1
|
Bhatnagar K, Raju S, Patki N, Motiani RK, Chaudhary S. Targeting mineral metabolism in cancer: Insights into signaling pathways and therapeutic strategies. Semin Cancer Biol 2025; 112:1-19. [PMID: 40024314 DOI: 10.1016/j.semcancer.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Cancer remains the second leading cause of death worldwide, emphasizing the critical need for effective treatment and control strategies. Essential minerals such as copper, iron, zinc, selenium, phosphorous, calcium, and magnesium are integral to various biological processes and significantly influence cancer progression through altered metabolic pathways. For example, dysregulated copper levels promote tumor growth, while cancer cells exhibit an increased dependency on iron for signaling and redox reactions. Zinc influences tumor development through pathways such as Akt-p21. Selenium, primarily through its role in selenoproteins, exhibits anticancer potential but may also contribute to tumor progression. Similarly, dietary phosphate exacerbates tumorigenesis, metastasis, and angiogenesis through signaling pathway activation. Calcium, the most abundant mineral in the body, is tightly regulated within cells, and its dysregulation is a hallmark of various cancers. Magnesium deficiency, on the other hand, promotes cancer progression by fostering inflammation and free radical-induced DNA mutations. Interestingly, magnesium also plays a dual role, with low levels enhancing epithelial-mesenchymal transition (EMT), a critical process in cancer metastasis. This complex interplay of essential minerals underscores their potential as therapeutic targets. Dysregulation of these minerals and their pathways could be exploited to selectively target cancer cells, offering novel therapeutic strategies. This review summarizes current research on the abnormal accumulation or depletion of these microelements in tumor biology, drawing evidence from animal models, cell lines, and clinical samples. We also highlight the potential of these minerals as biomarkers for cancer diagnosis and prognosis, as well as therapeutic approaches involving metal chelators, pharmacological agents, and nanotechnology. By highlighting the intricate roles of these minerals in cancer biology, we aim to inspire further research in this critical yet underexplored area of oncology.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India.
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
2
|
Lacerda-Abreu MA, Meyer-Fernandes JR. Hyperphosphataemia and NADPH Oxidase Regulation in Pathophysiological Processes: Implications for Oxidative Stress and Disease Progression. Antioxidants (Basel) 2025; 14:461. [PMID: 40298783 PMCID: PMC12024410 DOI: 10.3390/antiox14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Hyperphosphataemia is a key contributor to oxidative stress (OS) and cellular dysfunction across various pathological conditions. While numerous studies have associated phosphate overload with redox imbalances, the role of NADPH oxidase (NOX) in this process has received limited attention. NOX enzymes are major enzymatic sources of reactive oxygen species (ROS), and their activation has been implicated in the progression of chronic kidney disease, vascular calcification, metabolic disorders, and cancer development. Under hyperphosphataemic conditions, excessive ROS production exacerbates endothelial dysfunction, promotes vascular smooth muscle cell transdifferentiation, induces chronic inflammation, and facilitates tumour progression. Despite increasing evidence linking phosphate metabolism to NOX activation, the underlying molecular mechanisms remain poorly characterised. This review critically examines the relationship between hyperphosphataemia and NADPH oxidase-mediated OS and explores its impact on disease pathophysiology. By providing an integrated analysis of the current findings, this work aims to highlight the pathological consequences of phosphate-induced OS and identify potential therapeutic strategies to mitigate its effects.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
3
|
Fu Y, Chen J, Zhu X, Ding M, Wang H, Fu S. Roles and therapeutic potential of the SLC family in prostate cancer-literature review. BMC Urol 2025; 25:32. [PMID: 39966814 PMCID: PMC11837367 DOI: 10.1186/s12894-025-01714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in men worldwide. Despite advances in treatment, many patients develop resistance to conventional therapies. Solute carrier (SLC) proteins, as transmembrane transporters, have recently emerged as potential therapeutic targets due to their role in tumor metabolism and progression. This review summarizes the key roles of six SLC proteins in PCa, including their involvement in metabolic reprogramming, regulation of signaling pathways, and effects on the tumor microenvironment. Although targeting of SLC family members in prostate cancer remains an underexplored area, the growing body of evidence suggests that it holds potential for future development.
