1
|
Devulder J, Barrier M, Carrard J, Amniai L, Plé C, Marquillies P, Ledroit V, Ryffel B, Tsicopoulos A, de Nadai P, Duez C. Pulmonary Administration of TLR2/6 Agonist after Allergic Sensitization Inhibits Airway Hyper-Responsiveness and Recruits Natural Killer Cells in Lung Parenchyma. Int J Mol Sci 2024; 25:9606. [PMID: 39273551 PMCID: PMC11394962 DOI: 10.3390/ijms25179606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Asthma is a chronic lung disease with persistent airway inflammation, bronchial hyper-reactivity, mucus overproduction, and airway remodeling. Antagonizing T2 responses by triggering the immune system with microbial components such as Toll-like receptors (TLRs) has been suggested as a therapeutic concept for allergic asthma. The aim of this study was to evaluate the effect of a TLR2/6 agonist, FSL-1 (Pam2CGDPKHPKSF), administered by intranasal instillation after an allergic airway reaction was established in the ovalbumin (OVA) mouse model and to analyze the role of natural killer (NK) cells in this effect. We showed that FSL-1 decreased established OVA-induced airway hyper-responsiveness and eosinophilic inflammation but did not reduce the T2 or T17 response. FSL-1 increased the recruitment and activation of NK cells in the lung parenchyma and modified the repartition of NK cell subsets in lung compartments. Finally, the transfer or depletion of NK cells did not modify airway hyper-responsiveness and eosinophilia after OVA and/or FSL-1 treatment. Thus, the administration of FSL-1 reduces airway hyper-responsiveness and bronchoalveolar lavage eosinophilia. However, despite modifications of their functions following OVA sensitization, NK cells play no role in OVA-induced asthma and its inhibition by FSL-1. Therefore, the significance of NK cell functions and localization in the airways remains to be unraveled in asthma.
Collapse
Affiliation(s)
- Justine Devulder
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Mathieu Barrier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Julie Carrard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Latiffa Amniai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Coline Plé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Philippe Marquillies
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Valérie Ledroit
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Bernhard Ryffel
- CNRS and University Orleans—INEM (Immuno-Neuro Modulation), UMR7355 INEM, 45071 Orleans , France;
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Patricia de Nadai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Catherine Duez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| |
Collapse
|
2
|
Liao D, Su X, Wang J, Yu J, Luo H, Tian W, Ye Z, He J. Pushing the envelope: Immune mechanism and application landscape of macrophage-activating lipopeptide-2. Front Immunol 2023; 14:1113715. [PMID: 36761746 PMCID: PMC9902699 DOI: 10.3389/fimmu.2023.1113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Mycoplasma fermentans can cause respiratory diseases, arthritis, genitourinary tract infections, and chronic fatigue syndrome and have been linked to the development of the human immunodeficiency virus. Because mycoplasma lacks a cell wall, its outer membrane lipoproteins are one of the main factors that induce inflammation in the organism and contribute to disease development. Macrophage-activating lipopeptide-2 (MALP-2) modulates the inflammatory response of monocytes/macrophages in a bidirectional fashion, indirectly enhances the cytotoxicity of NK cells, promotes oxidative bursts in neutrophils, upregulates surface markers on lymphocytes, enhances antigen presentation on dendritic cells and induces immune inflammatory responses in sebocytes and mesenchymal cells. MALP-2 is a promising vaccine adjuvant for this application. It also promotes vascular healing and regeneration, accelerates wound and bone healing, suppresses tumors and metastasis, and reduces lung infections and inflammation. MALP-2 has a simple structure, is easy to synthesize, and has promising prospects for clinical application. Therefore, this paper reviews the mechanisms of MALP-2 activation in immune cells, focusing on the application of MALP-2 in animals/humans to provide a basis for the study of pathogenesis in Mycoplasma fermentans and the translation of MALP-2 into clinical applications.
