 PMCID: PMC7877878 DOI: 10.1080/07853890.2019.1639809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Introduction: C-X-C motif chemokine 5 is primarily chemotactic for neutrophils and previously shown to increase in the bronchoalveolar lavage fluid of patients with chronic obstructive pulmonary disease. However, whether C-X-C motif chemokine 5 levels correlate with lung function decline in patients or mouse model of chronic obstructive pulmonary disease was not clear. Methods: The mouse model was induced by cigarette smoke exposure. Plasma/serum and bronchoalveolar lavage fluid were obtained from patients and mouse model of chronic obstructive pulmonary disease; C-X-C motif chemokine 5 levels were assessed and correlated with lung functions and granulocyte-colony stimulating factor levels, respectively. Results: The C-X-C motif chemokine 5 levels increased and correlated to granulocyte-colony stimulating factor levels in both plasma/serum and bronchoalveolar lavage fluid obtained from patients and mouse model of chronic obstructive pulmonary disease. Circulating levels of C-X-C motif chemokine 5 correlated to lung functions decline in patients and mouse model. Conclusions: Granulocyte-colony stimulating factor might coordinate with C-X-C motif chemokine 5 in the pathogenesis of neutrophilic inflammation in chronic obstructive pulmonary disease. Circulating C-X-C motif chemokine 5 might serve as a potential blood-based biomarker to add additional modest predictive value on the preliminary screening and diagnosis of chronic obstructive pulmonary disease. Key messages Circulating C-X-C motif chemokine 5 might serve as a potential blood-based biomarker to add additional modest predictive value on the preliminary screening and diagnosis of COPD. Granulocyte-colony stimulating factor might coordinate with C-X-C motif chemokine 5 in the pathogenesis of neutrophilic inflammation in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Junyun He
- Department of Respiratory Medicine, Hospital of Chengdu office of People's Government of Tibetan Autonomous Region of China , Chengdu , China
| | - Yashu Wang
- Department of Clinical Laboratory, Xinjiang Provincial Corps Hospital Chinese People's Armed Police Forces , Urumqi , China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| |
Collapse
|
36
|
Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019; 20:ijms20112785. [PMID: 31174392 PMCID: PMC6600384 DOI: 10.3390/ijms20112785] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Chronic Obstructive Pulmonary Disease (COPD) represents the 3rd leading cause of death in the world. The underlying pathophysiological mechanisms have been the focus of extensive research in the past. The lung has a complex architecture, where structural cells interact continuously with immune cells that infiltrate into the pulmonary tissue. Both types of cells express chemokines and chemokine receptors, making them sensitive to modifications of concentration gradients. Cigarette smoke exposure and recurrent exacerbations, directly and indirectly, impact the expression of chemokines and chemokine receptors. Here, we provide an overview of the evidence regarding chemokines involvement in COPD, and we hypothesize that a dysregulation of this tightly regulated system is critical in COPD evolution, both at a stable state and during exacerbations. Targeting chemokines and chemokine receptors could be highly attractive as a mean to control both chronic inflammation and bronchial remodeling. We present a special focus on the CXCL8-CXCR1/2, CXCL9/10/11-CXCR3, CCL2-CCR2, and CXCL12-CXCR4 axes that seem particularly involved in the disease pathophysiology.
Collapse
|
37
|
Sécher T, Dalonneau E, Ferreira M, Parent C, Azzopardi N, Paintaud G, Si-Tahar M, Heuzé-Vourc'h N. In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. J Control Release 2019; 303:24-33. [PMID: 30981816 DOI: 10.1016/j.jconrel.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 04/03/2019] [Indexed: 11/28/2022]
Abstract
Due to growing antibiotic resistance, pneumonia caused by Pseudomonas aeruginosa is a major threat to human health and is driving the development of novel anti-infectious agents. Preventively or curatively administered pathogen-specific therapeutic antibodies (Abs) have several advantages, including a low level of toxicity and a unique pharmacological profile. At present, most Abs against respiratory infections are administered parenterally; this may not be optimal for therapeutics that have to reach the lungs to be effective. Although the airways constitute a logical delivery route for biologics designed to treat respiratory diseases, there are few scientific data on the advantages or disadvantages of this route in the context of pneumonia treatment. The objective of the present study was to evaluate the efficacy and fate of an anti-P. aeruginosa Ab targeting pcrV (mAb166) as a function of the administration route during pneumonia. The airway-administered mAb166 displayed a favorable pharmacokinetic profile during the acute phase of the infection, and was associated with greater protection (relative to other delivery routes) of infected animals. Airway administration was associated with lower levels of lung inflammation, greater bacterial clearance, and recruitment of neutrophils in the airways. In conclusion, the present study is the first to have compared the pharmacokinetics and efficacy of an anti-infectious Ab administered by different routes in an animal model of pneumonia. Our findings suggest that local delivery to the airways is associated with a more potent anti-bacterial response (relative to parenteral administration), and thus open up new perspectives for the prevention and treatment of pneumonia with Abs.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Emilie Dalonneau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Marion Ferreira
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France; CHRU de Tours, Département de Pneumologie et d'exploration respiratoire fonctionnelle, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | | | - Gilles Paintaud
- Université de Tours, GICC, PATCH Team, F-37032 Tours, France; CHRU de Tours, Laboratoire de Pharmacologie-Toxicologie, F-37032 Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France.