Collapse
Affiliation(s)
- Yuanzhi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China
- Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junhao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China
| | - Xingcheng Zhu
- Department of Clinical Laboratory, The Second People's Hospital of Qujing City Qujing, Yunnan, China
| | - Mingxia Ding
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China.
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China.
| |
Collapse
|
4
|
Bollenbecker S, Hirsch MJ, Matthews EL, Easter M, Vang S, Howze PH, Morales AN, Harris E, Barnes JW, Faul C, Krick S. Chronic Kidney Disease-associated Lung Injury Is Mediated by Phosphate-induced MAPK/AKT Signaling. Am J Respir Cell Mol Biol 2024; 71:659-676. [PMID: 39088759 PMCID: PMC11622639 DOI: 10.1165/rcmb.2024-0008oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/01/2024] [Indexed: 08/03/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with systemic phosphate elevations, called hyperphosphatemia. Translational studies have shown that hyperphosphatemia contributes to CKD-associated inflammation and injury in various tissues, including the kidney, heart, liver, and parathyroid gland. Mechanisms underlying pathologic actions of elevated phosphate on cells are not well understood but seem to involve uptake of phosphate through sodium phosphate cotransporters and phosphate-induced signaling via FGFR1 (fibroblast growth factor receptor 1). Clinical studies indicate patients with CKD are more likely to develop inflammatory and restrictive lung diseases, such as fibrotic interstitial lung diseases, and here we aimed to determine whether hyperphosphatemia can cause lung injury. We found that a mouse model of CKD and hyperphosphatemia, induced by an adenine-rich diet, develops lung fibrosis and inflammation. Elevation of systemic phosphate concentration by administration of a high-phosphate diet in a mouse model of primary lung inflammation and fibrosis, induced by bleomycin, exacerbated lung injury in the absence of kidney damage. Our in vitro studies identified increases of proinflammatory cytokines in human lung fibroblasts exposed to phosphate elevations. Phosphate activated ERK 1/2 (extracellular signal-related kinase 1/2) and PKB/AKT (protein kinase B) signaling, and pharmacological inhibition of ERK, AKT, FGFR1, or sodium phosphate cotransporters prevented phosphate-induced proinflammatory cytokine upregulation. In addition, inhibition of FGFR1 or sodium phosphate cotransporters decreased the phosphate-induced activation of ERK and AKT. Our study suggests that phosphate can directly target lung fibroblasts and induce an inflammatory response and that hyperphosphatemia in CKD and non-CKD models contributes to lung injury. Phosphate-lowering strategies might protect from CKD-associated lung injury.
Collapse
Affiliation(s)
| | | | | | - Molly Easter
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Shia Vang
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | | | | | - Elex Harris
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | | | - Christian Faul
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
| |
Collapse
|
5
|
Brown RB. Statins in the Cause and Prevention of Cancer: Confounding by Indication and Mediation by Rhabdomyolysis and Phosphate Toxicity. J Cardiovasc Dev Dis 2024; 11:296. [PMID: 39330354 PMCID: PMC11432391 DOI: 10.3390/jcdd11090296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Statins are drugs used in cardiovascular pharmacotherapy to decrease hypercholesterolemia and lower the risk of atherosclerosis. Statins also increase the risk of rhabdomyolysis, which is often minimized in comparison with large relative risk reductions of cardiovascular disease reported in clinical trials. By contrast, absolute risk reductions of cardiovascular disease are often clinically insignificant and unreported in statin clinical trials. Additionally, cytotoxic effects of statins inhibit cancer cell proliferation and reduce cancer risk, but other studies found that statins are carcinogenic. Due to an inverse association between incidence of cancer and atherosclerosis, the indication to prescribe statins likely biases the association of statins with cancer prevention. Dietary patterns associated with atherosclerosis and cancer contain inverse amounts of cholesterol and phosphate, an essential mineral that stimulates tumorigenesis. Accordingly, lower cancer risk is associated with high dietary cholesterol intake and increased risk of atherosclerosis. Furthermore, serum is exposed to excessive inorganic phosphate that could increase cancer risk as rhabdomyolysis induced by statins releases phosphate from skeletal muscle breakdown. Increased risk of comorbid conditions associated with statins may share the mediating factor of phosphate toxicity. More research is warranted on statins in the cause and prevention of cancer.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