Collapse
Affiliation(s)
- Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Jun He,
| |
Collapse
|
3
|
Sadeghi M, Keshavarz Shahbaz S, Dehnavi S, Koushki K, Sankian M. Current possibilities and future perspectives for improving efficacy of allergen-specific sublingual immunotherapy. Int Immunopharmacol 2021; 101:108350. [PMID: 34782275 DOI: 10.1016/j.intimp.2021.108350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Allergen-specific sublingual immunotherapy (SLIT), a safe and efficient route for treating type I hypersensitivity disorders, requires high doses of allergens. SLIT is generally performed without adjuvants and delivery systems. Therefore, allergen formulation with appropriate presentation platforms results in improved allergen availability, targeting the immune cells, inducing regulatory immune responses, and enhancing immunotherapy's efficacy while decreasing the dose of the allergen. In this review, we discuss the adjuvants and delivery systems that have been applied as allergen-presentation platforms for SLIT. These adjuvants include TLRs ligands, 1α, 25-dihydroxy vitamin D3, galectin-9, probiotic and bacterial components that provoke allergen-specific helper type-1 T lymphocytes (TH1), and regulatory T cells (Tregs). Another approach is encapsulation or adsorption of the allergens into a particulate vector system to facilitate allergen capture by tolerogenic dendritic cells. Also, we proposed strategies to increasing the efficacy of SLIT via new immunopotentiators and carrier systems in the future.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sajad Dehnavi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Sun R, Jang JH, Lauzon AM, Martin JG. Interferon-γ amplifies airway smooth muscle-mediated CD4+ T cell recruitment by promoting the secretion of C-X-C-motif chemokine receptor 3 ligands. FASEB J 2021; 35:e21228. [PMID: 33337555 DOI: 10.1096/fj.202001480r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022]
Abstract
Asthmatic airways feature increased ASM mass that is largely attributable to hyperplasia, and which potentially contributes to excessive airway narrowing. T cells induce ASMC proliferation via contact-dependent mechanisms in vitro that may have importance for asthmatic ASM growth, as CD4+ T cells infiltrate ASM bundles in asthmatic human airways. In this study, we used an in vitro migration assay to investigate the pathways responsible for the trafficking of human CD4+ T cells to ASM. ASMCs induced chemotaxis of activated CD4+ T cells, which was inhibited by the CXCR3 antagonist AMG487 and neutralizing antibodies against its ligands CXCL10 and 11, but not CCR3 or CCR5 antagonists. CXCR3 expression was upregulated among all T cells following anti-CD3/CD28-activation. CD4+ T cells upregulated CXCL9, 10, and 11 expression in ASMCs in an IFN-γ/STAT1-dependent manner. Disruption of IFN-γ-signaling resulted in reduced T cell migration, along with the inhibition of CD4+ T cell-mediated STAT1 activation and CXCR3 ligand secretion by ASMCs. ASMCs derived from healthy and asthmatic donors demonstrated similar T cell-recruiting capacities. In vivo CXCL10 and 11 expression by asthmatic ASM was confirmed by immunostaining. We conclude that the CXCL10/11-CXCR3 axis causes CD4+ T cell recruitment to ASM that is amplified by T cell-derived IFN-γ.
Collapse
Affiliation(s)
- Rui Sun
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Joyce H Jang
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
5
|
Kirtland ME, Tsitoura DC, Durham SR, Shamji MH. Toll-Like Receptor Agonists as Adjuvants for Allergen Immunotherapy. Front Immunol 2020; 11:599083. [PMID: 33281825 PMCID: PMC7688745 DOI: 10.3389/fimmu.2020.599083] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
Toll-like receptors (TLRs) are essential components of innate immunity and provide defensive inflammatory responses to invading pathogens. Located within the plasma membranes of cells and also intracellular endosomes, TLRs can detect a range of pathogen associated molecular patterns from bacteria, viruses and fungi. TLR activation on dendritic cells can propagate to an adaptive immune response, making them attractive targets for the development of both prophylactic and therapeutic vaccines. In contrast to conventional adjuvants such as aluminium salts, TLR agonists have a clear immunomodulatory profile that favours anti-allergic T lymphocyte responses. Consequently, the potential use of TLRs as adjuvants in Allergen Immunotherapy (AIT) for allergic rhinitis and asthma remains of great interest. Allergic Rhinitis is a Th2-driven, IgE-mediated disease that occurs in atopic individuals in response to exposure to otherwise harmless aeroallergens such as pollens, house dust mite and animal dander. AIT is indicated in subjects with allergic rhinitis whose symptoms are inadequately controlled by antihistamines and nasal corticosteroids. Unlike anti-allergic drugs, AIT is disease-modifying and may induce long-term disease remission through mechanisms involving upregulation of IgG and IgG4 antibodies, induction of regulatory T and B cells, and immune deviation in favour of Th1 responses that are maintained after treatment discontinuation. This process takes up to three years however, highlighting an unmet need for a more efficacious therapy with faster onset. Agonists targeting different TLRs to treat allergy are at different stages of development. Synthetic TLR4, and TLR9 agonists have progressed to clinical trials, while TLR2, TLR5 and TLR7 agonists been shown to have potent anti-allergic effects in human in vitro experiments and in vivo in animal studies. The anti-allergic properties of TLRs are broadly characterised by a combination of enhanced Th1 deviation, regulatory responses, and induction of blocking antibodies. While promising, a durable effect in larger clinical trials is yet to be observed and further long-term studies and comparative trials with conventional AIT are required before TLR adjuvants can be considered for inclusion in AIT. Here we critically evaluate experimental and clinical studies investigating TLRs and discuss their potential role in the future of AIT.