| |
Collapse
|
38
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
39
|
Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol 2019; 10:47. [PMID: 30804927 PMCID: PMC6370641 DOI: 10.3389/fimmu.2019.00047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Neutrophils play a central role in innate immunity, inflammation, and resolution. Unresolving neutrophilia features as a disrupted inflammatory process in the airways of patients with chronic obstructive pulmonary disease (COPD) and severe asthma. The extent to which this may be linked to disease pathobiology remains obscure and could be further confounded by indication of glucocorticoids or concomitant respiratory infections. The formation of neutrophil extracellular traps (NETs) represents a specialized host defense mechanism that entrap and eliminate invading microbes. NETs are web-like scaffolds of extracellular DNA in complex with histones and neutrophil granular proteins, such as myeloperoxidase and neutrophil elastase. Distinct from apoptosis, NET formation is an active form of cell death that could be triggered by various microbial, inflammatory, and endogenous or exogenous stimuli. NETs are reportedly enriched in neutrophil-dominant refractory lung diseases, such as COPD and severe asthma. Evidence for a pathogenic role for respiratory viruses (e.g., Rhinovirus), bacteria (e.g., Staphylococcus aureus) and fungi (e.g., Aspergillus fumigatus) in NET induction is emerging. Dysregulation of this process may exert localized NET burden and contribute to NETopathic lung inflammation. Disentangling the role of NETs in human health and disease offer unique opportunities for therapeutic modulation. The chemokine CXCR2 receptor regulates neutrophil activation and migration, and small molecule CXCR2 antagonists (e.g., AZD5069, danirixin) have been developed to selectively block neutrophilic inflammatory pathways. NET-stabilizing agents using CXCR2 antagonists are being investigated in proof-of-concept studies in patients with COPD to provide mechanistic insights. Clinical validation of this type could lead to novel therapeutics for multiple CXCR2-related NETopathologies. In this Review, we discuss the emerging role of NETs in the clinicopathobiology of COPD and severe asthma and provide an outlook on how novel NET-stabilizing therapies via CXCR2 blockade could be leveraged to disrupt NETopathic inflammation in disease-specific phenotypes.
Collapse
Affiliation(s)
- Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden.,Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Anna Malmgren
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany.,LungenClinic, Großhansdorf, Germany
| |
Collapse
|
40
|
Abstract
Respiratory viral infections including human rhinovirus (RV) infection have been identified as the most important environmental trigger of exacerbations of chronic lung diseases. While well established as the most common viral infections associated with exacerbations of asthma and chronic obstructive pulmonary disease, RVs and other respiratory viruses are also now thought to be important in triggering exacerbations of cystic fibrosis and the interstitial lung diseases. Here, we summarize the epidemiological evidence the supports respiratory viruses including RV as triggers of exacerbations of chronic lung diseases. We propose that certain characteristics of RVs may explain why they are the most common trigger of exacerbations of chronic lung diseases. We further highlight the latest mechanistic evidence supporting how and why common respiratory viral infections may enhance and promote disease triggering exacerbation events, through their interactions with the host immune system, and may be affected by ongoing treatments. We also provide a commentary on how new treatments may better manage the disease burden associated with respiratory viral infections and the exacerbation events that they trigger.