6
|
Nguyen H, Kim SH, Juang U, Gwon S, Jung W, Huang Q, Lee S, Lee B, Kwon SH, Park J. Overview of carboxyl‑terminal modulator protein 1 and its importance in various metabolic regulations (Review). Mol Med Rep 2024; 30:158. [PMID: 38994770 PMCID: PMC11258604 DOI: 10.3892/mmr.2024.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Acyl‑coenzyme A thioesterases (ACOTs) are crucial in mediating lipid metabolic functions, including energy expenditure, hepatic gluconeogenesis and neuronal function. The two distinct types are type I and II ACOTs, the latter of which are 'hotdog' fold superfamily members. Type II ACOTs include carboxyl‑terminal modulator protein 1 (CTMP1), also termed thioesterase superfamily member 4 (THEM4), and CTMP2, also termed THEM5. Due to their similar structural features and distinct sequence homology, CTMP1 and CTMP2 stand out from other type II ACOTs. CTMP1 was initially known as a protein kinase B (PKB) inhibitor that attenuates PKB phosphorylation. PKB is the central regulator of various cellular functions, including survival, proliferation, growth and metabolism. Therefore, by inhibiting PKB, CTMP1 can affect various cellular processes. Various other functions of CTMP1 have been revealed, including functions in cancer, brain injury, mitochondrial function and lipid metabolism. CTMP2 is a paralog of CTMP1 and was first identified as a cardiolipin remodeling factor involved in the development of fatty liver. As the functions of CTMP1 and CTMP2 were discovered separately, a review to summarize and connect these findings is essential. The current review delineates the intricate complexity of CTMP regulation across different metabolic pathways and encapsulates the principal discoveries concerning CTMP until the present day.
Collapse
Affiliation(s)
- Huonggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Qingzhi Huang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
7
|
Xie W, Liu W, Wang L, Zhu B, Zhao C, Liao Z, Li Y, Jiang X, Liu J, Ren C. Roles of THEM4 in the Akt pathway: a double-edged sword. J Zhejiang Univ Sci B 2024; 25:541-556. [PMID: 39011675 PMCID: PMC11254685 DOI: 10.1631/jzus.b2300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 07/17/2024]
Abstract
The protein kinase B (Akt) pathway can regulate the growth, proliferation, and metabolism of tumor cells and stem cells through the activation of multiple downstream target genes, thus affecting the development and treatment of a range of diseases. Thioesterase superfamily member 4 (THEM4), a member of the thioesterase superfamily, is one of the Akt kinase-binding proteins. Some studies on the mechanism of cancers and other diseases have shown that THEM4 binds to Akt to regulate its phosphorylation. Initially, THEM4 was considered an endogenous inhibitor of Akt, which can inhibit the phosphorylation of Akt in diseases such as lung cancer, pancreatic cancer, and liver cancer, but subsequently, THEM4 was shown to promote the proliferation of tumor cells by positively regulating Akt activity in breast cancer and nasopharyngeal carcinoma, which contradicts previous findings. Considering these two distinct views, this review summarizes the important roles of THEM4 in the Akt pathway, focusing on THEM4 as an Akt-binding protein and its regulatory relationship with Akt phosphorylation in various diseases, especially cancer. This work provides a better understanding of the roles of THEM4 combined with Akt in the treatment of diseases.
Collapse
Affiliation(s)
- Wen Xie
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Weidong Liu
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Bin Zhu
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Cong Zhao
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Ziling Liao
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yihan Li
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Xingjun Jiang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Liu
- Department of Critical Care Medicine, Hainan Hospital of Chinese PLA General Hospital, Hainan Province Clinical Medical Center, Sanya 572013, China. ,
| | - Caiping Ren
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China.