Collapse
Affiliation(s)
- Max E Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Daphne C Tsitoura
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA. TLRs in pulmonary diseases. Life Sci 2019; 233:116671. [PMID: 31336122 PMCID: PMC7094289 DOI: 10.1016/j.lfs.2019.116671] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) comprise a clan of proteins involved in identification and triggering a suitable response against pathogenic attacks. As lung is steadily exposed to multiple infectious agents, antigens and host-derived danger signals, the inhabiting stromal and myeloid cells of the lung express an aggregate of TLRs which perceive the endogenously derived damage-associated molecular patterns (DAMPs) along with pathogen associated molecular patterns (PAMPs) and trigger the TLR-associated signalling events involved in host defence. Thus, they form an imperative component of host defence activation in case of microbial infections as well as non-infectious pulmonary disorders such as interstitial lung disease, acute lung injury and airways disease, such as COPD and asthma. They also play an equally important role in lung cancer. Targeting the TLR signalling network would pave ways to the design of more reliable and effective vaccines against infectious agents and control deadly infections, desensitize allergens and reduce inflammation. Moreover, TLR agonists may act as adjuvants by increasing the efficiency of cancer vaccines, thereby contributing their role in treatment of lung cancer too. Overall, TLRs present a compelling and expeditiously bolstered area of research and addressing their signalling events would be of significant use in pulmonary diseases.
Collapse
Affiliation(s)
- Shweta Arora
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Shaniya Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Rasha Irshad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Neha Siddiqui
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| | - Anant Mohan
- Department of Pulmonary Medicine, AIIMS, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
7
|
Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol 2018; 9:1027. [PMID: 29867994 PMCID: PMC5963123 DOI: 10.3389/fimmu.2018.01027] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease that is influenced by the interplay between genetic factors and exposure to environmental allergens, microbes, or microbial products where toll-like receptors (TLRs) play a pivotal role. TLRs recognize a wide range of microbial or endogenous molecules as well as airborne environmental allergens and act as adjuvants that influence positively or negatively allergic sensitization. TLRs are qualitatively and differentially expressed on hematopoietic and non-hematopoietic stromal or structural airway cells that when activated by TLRs agonists exert an immune-modulatory role in asthma development. Therefore, understanding mechanisms and pathways by which TLRs orchestrate asthma outcomes may offer new strategies to control the disease. Here, we aim to review and critically discuss the role of TLRs in human asthma and murine models of allergic airway inflammation, highlighting the complexity of TLRs function in development, exacerbation, or control of airway allergic inflammation.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Athari SS, Athari SM, Beyzay F, Movassaghi M, Mortaz E, Taghavi M. Critical role of Toll-like receptors in pathophysiology of allergic asthma. Eur J Pharmacol 2016; 808:21-27. [PMID: 27894811 DOI: 10.1016/j.ejphar.2016.11.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 11/21/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
Abstract
Allergic asthma is an airway disease, characterized by reversible bronchoconstriction, chronic inflammation of the airway, and thickness of smooth muscle in the respiratory tract. Asthma is orchestrated by an excessive Th2-adaptive immune response, in which innate immunity plays a key role. Recently TLRs have received more and more attention as they are central to orchestrate the innate immune responses. TLRs are localized as integral membrane or intracellular glycoproteins with those on the cell surface sensing microbial antigens and the ones, localized in intracellular vesicles, sensing microbial nucleic acid species. Having recognized microbial antigens, TLRs conduct the immune response towards a pro- or anti-allergy response. As a double-edged sword, they could initiate either harmful or helpful responses by the immune system in case of allergic asthma. In the current review, we will describe the role of TLRs and their signaling pathways in allergic asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Health policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Fateme Beyzay
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Taghavi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Dual proinflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus vaccine-enhanced disease. J Virol 2014; 89:1564-78. [PMID: 25410867 DOI: 10.1128/jvi.01536-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity.