Collapse
|
41
|
Jamieson KC, Traves SL, Kooi C, Wiehler S, Dumonceaux CJ, Maciejewski BA, Arnason JW, Michi AN, Leigh R, Proud D. Rhinovirus and Bacteria Synergistically Induce IL-17C Release from Human Airway Epithelial Cells To Promote Neutrophil Recruitment. THE JOURNAL OF IMMUNOLOGY 2018; 202:160-170. [PMID: 30504421 DOI: 10.4049/jimmunol.1800547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022]
Abstract
Virus-bacteria coinfections are associated with more severe exacerbations and increased risk of hospital readmission in patients with chronic obstructive pulmonary disease (COPD). The airway epithelium responds to such infections by releasing proinflammatory and antimicrobial cytokines, including IL-17C. However, the regulation and role of IL-17C is not well understood. In this study, we examine the mechanisms regulating IL-17C production and its potential role in COPD exacerbations. Human bronchial epithelial cells (HBE) obtained from normal, nontransplanted lungs or from brushings of nonsmokers, healthy smokers, or COPD patients were exposed to bacteria and/or human rhinovirus (HRV). RNA and protein were collected for analysis, and signaling pathways were assessed with pharmacological agonists, inhibitors, or small interfering RNAs. HBE were also stimulated with IL-17C to assess function. HRV-bacterial coinfections synergistically induced IL-17C expression. This induction was dependent on HRV replication and required NF-κB-mediated signaling. Synergy was lost in the presence of an inhibitor of the p38 MAP kinase pathway. HBE exposed to IL-17C show increased gene expression of CXCL1, CXCL2, NFKBIZ, and TFRC, and release CXCL1 protein, a neutrophil chemoattractant. Knockdown of IL-17C significantly reduced induction of CXCL1 in response to HRV-bacterial coinfection as well as neutrophil chemotaxis. HBE from healthy smokers release less IL-17C than cells from nonsmokers, but cells from COPD patients release significantly more IL-17C compared with either nonsmokers or healthy smokers. These data suggest that IL-17C may contribute to microbial-induced COPD exacerbations by promoting neutrophil recruitment.
Collapse
Affiliation(s)
- Kyla C Jamieson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Suzanne L Traves
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Cora Kooi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Shahina Wiehler
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Curtis J Dumonceaux
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Barbara A Maciejewski
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Jason W Arnason
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Aubrey N Michi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Richard Leigh
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| |
Collapse
|
42
|
Zalocusky KA, Kan MJ, Hu Z, Dunn P, Thomson E, Wiser J, Bhattacharya S, Butte AJ. The 10,000 Immunomes Project: Building a Resource for Human Immunology. Cell Rep 2018; 25:513-522.e3. [PMID: 30304689 PMCID: PMC6263160 DOI: 10.1016/j.celrep.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
There is increasing appreciation that the immune system plays critical roles not only in the traditional domains of infection and inflammation but also in many areas of biology, including tumorigenesis, metabolism, and even neurobiology. However, one of the major barriers for understanding human immunological mechanisms is that immune assays have not been reproducibly characterized for a sufficiently large and diverse healthy human cohort. Here, we present the 10,000 Immunomes Project (10KIP), a framework for growing a diverse human immunology reference, from ImmPort, a publicly available resource of subject-level immunology data. Although some measurement types are sparse in the presently deposited ImmPort database, the extant data allow for a diversity of robust comparisons. Using 10KIP, we describe variations in serum cytokines and leukocytes by age, race, and sex; define a baseline cell-cytokine network; and describe immunologic changes in pregnancy. All data in the resource are available for visualization and download at http://10kimmunomes.org/.