| |
Collapse
|
8
|
Ratsma DMA, Muller M, Koedam M, van Leeuwen JPTM, Zillikens MC, van der Eerden BCJ. Organic phosphate but not inorganic phosphate regulates Fgf23 expression through MAPK and TGF-ꞵ signaling. iScience 2024; 27:109625. [PMID: 38883842 PMCID: PMC11178987 DOI: 10.1016/j.isci.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 06/18/2024] Open
Abstract
One of the main regulators of phosphate homeostasis is fibroblast growth factor 23 (FGF23), secreted by osteocytes. The effects of organic versus inorganic dietary phosphate on this homeostasis are unclear. This study used MC3T3-E1 FGF23-producing cells to examine the transcriptomic responses to these phosphates. Most importantly, the expression and secretion of FGF23 were only increased in response to organic phosphate. Gene ontology terms related to a response to environmental change were only enriched in cells treated with organic phosphate while cells treated with inorganic phosphate were enriched for terms associated with regulation of cellular phosphate metabolism. Inhibition of MAPK signaling diminished the response of Fgf23 to organic phosphate, suggesting it activates FGF23. TGF-β signaling inhibition increased Fgf23 expression after the addition of organic phosphate, while the negative TGF-β regulator Skil decreased this response. In summary, the observed differential response of FGF23-producing to phosphate types may have consequences for phosphate homeostasis.
Collapse
Affiliation(s)
- Danielle M A Ratsma
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Max Muller
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Carola Zillikens
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Brown RB. Spontaneous Tumor Regression and Reversion: Insights and Associations with Reduced Dietary Phosphate. Cancers (Basel) 2024; 16:2126. [PMID: 38893245 PMCID: PMC11172109 DOI: 10.3390/cancers16112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Tumors that spontaneously shrink from unknown causes in tumor regression, and that return to normal cells in tumor reversion, are phenomena with the potential to contribute new knowledge and novel therapies for cancer patient survival. Tumorigenesis is associated with dysregulated phosphate metabolism and an increased transport of phosphate into tumor cells, potentially mediated by phosphate overload from excessive dietary phosphate intake, a significant problem in Western societies. This paper proposes that reduced dietary phosphate overload and reregulated phosphate metabolism may reverse an imbalance of kinases and phosphatases in cell signaling and cellular proliferation, thereby activating autophagy in tumor regression and reversion. Dietary phosphate can also be reduced by sickness-associated anorexia, fasting-mimicking diets, and other diets low in phosphate, all of which have been associated with tumor regression. Tumor reversion has also been demonstrated by transplanting cancer cells into a healthy microenvironment, plausibly associated with normal cellular phosphate concentrations. Evidence also suggests that the sequestration and containment of excessive phosphate within encapsulated tumors is protective in cancer patients, preventing the release of potentially lethal amounts of phosphate into the general circulation. Reducing dietary phosphate overload has the potential to provide a novel, safe, and effective reversion therapy for cancer patients, and further research is warranted.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
Eubank TD, Bobko AA, Hoblitzell EH, Gencheva M, Driesschaert B, Khramtsov VV. In Vivo Electron Paramagnetic Resonance Molecular Profiling of Tumor Microenvironment upon Tumor Progression to Malignancy in an Animal Model of Breast Cancer. Mol Imaging Biol 2024; 26:424-434. [PMID: 37610610 PMCID: PMC10884355 DOI: 10.1007/s11307-023-01847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Hypoxia and acidosis are recognized tumor microenvironment (TME) biomarkers of cancer progression. Alterations in cancer redox status and metabolism are also associated with elevated levels of intracellular glutathione (GSH) and interstitial inorganic phosphate (Pi). This study aims to evaluate the capability of these biomarkers to discriminate between stages and inform on a switch to malignancy. PROCEDURES These studies were performed using MMTV-PyMT( +) female transgenic mice that spontaneously develop breast cancer and emulate human tumor staging. In vivo assessment of oxygen concentration (pO2), extracellular acidity (pHe), Pi, and GSH was performed using L-band electron paramagnetic resonance spectroscopy and multifunctional trityl and GSH-sensitive nitroxide probes. RESULTS Profiling of the TME showed significant deviation of measured biomarkers upon tumor progression from pre-malignancy (pre-S4) to the malignant stage (S4). For the combined marker, HOP: (pHe × pO2)/Pi, a value > 186 indicated that the tumors were pre-malignant in 85% of the mammary glands analyzed, and when < 186, they were malignant 42% of the time. For GSH, a value < 3 mM indicated that the tumors were pre-malignant 74% of the time, and when > 3 mM, they were malignant 80% of the time. The only marker that markedly deviated as early as stage 1 (S1) from its value in pre-S1 was elevated Pi, followed by a decrease of pHe and pO2 and increase in GSH at later stages. CONCLUSION Molecular TME profiling informs on alteration of tumor redox and metabolism during tumor staging. Early elevation of interstitial Pi at S1 may reflect tumor metabolic alterations that demand elevated phosphorus supply in accordance with the high rate growth hypothesis. These metabolic changes are supported by the following decrease of pHe due to a high tumor reliance on glycolysis and increase of intracellular GSH, a major intracellular redox buffer. The appreciable decrease in TME pO2 was observed only at malignant S4, apparently as a consequence of tumor mass growth and corresponding decrease in perfusion efficacy and increase in oxygen consumption as the tumor cells proliferate.
