1
|
Frohlich M, Prentice B, Owens L, Waters S, Morgan L. Beyond the present: current and future perspectives on the role of infections in pediatric PCD. Front Pediatr 2025; 13:1564156. [PMID: 40171169 PMCID: PMC11958984 DOI: 10.3389/fped.2025.1564156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder affecting motile cilia, leading to impaired mucociliary clearance and increased susceptibility to respiratory infections. These infections contribute to long-term complications such as bronchiectasis and lung function decline. Objectives This review explores both the acute and long-term impact of respiratory infections in children with PCD, while highlighting the multiple contributors to infection susceptibility. The review also evaluates emerging personalized approaches such as gene and mRNA therapy that hold promise for restoring ciliary function and reducing the burden of acute infections in pediatric PCD. Key findings and conclusions Acute respiratory infections have a significant impact on morbidity in pediatric PCD, driving progressive airway remodeling. While current treatment strategies focus on managing infections directly, emerging therapies targeting inflammation and genetic causes hold promise for reducing infection burden and improving long-term outcomes. Future advances in personalized medicine could further enhance therapeutic approaches in this population.
Collapse
Affiliation(s)
- Megan Frohlich
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
| | - Bernadette Prentice
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
| | - Louisa Owens
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
| | - Shafagh Waters
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Hospital, Sydney, NSW, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Gimenez da Rocha D, Burch MO, Aparecida Teixeira Soares L, Bertolino JR, Bergamasco Galastri AL, Antunes D, Mamoni RL, Vieira Ponte E. Trajectory of the response to bronchodilator and respiratory outcomes in adults with asthma-like symptoms. Monaldi Arch Chest Dis 2025. [PMID: 40099403 DOI: 10.4081/monaldi.2025.3116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/09/2025] [Indexed: 03/19/2025] Open
Abstract
In the real world, health professionals need to care for individuals with asthma-like symptoms who have a persistently negative bronchodilator response (BDR). Little is known about the evolution of symptoms and lung function of these individuals because they are usually excluded from studies on asthma. The aim of this study was to evaluate whether individuals with asthma-like symptoms but with a persistently negative BDR have a different evolution of symptoms and lung function compared to individuals with asthma proven by positive BDR. This prospective cohort study included adults with asthma-like symptoms. Individuals participated in two visits 12 months apart. They responded to questionnaires and underwent a spirometry test. In individuals without airway obstruction in the first visit, those with asthma-like symptoms and persistently negative BDR were less likely to lose forced expiratory volume in the first second during follow-up or progress to airway obstruction at the final visit compared to individuals with asthma proven by positive BDR. Among individuals with airway obstruction at baseline, those with asthma-like symptoms and persistently negative BDR were less likely to resolve the airway obstruction during follow-up compared to individuals with asthma proven by positive BDR. In individuals with proven asthma, the emergence or persistence of positive BDR during follow-up was accompanied by a worsening of asthma outcomes compared to the remission of positive BDR. Thus, BRD is an accessible marker of disease progression in individuals with asthma-like symptoms. In individuals with asthma proven by positive BDR, the trend in BDR was associated with the evolution of symptoms and lung function.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Antunes
- Department of Internal Medicine, Jundiaí School of Medicine
| | | | | |
Collapse
|
3
|
Melén E, Zar HJ, Siroux V, Shaw D, Saglani S, Koppelman GH, Hartert T, Gern JE, Gaston B, Bush A, Zein J. Asthma Inception: Epidemiologic Risk Factors and Natural History Across the Life Course. Am J Respir Crit Care Med 2024; 210:737-754. [PMID: 38981012 PMCID: PMC11418887 DOI: 10.1164/rccm.202312-2249so] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/09/2024] [Indexed: 07/11/2024] Open
Abstract
Asthma is a descriptive label for an obstructive inflammatory disease in the lower airways manifesting with symptoms including breathlessness, cough, difficulty in breathing, and wheezing. From a clinician's point of view, asthma symptoms can commence at any age, although most patients with asthma-regardless of their age of onset-seem to have had some form of airway problems during childhood. Asthma inception and related pathophysiologic processes are therefore very likely to occur early in life, further evidenced by recent lung physiologic and mechanistic research. Herein, we present state-of-the-art updates on the role of genetics and epigenetics, early viral and bacterial infections, immune response, and pathophysiology, as well as lifestyle and environmental exposures, in asthma across the life course. We conclude that early environmental insults in genetically vulnerable individuals inducing abnormal, pre-asthmatic airway responses are key events in asthma inception, and we highlight disease heterogeneity across ages and the potential shortsightedness of treating all patients with asthma using the same treatments. Although there are no interventions that, at present, can modify long-term outcomes, a precision-medicine approach should be implemented to optimize treatment and tailor follow-up for all patients with asthma.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Heather J. Zar
- Department of Paediatrics and Child Health and South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Valerie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Dominic Shaw
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Sejal Saglani
- National Heart and Lung Institute, Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Groningen, the Netherlands
| | - Tina Hartert
- Department of Medicine and Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | | | - Andrew Bush
- National Heart and Lung Institute, Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | | |
Collapse
|
4
|
Bradding P, Porsbjerg C, Côté A, Dahlén SE, Hallstrand TS, Brightling CE. Airway hyperresponsiveness in asthma: The role of the epithelium. J Allergy Clin Immunol 2024; 153:1181-1193. [PMID: 38395082 DOI: 10.1016/j.jaci.2024.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andréanne Côté
- Quebec Heart and Lung Institute, Université Laval, Laval, Quebec, Canada; Department of Medicine, Université Laval, Laval, Quebec, Canada
| | - Sven-Erik Dahlén
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash.
| | - Christopher E Brightling
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
5
|
Kramer EL, Hudock KM, Davidson CR, Clancy JP. CFTR dysfunction in smooth muscle drives TGFβ dependent airway hyperreactivity. Respir Res 2023; 24:198. [PMID: 37568151 PMCID: PMC10416378 DOI: 10.1186/s12931-023-02495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The primary underlying defect in cystic fibrosis (CF) is disrupted ion transport in epithelia throughout the body. It is unclear if symptoms such as airway hyperreactivity (AHR) and increased airway smooth muscle (ASM) volume in people with CF are due to inherent abnormalities in smooth muscle or are secondary to epithelial dysfunction. Transforming Growth Factor beta 1 (TGFβ) is an established genetic modifier of CF lung disease and a known driver of abnormal ASM function. Prior studies have demonstrated that CF mice develop greater AHR, goblet cell hyperplasia, and ASM hypertrophy after pulmonary TGFβ exposure. However, the mechanism driving these abnormalities in CF lung disease, specifically the contribution of CFTR loss in ASM, was unknown. METHODS In this study, mice with smooth muscle-specific loss of CFTR function (Cftrfl/fl; SM-Cre mice) were exposed to pulmonary TGFβ. The impact on lung pathology and physiology was investigated through examination of lung mechanics, Western blot analysis, and pulmonary histology. RESULTS Cftrfl/fl; SM-Cre mice treated with TGFβ demonstrated greater methacholine-induced AHR than control mice. However, Cftrfl/fl; SM-Cre mice did not develop increased inflammation, ASM area, or goblet cell hyperplasia relative to controls following TGFβ exposure. CONCLUSIONS These results demonstrate a direct smooth muscle contribution to CF airway obstruction mediated by TGFβ. Dysfunction in non-epithelial tissues should be considered in the development of CF therapeutics, including potential genetic therapies.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| | - Kristin M Hudock
- Division of Adult Pulmonary & Critical Care Medicine, University of Cincinnati, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cynthia R Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | |
Collapse
|
6
|
Hassoun D, Rose L, Blanc FX, Magnan A, Loirand G, Sauzeau V. Bronchial smooth muscle cell in asthma: where does it fit? BMJ Open Respir Res 2022; 9:9/1/e001351. [PMID: 36109087 PMCID: PMC9478857 DOI: 10.1136/bmjresp-2022-001351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a frequent respiratory condition whose pathophysiology relies on altered interactions between bronchial epithelium, smooth muscle cells (SMC) and immune responses. Those leads to classical hallmarks of asthma: airway hyper-responsiveness, bronchial remodelling and chronic inflammation. Airway smooth muscle biology and pathophysiological implication in asthma are now better understood. Precise deciphering of intracellular signalling pathways regulating smooth muscle contraction highlighted the critical roles played by small GTPases of Rho superfamily. Beyond contractile considerations, active involvement of airway smooth muscle in bronchial remodelling mechanisms is now established. Not only cytokines and growth factors, such as fibroblats growth factor or transforming growth factor-β, but also extracellular matrix composition have been demonstrated as potent phenotype modifiers for airway SMC. Although basic science knowledge has grown significantly, little of it has translated into improvement in asthma clinical practice. Evaluation of airway smooth muscle function is still limited to its contractile activity. Moreover, it relies on tools, such as spirometry, that give only an overall assessment and not a specific one. Interesting technics such as forced oscillometry or specific imagery (CT and MRI) give new perspectives to evaluate other aspects of airway muscle such as bronchial remodelling. Finally, except for the refinement of conventional bronchodilators, no new drug therapy directly targeting airway smooth muscle proved its efficacy. Bronchial thermoplasty is an innovative and efficient therapeutic strategy but is only restricted to a small proportion of severe asthmatic patients. New diagnostic and therapeutic strategies specifically oriented toward airway smooth muscle are needed to improve global asthma care.