Collapse
|
10
|
Aryan Z, Holgate ST, Radzioch D, Rezaei N. A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma. Int Arch Allergy Immunol 2014; 164:46-63. [PMID: 24853609 DOI: 10.1159/000362553] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLR) belong to a large family of pattern recognition receptors known as the ancient 'gatekeepers' of the immune system. TLRs are located at the first line of defense against invading pathogens as well as aeroallergens, making them interesting targets to modulate the natural history of respiratory allergy. Agonists of TLRs have been widely employed in therapeutic or prophylactic preparations useful for asthma/allergic rhinitis (AR) patients. MPL® (a TLR4 agonist) and the CpG oligodeoxynucleotide of 1018 ISS, a TLR9 agonist, show strong immunogenicity effects that make them appropriate adjuvants for allergy vaccines. Targeting the TLRs can enhance the efficacy of specific allergen immunotherapy, currently the only available 'curative' treatment for respiratory allergies. In addition, intranasal administration of AZD8848 (a TLR7 agonist) and VTX-1463 (a TLR8 agonist) as stand-alone therapeutics have revealed efficacy in the relief of the symptoms of AR patients. No anaphylaxis has been so far reported with such compounds targeting TLRs, with the most common adverse effects being transient and local irritation (e.g. redness, swelling and pruritus). Many other compounds that target TLRs have been found to suppress airway inflammation, eosinophilia and airway hyper-responsiveness in various animal models of allergic inflammation. Indeed, in the future a wide variability of TLR agonists and even antagonists that exhibit anti-asthma/AR effects are likely to emerge.
Collapse
Affiliation(s)
- Zahra Aryan
- Molecular Immunology Research Center and Department of Immunology, School of Medicine, Tehran, Iran
| | | | | | | |
Collapse
|
11
|
Krishnaswamy JK, Jirmo AC, Baru AM, Ebensen T, Guzmán CA, Sparwasser T, Behrens GMN. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia. Am J Respir Cell Mol Biol 2012; 47:852-63. [PMID: 22962064 DOI: 10.1165/rcmb.2011-0414oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.
Collapse
|
12
|
Bezemer GFG, Sagar S, van Bergenhenegouwen J, Georgiou NA, Garssen J, Kraneveld AD, Folkerts G. Dual role of Toll-like receptors in asthma and chronic obstructive pulmonary disease. Pharmacol Rev 2012; 64:337-58. [PMID: 22407613 DOI: 10.1124/pr.111.004622] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the last decade, significant research has been focused on Toll-like receptors (TLRs) in the pathogenesis of airway diseases. TLRs are pattern recognition receptors that play pivotal roles in the detection of and response to pathogens. Because of the involvement of TLRs in innate and adaptive immunity, these receptors are currently being exploited as possible targets for drug development. Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory airway diseases in which innate and adaptive immunity play an important role. To date, asthma is the most common chronic disease in children aged 5 years and older. COPD is prevalent amongst the elderly and is currently the fifth-leading cause of death worldwide with still-growing prevalence. Both of these inflammatory diseases result in shortness of breath, which is treated, often ineffectively, with bronchodilators and glucocorticosteroids. Symptomatic treatment approaches are similar for both diseases; however, the underlying immunological mechanisms differ greatly. There is a clear need for improved treatment specific for asthma and for COPD. This review provides an update on the role of TLRs in asthma and in COPD and discusses the merits and difficulties of targeting these proteins as novel treatment strategies for airway diseases. TLR agonist, TLR adjuvant, and TLR antagonist therapies could all be argued to be effective in airway disease management. Because of a possible dual role of TLRs in airway diseases with shared symptoms and risk factors but different immunological mechanisms, caution should be taken while designing pulmonary TLR-based therapies.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Moreira AP, Cavassani KA, Ismailoglu UB, Hullinger R, Dunleavy MP, Knight DA, Kunkel SL, Uematsu S, Akira S, Hogaboam CM. The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A. J Clin Invest 2011; 121:4420-32. [PMID: 22005301 DOI: 10.1172/jci44999] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/14/2011] [Indexed: 11/17/2022] Open
Abstract
TLRs are a family of receptors that mediate immune system pathogen recognition. In the respiratory system, TLR activation has both beneficial and deleterious effects in asthma. For example, clinical data indicate that TLR6 activation exerts protective effects in asthma. Here, we explored the mechanism or mechanisms through which TLR6 mediates this effect using mouse models of Aspergillus fumigatus-induced and house dust mite antigen-induced (HDM antigen-induced) chronic asthma. Tlr6-/- mice with fungal- or HDM antigen-induced asthma exhibited substantially increased airway hyperresponsiveness, inflammation, and remodeling compared with WT asthmatic groups. Surprisingly, whole-lung levels of IL-23 and IL-17 were markedly lower in Tlr6-/- versus WT asthmatic mice. Tlr6-/- DCs generated less IL-23 upon activation with lipopolysaccharide, zymosan, or curdlan. Impaired IL-23 generation in Tlr6-/- mice also corresponded with lower levels of expression of the pathogen-recognition receptor dectin-1 and expansion of Th17 cells both in vivo and in vitro. Exogenous IL-23 treatment of asthmatic Tlr6-/- mice restored IL-17A production and substantially reduced airway hyperresponsiveness, inflammation, and lung fungal burden compared with that in untreated asthmatic Tlr6-/- mice. Together, our data demonstrate that TLR6 activation is critical for IL-23 production and Th17 responses, which both regulate the allergic inflammatory response in chronic fungal-induced asthma. Thus, therapeutics targeting TLR6 activity might prove efficacious in the treatment of clinical asthma.