Collapse
Affiliation(s)
- Kelly A Zalocusky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew J Kan
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick Dunn
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Elizabeth Thomson
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Jeffrey Wiser
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Butler A, Walton GM, Sapey E. Neutrophilic Inflammation in the Pathogenesis of Chronic Obstructive Pulmonary Disease. COPD 2018; 15:392-404. [DOI: 10.1080/15412555.2018.1476475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aidan Butler
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgia May Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
44
|
Richmond BW, Du RH, Han W, Benjamin JT, van der Meer R, Gleaves L, Guo M, McKissack A, Zhang Y, Cheng DS, Polosukhin VV, Blackwell TS. Bacterial-derived Neutrophilic Inflammation Drives Lung Remodeling in a Mouse Model of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2018; 58:736-744. [PMID: 29314863 PMCID: PMC6002662 DOI: 10.1165/rcmb.2017-0329oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
Loss of secretory IgA is common in the small airways of patients with chronic obstructive pulmonary disease and may contribute to disease pathogenesis. Using mice that lack secretory IgA in the airways due to genetic deficiency of polymeric Ig receptor (pIgR-/- mice), we investigated the role of neutrophils in driving the fibrotic small airway wall remodeling and emphysema that develops spontaneously in these mice. By flow cytometry, we found an increase in the percentage of neutrophils among CD45+ cells in the lungs, as well as an increase in total neutrophils, in pIgR-/- mice compared with wild-type controls. This increase in neutrophils in pIgR-/- mice was associated with elastin degradation in the alveolar compartment and around small airways, along with increased collagen deposition in small airway walls. Neutrophil depletion using anti-Ly6G antibodies or treatment with broad-spectrum antibiotics inhibited development of both emphysema and small airway remodeling, suggesting that airway bacteria provide the stimulus for deleterious neutrophilic inflammation in this model. Exogenous bacterial challenge using lysates prepared from pathogenic and nonpathogenic bacteria worsened neutrophilic inflammation and lung remodeling in pIgR-/- mice. This phenotype was abrogated by antiinflammatory therapy with roflumilast. Together, these studies support the concept that disruption of the mucosal immune barrier in small airways contributes to chronic obstructive pulmonary disease progression by allowing bacteria to stimulate chronic neutrophilic inflammation, which, in turn, drives progressive airway wall fibrosis and emphysematous changes in the lung parenchyma.
Collapse
Affiliation(s)
- Bradley W. Richmond
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Rui-Hong Du
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Wei Han
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | | | | | - Linda Gleaves
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Marshall Guo
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Austin McKissack
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Yongqin Zhang
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Dong-Sheng Cheng
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | | | - Timothy S. Blackwell
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
- Department of Cell and Developmental Biology, and
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
45
|
Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. ACTA ACUST UNITED AC 2018; 5:3-25. [PMID: 29721324 PMCID: PMC5911451 DOI: 10.1002/reg2.97] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
46
|
Differential Regulation of Zfp30 Expression in Murine Airway Epithelia Through Altered Binding of ZFP148 to rs51434084. G3-GENES GENOMES GENETICS 2018; 8:687-693. [PMID: 29242385 PMCID: PMC5919737 DOI: 10.1534/g3.117.300507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophil chemotaxis to the airways is a key aspect of host response to microbes and a feature of multiple pulmonary diseases including asthma. Tight regulation of this recruitment is critical to prevent unwanted host tissue damage and inflammation. Using a mouse (Mus musculus) model of asthma applied to the Collaborative Cross population, we previously identified a lung gene expression quantitative trait locus (eQTL) for Zinc finger protein 30 (Zfp30) that was also a QTL for neutrophil recruitment and the hallmark neutrophil chemokine CXCL1. The Zfp30 eQTL is defined by three functionally distinct haplotypes. In this study, we searched for causal genetic variants that underlie the Zfp30 eQTL to gain a better understanding of this candidate repressor's regulation. First, we identified a putative regulatory region spanning 500 bp upstream of Zfp30, which contains 10 SNPs that form five haplotypes. In reporter gene assays in vitro, these haplotypes recapitulated the three previously identified in vivo expression patterns. Second, using site-directed mutagenesis followed by reporter gene assays, we identified a single variant, rs51434084, which explained the majority of variation in expression between two out of three haplotype groups. Finally, using a combination of in silico predictions and electrophoretic mobility shift assays, we identified ZFP148 as a transcription factor that differentially binds to the Zfp30 promoter region harboring rs51434084. In conclusion, we provide evidence in support of rs51434084 being a causal variant for the Zfp30 eQTL, and have identified a mechanism by which this variant alters Zfp30 expression, namely differential binding of ZFP148.