Collapse
Affiliation(s)
- Dorian Hassoun
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Lindsay Rose
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - François-Xavier Blanc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Magnan
- INRAe, UMR 0892, Hôpital Foch, Suresnes, France.,Université Versailles-Saint-Quentin-en-Yvelines Paris-Saclay, Versailles, France
| | - Gervaise Loirand
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - Vincent Sauzeau
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| |
Collapse
|
7
|
Galodé F, Ladipo O, Andrieux A, Feghali H, Bui S, Fayon M. Prevalence and Determinants of Wheezing and Bronchodilatation in Children With Cystic Fibrosis: A Retrospective Cohort Study. Front Pediatr 2022; 10:856840. [PMID: 35633979 PMCID: PMC9133441 DOI: 10.3389/fped.2022.856840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Many patients with cystic fibrosis (CF) wheeze, and are dubbed as having CF-asthma. Understanding the determinants of such wheezing may avoid unnecessary treatments and open newer treatment avenues. OBJECTIVES Main: To evaluate the prevalence and characteristics of wheezing and a positive bronchodilatory response (BDR) in children with CF. Secondary: To identify the predictive markers and the impact of current wheezing a positive BDR. METHODS A retrospective single-center study in children with CF. We determined the characteristics of physician-reported wheeze in patients <6 years, and a BDR in patients aged 6-17 years. Anthropometric, lung function, laboratory, genetic and microbiological data were recorded in all groups. Variables were compared using the Chi2 and Student t-tests, and ANOVA. RESULTS 125 preschool and 69 school-aged children and adolescents with CF were included in the study. 71.2% of patients <6 years of age had had at least one episode of wheezing: 26.3% of patients were Transient Early Wheezers, 12.6% Late Onset Wheezers and 37.9% were Persistent Wheezers. The prevalence of a positive BDR was 73.5, 48.5, and 52.9% in the 6-8 years, 10-12 years, and 15-17 years age groups, respectively. Allergic factors were not predictive of wheezing in preschoolers. In the 6-8 years age group, the sum of wheal diameters of allergic skin prick tests (SPT, house dust mite + cat + dog dander) was greater in those with a BDR vs. no BDR (4 [2.0-8.8] vs. 1 [0-7.0] mm, p = 0.01). The presence of Pseudomonas aeruginosa in the bronchial secretions before 3 years of age was not significantly associated with either the presence of wheezing at the age of 6 years or a BDR in school-aged children and adolescents. The proportion of homozygous p.F508del patients was significantly lower in the group of patients who had wheezed by 6 years of age (60% vs. 72.7%, p = 0.009), but higher in the 6-8 years old group with a BDR vs. no BDR (64% vs. 36%, p = 0.04). Current wheezers at 6 years had a lower mean FEV1 vs. the non-current wheezers (91.5 ± 4.4% vs. 100.9 ± 2.4%; p = 0.047). Similarly, forced vital capacity (FVC) was significantly lower in the 6-8 years old group with BDR vs. no BDR (85 ± 19 vs. 101 ± 21%, p = 0.015). CONCLUSION Wheezing and BDR are very frequent findings in children with CF. Current wheeze at the age of 6 years was associated with worse lung function. Labeling wheezing in CF as "CF-Asthma" is misleading since the determinants are different, and may lead to inappropriate prescriptions of inhaled steroids.
Collapse
Affiliation(s)
- Francois Galodé
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - O. Ladipo
- Service de Pédiatrie, CHU de la Mère et de l’Enfant Lagune, Cotonou, Benin
| | - A. Andrieux
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - H. Feghali
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - S. Bui
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - Michael Fayon
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
- INSERM, Centre d’Investigation Clinique (CIC 1401), University of Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Wang KCW, Donovan GM, Saglani S, Mauad T, James AL, Elliot JG, Noble PB. Growth of the airway smooth muscle layer from late gestation to childhood is mediated initially by hypertrophy and subsequently hyperplasia. Respirology 2022; 27:493-500. [PMID: 35266251 PMCID: PMC9545757 DOI: 10.1111/resp.14240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 12/18/2022]
Abstract
Background and objective The airway smooth muscle (ASM) layer thickens during development. Identifying the mechanism(s) for normal structural maturation of the ASM reveals pathways susceptible to disease processes. This study characterized thickening of the ASM layer from foetal life to childhood and elucidated the underlying mechanism in terms of hypertrophy, hyperplasia and extracellular matrix (ECM) deposition. Methods Airways from post‐mortem cases were examined from seven different age groups: 22–24 weeks gestation, 25–31 weeks gestation, term (37–41 weeks gestation), <0.5 year, 0.5–1 year, 2–5 years and 6–10 years. The ASM layer area (thickness), the number and size of ASM cells and the volume fraction of ECM were assessed by planimetry and stereology. Results From late gestation to the first year of life, normalized ASM thickness more than doubled as a result of ASM hypertrophy. Thereafter, until childhood, the ASM layer grew in proportion to airway size, which was mediated by ASM hyperplasia. Hypertrophy and hyperplasia of ASM were accompanied by a proportional change in ECM such that the broad composition of the ASM layer was constant across age groups. Conclusion These data suggest that the mechanisms of ASM growth from late gestation to childhood are temporally decoupled, with early hypertrophy and subsequent proliferation. We speculate that the developing airway is highly susceptible to ASM thickening in the first year of life and that the timing of an adverse event will determine structural phenotype. A period of rapid hypertrophic airway smooth muscle growth occurs in the first year of life, representing a critical window for disruption by disease processes and/or opportunity for clinical intervention. See relatedEditorial
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Thais Mauad
- Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
9
|
Nielsen KG, Holgersen MG, Crowley S, Marthin JK. Chronic airway disease in primary ciliary dyskinesia—spiced with geno–phenotype associations. AMERICAN JOURNAL OF MEDICAL GENETICS PART C: SEMINARS IN MEDICAL GENETICS 2022; 190:20-35. [PMID: 35352480 PMCID: PMC9314966 DOI: 10.1002/ajmg.c.31967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/01/2022]
Abstract
Primary ciliary dyskinesia (PCD) can be defined as a multiorgan ciliopathy with a dominant element of chronic airway disease affecting the nose, sinuses, middle ear, and in particular, the lower airways. Although most patients with PCD are diagnosed during preschool years, it is obvious that the chronic lung disease starts its course already from birth. The many faces of the clinical picture change, as does lung function, structural lung damage, the burden of infection, and of treatment throughout life. A markedly severe neutrophil inflammation in the respiratory tract seems pervasive and is only to a minimal extent ameliorated by a treatment strategy, which is predominantly aimed at bacterial infections. An ever‐increasing understanding of the different aspects, their interrelationships, and possible different age courses conditioned by the underlying genotype is the focus of much attention. The future is likely to offer personalized medicine in the form of mRNA therapy, but to that end, it is of utmost importance that all patients with PCD be carefully characterized and given a genetic diagnosis. In this narrative review, we have concentrated on lower airways and summarized the current understanding of the chronic airway disease in this motile ciliopathy. In addition, we highlight the challenges, gaps, and opportunities in PCD lung disease research.
Collapse
Affiliation(s)
- Kim G Nielsen
- Department of Paediatrics and Adolescent Medicine Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, ERN Accredited Copenhagen Denmark
- Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Mathias G Holgersen
- Department of Paediatrics and Adolescent Medicine Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, ERN Accredited Copenhagen Denmark
| | - Suzanne Crowley
- Paediatric Department of Allergy and Lung Diseases Oslo University Hospital, Rikshospitalet Oslo Norway
| | - June K Marthin
- Department of Paediatrics and Adolescent Medicine Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, ERN Accredited Copenhagen Denmark
| |
Collapse
|
10
|
Martínez-García MÁ, Oscullo G, García-Ortega A, Matera MG, Rogliani P, Cazzola M. Rationale and Clinical Use of Bronchodilators in Adults with Bronchiectasis. Drugs 2021; 82:1-13. [PMID: 34826104 DOI: 10.1007/s40265-021-01646-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Currently, there is much controversy surrounding the therapeutic approach to pulmonary function abnormalities in patients with bronchiectasis and, consequently, whether and when to use bronchodilators in these patients. National and international guidelines on the treatment of bronchiectasis in adults do not recommend the routine use of bronchodilators because there is no evidence that a significant response to a bronchodilator or the presence or hyperresponsiveness of the airway are good predictors of future effective clinical response. However, some guidelines recommend them in the presence of airway obstruction and/or special conditions, which vary according to the guideline in question, although there are no recommendations on optimal dosing and bronchodilator treatment combined with or without inhaled corticosteroids. Nonetheless, in contrast with guideline recommendations, bronchodilators are overused in real-world patients with bronchiectasis even in the absence of airway obstruction, as demonstrated by analysis of national and international registries. This overuse can be explained by the awareness of the existence of a solid pharmacological rationale that supports the use of bronchodilators in the presence of chronic airway obstruction independent of its aetiology. We performed a systematic review of the literature and were able to verify that there are no randomised controlled trials (apart from a small study with methodological limitations and a very recent trial involving a not-very-large number of patients), or any long-term observational studies on the short- or long-term effect of bronchodilators in patients with bronchiectasis. Therefore, we believe that it is essential and even urgent to evaluate the effects of bronchodilators in these patients with appropriately designed studies.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-García
- Respiratory Department, Polytechnic and University La Fe Hospital, Valencia, Spain.,CIBERES de Enfermedades Respiratorias, Madrid, Spain
| | - Grace Oscullo
- Respiratory Department, Polytechnic and University La Fe Hospital, Valencia, Spain
| | | | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
11
|
Fayon M, Beaufils F. The lower respiratory airway wall in children in health and disease. ERJ Open Res 2021; 7:00874-2020. [PMID: 34322550 PMCID: PMC8311136 DOI: 10.1183/23120541.00874-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Alone or in association with other lung or thorax component disorders, the airway wall (AWW) remains one of the most frequently involved elements in paediatric lung diseases. A myriad of AWW disorders will present with similar symptomatology. It is thus important for the clinician to reappraise the normal development and structure of the AWW to better understand the underlying disease patterns. We herein provide an overview of the structure of the AWW and a description of its development from the fetal period to adulthood. We also detail the most common AWW changes observed in several acute and chronic respiratory disorders as well as after cigarette smoke or chronic pollution exposure. We then describe the relationship between the AWW structure and lung function. In addition, we present the different ways of investigating the AWW structure, from biopsies and histological analyses to the most recent noninvasive airway (AW) imaging techniques. Understanding the pathophysiological processes involved in an individual patient will lead to the judicious choice of nonspecific or specific personalised treatments, in order to prevent irreversible AW damage.