Collapse
Affiliation(s)
- Ana Paula Moreira
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fuchs B, Braun A. Modulation of asthma and allergy by addressing toll-like receptor 2. J Occup Med Toxicol 2011; 3 Suppl 1:S5. [PMID: 18315836 PMCID: PMC2259399 DOI: 10.1186/1745-6673-3-s1-s5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors play an important role in innate and adaptive immunity and in balancing immune responses with tolerance. TLR2 is related to protection against allergies and allergic asthma by sensing pathogen associated patterns as lipoproteins and lipopeptides. A constant Th1 triggering is thought to prevent Th2 related disorders. TLR2 is expressed on a variety of cells, both structural as well as immune cells. Importantly, TLR2 is also expressed on dendritic cells, which are thought to be one of the key players of initiating and maintaining immune responses. Therefore, TLR2 on dendritic cells is a good target for modulating immunity either to Th1 or Th2 responses, or induction of tolerance. TLR2 agonists show high immunomodulatory and adjuvantic capacity. This makes TLR2 agonisation a promising approach for pharmaceutical intervention of allergic disorders.
Collapse
Affiliation(s)
- Barbara Fuchs
- Department of Immunology, Allergology and Immunotoxicology, Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str, 1, 30625 Hannover, Germany.
| | | |
Collapse
|
15
|
Knothe S, Mutschler V, Rochlitzer S, Winkler C, Ebensen T, Guzman CA, Hohlfeld J, Braun A, Muller M. Local treatment with BPPcysMPEG reduces allergic airway inflammation in sensitized mice. Immunobiology 2010; 216:110-7. [PMID: 20619481 DOI: 10.1016/j.imbio.2010.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/01/2010] [Accepted: 05/01/2010] [Indexed: 11/30/2022]
Abstract
According to the hygiene hypothesis, triggering the immune system with microbial components during childhood balances the inherent Th2 bias. In contrast, specific immunotherapy involves exposure of the patient to the allergen in order to achieve desensitization to subsequent contact. In a human in vitro allergy model the potential of the TLR2/6 agonist BPPcysMPEG to modulate antigen presenting cells and allergen-specific immune responses was evaluated. Specific immunomodulation via co-administration of the allergen and BPPcysMPEG enhanced expression of co-stimulatory molecules on DC and increased secretion of the proinflammatory cytokine TNF-α. Acting as an adjuvant, BPPcysMPEG elevated allergen-specific immune responses in co-culture with autologous lymphocytes. Although administration of BPPcysMPEG alone enhanced expression of co-stimulatory molecules on DC, proliferation of autologous lymphocytes was not induced. Based on this finding, the potential of BPPcysMPEG to reduce allergic airway inflammation by preventive modulation of the innate immune system via TLR2/6 agonization was investigated in mice. Local administration of BPPcysMPEG altered cellular influx and cell composition in BAL fluid. Furthermore, the Th2-associated cytokines IL-4 and IL-5 were diminished. Allergen-specific restimulation of cells from mediastinal lymph nodes and splenocytes suggested an alteration of immune responses. The treatment with BPPcysMPEG induced a Th1-dominated cytokine milieu in mediastinal lymph nodes, while allergen-specific immune responses in splenocytes were diminished. The co-administration of allergen and BPPcysMPEG reduced cytokine secretion upon restimulation in mediastinal lymph nodes and splenocytes. From these data we conclude that BPPcysMPEG was able to influence the immune system with regard to subsequent allergen contact by TLR2/6 agonization.
Collapse
Affiliation(s)
- S Knothe
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of Immunology, Allergology and Immunotoxicology, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Switalla S, Lauenstein L, Prenzler F, Knothe S, Förster C, Fieguth HG, Pfennig O, Schaumann F, Martin C, Guzman CA, Ebensen T, Müller M, Hohlfeld JM, Krug N, Braun A, Sewald K. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices. Toxicol Appl Pharmacol 2010; 246:107-15. [PMID: 20434477 DOI: 10.1016/j.taap.2010.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/16/2022]
Abstract
Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. The initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1β, MIP-1β, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-γ, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation >0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1β, and IFN-γ. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans.