Collapse
Affiliation(s)
- Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - E Hannah Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
11
|
Walk CL, Mullenix GJ, Maynard CW, Greene ES, Maynard C, Ward N, Dridi S. Novel 4th-generation phytase improves broiler growth performance and reduces woody breast severity through modulation of muscle glucose uptake and metabolism. Front Physiol 2024; 15:1376628. [PMID: 38559573 PMCID: PMC10978611 DOI: 10.3389/fphys.2024.1376628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
The objective of the present study was to determine the effect of a novel (4th generation) phytase supplementation as well as its mode of action on growth, meat quality, and incidence of muscle myopathies. One-day old male broilers (n = 720) were weighed and randomly allocated to 30 floor pens (24 birds/pen) with 10 replicate pens per treatment. Three diets were fed from hatch to 56- days-old: a 3-phase corn-soy based diet as a positive control (PC); a negative control (NC) formulated to be isocaloric and isonitrogenous to the PC and with a reduction in Ca and available P, respectively; and the NC supplemented with 2,000 phytase units per kg of diet (NC + P). At the conclusion of the experiment, birds fed with NC + P diet were significantly heavier and had 2.1- and 4.2-points better feed conversion ratio (FCR) compared to birds offered NC and PC diets, respectively. Processing data showed that phytase supplementation increased live weight, hot carcass without giblets, wings, tender, and skin-on drum and thigh compared to both NC and PC diets. Macroscopic scoring showed that birds fed the NC + P diet had lower woody breast (WB) severity compared to those fed the PC and NC diets, however there was no effect on white striping (WS) incidence and meat quality parameters (pH, drip loss, meat color). To delineate its mode of action, iSTAT showed that blood glucose concentrations were significantly lower in birds fed NC + P diet compared to those offered PC and NC diets, suggesting a better glucose uptake. In support, molecular analyses demonstrated that the breast muscle expression (mRNA and protein) of glucose transporter 1 (GLUT1) and glucokinase (GK) was significantly upregulated in birds fed NC + P diet compared to those fed the NC and PC diets. The expression of mitochondrial ATP synthase F0 subunit 8 (MT-ATP8) was significantly upregulated in NC + P compared to other groups, indicating intracellular ATP abundance for anabolic pathways. This was confirmed by the reduced level of phosphorylated-AMP-activated protein kinase (AMPKα1/2) at Thr172 site, upregulation of glycogen synthase (GYS1) gene and activation of mechanistic target of rapamycin and ribosomal protein S6 kinase (mTOR-P70S6K) pathway. In conclusion, this is the first report showing that in-feed supplementation of the novel phytase improves growth performance and reduces WB severity in broilers potentially through enhancement of glucose uptake, glycolysis, and intracellular ATP production, which used for muscle glycogenesis and protein synthesis.
Collapse
Affiliation(s)
| | - Garrett J. Mullenix
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Craig W. Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elisabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Clay Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nelson Ward
- DSM Nutritional Products, Jerusalem, OH, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
12
|
Qian X, Jin M, Bei Y, Zhou C, Fang S, Liu K. SLC20A1 is a prospective prognostic and therapy response predictive biomarker in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:4423-4444. [PMID: 38412319 PMCID: PMC10968711 DOI: 10.18632/aging.205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/11/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND SLC20A1, a prominent biomarker in several cancers, has been understudied in its predictive role in head and neck squamous cell carcinoma (HNSCC). METHODS The Cancer Genome Atlas (TCGA) database was used to analyze HNSCC prognosis, SLC20A1 overexpression, and clinical characteristics. Quantitative real-time PCR and Western blot analysis confirmed SLC20A1 expression in HNSCC tissues. Cellular behaviors such as invasion, migration and proliferation were assessed using Transwell, wound healing and colony formation assays. Immune system data were obtained from the Tumor Immune Estimation Resource (TIMER) and CIBERSORT databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore biological parameters and pathways associated with SLC20A1 overexpression in HNSCC. RESULTS In 499 HNSCC samples, SLC20A1 mRNA and protein expression were significantly higher than in 44 normal counterparts, confirmed by 24 paired samples. Patients were categorized based on SLC20A1 levels, survival status and overall survival. High SLC20A1 expression correlated with advanced T stage, increased risk scores and decreased survival. Stage, age and SLC20A1 expression emerged as independent predictive factors for HNSCC in univariate and multivariate analyses. SLC20A1 overexpression, which is associated with poor prognosis, may influence cell proliferation, migration, invasion, chemotherapy response, and the immune milieu. CONCLUSIONS SLC20A1 overexpression in HNSCC, characterized by increased cellular invasion, migration and proliferation, is a potential prognostic biomarker and therapeutic response indicator.