Collapse
Affiliation(s)
- Michael Fayon
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, Bordeaux, France
- CHU de Bordeaux, Département de Pédiatrie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France
- INSERM, Centre d'Investigation Clinique (CIC1401), Bordeaux, France
| | - Fabien Beaufils
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, Bordeaux, France
- CHU de Bordeaux, Département de Pédiatrie, Service d'Exploration Fonctionnelle Respiratoire, Bordeaux, France
| |
Collapse
|
12
|
Wang KCW, James AL, Noble PB. Fetal Growth Restriction and Asthma: Is the Damage Done? Physiology (Bethesda) 2021; 36:256-266. [PMID: 34159809 DOI: 10.1152/physiol.00042.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Trajectories of airway remodeling and functional impairment in asthma are consistent with the notion that airway pathology precedes or coincides with the onset of asthma symptoms and may be present at birth. An association between intrauterine growth restriction (IUGR) and asthma development has also been established, and there is value in understanding the underlying mechanism. This review considers airway pathophysiology as a consequence of IUGR that increases susceptibility to asthma.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
13
|
Camoretti-Mercado B, Lockey RF. Airway smooth muscle pathophysiology in asthma. J Allergy Clin Immunol 2021; 147:1983-1995. [PMID: 34092351 DOI: 10.1016/j.jaci.2021.03.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
The airway smooth muscle (ASM) cell plays a central role in the pathogenesis of asthma and constitutes an important target for treatment. These cells control muscle tone and thus regulate the opening of the airway lumen and air passage. Evidence indicates that ASM cells participate in the airway hyperresponsiveness as well as the inflammatory and remodeling processes observed in asthmatic subjects. Therapeutic approaches require a comprehensive understanding of the structure and function of the ASM in both the normal and disease states. This review updates current knowledge about ASM and its effects on airway narrowing, remodeling, and inflammation in asthma.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla.
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| |
Collapse
|
14
|
Robinson PFM, Fontanella S, Ananth S, Martin Alonso A, Cook J, Kaya-de Vries D, Polo Silveira L, Gregory L, Lloyd C, Fleming L, Bush A, Custovic A, Saglani S. Recurrent Severe Preschool Wheeze: From Pre-Specified Diagnostic Labels to Underlying Endotypes. Am J Respir Crit Care Med 2021; 204:523-535. [PMID: 33961755 PMCID: PMC8491264 DOI: 10.1164/rccm.202009-3696oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rationale: Preschool wheezing is heterogeneous, but the underlying mechanisms are poorly understood. Objectives: To investigate lower airway inflammation and infection in preschool children with different clinical diagnoses undergoing elective bronchoscopy and BAL. Methods: We recruited 136 children aged 1–5 years (105 with recurrent severe wheeze [RSW]; 31 with nonwheezing respiratory disease [NWRD]). Children with RSW were assigned as having episodic viral wheeze (EVW) or multiple-trigger wheeze (MTW). We compared lower airway inflammation and infection in different clinical diagnoses and undertook data-driven analyses to determine clusters of pathophysiological features, and we investigated their relationships with prespecified diagnostic labels. Measurements and Main Results: Blood eosinophil counts and percentages and allergic sensitization were significantly higher in children with RSW than in children with a NWRD. Blood neutrophil counts and percentages, BAL eosinophil and neutrophil percentages, and positive bacterial culture and virus detection rates were similar between groups. However, pathogen distribution differed significantly, with higher detection of rhinovirus in children with RSW and higher detection of Moraxella in sensitized children with RSW. Children with EVW and children with MTW did not differ in terms of blood or BAL-sample inflammation, or bacteria or virus detection. The Partition around Medoids algorithm revealed four clusters of pathophysiological features: 1) atopic (17.9%), 2) nonatopic with a low infection rate and high use of inhaled corticosteroids (31.3%), 3) nonatopic with a high infection rate (23.1%), and 4) nonatopic with a low infection rate and no use of inhaled corticosteroids (27.6%). Cluster allocation differed significantly between the RSW and NWRD groups (RSW was evenly distributed across clusters, and 60% of the NWRD group was assigned to cluster 4; P < 0.001). There was no difference in cluster membership between the EVW and MTW groups. Cluster 1 was dominated by Moraxella detection (P = 0.04), and cluster 3 was dominated by Haemophilus or Staphylococcus or Streptococcus detection (P = 0.02). Conclusions: We identified four clusters of severe preschool wheeze, which were distinguished by using sensitization, peripheral eosinophilia, lower airway neutrophilia, and bacteriology.
Collapse
Affiliation(s)
- Polly F M Robinson
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Sara Fontanella
- Imperial College London, Department of Paediatrics, London, United Kingdom of Great Britain and Northern Ireland
| | - Sachin Ananth
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Aldara Martin Alonso
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - James Cook
- Royal Brompton and Harefield NHS Foundation Trust, 4964, Paediatric Respiratory Medicine, London, United Kingdom of Great Britain and Northern Ireland
| | - Daphne Kaya-de Vries
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland.,Royal Brompton and Harefield NHS Foundation Trust, 4964, Paediatric Respiratory Medicine, London, United Kingdom of Great Britain and Northern Ireland
| | - Luisa Polo Silveira
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Lisa Gregory
- Imperial College, Leukocyte Biology, South Kensington, United Kingdom of Great Britain and Northern Ireland
| | - Clare Lloyd
- Imperial College, Leukocyte Biology, London, United Kingdom of Great Britain and Northern Ireland
| | - Louise Fleming
- Royal BRompton Hospital, Respiratory Paediatrics, London, United Kingdom of Great Britain and Northern Ireland
| | - Andrew Bush
- Imperial College and Royal Brompton Hospital, London, London, United Kingdom of Great Britain and Northern Ireland
| | - Adnan Custovic
- Imperial College London, 4615, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Sejal Saglani
- Royal Brompton Hospital, Respiratory Paediatrics, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
15
|
Bonner K, Scotney E, Saglani S. Factors and mechanisms contributing to the development of preschool wheezing disorders. Expert Rev Respir Med 2021; 15:745-760. [PMID: 33881953 DOI: 10.1080/17476348.2021.1913057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Half of all children will experience an episode of wheezing by their sixth birthday and acute episodes of wheezing in preschool children account for the majority of all childhood hospital admissions for wheeze. Recurrent preschool wheezing associates with early loss of lung function and a life-long impact on lung health. AREAS COVERED We reviewed the literature on PubMed from August 2010-2020 focussing on factors associated with wheeze inception and persistence, paying specific attention to mechanistic studies that have investigated the impact of early life exposures in shaping immune responses in children with underlying susceptibility to wheezing. In particular, the role of early allergen sensitization, respiratory infections, and the impact of the environment on shaping the airway microbiome and resulting immune responses are discussed. EXPERT OPINION There is an abundance of associative data showing the role of in utero and postnatal factors influencing wheeze onset and persistence. However, mechanistic and stratified, biomarker-based interventional studies that confirm these associations are now needed if we are to impact the significant healthcare burden resulting from preschool wheezing disorders.
Collapse
Affiliation(s)
- Katie Bonner
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Elizabeth Scotney
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| |
Collapse
|
16
|
Pham AK, Miller M, Rosenthal P, Das S, Weng N, Jang S, Kurten RC, Badrani J, Doherty TA, Oliver B, Broide DH. ORMDL3 expression in ASM regulates hypertrophy, hyperplasia via TPM1 and TPM4, and contractility. JCI Insight 2021; 6:136911. [PMID: 33661765 PMCID: PMC8119187 DOI: 10.1172/jci.insight.136911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
ORM1-like 3 (ORMDL3) has strong genetic linkage to childhood onset asthma. To determine whether ORMDL3 selective expression in airway smooth muscle (ASM) influences ASM function, we used Cre-loxP techniques to generate transgenic mice (hORMDL3Myh11eGFP-cre), which express human ORMDL3 selectively in smooth muscle cells. In vitro studies of ASM cells isolated from the bronchi of hORMDL3Myh11eGFP-cre mice demonstrated that they developed hypertrophy (quantitated by FACS and image analysis), developed hyperplasia (assessed by BrdU incorporation), and expressed increased levels of tropomysin proteins TPM1 and TPM4. siRNA knockdown of TPM1 or TPM4 demonstrated their importance to ORMDL3-mediated ASM proliferation but not hypertrophy. In addition, ASM derived from hORMDL3Myh11eGFP-cre mice had increased contractility to histamine in vitro, which was associated with increased levels of intracellular Ca2+; increased cell surface membrane Orai1 Ca2+ channels, which mediate influx of Ca2+ into the cytoplasm; and increased expression of ASM contractile genes sarco/endoplasmic reticulum Ca2+ ATPase 2b and smooth muscle 22. In vivo studies of hORMDL3Myh11eGFP-cre mice demonstrated that they had a spontaneous increase in ASM and airway hyperreactivity (AHR). ORMDL3 expression in ASM thus induces changes in ASM (hypertrophy, hyperplasia, increased contractility), which may explain the contribution of ORMDL3 to the development of AHR in childhood onset asthma, which is highly linked to ORMDL3 on chromosome 17q12-21.
Collapse
Affiliation(s)
- Alexa K. Pham
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Peter Rosenthal
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sudipta Das
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ning Weng
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sunghoon Jang
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard C. Kurten
- Department of Pediatrics, Arkansas Children’s Research Institute, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jana Badrani
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Taylor A. Doherty
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Veterans Affairs San Diego Health Care System, La Jolla, California, USA
| | - Brian Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - David H. Broide
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
17
|
Pijnenburg MW, Fleming L. Advances in understanding and reducing the burden of severe asthma in children. THE LANCET RESPIRATORY MEDICINE 2020; 8:1032-1044. [PMID: 32910897 DOI: 10.1016/s2213-2600(20)30399-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 01/16/2023]
Abstract
Severe asthma in children is rare, accounting for only a small proportion of childhood asthma. After addressing modifiable factors such as adherence to treatment, comorbidities, and adverse exposures, children whose disease is not well controlled on high doses of medication form a heterogeneous group of severe asthma phenotypes. Over the past decade, considerable advances have been made in understanding the pathophysiology of severe therapy-resistant asthma in children. However, asthma attacks and hospital admissions are frequent and mortality is still unacceptably high. Strategies to modify the natural history of asthma, prevent severe exacerbations, and prevent lung function decline are needed. Mechanistic studies have led to the development of several biologics targeting type 2 inflammation. This growing pipeline has the potential to reduce the burden of severe asthma; however, detailed assessment and characterisation of each child with seemingly severe asthma is necessary so that the most effective and appropriate management strategy can be implemented. Risk stratification, remote monitoring, and the integration of multiple data sources could help to tailor management for the individual child with severe asthma.