Collapse
Affiliation(s)
- S Switalla
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - L Lauenstein
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - F Prenzler
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - S Knothe
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - C Förster
- Klinikum Region Hannover (KRH), Hannover, Germany
| | - H-G Fieguth
- Klinikum Region Hannover (KRH), Hannover, Germany
| | - O Pfennig
- Klinikum Region Hannover (KRH), Hannover, Germany
| | - F Schaumann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - C Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - C A Guzman
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - T Ebensen
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - M Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - J M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - N Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - A Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| | - K Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Immunology, Allergy and Airway Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
17
|
Greis A, Murgott J, Gerstberger R, Hübschle T, Roth J. Effects of repeated injections of fibroblast-stimulating lipopeptide-1 on fever, formation of cytokines, and on the responsiveness to endotoxin in guinea-pigs. Acta Physiol (Oxf) 2009; 197:35-45. [PMID: 19309391 DOI: 10.1111/j.1748-1716.2009.01989.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS We investigated, whether the Toll-like receptors (TLRs)-2/6-agonist fibroblast-stimulating lipopeptide-1 (FSL-1), like the TLR-4 agonist lipopolysaccharide (LPS), induces a state of tolerance. We further tested the influence of repeated pre-treatment with FSL-1 on the animals' responsiveness to LPS. METHODS Abdominal temperature was recorded in unrestrained guinea-pigs with intra-abdominally implanted radiotransmitters. Circulating concentrations of tumour necrosis factor (TNF) and interleukin-6 (IL-6) were measured with specific bioassays. We tested the effects of intra-arterial (i.a.) or intraperitoneal (i.p.) injections of 100 microg kg(-1) FSL-1, repeated five times at intervals of 3 days. The animals' responses to i.a. or i.p. injections of 10 microg kg(-1) LPS were determined another 3 days later and compared to those of naïve guinea-pigs. RESULTS The FSL-1-induced TNF peak was significantly attenuated starting with the third i.a. administration, while fever was unimpaired and the IL-6-peak just tended to decrease. Fever and IL-6 in response to i.a. injections of LPS were identical in both groups, while circulating TNF was higher in naïve compared to FSL-1 pre-treated animals. The effects of repeated i.p. injections of FSL-1 were more pronounced resulting in attenuation of fever as well as circulating TNF and IL-6, the strongest reduction observed after the third stimulation with FSL-1. Repeated i.p. pre-treatment with FSL-1 induced hyporesponsiveness to i.p. administration of LPS compared to naïve animals with regard to fever and especially with regard to LPS-induced formation of cytokines. CONCLUSIONS There is a development of tolerance to FSL-1 and cross-tolerance between FSL-1 and LPS depending on the route of administration of the respective TLR-2/6 and TLR-4 agonists.
Collapse
Affiliation(s)
- A Greis
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
18
|
Jin H, Kumar L, Mathias C, Zurakowski D, Oettgen H, Gorelik L, Geha R. Toll-like receptor 2 is important for the T(H)1 response to cutaneous sensitization. J Allergy Clin Immunol 2009; 123:875-82.e1. [PMID: 19348925 DOI: 10.1016/j.jaci.2009.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/22/2009] [Accepted: 02/04/2009] [Indexed: 01/30/2023]
Abstract
BACKGROUND Atopic dermatitis and allergic contact dermatitis are skin disorders triggered by epicutaneous sensitization with protein antigens and contact sensitization with haptens, respectively. Skin is colonized with bacteria, which are a source of Toll-like receptor (TLR) 2 ligands. OBJECTIVE We sought to examine the role of TLR2 in murine models of atopic dermatitis and allergic contact dermatitis. METHODS TLR2(-/-) mice and wild-type littermates were epicutaneously sensitized with ovalbumin (OVA) or contact sensitized with oxazolone (OX). Skin histology was assessed by means of hematoxylin and eosin staining and immunohistochemistry. Ear swelling was measured with a micrometer. Cytokine mRNA expression was examined by means of quantitative RT-PCR. Antibody levels and splenocyte secretion of cytokines in response to OVA stimulation were measured by means of ELISA. Dendritic cells were examined for their ability to polarize T-cell receptor/OVA transgenic naive T cells to T(H)1 and T(H)2. RESULTS In response to OVA sensitization, TLR2(-/-) mice experienced skin infiltration with eosinophils and CD4(+) cells, as well as upregulation of T(H)2 cytokine mRNAs that was comparable with that seen in wild-type littermates. In contrast, epidermal thickening, IFN-gamma expression in the skin, IFN-gamma production by splenocytes, and IgG2a anti-OVA antibody levels were impaired in TLR2(-/-) mice. After OX ear challenge, contact sensitized TLR2(-/-) mice exhibited defective ear swelling with impaired cellular infiltration, decreased epidermal thickening and local IFN-gamma expression, and impaired OX-specific IgG2a responses. Dendritic cells from TLR2(-/-) mice induced significantly lower production of IFN-gamma but normal IL-4 and IL-13 production in naive T cells. CONCLUSIONS These results indicate that TLR2 promotes the IFN-gamma response to cutaneously introduced antigens.