Collapse
|
47
|
Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A, Willeford A, Das S, Singh P, Yong Z, Lee JH, Vega K, Du A, Shin J, Javier C, Tian J, Brown JH, Breen EC. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R834-R847. [PMID: 29384700 DOI: 10.1152/ajpregu.00270.2017] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electronic (e)-cigarettes theoretically may be safer than conventional tobacco. However, our prior studies demonstrated direct adverse effects of e-cigarette vapor (EV) on airway cells, including decreased viability and function. We hypothesize that repetitive, chronic inhalation of EV will diminish airway barrier function, leading to inflammatory protein release into circulation, creating a systemic inflammatory state, ultimately leading to distant organ injury and dysfunction. C57BL/6 and CD-1 mice underwent nose only EV exposure daily for 3-6 mo, followed by cardiorenal physiological testing. Primary human bronchial epithelial cells were grown at an air-liquid interface and exposed to EV for 15 min daily for 3-5 days before functional testing. Daily inhalation of EV increased circulating proinflammatory and profibrotic proteins in both C57BL/6 and CD-1 mice: the greatest increases observed were in angiopoietin-1 (31-fold) and EGF (25-fold). Proinflammatory responses were recapitulated by daily EV exposures in vitro of human airway epithelium, with EV epithelium secreting higher IL-8 in response to infection (227 vs. 37 pg/ml, respectively; P < 0.05). Chronic EV inhalation in vivo reduced renal filtration by 20% ( P = 0.017). Fibrosis, assessed by Masson's trichrome and Picrosirius red staining, was increased in EV kidneys (1.86-fold, C57BL/6; 3.2-fold, CD-1; P < 0.05), heart (2.75-fold, C57BL/6 mice; P < 0.05), and liver (1.77-fold in CD-1; P < 0.0001). Gene expression changes demonstrated profibrotic pathway activation. EV inhalation altered cardiovascular function, with decreased heart rate ( P < 0.01), and elevated blood pressure ( P = 0.016). These data demonstrate that chronic inhalation of EV may lead to increased inflammation, organ damage, and cardiorenal and hepatic disease.
Collapse
Affiliation(s)
- Laura E Crotty Alexander
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | | | - Mark Hepokoski
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Denzil Mathew
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Alex Moshensky
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Andrew Willeford
- Department of Pharmacology, University of California , San Diego, California
| | - Soumita Das
- Department of Pathology, University of California , San Diego, California
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, Department of Medicine, University of California , San Diego, California.,Nephrology Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Zach Yong
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jasmine H Lee
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| | - Kevin Vega
- Department of Pathology, University of California , San Diego, California
| | - Ashley Du
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - John Shin
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Christian Javier
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jiang Tian
- Division of Cardiovascular Medicine and Center for Hypertension and Personalized Medicine, University of Toledo , Toledo, Ohio.,Department of Medicine, College of Medicine and Life Sciences, University of Toledo , Toledo, Ohio
| | - Joan Heller Brown
- Department of Pharmacology, University of California , San Diego, California
| | - Ellen C Breen
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| |
Collapse
|
48
|
Wu Q, Jiang D, Schaefer NR, Harmacek L, O'Connor BP, Eling TE, Eickelberg O, Chu HW. Overproduction of growth differentiation factor 15 promotes human rhinovirus infection and virus-induced inflammation in the lung. Am J Physiol Lung Cell Mol Physiol 2017; 314:L514-L527. [PMID: 29192094 DOI: 10.1152/ajplung.00324.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human rhinovirus (HRV) is the most common virus contributing to acute exacerbations of chronic obstructive pulmonary disease (COPD) nearly year round, but the mechanisms have not been well elucidated. Recent clinical studies suggest that high levels of growth differentiation factor 15 (GDF15) protein in the blood are associated with an increased yearly rate of all-cause COPD exacerbations. Therefore, in the current study, we investigated whether GDF15 promotes HRV infection and virus-induced lung inflammation. We first examined the role of GDF15 in regulating host defense and HRV-induced inflammation using human GDF15 transgenic mice and cultured human GDF15 transgenic mouse tracheal epithelial cells. Next, we determined the effect of GDF15 on viral replication, antiviral responses, and inflammation in human airway epithelial cells with GDF15 knockdown and HRV infection. Finally, we explored the signaling pathways involved in airway epithelial responses to HRV infection in the context of GDF15. Human GDF15 protein overexpression in mice led to exaggerated inflammatory responses to HRV, increased infectious particle release, and decreased IFN-λ2/3 (IL-28A/B) mRNA expression in the lung. Moreover, GDF15 facilitated HRV replication and inflammation via inhibiting IFN-λ1/IL-29 protein production in human airway epithelial cells. Lastly, Smad1 cooperated with interferon regulatory factor 7 (IRF7) to regulate airway epithelial responses to HRV infection partly via GDF15 signaling. Our results reveal a novel function of GDF15 in promoting lung HRV infection and virus-induced inflammation, which may be a new mechanism for the increased susceptibility and severity of respiratory viral (i.e., HRV) infection in cigarette smoke-exposed airways with GDF15 overproduction.