Collapse
Affiliation(s)
- Mariëlle W Pijnenburg
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands.
| | - Louise Fleming
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
18
|
Wang KCW, Donovan GM, James AL, Noble PB. Asthma: Pharmacological degradation of the airway smooth muscle layer. Int J Biochem Cell Biol 2020; 126:105818. [PMID: 32707120 DOI: 10.1016/j.biocel.2020.105818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Asthma: A disease characterised by excessive and variable airway narrowing, and pathologies of inflammation and remodelling, particularly thickening of the airway smooth muscle (ASM). Treatment approaches dilate narrowed airways and reduce inflammation; however, remodelling seems largely neglected. This review considers the evolution of remodelling in asthma and whether conventional hypotheses that inflammation causes ASM thickening has mislead the medical community into thinking that anti-inflammatories will remedy this ASM defect. There is instead reasonable evidence that ASM thickening occurs independently of inflammation, such that therapies should employ strategies to directly modify ASM growth. Lessons have been learned from the use of untargeted bronchial thermoplasty and there should also be consideration of pharmacological therapies to ablate ASM. We discuss several new approaches to target ASM remodelling in asthma. A major current obstacle is our inability to image the ASM layer and assess treatment response. In this regard, polarisation-sensitive optical coherence tomography offers future promise.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia; Telethon Kids Institute, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, 6009, Western Australia, Australia; Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
19
|
Kramer EL, Madala SK, Hudock KM, Davidson C, Clancy JP. Subacute TGFβ Exposure Drives Airway Hyperresponsiveness in Cystic Fibrosis Mice through the PI3K Pathway. Am J Respir Cell Mol Biol 2020; 62:657-667. [PMID: 31922900 DOI: 10.1165/rcmb.2019-0158oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal genetic disease characterized by progressive lung damage and airway obstruction. The majority of patients demonstrate airway hyperresponsiveness (AHR), which is associated with more rapid lung function decline. Recent studies in the neonatal CF pig demonstrated airway smooth muscle (ASM) dysfunction. These findings, combined with observed CF transmembrane conductance regulator (CFTR) expression in ASM, suggest that a fundamental defect in ASM function contributes to lung function decline in CF. One established driver of AHR and ASM dysfunction is transforming growth factor (TGF) β1, a genetic modifier of CF lung disease. Prior studies demonstrated that TGFβ exposure in CF mice drives features of CF lung disease, including goblet cell hyperplasia and abnormal lung mechanics. CF mice displayed aberrant responses to pulmonary TGFβ, with elevated PI3K signaling and greater increases in lung resistance compared with controls. Here, we show that TGFβ drives abnormalities in CF ASM structure and function through PI3K signaling that is enhanced in CFTR-deficient lungs. CF and non-CF mice were exposed intratracheally to an adenoviral vector containing the TGFβ1 cDNA, empty vector, or PBS only. We assessed methacholine-induced AHR, bronchodilator response, and ASM area in control and CF mice. Notably, CF mice demonstrated enhanced AHR and bronchodilator response with greater ASM area increases compared with non-CF mice. Furthermore, therapeutic inhibition of PI3K signaling mitigated the TGFβ-induced AHR and goblet cell hyperplasia in CF mice. These results highlight a latent AHR phenotype in CFTR deficiency that is enhanced through TGFβ-induced PI3K signaling.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| | - Satish K Madala
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| | - Kristin M Hudock
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, Ohio; and.,Division of Adult Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - John P Clancy
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| |
Collapse
|
20
|
Loh Z, Simpson J, Ullah A, Zhang V, Gan WJ, Lynch JP, Werder RB, Sikder AA, Lane K, Sim CB, Porrello E, Mazzone SB, Sly PD, Steptoe RJ, Spann KM, Sukkar MB, Upham JW, Phipps S. HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. PLoS Pathog 2020; 16:e1008651. [PMID: 32658914 PMCID: PMC7377495 DOI: 10.1371/journal.ppat.1008651] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022] Open
Abstract
Type-2 immunity elicits tissue repair and homeostasis, however dysregulated type-2 responses cause aberrant tissue remodelling, as observed in asthma. Severe respiratory viral infections in infancy predispose to later asthma, however, the processes that mediate tissue damage-induced type-2 inflammation and the origins of airway remodelling remain ill-defined. Here, using a preclinical mouse model of viral bronchiolitis, we find that increased epithelial and mesenchymal high-mobility group box 1 (HMGB1) expression is associated with increased numbers of IL-13-producing type-2 innate lymphoid cell (ILC2s) and the expansion of the airway smooth muscle (ASM) layer. Anti-HMGB1 ablated lung ILC2 numbers and ASM growth in vivo, and inhibited ILC2-mediated ASM cell proliferation in a co-culture model. Furthermore, we identified that HMGB1/RAGE (receptor for advanced glycation endproducts) signalling mediates an ILC2-intrinsic IL-13 auto-amplification loop. In summary, therapeutic targeting of the HMGB1/RAGE signalling axis may act as a novel asthma preventative by dampening ILC2-mediated type-2 inflammation and associated ASM remodelling. Asthma can start at any time in life, although most often begins in early childhood. Wheezy viral bronchiolitis is a major independent risk factor for subsequent asthma. However, key knowledge gaps exist in relation to the sequelae of severe viral bronchiolitis and the pathogenic processes that promote type-2 inflammation and airway wall remodelling, cardinal features of asthma. Our study addresses this gap by identifying high-mobility group box 1 as a pathogenic cytokine that contributes to group 2 innate lymphoid cell-induced airway smooth muscle growth.
Collapse
Affiliation(s)
- Zhixuan Loh
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Jennifer Simpson
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Ashik Ullah
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Vivian Zhang
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Wan J. Gan
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
| | - Jason P. Lynch
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Rhiannon B. Werder
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Al Amin Sikder
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Katie Lane
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
| | - Choon Boon Sim
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Enzo Porrello
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Stuart B. Mazzone
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Peter D. Sly
- Children’s Health and Environment Program, Child Health Research Centre, University of Queensland, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Raymond J. Steptoe
- UQ Diamantina Institute, The University of Queensland, Queensland, Australia
| | - Kirsten M. Spann
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Maria B. Sukkar
- Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - John W. Upham
- UQ Diamantina Institute, The University of Queensland, Queensland, Australia
| | - Simon Phipps
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
- * E-mail:
| |
Collapse
|
21
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Malmström K, Lohi J, Malmberg LP, Kotaniemi-Syrjänen A, Lindahl H, Sarna S, Pelkonen AS, Mäkelä MJ. Airway hyperresponsiveness, remodeling and inflammation in infants with wheeze. Clin Exp Allergy 2020; 50:558-566. [PMID: 32159879 DOI: 10.1111/cea.13598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/23/2020] [Accepted: 03/08/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The relationship of airway hyperresponsiveness to airway remodeling and inflammation in infants with wheeze is unclear. OBJECTIVE To investigate airway hyperresponsiveness, remodeling and inflammation in infants with wheeze and troublesome breathing. METHODS Inclusion criteria were as follows: full-term, 3-23 months of age; doctor -diagnosed wheeze and persistent recurrent troublesome breathing; without obvious structural defect, suspicion of ciliary dyskinesia, cystic fibrosis, immune deficiency or specified use of corticosteroids. Airway hyperresponsiveness (AHR) was evaluated by performing a methacholine bronchial challenge test combined with whole body plethysmography and rapid thoracoabdominal compression. Endobronchial biopsies were analysed for remodeling (thickness of reticular basement membrane and amount of airway smooth muscle) and for inflammation (numbers of inflammatory cells). Correlation analyses were performed. RESULTS Forty-nine infants fulfilled the inclusion criteria for the present study. Median age was 1.06 years (IQR 0.6; 1.5). Lung function was impaired in 39/49 (80%) children, at the median age of 1.1 years. Methacholine challenge was successfully performed in 38/49 children. Impaired baseline lung function was correlated with AHR (P = .047, Spearman). In children with the most sensitive quartile of AHR, the percentage of median bronchial airway smooth muscle % and the number of bronchial mast cells in airway smooth muscle were not significantly higher compared to others (P = .057 and 0.056, respectively). No association was found between AHR and thickness of reticular basement membrane or inflammatory cells. Only a small group of children with both atopy and AHR (the most reactive quartile) had thicker airway smooth muscle area than non-atopics with AHR (P = .031). CONCLUSIONS AND CLINICAL RELEVANCE These findings do not support the concept that AHR in very young children with wheeze is determined by eosinophilic inflammation or clear-cut remodeling although it is associated with impaired baseline lung function. The possible association of increased airway smooth muscle area among atopic children with AHR remains to be confirmed.
Collapse
Affiliation(s)
- Kristiina Malmström
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- Dept. of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leo Pekka Malmberg
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Kotaniemi-Syrjänen
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harry Lindahl
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Sarna
- Dept. of Public Health, University of Helsinki, Helsinki, Finland
| | - Anna S Pelkonen
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika J Mäkelä
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
23
|
Matusovsky OS, Kachmar L, Ijpma G, Panariti A, Benedetti A, Martin JG, Lauzon AM. Contractile Properties of Intrapulmonary Airway Smooth Muscle in Cystic Fibrosis. Am J Respir Cell Mol Biol 2019; 60:434-444. [PMID: 30359078 DOI: 10.1165/rcmb.2018-0005oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal-recessive disease caused by mutations in the CF transmembrane conductance regulator gene. Many patients with CF have asthma-like symptoms and airway hyperresponsiveness, which are potentially associated with altered airway smooth muscle (ASM) contractility. Our goal in this study was to assess the contractility of the CF intrapulmonary ASM. ASM strips were dissected from human control and CF intrapulmonary airways, and assessed for methacholine-induced shortening velocity, maximal force, and stress. We also assessed isoproterenol responses in maximally methacholine-contracted ASM. ASM strips were then incubated for 16 hours with IL-13 and measurements were repeated. Myosin light chain kinase (MLCK) expression was assessed by Western blotting. Airways were immunostained for morphometry. ASM mass was increased in CF airways, which likely contributes to airway hyperresponsiveness. Although ASM contractile properties were not intrinsically different between patients with CF and control subjects, CF ASM responded differently in the presence of the inflammatory mediator IL-13, showing impairment in β-adrenergic-induced relaxation. Indeed, the percentage of relaxation measured at maximal isoproterenol concentrations in the CF ASM was significantly lower after incubation with IL-13 (46.0% ± 6.7% relaxation) than without IL-13 (74.0% ± 7.7% relaxation, P = 0.018). It was also significantly lower than that observed in control ASM incubated with IL-13 (68.8% ± 4.9% relaxation, P = 0.048) and without IL-13 (82.4% ± 9.9%, P = 0.0035). CF ASM incubated with IL-13 also expressed greater levels of MLCK. Thus, our data suggest that the combination of an increase in ASM mass, increased MLCK expression, and inflammation-induced β-adrenergic hyporesponsiveness may contribute to airway dysfunction in CF.