Collapse
Affiliation(s)
- Haoli Jin
- Division of Immunology, Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Pabst R, Durak D, Roos A, Lührmann A, Tschernig T. TLR2/6 stimulation of the rat lung: effects on lymphocyte subsets, natural killer cells and dendritic cells in different parts of the air-conducting compartments and at different ages. Immunology 2008; 126:132-9. [PMID: 18565128 DOI: 10.1111/j.1365-2567.2008.02886.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The composition of lymphocyte subsets in the lung has been found to be compartment-specific. To characterize the effect of age, weanling, young adult and adult rats were studied in control conditions and after a single intratracheal dose of the Toll-like receptor 2/6 (TLR2/6) agonist macrophage activating lipopeptide-2 (MALP-2). In all age groups, T, B and natural killer (NK) cells increased dramatically in the epithelium and lamina propria of the bronchi. Male adult rats were found to have responded to MALP-2 to a much greater extent than females when lymphocyte subsets were counted in the epithelium and the lamina propria. In a second series of experiments the time kinetics of regulatory T-cell (Treg) subsets and dendritic cells (DCs) in the lung was studied after local stimulation with MALP-2. Different time-dependent patterns were found in the Treg subsets CD4(+) CD25(+), CD4(+) CD25(+) neuropilin 1(+) and CD4(+) CD25(+) Foxp3(+) cells. Neutrophils and DCs also showed different patterns. Thus, the local application of a TLR agonist increased the number of lymphocyte subsets in a compartment-specific pattern. However, data should not be generalized or extrapolated from one age group, sex or lymphocyte subpopulation to another.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Functional and Applied Anatomy, Medical School Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|
20
|
Hartwig C, Tschernig T, Mazzega M, Braun A, Neumann D. Endogenous IL-18 in experimentally induced asthma affects cytokine serum levels but is irrelevant for clinical symptoms. Cytokine 2008; 42:298-305. [PMID: 18387310 DOI: 10.1016/j.cyto.2008.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 02/20/2008] [Accepted: 02/22/2008] [Indexed: 11/25/2022]
Abstract
T cells and T cell derived cytokines are involved in the complex pathogenesis of asthma. The role of the cytokine IL-18 however, is not clearly defined so far. On the one hand side IL-18 induces Th1-type cytokines and thereby might counter-regulate Th2-mediated allergic asthma. On the other hand IL-18 also bears pro-inflammatory effects possibly enhancing experimental asthma. In order to elucidate the role of IL-18 in allergic pulmonary inflammation typical symptoms were compared after induction of experimental asthma in IL-18(-/-) and in wild type mice. Asthma was induced using ovalbumin (OVA) as allergen for sensitization and challenge. Sham sensitized and OVA challenged mice served as controls. Bronchoalveolar lavage-fluid cytology, leukocyte infiltration in lung tissues, serum levels of OVA-specific IgE and cytokines, and lung function were analyzed. Clear differences could be observed between control and asthmatic mice, both in wild type and IL-18(-/-) animals. Surprisingly, no differences were found between asthmatic wild type and IL-18(-/-) mice. Thus, in contrast to conflicting data in the literature IL-18 did not suppress or enhance the pulmonary allergic immune response in a murine experimental model of asthma.
Collapse
Affiliation(s)
- Christina Hartwig
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
21
|
Airway smooth muscle cell as an inflammatory cell: lessons learned from interferon signaling pathways. Ann Am Thorac Soc 2008; 5:106-12. [PMID: 18094092 DOI: 10.1513/pats.200705-060vs] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The present article will describe the potential role of airway smooth muscle (ASM) in mediating both deleterious/beneficial effects of interferons (IFNs) in asthma. First described as beneficial in treating the main features of asthma, the interplay between IFNs and ASM could explain their deleterious actions recently described in a number of different studies. Through multiple mechanisms, including the suppression of steroid action, the synergistic pro-inflammatory actions when combined with other cytokines, and the modulation of calcium metabolism, IFNs are now seen as critical mediators in the pathogenesis of asthma.