Collapse
Affiliation(s)
- Xiajing Qian
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yanping Bei
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Lacerda-Abreu MA, Meyer-Fernandes JR. Elevated extracellular inorganic phosphate inhibits ecto-phosphatase activity in breast cancer cells: Regulation by hydrogen peroxide. Cell Biol Int 2024; 48:162-173. [PMID: 37818706 DOI: 10.1002/cbin.12095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
For cells to obtain inorganic phosphate, ectoenzymes in the plasma membrane, which contain a catalytic site facing the extracellular environment, hydrolyze phosphorylated molecules. In this study, we show that increased Pi levels in the extracellular environment promote a decrease in ecto-phosphatase activity, which is associated with Pi-induced oxidative stress. High levels of Pi inhibit ecto-phosphatase because Pi generates H2 O2 . Ecto-phosphatase activity is inhibited by H2 O2 , and this inhibition is selective for phospho-tyrosine hydrolysis. Additionally, it is shown that the mechanism of inhibition of ecto-phosphatase activity involves lipid peroxidation. In addition, the inhibition of ecto-phosphatase activity by H2 O2 is irreversible. These findings have new implications for understanding ecto-phosphatase regulation in the tumor microenvironment. H2 O2 stimulated by high Pi inhibits ecto-phosphatase activity to prevent excessive accumulation of extracellular Pi, functioning as a regulatory mechanism of Pi variations in the tumor microenvironment.
Collapse
Affiliation(s)
- Marco A Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo De Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo De Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Brown RB, Bigelow P. Can a Low-Phosphate Diet for Chronic Kidney Disease Treat Cancer? An Interdisciplinary Literature Review. MEDICINES (BASEL, SWITZERLAND) 2024; 11:5. [PMID: 38392693 PMCID: PMC10890503 DOI: 10.3390/medicines11020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Background: Cancer therapeutics have a low success rate in clinical trials. An interdisciplinary approach is needed to translate basic, clinical, and remote fields of research knowledge into novel cancer treatments. Recent research has identified high dietary phosphate intake as a risk factor associated with cancer incidence. A model of tumor dynamics predicted that reducing phosphate levels sequestered in the tumor microenvironment could substantially reduce tumor size. Coincidently, a low-phosphate diet is already in use to help patients with chronic kidney disease manage high serum phosphate levels. Methods: A grounded-theory literature-review method was used to synthesize interdisciplinary findings from the basic and clinical sciences, including oncology, nephrology, nutritional epidemiology, and dietetic research on cancer. Results: Findings of tumor remission associated with fasting and a ketogenic diet, which lower intake of dietary phosphate, support the hypothesis that a low-phosphate diet will reduce levels of phosphate sequestered in the tumor microenvironment and reduce tumor size. Additionally, long-term effects of a low-phosphate diet may reverse dysregulated phosphate metabolism associated with tumorigenesis and prevent cancer recurrence. Conclusions: Evidence in this article provides the rationale to test a low-phosphate diet as a dietary intervention to reduce tumor size and lower risk of cancer recurrence.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
15
|
Bird RP. Vitamin D and cancer. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:92-159. [PMID: 38777419 DOI: 10.1016/bs.afnr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The role of vitamin D in the prevention of chronic diseases including cancer, has received a great deal of attention during the past few decades. The term "Cancer" represents multiple disease states with varying biological complexities. The strongest link between vitamin D and cancer is provided by ecological and studies like observational, in preclinical models. It is apparent that vitamin D exerts diverse biological responses in a tissue specific manner. Moreover, several human factors could affect bioactivity of vitamin D. The mechanism(s) underlying vitamin D initiated anti-carcinogenic effects are diverse and includes changes at the muti-system levels. The oncogenic environment could easily corrupt the traditional role of vitamin D or could ensure resistance to vitamin D mediated responses. Several researchers have identified gaps in our knowledge pertaining to the role of vitamin D in cancer. Further areas are identified to solidify the role of vitamin D in cancer control strategies.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
16
|