Collapse
Affiliation(s)
- Oleg S Matusovsky
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Linda Kachmar
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Gijs Ijpma
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Alice Panariti
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Andrea Benedetti
- 2 Department of Medicine, and.,3 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada; and.,4 Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, Montréal, Québec, Canada
| | - James G Martin
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center.,2 Department of Medicine, and
| | - Anne-Marie Lauzon
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center.,2 Department of Medicine, and
| |
Collapse
|
24
|
Knihtilä H, Kotaniemi-Syrjänen A, Pelkonen AS, Savinko T, Malmberg LP, Mäkelä MJ. Serum chitinase-like protein YKL-40 is linked to small airway function in children with asthmatic symptoms. Pediatr Allergy Immunol 2019; 30:803-809. [PMID: 31487401 DOI: 10.1111/pai.13119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lung function impairment among asthmatic children begins in early life, and biomarkers for identifying this impairment are needed. The chitinase-like protein YKL-40 has been associated with asthma and lung function in adults, but studies in children have yielded conflicting results. We evaluated the potential of YKL-40 and other systemic biomarkers for identifying lung function deficits in children with asthmatic symptoms. METHODS We determined the levels of serum YKL-40, periostin, and high-sensitivity C-reactive protein (hs-CRP) from the blood samples of 49 children with asthmatic symptoms. Lung function was assessed with impulse oscillometry (IOS) and spirometry, combined with an exercise challenge and a bronchodilator test. Fractional exhaled nitric oxide was measured at multiple flow rates. RESULTS Serum levels of YKL-40 showed significant correlations with most IOS indices at baseline (P = .008-.039), but there was no association between YKL-40 and spirometry parameters. Neither periostin nor hs-CRP were associated with baseline lung function. Children with a significant response in either the exercise challenge or the bronchodilator test had increased serum levels of YKL-40 (P = .003) and periostin (P = .035). YKL-40 correlated significantly with the blood neutrophil count (rs = .397, P = .005) but was not associated with biomarkers of eosinophilic inflammation. CONCLUSION Serum YKL-40 is a potential biomarker for lung function deficits in children with asthmatic symptoms. These deficits appear to be focused on small airways and may remain undetected with spirometry.
Collapse
Affiliation(s)
- Hanna Knihtilä
- Department of Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Kotaniemi-Syrjänen
- Department of Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna S Pelkonen
- Department of Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Terhi Savinko
- Department of Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leo Pekka Malmberg
- Department of Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika J Mäkelä
- Department of Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Jang JH, Panariti A, O’Sullivan MJ, Pyrch M, Wong C, Lauzon AM, Martin JG. Characterization of cystic fibrosis airway smooth muscle cell proliferative and contractile activities. Am J Physiol Lung Cell Mol Physiol 2019; 317:L690-L701. [DOI: 10.1152/ajplung.00090.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes multiple airway abnormalities. Two major respiratory consequences of CF are airway hyperresponsiveness (AHR) and airway remodeling. Airway smooth muscle (ASM) is hypothesized to be responsible for the airway dysfunction, since their thickening is involved in remodeling, and excessive contraction by the ASM may cause AHR. It is unclear whether the ASM is intrinsically altered to favor increased contractility or proliferation or if microenvironmental influences induce pathological behavior in vivo. In this study, we examined the contractile and proliferative properties of ASM cells isolated from healthy donor and CF transplant lungs. Assays of proliferation showed that CF ASM proliferates at a higher rate than healthy cells. Through calcium analysis, no differences in contractile activation in response to histamine were found. However, CF ASM cells lagged in their reuptake of calcium in the sarcoplasmic reticulum. The combination CFTR corrector and potentiator, VX-809/770, used to restore CFTR function in CF ASM, resulted in a reduction in proliferation and in a normalization of calcium reuptake kinetics. These results show that impaired CFTR function in ASM cells causes intrinsic changes in their proliferative and contractile properties.
Collapse
Affiliation(s)
- Joyce Hojin Jang
- Meakins-Christie Laboratories, McGill University Health Center and McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Alice Panariti
- Meakins-Christie Laboratories, McGill University Health Center and McGill University, Montreal, Quebec, Canada
| | - Michael J. O’Sullivan
- Meakins-Christie Laboratories, McGill University Health Center and McGill University, Montreal, Quebec, Canada
| | - Melissa Pyrch
- Meakins-Christie Laboratories, McGill University Health Center and McGill University, Montreal, Quebec, Canada
| | - Chris Wong
- Meakins-Christie Laboratories, McGill University Health Center and McGill University, Montreal, Quebec, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University Health Center and McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, McGill University Health Center and McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Islam MM, Bhanja P, Halder M, Das A, Bhaumik A, Islam SM. Chiral Cr(III)-salen complex embedded over sulfonic acid functionalized mesoporous SBA-15 material as an efficient catalyst for the asymmetric Henry reaction. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Bonato M, Tiné M, Bazzan E, Biondini D, Saetta M, Baraldo S. Early Airway Pathological Changes in Children: New Insights into the Natural History of Wheezing. J Clin Med 2019; 8:jcm8081180. [PMID: 31394827 PMCID: PMC6723918 DOI: 10.3390/jcm8081180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 01/09/2023] Open
Abstract
Asthma is a heterogeneous condition characterized by reversible airflow limitation, with different phenotypes and clinical expressions. Although it is known that asthma is influenced by age, gender, genetic background, and environmental exposure, the natural history of the disease is still incompletely understood. Our current knowledge of the factors determining the evolution from wheezing in early childhood to persistent asthma later in life originates mainly from epidemiological studies. The underlying pathophysiological mechanisms are still poorly understood. The aim of this review is to converge epidemiological and pathological evidence early in the natural history of asthma to gain insight into the mechanisms of disease and their clinical expression.
Collapse
Affiliation(s)
- Matteo Bonato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Mariaenrica Tiné
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy.
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
28
|
Hoffmann-Petersen B, Suffolk R, Petersen JJH, Petersen TH, Arendt K, Høst A, Halken S, Sorensen GL, Agertoft L. Microfibrillar-associated protein 4 in serum is associated with asthma in Danish adolescents and young adults. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:150-159. [PMID: 31251481 PMCID: PMC6688087 DOI: 10.1002/iid3.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023]
Abstract
Background Microfibrillar‐associated protein 4 (MFAP4) is an extracellular matrix protein belonging to the fibrinogen‐related protein superfamily, which plays multifaceted roles in innate immunity and normal endothelial function. It has been proposed that MFAP4 promotes the development of asthma in vivo and proasthmatic pathways of bronchial smooth muscle cells in vitro. The aim of this study was to investigate the significance of serum MFAP4 in adolescents and young adolescents with persistent asthma. Methods Prospective, observational study including adolescents and young adults (age 11‐27 years) previously diagnosed with asthma during childhood 2003 to 2005 (0‐15 years) at the four pediatric outpatient clinics in the Region of Southern Denmark (n = 449). Healthy controls were recruited at follow‐up (n = 314). Detection of serum MFAP4 was performed by AlphaLISA technique. Results Current asthma was associated to a 14% higher mean level of serum MFAP4 compared with controls (expβ 1.14, 95% confidence intervals [CI], 1.05‐1.23) and a 6% higher mean level compared with subjects with no current asthma (expβ 1.06, 95% CI, 0.99‐1.13). No association was found at follow‐up between serum MFAP4 and self‐reported atopic symptoms (other than asthma), Asthma Control Test‐score, fractional exhaled nitric oxide (FeNO), nor to flow rate at 1 second, forced vital capacity, and forced expiratory flow 25% to 75%, response to short‐acting beta 2 agonist or mannitol. Conclusions We found a significantly higher mean level of serum MFAP4 in adolescent and young adults with mild to moderate asthma compared with healthy controls but no association to FeNO and lung function nor to the response to short‐acting beta 2 agonist or mannitol. The result supports the hypothesis that MFAP4 plays a role in the pathogenesis of asthma although the marker did not demonstrate any obvious potential as an asthma biomarker in adolescents and young adults with asthma. To understand the possible proasthmatic functions of MFAP4, further investigation in specific asthma phenotypes and the underlying molecular mechanisms is warranted.
Collapse
Affiliation(s)
- Benjamin Hoffmann-Petersen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Open Patient Data Explorative Network, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Raymond Suffolk
- Department of Pediatrics, Hospital of Southern Jutland, Aabenraa, Denmark
| | | | | | - Kirsten Arendt
- Department of Pediatrics, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Arne Høst
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lone Agertoft
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| |
Collapse
|
29
|
Fleming L, Heaney L. Severe Asthma-Perspectives From Adult and Pediatric Pulmonology. Front Pediatr 2019; 7:389. [PMID: 31649906 PMCID: PMC6794347 DOI: 10.3389/fped.2019.00389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Both adults and children with severe asthma represent a small proportion of the asthma population; however, they consume disproportionate resources. For both groups it is important to confirm the diagnosis of severe asthma and ensure that modifiable factors such as adherence have, as far as possible, been addressed. Most children can be controlled on inhaled corticosteroids and long term oral corticosteroid use is rare, in contrast to adults where steroid related morbidity accounts for a large proportion of the costs of severe asthma. Atopic sensitization is very common in children with severe asthma as are other atopic conditions such as allergic rhinitis and hay fever which can impact on asthma control. In adults, the role of allergic driven disease, even in those with co-existent evidence of sensitization, is unclear. There is currently an exciting pipeline of novel biologicals, particularly directed at Type 2 inflammation, which afford the possibility of improved asthma control and reduced treatment side effects for people with asthma. However, not all drugs will work for all patients and accurate phenotyping is essential. In adults the terms T2 high and T2 low asthma have been coined to describe groups of patients based on the presence/absence of eosinophilic inflammation and T-helper 2 (TH2) cytokines. Bronchoscopic studies in children with severe asthma have demonstrated that these children are predominantly eosinophilic but the cytokine patterns do not fit the T2 high paradigm suggesting other steroid resistant pathways are driving the eosinophilic inflammation. It remains to be seen whether treatments developed for adult severe asthma will be effective in children and which biomarkers will predict response.