Collapse
|
22
|
Tschernig T, Kiafard Z, Dibbert C, Neumann D, Zwirner J. Use of monoclonal antibodies to assess expression of anaphylatoxin receptors in rat and murine models of lung inflammation. ACTA ACUST UNITED AC 2007; 58:419-25. [PMID: 17544263 DOI: 10.1016/j.etp.2007.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/19/2007] [Indexed: 11/25/2022]
Abstract
The anaphylatoxins C3a and C5a are involved in the pathophysiology of microbial as well as allergic inflammation in the lungs. Besides their expression in leukocytes, receptors for C3a and C5a (C3aR and C5aR) have been noted in alveolar and bronchial epithelial cells, bronchial smooth muscle cells as well as in vascular endothelial and smooth muscle cells of normal and inflamed human and murine lungs. Recently, however, expression of anaphylatoxin receptors in parenchymal cells of the lung (and kidney) has been challenged. Using well-characterized monoclonal antibodies (mabs) against murine and rat anaphylatoxin receptors, we reexamined the pulmonary distribution of C3aR and C5aR. Immunohistochemistry was performed on frozen sections of lung tissues from normal mice and rats as well as from animals subjected to lipopolysaccharide (LPS)-induced inflammation or from MRL/lpr mice suffering from autoimmune disease. Furthermore, ovalbumin (OVA)-induced models of allergic asthma in the rat and mouse were investigated. Prominent expression of both anaphylatoxin receptors was detectable in resident as well as infiltrating leukocytes. No C3aR protein was observed in alveolar macrophages. Upon LPS- and OVA-challenge as well as in autoimmune inflammation, numbers of infiltrating leukocytes expressing prominent amounts of anaphylatoxin receptors increased. Even under these highly inflammatory conditions, however, expression of C3aR and C5aR was not inducible in parenchymal cells. Thus, our findings identify infiltrating leukocytes as a prominent source of anaphylatoxin receptors in inflamed lungs. A direct involvement of parenchymal cells in anaphylatoxin-mediated pulmonary inflammation is unlikely.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Asthma/chemically induced
- Asthma/metabolism
- Asthma/pathology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Leukocytes/drug effects
- Leukocytes/metabolism
- Leukocytes/pathology
- Lipopolysaccharides/toxicity
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred MRL lpr
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Ovalbumin/toxicity
- Pneumonia/chemically induced
- Pneumonia/metabolism
- Pneumonia/pathology
- Rats
- Rats, Inbred BN
- Rats, Inbred Lew
- Receptor, Anaphylatoxin C5a/immunology
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
Collapse
Affiliation(s)
- Thomas Tschernig
- Department of Functional and Applied Anatomy, Medical School of Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Sally E Wenzel
- National Jewish Medical and Research Center for Immunology, Denver, Colorado, USA.
| | | |
Collapse
|
24
|
Wang G, Liu CT, Wang ZL, Jiang LL, Yan CL, Luo FM. Antisense oligonucleotides-induced local blockade of T-bet expression leads to airway inflammation in rats. Acta Pharmacol Sin 2006; 27:561-7. [PMID: 16626511 DOI: 10.1111/j.1745-7254.2006.00323.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIM To explore whether local blockade of T-box expressed in T cells (T-bet) expression in the lungs could lead to airway inflammation. METHODS Twenty-four rats were randomly divided into 4 groups: saline group, ovalbumin (OVA)-sensitized group, nonsense group, and the antisense group. The OVA-sensitized rats were sensitized and challenged with OVA, and the rats in the nonsense and antisense groups were subjected to an aerosol delivery of the nonsense and antisense oligonucleotides (AS-ODN) of T-bet (0.1%, w/v). The levels of interferon-gamma (IFN-gamma), interleukin-4 (IL-4), and IL-5 in the bronchoalveolar lavage fluid (BALF) were detected by ELISA, and the mRNA and the protein expression of T-bet and GATA-3 genes were examined by in situ hybridization and Western blot analysis, respectively. RESULTS The expression of T-bet mRNA and protein in the lungs of the rats in the antisense group were inhibited effectively. The lungs of the rats in the antisense and OVA-sensitized groups showed eosinophil and lymphocyte inflammatory infiltration, and eosinophilia located predominantly around the airways. The number of GATA-3 mRNA-positive cells and the level of GATA-3 protein in the lungs of the rats in the antisense and the OVA-sensitized groups significantly increased. The level of IL-4 and IL-5 in the BALF in the antisense and OVA-sensitized groups were elevated, but the level of IFN-gamma decreased markedly. CONCLUSION Antisense ODN-induced local blockade of T-bet expression leads to airway inflammation with a selective alteration in patterns of cytokine expression and recruitment of eosinophil cells similar to that in the OVA-sensitized animals.
Collapse
Affiliation(s)
- Gang Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|