Saeed RF, Awan UA, Aslam S, Qazi AS, Bhatti MZ, Akhtar N. Micronutrients Importance in Cancer Prevention-Minerals. Cancer Treat Res 2024; 191:145-161. [PMID: 39133407 DOI: 10.1007/978-3-031-55622-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cancer, a non-communicable disease with diverse kinds is one of the major global problems with high incidence and no proven method to prevent or treat. Minerals including trace elements are significant micronutrients for preserving the body's typical physiological function. In contrast to extremely processed industrial food, they are rich in natural sources of food and frequently included in nutritional supplements. The daily intake, storage capacities, and homeostasis of micronutrients depend on specific dietary practices in contemporary civilization and can be disturbed by various malignancies. Varied minerals have different effects on the status of cancer depending on how they affect these pathways. The outcomes could differ depending on the mineral such as calcium's supply and the cancer's location. A mineral called zinc helps the immune system function better and aids in wound healing. On the other hand, selenium exhibits anti-oxidant functions and has a dose-response relationship with many cancer types. However, this component can make the patient's condition worse. Although the body produces free radicals when iron is deficient, anaemia affects a patient's quality of life and ability to receive therapy. This chapter compiles the knowledge of minerals connected to unusual accumulation or depletion states in various malignancies.
Collapse
Affiliation(s)
- Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Asma Saleem Qazi
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Muhammad Zeeshan Bhatti
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| |
Collapse
|
17
|
Brown RB, Bigelow P, Dubin JA, Neiterman E. Breast cancer, alcohol, and phosphate toxicity. J Appl Toxicol 2024; 44:17-27. [PMID: 37332052 DOI: 10.1002/jat.4504] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Alcohol consumption is associated with an increased risk of breast cancer, even at low alcohol intake levels, but public awareness of the breast cancer risk associated with alcohol intake is low. Furthermore, the causative mechanisms underlying alcohol's association with breast cancer are unknown. The present theoretical paper uses a modified grounded theory method to review the research literature and propose that alcohol's association with breast cancer is mediated by phosphate toxicity, the accumulation of excess inorganic phosphate in body tissue. Serum levels of inorganic phosphate are regulated through a network of hormones released from the bone, kidneys, parathyroid glands, and intestines. Alcohol burdens renal function, which may disturb the regulation of inorganic phosphate, impair phosphate excretion, and increase phosphate toxicity. In addition to causing cellular dehydration, alcohol is an etiologic factor in nontraumatic rhabdomyolysis, which ruptures cell membranes and releases inorganic phosphate into the serum, leading to hyperphosphatemia. Phosphate toxicity is also associated with tumorigenesis, as high levels of inorganic phosphate within the tumor microenvironment activate cell signaling pathways and promote cancer cell growth. Furthermore, phosphate toxicity potentially links cancer and kidney disease in onco-nephrology. Insights into the mediating role of phosphate toxicity may lead to future research and interventions that raise public health awareness of breast cancer risk and alcohol consumption.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joel A Dubin
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Elena Neiterman
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
18
|
Castillo SP, Rebolledo RA, Arim M, Hochberg ME, Marquet PA. Metastatic cells exploit their stoichiometric niche in the network of cancer ecosystems. SCIENCE ADVANCES 2023; 9:eadi7902. [PMID: 38091399 PMCID: PMC10848726 DOI: 10.1126/sciadv.adi7902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Metastasis is a nonrandom process with varying degrees of organotropism-specific source-acceptor seeding. Understanding how patterns between source and acceptor tumors emerge remains a challenge in oncology. We hypothesize that organotropism results from the macronutrient niche of cells in source and acceptor organs. To test this, we constructed and analyzed a metastatic network based on 9303 records across 28 tissue types. We found that the topology of the network is nested and modular with scale-free degree distributions, reflecting organotropism along a specificity/generality continuum. The variation in topology is significantly explained by the matching of metastatic cells to their stoichiometric niche. Specifically, successful metastases are associated with higher phosphorus content in the acceptor compared to the source organ, due to metabolic constraints in proliferation crucial to the invasion of new tissues. We conclude that metastases are codetermined by processes at source and acceptor organs, where phosphorus content is a limiting factor orchestrating tumor ecology.