Collapse
Affiliation(s)
- Louise Fleming
- National Heart and Lung Institute, Imperial College, London and Royal Brompton Hospital, London, United Kingdom
| | - Liam Heaney
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Institute for Health Sciences, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
30
|
Abstract
The recent Lancet commission has highlighted that "asthma" should be used to describe a clinical syndrome of wheeze, breathlessness, chest tightness, and sometimes cough. The next step is to deconstruct the airway into components of fixed and variable airflow obstruction, inflammation, infection and altered cough reflex, setting the airway disease in the context of extra-pulmonary co-morbidities and social and environmental factors. The emphasis is always on delineating treatable traits, including variable airflow obstruction caused by airway smooth muscle constriction (treated with short- and long-acting β-2 agonists), eosinophilic airway inflammation (treated with inhaled corticosteroids) and chronic bacterial infection (treated with antibiotics with benefit if it is driving the disease). It is also important not to over-treat the untreatable, such as fixed airflow obstruction. These can all be determined using simple, non-invasive tests such as spirometry before and after acute administration of a bronchodilator (reversible airflow obstruction); peripheral blood eosinophil count, induced sputum, exhaled nitric oxide (airway eosinophilia); and sputum or cough swab culture (bacterial infection). Additionally, the pathophysiology of risk domains must be considered: these are risk of an asthma attack, risk of poor airway growth, and in pre-school children, risk of progression to eosinophilic school age asthma. Phenotyping the airway will allow more precise diagnosis and targeted treatment, but it is important to move to endotypes, especially in the era of increasing numbers of biologicals. Advances in -omics technology allow delineation of pathways, which will be particularly important in TH2 low eosinophilic asthma, and also pauci-inflammatory disease. It is very important to appreciate the difficulties of cluster analysis; a patient may have eosinophilic airway disease because of a steroid resistant endotype, because of non-adherence to basic treatment, and a surge in environmental allergen burden. Sophisticated -omics approaches will be reviewed in this manuscript, but currently they are not being used in clinical practice. However, even while they are being evaluated, management of the asthmas can and should be improved by considering the pathophysiologies of the different airway diseases lumped under that umbrella term, using simple, non-invasive tests which are readily available, and treating accordingly.
Collapse
Affiliation(s)
- Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| |
Collapse
|
31
|
Castro-Rodriguez JA, Saglani S, Rodriguez-Martinez CE, Oyarzun MA, Fleming L, Bush A. The relationship between inflammation and remodeling in childhood asthma: A systematic review. Pediatr Pulmonol 2018; 53:824-835. [PMID: 29469196 DOI: 10.1002/ppul.23968] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVES We aimed to perform a systematic review of all studies with direct measurements of both airway inflammation and remodeling in the subgroup of children with repeated wheezing and/or persistent asthma severe enough to warrant bronchoscopy, to address whether airway inflammation precedes remodeling or is a parallel process, and also to assess the impact of remodeling on lung function. METHODS Four databases were searched up to June 2017. Two independent reviewers screened the literature and extracted relevant data. RESULTS We found 526 references, and 39 studies (2390 children under 18 years old) were included. Airway inflammation (eosinophilic/neutrophilic) and remodeling were not present in wheezers at a mean age of 12 months, but in older pre-school children (mean 2.5 years), remodeling (mainly increased reticular basement membrane [RBM] thickness and increased area of airway smooth muscle) and also airway eosinophilia was reported. This was worse in school-age children. RBM thickness was similar in atopic and non-atopic preschool wheezers. Airway remodeling was correlated with lung function in seven studies, with FeNO in three, and with HRCT-scan in one. Eosinophilic inflammation was not seen in patients without remodeling. There were no invasive longitudinal or intervention studies. CONCLUSION The relationship between inflammation and remodeling in children cannot be determined. Failure to demonstrate eosinophilic inflammation in the absence of remodeling is contrary to the hypothesis that inflammation causes these changes. We need reliable, non-invasive markers of remodeling in particular if this is to be addressed.
Collapse
Affiliation(s)
- Jose A Castro-Rodriguez
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Maria A Oyarzun
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Louis Fleming
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| |
Collapse
|
32
|
Hussain M, Xu C, Lu M, Wu X, Tang L, Wu X. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3226-3242. [PMID: 28866134 DOI: 10.1016/j.bbadis.2017.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
Embryonic lung development requires reciprocal endodermal-mesodermal interactions; mediated by various signaling proteins. Wnt/β-catenin is a signaling protein that exhibits the pivotal role in lung development, injury and repair while aberrant expression of Wnt/β-catenin signaling leads to asthmatic airway remodeling: characterized by hyperplasia and hypertrophy of airway smooth muscle cells, alveolar and vascular damage goblet cells metaplasia, and deposition of extracellular matrix; resulting in decreased lung compliance and increased airway resistance. The substantial evidence suggests that Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Here, we summarized the recent advances related to the mechanistic role of Wnt/β-catenin signaling in lung development, consequences of aberrant expression or deletion of Wnt/β-catenin signaling in expansion and progression of asthmatic airway remodeling, and linking early-impaired pulmonary development and airway remodeling later in life. Finally, we emphasized all possible recent potential therapeutic significance and future prospectives, that are adaptable for therapeutic intervention to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China.
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| |
Collapse
|
33
|
Paul L. Is bronchoscopy an obsolete tool in cystic fibrosis? The role of bronchoscopy in cystic fibrosis and its clinical use. J Thorac Dis 2017; 9:S1139-S1145. [PMID: 29214071 DOI: 10.21037/jtd.2017.06.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cystic fibrosis (CF) is a progressive life threatening multisystem genetic disease which affects the CF transmembrane conductance regulator channel. Respiratory causes remain the most common mortality in CF. With the onset of newborn screening, initiating treatments both for prophylaxis and disease management, optimizing nutritional support, and developing therapies targeting CF transmembrane conductance regulator protein, this has significantly changed the face of managing this devastating disease. Bronchoscopy and related procedures such as bronchoalveolar lavage (BAL), transbronchial biopsies, and protected brush sampling have been looked at in the management of CF as patients with CF continue to live longer with the help of newer therapies, the microbiome in the lung becomes less diverse along with increased occurrences for noninfectious causes of airway diseases. Though bronchoscopy has been used in conjunction with other modalities such as computed tomography and sputum induction providing a better understanding of the progression of the disease, it still remains valuable in the diagnosis and management of CF.
Collapse
Affiliation(s)
- Lisa Paul
- Division of Pulmonary, Critical Care and Sleep, Westchester Medical Center and New York Medical College of Touro, Valhalla, NY, USA.,Adult Cystic fibrosis Center, Valhalla, NY, USA
| |
Collapse
|
34
|
Childhood severe asthma: New insights on remodelling and biomarkers. Paediatr Respir Rev 2017; 24:11-13. [PMID: 28697969 DOI: 10.1016/j.prrv.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Severe asthma in children is characterised by severe and multiple aeroallergen sensitisation, food allergy, eosinophilic airway inflammation and airway remodelling. However, it is a heterogeneous disease with considerable variability in the manifestation of each of these characteristics between patients. Recent data from mechanistic studies that have used translational approaches including neonatal mouse models and airway bronchoscopic samples, have shown specific molecular mediators that drive remodelling and steroid resistance in paediatric severe asthma will be discussed. The importance of undertaking studies using age appropriate models and primary cells from children to identify novel therapeutic targets will be highlighted.
Collapse
|
35
|
Martin Alonso A, Fainardi V, Saglani S. Severe therapy resistant asthma in children: translational approaches to uncover sub-phenotypes. Expert Rev Respir Med 2017; 11:867-874. [PMID: 28826280 DOI: 10.1080/17476348.2017.1368391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Paediatric severe therapy resistant asthma (STRA) affects a very small proportion of all children with asthma, but results in significant morbidity, has a high risk of mortality and utilises approximately half of all healthcare resources for childhood asthma. children with STRA need add-on 'beyond guidelines' therapies because of poor control despite maximal conventional treatments and optimisation of basic asthma management. however, STRA is heterogeneous with marked phenotypic variation between patients and mechanisms from adult severe asthma cannot be extrapolated to children. Areas covered: This review will cover our current knowledge of paediatric STRA pathophysiology, with examples of translational approaches that have been used to define sub-phenotypes including; 1. pre-clinical age-appropriate models using clinically relevant allergens, 2. in vitro techniques incorporating complex co-cultures of structural and inflammatory cells, and 3. techniques that allow detailed cellular immunophenotyping of small airway samples will be discussed. Studies using these approaches that have demonstrated the importance of the innate mediator IL-33 and vitamin D deficiency in severe steroid resistant disease will also be discussed. Expert commentary: These experimental approaches allow investigation of age and disease specific molecular pathways and the development of personalised therapies that can be stratified and targeted to sub-phenotypes of paediatric STRA.
Collapse
Affiliation(s)
- Aldara Martin Alonso
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| | - Valentina Fainardi
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| | - Sejal Saglani
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| |
Collapse
|
36
|
Jackson DJ, Gern JE, Lemanske RF. Lessons learned from birth cohort studies conducted in diverse environments. J Allergy Clin Immunol 2017; 139:379-386. [PMID: 28183432 DOI: 10.1016/j.jaci.2016.12.941] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
Abstract
Childhood asthma develops from a complex interaction among host and environmental factors in early life. Birth cohort studies have provided valuable insight into asthma risk factors and the natural history of wheezing and asthma through childhood and beyond. Early life aeroallergen sensitization and wheezing illnesses associated with virus and bacterial infections have been identified as pivotal risk factors for asthma inception. Recently, focus has turned toward protective factors that promote lung health in children. Studies in a variety of environments, including farms and urban communities, suggest that diverse exposures to microbes in early life lead to a lower risk of allergy and asthma in childhood. The mechanisms underlying how these exposures and the gut and airway microbiomes alter the host response to allergens and viruses are of interest and an area of ongoing study. Longitudinal follow up of birth cohorts in diverse environments worldwide will continue to provide critical knowledge about the factors that impact the natural history of asthma.