Collapse
Affiliation(s)
- Qun Wu
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Di Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Niccolette R Schaefer
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health , Denver, Colorado
| | - Brian P O'Connor
- Center for Genes, Environment, and Health, National Jewish Health , Denver, Colorado
| | - Thomas E Eling
- The Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Hong Wei Chu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| |
Collapse
|
49
|
Vitkov L, Hartl D, Minnich B, Hannig M. Janus-Faced Neutrophil Extracellular Traps in Periodontitis. Front Immunol 2017; 8:1404. [PMID: 29123528 PMCID: PMC5662558 DOI: 10.3389/fimmu.2017.01404] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is characterized by PMN infiltration and formation of neutrophil extracellular traps (NETs). However, their functional role for periodontal health remains complex and partially understood. The main function of NETs appears to be evacuation of dental plaque pathogen-associated molecular patterns. The inability to produce NETs is concomitant with aggressive periodontitis. But in cases with exaggerated NET production, NETs are unable to maintain periodontal health and bystander damages occur. This pathology can be also demonstrated in animal models using lipopolysaccharide as PMN activator. The progress of periodontitis appears to be a consequence of the formation of gingival pockets obstructing the evacuation of both pathogen-associated and damage-associated molecular patterns, which are responsible for the self-perpetuation of inflammation. Thus, besides the pathogenic effects of the periodontal bacteria, the dysregulation of PMN activation appears to play a main role in the periodontal pathology. Consequently, modulation of PMN activation might be a useful approach to periodontal therapy.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Department of Cell Biology and Physiology, Division of Animal Structure and Function, University of Salzburg, Salzburg, Austria.,Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Dominik Hartl
- Department of Paediatrics, Paediatric Infectiology, Immunology and Cystic Fibrosis, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Bernd Minnich
- Department of Cell Biology and Physiology, Division of Animal Structure and Function, University of Salzburg, Salzburg, Austria
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
50
|
Cockx M, Gouwy M, Godding V, De Boeck K, Van Damme J, Boon M, Struyf S. Neutrophils from Patients with Primary Ciliary Dyskinesia Display Reduced Chemotaxis to CXCR2 Ligands. Front Immunol 2017; 8:1126. [PMID: 29018439 PMCID: PMC5614927 DOI: 10.3389/fimmu.2017.01126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022] Open
Abstract
Primary ciliary dyskinesia (PCD), cystic fibrosis (CF), and chronic obstructive airway disease are characterized by neutrophilic inflammation in the lungs. In CF and chronic obstructive airway disease, improper functioning of neutrophils has been demonstrated. We hypothesized that the pulmonary damage in PCD might be aggravated by abnormal functioning neutrophils either as a primary consequence of the PCD mutation or secondary to chronic inflammation. We analyzed chemotactic responses and chemoattractant receptor expression profiles of peripheral blood neutrophils from 36 patients with PCD, 21 healthy children and 19 healthy adults. We stimulated peripheral blood monocytes from patients and healthy controls and measured CXCL8 and IL-1β production with ELISA. PCD neutrophils displayed reduced migration toward CXCR2 ligands (CXCL5 and CXCL8) in the shape change, microchamber and microslide chemotaxis assays, whereas leukotriene B4 and complement component 5a chemotactic responses were not significantly different. The reduced response to CXCL8 was observed in all subgroups of patients with PCD (displaying either normal ultrastructure, dynein abnormalities or central pair deficiencies) and correlated with lung function. CXCR2 was downregulated in about 65% of the PCD patients, suggestive for additional mechanisms causing CXCR2 impairment. After treatment with the TLR ligands lipopolysaccharide and peptidoglycan, PCD monocytes produced more CXCL8 and IL-1β compared to controls. Moreover, PCD monocytes also responded stronger to IL-1β stimulation in terms of CXCL8 production. In conclusion, we revealed a potential link between CXCR2 and its ligand CXCL8 and the pathogenesis of PCD.
Collapse
Affiliation(s)
- Maaike Cockx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Véronique Godding
- Unité de Pneumologie Pédiatrique et Mucoviscidose, Clinique Universitaire Saint-Luc UCL Brussels, Brussels, Belgium
| | - Kris De Boeck
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Boon
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|