Collapse
Affiliation(s)
- Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Robert F Lemanske
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
37
|
Al-Jahdali H, Alshimemeri A, Mobeireek A, Albanna AS, Al Shirawi NN, Wali S, Alkattan K, Alrajhi AA, Mobaireek K, Alorainy HS, Al-Hajjaj MS, Chang AB, Aliberti S. The Saudi Thoracic Society guidelines for diagnosis and management of noncystic fibrosis bronchiectasis. Ann Thorac Med 2017; 12:135-161. [PMID: 28808486 PMCID: PMC5541962 DOI: 10.4103/atm.atm_171_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022] Open
Abstract
This is the first guideline developed by the Saudi Thoracic Society for the diagnosis and management of noncystic fibrosis bronchiectasis. Local experts including pulmonologists, infectious disease specialists, thoracic surgeons, respiratory therapists, and others from adult and pediatric departments provided the best practice evidence recommendations based on the available international and local literature. The main objective of this guideline is to utilize the current published evidence to develop recommendations about management of bronchiectasis suitable to our local health-care system and available resources. We aim to provide clinicians with tools to standardize the diagnosis and management of bronchiectasis. This guideline targets primary care physicians, family medicine practitioners, practicing internists and respiratory physicians, and all other health-care providers involved in the care of the patients with bronchiectasis.
Collapse
Affiliation(s)
- Hamdan Al-Jahdali
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Department of Medicine, Pulmonary Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdullah Alshimemeri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Department of Medicine, Pulmonary Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdullah Mobeireek
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- King Faisal Specialist Hospital and Research Centre, Department of Medicine, Pulmonary Division, Riyadh, Saudi Arabia
| | - Amr S. Albanna
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Department of Medicine, Pulmonary Division, King Abdulaziz Medical City, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | | | - Siraj Wali
- College of Medicine, King Abdulaziz University, Respiratory Unit, Department of Medicine, Jeddah, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Alrajhi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- King Faisal Specialist Hospital and Research Centre, Department of Medicine, Infectious Disease Division, Riyadh, Saudi Arabia
| | - Khalid Mobaireek
- College of Medicine, King Saud University, King Khalid University Hospital, Pediatric Pulmonology Division, Riyadh, Saudi Arabia
| | - Hassan S. Alorainy
- King Faisal Specialist Hospital and Research Centre, Respiratory Therapy Services, Riyadh, Saudi Arabia
| | - Mohamed S. Al-Hajjaj
- Department of Clinical Sciences, College of Medicine. University of Sharjah, Sharjah, UAE
| | - Anne B. Chang
- International Reviewer, Children's Centre of Health Research Queensland University of Technology, Queensland
- International Reviewer, Brisbane and Child Health Division, Menzies School of Health Research, Darwin, Australia
| | - Stefano Aliberti
- International Reviewer, Department of Pathophysiology and Transplantation, University of MilanInternal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
38
|
Adam RJ, Abou Alaiwa MH, Bouzek DC, Cook DP, Gansemer ND, Taft PJ, Powers LS, Stroik MR, Hoegger MJ, McMenimen JD, Hoffman EA, Zabner J, Welsh MJ, Meyerholz DK, Stoltz DA. Postnatal airway growth in cystic fibrosis piglets. J Appl Physiol (1985) 2017; 123:526-533. [PMID: 28620056 DOI: 10.1152/japplphysiol.00263.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 11/22/2022] Open
Abstract
Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis.NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis.
Collapse
Affiliation(s)
- Ryan J Adam
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Drake C Bouzek
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Daniel P Cook
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Nicholas D Gansemer
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Peter J Taft
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Linda S Powers
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Mallory R Stroik
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Mark J Hoegger
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - James D McMenimen
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Eric A Hoffman
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Radiology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa; and
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa; and.,Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; .,Department of Biomedical Engineering, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
39
|
Wang KCW, Morton JS, Davidge ST, Larcombe AN, James AL, Donovan GM, Noble PB. Increased heterogeneity of airway calibre in adult rats after hypoxia-induced intrauterine growth restriction. Respirology 2017; 22:1329-1335. [PMID: 28516728 DOI: 10.1111/resp.13071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Intrauterine growth restriction (IUGR) is associated with asthma development. We hypothesized that IUGR disrupts airway development leading to postnatal structural abnormalities of the airway that predispose to disease. This study therefore examined structural changes to the airway and lung in a rat model of maternal hypoxia-induced IUGR. METHODS Pregnant rats were housed under hypoxic conditions (11.5% O2 ) from gestational days (GDs) 13 to 20 (pseudoglandular-canalicular stages, i.e. period of airway development) and then returned to normoxic conditions (21% O2 ). A control group of pregnant rats was housed under normoxic conditions throughout pregnancy. Weights of male offspring were recorded at birth and 7 weeks of age (adulthood), at which point lungs were fixed for morphometry and stereology (n = 6/group), or bronchoalveolar lavage fluid (BALF) was collected for cell counts (n = 6/group). RESULTS IUGR offspring were lighter at birth compared with control, but not at 7 weeks. While there was no difference in mean airway dimensions or lung volume, there was greater anatomical variation in airway lumen area in the IUGR group. A mathematical model of the human lung was used to show that greater heterogeneity in lumen area in IUGR-affected individuals increases bronchoconstriction during simulated bronchial challenge. More macrophages were identified in the BALF of IUGR offspring. CONCLUSION The rat model demonstrates that IUGR leads to a more heterogeneous distribution of airway lumen calibre in adulthood with potential implications for bronchoconstriction in human subjects. Together with increased lung macrophages, these findings support a phenotypic shift after IUGR that may impact disease susceptibility.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Jude S Morton
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander N Larcombe
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Perth, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Peter B Noble
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Neonatal Research and Education, School of Paediatrics and Child Health, Perth, Western Australia, Australia
| |
Collapse
|
40
|
Malmström K, Lohi J, Sajantila A, Jahnsen FL, Kajosaari M, Sarna S, Mäkelä MJ. Immunohistology and remodeling in fatal pediatric and adolescent asthma. Respir Res 2017; 18:94. [PMID: 28511697 PMCID: PMC5434550 DOI: 10.1186/s12931-017-0575-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background Thickening of reticular basement membrane, increased airway smooth muscle mass and eosinophilic inflammation are found in adult fatal asthma. At the present study the histopathology of fatal paediatric and adolescent asthma is evaluated. Methods Post-mortem lung autopsies from 12 fatal asthma cases and 8 non-asthmatic control subjects were examined. Thickness of reticular basement membrane (RBM) and percentage of airway smooth muscle (ASM%) mass area were measured and inflammatory cells were counted. Patient records were reviewed for clinical history. Results The age range of the cases was from 0.9 to 19.5 years, eight were males and five had received inhaled corticosteroids. Thickened RBM was detected in majority of the cases without any correlation to treatment delay, age at onset of symptoms or diagnosis. In the large airways ASM was clearly increased in one third of the cases whereas the median ASM% did not differ from that in healthy controls (14.0% vs. 14.0%). In small airways no increase of ASM was found, instead mucous plugs were seen in fatal asthma. The number of eosinophils, plasmacytoid dendritic cells, macrophages, and B-cells were significantly increased in fatal asthma cases compared with controls and the two latter correlated with the length of the fatal exacerbation. Conclusions The findings highlight the strong presence of eosinophils and mucous plugs even in small airways in children and adolescents with fatal asthma. Thickened RBM was obvious in majority of the patients. Contrary to our hypothesis, increased ASM% was detected in only one third of the patients.
Collapse
Affiliation(s)
- Kristiina Malmström
- Dept. of Allergy, University of Helsinki and Helsinki University Hospital, PO Box 160, FI-00029, Helsinki, Finland.
| | - Jouko Lohi
- Dept. of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Sajantila
- Dept. of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Frode L Jahnsen
- Dept. of Pathology and Centre for Immune Regulation, University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Merja Kajosaari
- Hospital for Children and Adolescents Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Sarna
- Dept. of Public Health, University of Helsinki, Helsinki, Finland
| | - Mika J Mäkelä
- Dept. of Allergy, University of Helsinki and Helsinki University Hospital, PO Box 160, FI-00029, Helsinki, Finland
| |
Collapse
|
41
|
Airway remodeling in asthma: what really matters. Cell Tissue Res 2017; 367:551-569. [PMID: 28190087 PMCID: PMC5320023 DOI: 10.1007/s00441-016-2566-8] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and “endotyped” human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.
Collapse
|
42
|
Huang ZJ, Shen QH, Wu YS, Huang YL. A Gibbs sampling method to determine biomarkers for asthma. Comput Biol Chem 2017; 67:255-259. [PMID: 28193551 DOI: 10.1016/j.compbiolchem.2017.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE To identify potential biomarkers and to uncover the mechanisms underlying asthma based on Gibbs sampling. METHODS The molecular functions (MFs) with genes greater than 5 were determined using AnnotationMFGO of BAGS package, and the obtained MFs were then transformed to Markov chain (MC). Gibbs sampling was conducted to obtain a new MC. Meanwhile, the average probabilities of MFs were computed via MC Monte Carlo (MCMC) algorithm, followed by identification of differentially expressed MFs based on the probabilities of MF more than 0.6. Moreover, the differentially expressed genes (DEGs) and their correlated genes were screened and merged, called as co-expressed genes. Pathways enrichment analysis was implemented for the co-expressed genes. RESULTS Based on the gene set more than 5, overall 396 MFs were determined. After Gibbs sampling, 5 differentially expressed MF were acquired according to alfa.pi>0.6. Moreover, the genes in these 5 differentially expressed MF were merged, and 110 DEGs were identified. Subsequently, 338 co-expressed genes were gained. Based on the P value<0.01, the co-expressed genes were significantly enriched in 6 pathways. Among these, ubiquitin mediated proteolysis contained the maximum numbers of 35 co-expressed genes, and cell cycle were enriched by the second largest number of 11 co-expressed genes, respectively. CONCLUSIONS The identified pathways such as ubiquitin mediated proteolysis and cell cycle might play important roles in the development of asthma and may be useful for developing the credible therapeutic approaches for diagnosis and treatment of asthma in future.
Collapse
Affiliation(s)
- Zhi-Jian Huang
- Department of Emergency, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian, PR China
| | - Qin-Hai Shen
- Department of Medicine, Shandong Medical College, Jinan, 250002, Shandong, PR China
| | - Yan-Sheng Wu
- Department of Spine (Second), Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, Xinjiang, PR China
| | - Ya-Li Huang
- Nuclear Medicine Department, Qilu Hospital of Shandong University, NO. 107 Wenhua West Road, Jinan, 250012, Shandong PR China.
| |
Collapse
|
43
|
Martin Alonso A, Saglani S. Mechanisms Mediating Pediatric Severe Asthma and Potential Novel Therapies. Front Pediatr 2017; 5:154. [PMID: 28725641 PMCID: PMC5497140 DOI: 10.3389/fped.2017.00154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Although a rare disease, severe therapy-resistant asthma in children is a cause of significant morbidity and results in utilization of approximately 50% of health-care resources for asthma. Improving control for children with severe asthma is, therefore, an urgent unmet clinical need. As a group, children with severe asthma have severe and multiple allergies, steroid resistant airway eosinophilia, and significant structural changes of the airway wall (airway remodeling). Omalizumab is currently the only add-on therapy that is licensed for use in children with severe asthma. However, limitations of its use include ineligibility for approximately one-third of patients because of serum IgE levels outside the recommended range and lack of clinical efficacy in a further one-third. Pediatric severe asthma is thus markedly heterogeneous, but our current understanding of the different mechanisms underpinning various phenotypes is very limited. We know that there are distinctions between the factors that drive pediatric and adult disease since pediatric disease develops in the context of a maturing immune system and during lung growth and development. This review summarizes the current data that give insight into the pathophysiology of pediatric severe asthma and will highlight potential targets for novel therapies. It is apparent that in order to identify novel treatments for pediatric severe asthma, the challenge of undertaking mechanistic studies using age appropriate experimental models and airway samples from children needs to be accepted to allow a targeted approach of personalized medicine to be achieved.
Collapse
Affiliation(s)
- Aldara Martin Alonso
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Respiratory Pediatrics, The Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
44
|
Yilmaz O, Yuksel H. Where does current and future pediatric asthma treatment stand? Remodeling and inflammation: Bird's eye view. Pediatr Pulmonol 2016; 51:1422-1429. [PMID: 27233079 DOI: 10.1002/ppul.23488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 03/07/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Airway remodeling is the chronic outcome of inflammation in asthma and a point of intervention between pediatric and adult ages. Pediatric asthma has been of great interest in the efforts to find a valuable time to interrupt remodeling. Various experimental and clinical research have assessed the effect of current therapeutic modalities on airway remodeling in asthma and many new agents are being developed with promising results. The heterogeneity in the results of these studies may lie in the heterogeneity of pathogenesis leading to asthma and remodeling; underlying the need for individualized treatment of the unique pathogenetic characteristics of each child's asthma. The aim of this review is to summarize the evidence about the influence of current and future therapeutic modalities in the concept of inflammation and remodeling in pediatric asthma. Pediatr Pulmonol. 2016;51:1422-1429. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ozge Yilmaz
- Department of Pediatric Allergy and Pulmonology, Celal Bayar University Medical Faculty, Manisa, Turkey
| | - Hasan Yuksel
- Department of Pediatric Allergy and Pulmonology, Celal Bayar University Medical Faculty, Manisa, Turkey
| |
Collapse
|
45
|
Abstract
An important issue in relation to the utility and reliability of biomarkers for asthma monitoring is how asthma is defined and characterized. What kind of asthma, or at what stage of the disease is a particular biomarker supposed to add information? Often, the purpose, or usefulness of a biomarker is not made clear. Diagnosis, severity evaluation, and monitoring are all different clinical uses for a biomarker, and confusion may arise when a biomarker is suitable for one of these but not another. When the utility of available biomarkers are discussed, these different roles need to be clarified. Our opinion is that there are four aspects of relevance to asthma, for which biomarkers are required: to diagnose allergies, to evaluate inflammation in the airways, to evaluate hyper-responsiveness, and for certain measures of lung function, such as lung clearance index. These types of biomarkers are needed for the phenotyping and monitoring of asthma. Another important role for biomarkers is, as mentioned above, to monitor asthma in order to follow treatment effects on inflammation and hyper-responsiveness as objective adjuncts to the patients' own symptom reports and lung function. This review will mainly focus on biomarkers that reflect airway inflammation. In spite of the numerous studies that have been conducted, we still have to remember that the value of biomarkers available for routine use, such as eosinophil counts in blood and sputum and exhaled nitric oxide, have to be interpreted in relation to reported symptoms and lung function. Measures of bronchial hyper-responsiveness, performed either by direct (methacholine challenge) or indirect (exercise or mannitol challenge) methods, could be considered biomarkers but will not be included in this review. On the other hand, diagnosing allergy is not usually useful for monitoring asthma although it is of fundamental importance for the interpretation of most biomarkers that are suitable for monitoring. We have therefore included the different approaches for diagnosing and evaluating allergic sensitization in this review.
Collapse
|
46
|
The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2891810. [PMID: 27656649 PMCID: PMC5021463 DOI: 10.1155/2016/2891810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation.
Collapse
|
47
|
Jones RL, Noble PB, Elliot JG, James AL. Airway remodelling in COPD: It's not asthma! Respirology 2016; 21:1347-1356. [PMID: 27381663 DOI: 10.1111/resp.12841] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/03/2016] [Accepted: 04/30/2016] [Indexed: 11/29/2022]
Abstract
COPD is defined as airflow limitation that is not reversed by treatment. In asthma, airflow limitation is not only reversible, but also inducible. This is called 'airway hyperresponsiveness' (AHR) and is associated with thickening of the airway wall, predominantly the layer of airway smooth muscle, due to more cells, bigger cells and more extracellular matrix (ECM) in proportion to the increase in smooth muscle. AHR is also observed in COPD if the changes in airflow are expressed as a percent of the baseline lung function. However, the absolute change in baseline lung function that can be induced in COPD is actually less than that seen in normal subjects, suggesting that the airways in COPD are resistant not only to opening, but also to closing. This observation agrees with physiological measures showing increased airway wall stiffness in COPD. Like asthma, airway wall thickness is increased in COPD, including the layer of smooth muscle. Unlike asthma, however, fixed airflow obstruction appears to be characterized by a disproportionate increase in the ECM within the smooth muscle layer. In this review, we summarize the studies of airway matrix deposition in COPD and put forward the proposal that the airway remodelling in COPD is different from that in asthma and call for a systematic analysis of airway matrix deposition in COPD.
Collapse
Affiliation(s)
- Robyn L Jones
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia. .,School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia.
| | - Peter B Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia.,Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
48
|
Cook DP, Rector MV, Bouzek DC, Michalski AS, Gansemer ND, Reznikov LR, Li X, Stroik MR, Ostedgaard LS, Abou Alaiwa MH, Thompson MA, Prakash YS, Krishnan R, Meyerholz DK, Seow CY, Stoltz DA. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility. Am J Respir Crit Care Med 2016; 193:417-26. [PMID: 26488271 DOI: 10.1164/rccm.201508-1562oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. OBJECTIVES Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. METHODS Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. MEASUREMENTS AND MAIN RESULTS We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. CONCLUSIONS Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing.
Collapse
Affiliation(s)
- Daniel P Cook
- 1 Department of Internal Medicine.,2 Department of Molecular Physiology and Biophysics
| | | | | | | | | | | | | | | | | | | | - Michael A Thompson
- 3 Department of Anesthesiology and.,4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- 3 Department of Anesthesiology and.,4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Ramaswamy Krishnan
- 5 Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | | | - Chun Y Seow
- 7 Department of Pathology and Laboratory Medicine, James Hogg Research Centre/St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A Stoltz
- 1 Department of Internal Medicine.,2 Department of Molecular Physiology and Biophysics.,8 Department of Biomedical Engineering, and.,9 Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa
| |
Collapse
|
49
|
Goyal V, Grimwood K, Marchant J, Masters IB, Chang AB. Pediatric bronchiectasis: No longer an orphan disease. Pediatr Pulmonol 2016; 51:450-69. [PMID: 26840008 DOI: 10.1002/ppul.23380] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022]
Abstract
Bronchiectasis is described classically as a chronic pulmonary disorder characterized by a persistent productive cough and irreversible dilatation of one or more bronchi. However, in children unable to expectorate, cough may instead be wet and intermittent and bronchial dilatation reversible in the early stages. Although still considered an orphan disease, it is being recognized increasingly as causing significant morbidity and mortality in children and adults in both affluent and developing countries. While bronchiectasis has multiple etiologies, the final common pathway involves a complex interplay between the host, respiratory pathogens and environmental factors. These interactions lead to a vicious cycle of repeated infections, airway inflammation and tissue remodelling resulting in impaired airway clearance, destruction of structural elements within the bronchial wall causing them to become dilated and small airway obstruction. In this review, the current knowledge of the epidemiology, pathobiology, clinical features, and management of bronchiectasis in children are summarized. Recent evidence has emerged to improve our understanding of this heterogeneous disease including the role of viruses, and how antibiotics, novel drugs, antiviral agents, and vaccines might be used. Importantly, the management is no longer dependent upon extrapolating from the cystic fibrosis experience. Nevertheless, substantial information gaps remain in determining the underlying disease mechanisms that initiate and sustain the pathophysiological pathways leading to bronchiectasis. National and international collaborations, standardizing definitions of clinical and research end points, and exploring novel primary prevention strategies are needed if further progress is to be made in understanding, treating and even preventing this often life-limiting disease.
Collapse
Affiliation(s)
- Vikas Goyal
- Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, 4101, Australia.,Department of Respiratory Medicine, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Keith Grimwood
- Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, 4101, Australia.,Menzies Health Institute Queensland, Griffith University and Gold Coast Health, Southport, Australia
| | - Julie Marchant
- Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, 4101, Australia.,Department of Respiratory Medicine, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - I Brent Masters
- Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, 4101, Australia.,Department of Respiratory Medicine, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Anne B Chang
- Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, 4101, Australia.,Child Health Division, Menzies School of Health Research, Darwin, Australia.,Queensland Children's Medical Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Adam RJ, Hisert KB, Dodd JD, Grogan B, Launspach JL, Barnes JK, Gallagher CG, Sieren JP, Gross TJ, Fischer AJ, Cavanaugh JE, Hoffman EA, Singh PK, Welsh MJ, McKone EF, Stoltz DA. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities. JCI Insight 2016; 1:e86183. [PMID: 27158673 DOI: 10.1172/jci.insight.86183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF. METHODS To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone. RESULTS Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV. CONCLUSIONS Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle. FUNDING This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program.
Collapse
Affiliation(s)
- Ryan J Adam
- Department of Biomedical Engineering.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Katherine B Hisert
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Brenda Grogan
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Janice L Launspach
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Charles G Gallagher
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | | | - Thomas J Gross
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Eric A Hoffman
- Department of Biomedical Engineering.,Department of Radiology, and
| | - Pradeep K Singh
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics.,Howard Hughes Medical Institute, and.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Edward F McKone
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - David A Stoltz
- Department of Biomedical Engineering.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|