Collapse
Affiliation(s)
- Simon P. Castillo
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, C.P. 8331150, Santiago, Chile
| | - Rolando A. Rebolledo
- Instituto de Ingeniería Biológica y Médica (IIBM), Pontificia Universidad Católica de Chile, Santiago, Chile
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile
| | - Matías Arim
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional Este (CURE), Universidad de la República, Maldonado, Uruguay
| | - Michael E. Hochberg
- ISEM, University of Montpellier, Montpellier, France
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pablo A. Marquet
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, C.P. 8331150, Santiago, Chile
- Santa Fe Institute, Santa Fe, NM 87501, USA
- Centro de Modelamiento Matemático, Universidad de Chile, International Research Laboratory 2807, CNRS, C.P. 8370456, Santiago, Chile
- Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile
| |
Collapse
|
19
|
Brown RB, Bigelow P, Dubin JA. Breast Cancer and Bone Mineral Density in a U.S. Cohort of Middle-Aged Women: Associations with Phosphate Toxicity. Cancers (Basel) 2023; 15:5093. [PMID: 37894460 PMCID: PMC10604967 DOI: 10.3390/cancers15205093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer is associated with phosphate toxicity, the toxic effect from dysregulated phosphate metabolism that can stimulate tumorigenesis. Phosphate toxicity and dysregulated phosphate metabolism are also associated with bone mineral abnormalities, including excessive bone mineral loss and deposition. Based on shared associations with dysregulated phosphate metabolism and phosphate toxicity, a hypothesis proposed in the present mixed methods-grounded theory study posits that middle-aged women with incidence of breast cancer had a greater magnitude of changes in bone mineral density over time compared with women who remained cancer-free. To test this hypothesis, a mixed-effects model was used to analyze the associations of breast cancer incidence with spinal bone mineral density changes in the U.S. Study of Women's Health Across the Nation. Compared with women in the cohort who remained cancer-free, women who self-reported breast cancer had higher bone mineral density at baseline, but had more rapid losses in bone mineral density during follow-up visits. These findings agree with the hypothesis that a greater magnitude of changes in bone mineral density over time is associated with breast cancer in a cohort of middle-aged women. The findings also have implications for studies investigating dysregulated phosphate metabolism and phosphate toxicity as causative factors of bone metastasis in metastatic breast cancer. Additionally, the authors previously found increased breast cancer risk associated with high dietary phosphate intake in the same cohort of middle-aged women, and more studies should investigate a low-phosphorus diet to reduce bone mineral abnormalities and tumorigenesis in breast cancer patients.
Collapse
Affiliation(s)
- Ronald B. Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (P.B.); (J.A.D.)
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (P.B.); (J.A.D.)
| | - Joel A. Dubin
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (P.B.); (J.A.D.)
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
20
|
Freise C, Zappe A, Löwa N, Schnorr J, Pagel K, Wiekhorst F, Taupitz M. Uremic Toxin-Induced Exosome-like Extracellular Vesicles Contain Enhanced Levels of Sulfated Glycosaminoglycans which Facilitate the Interaction with Very Small Superparamagnetic Iron Oxide Particles. Int J Mol Sci 2023; 24:14253. [PMID: 37762555 PMCID: PMC10532171 DOI: 10.3390/ijms241814253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Uremic toxins exert pathophysiological effects on cells and tissues, such as the generation of a pro-calcifying subtype of exosome-like extracellular vesicles (EVs) in vascular cells. Little is known about the effects of the toxins on the surface structure of EVs. Thus, we studied the effects of uremic toxins on the abundance of sulfated glycosaminoglycans (GAGs) in EVs, and the implications for binding of ligands such as very small superparamagnetic iron oxide particles (VSOPs) which could be of relevance for radiological EV-imaging. Vascular cells were treated with the uremic toxins NaH2PO4 and a mixture of urea and indoxyl sulfate. Uremia in rats was induced by adenine feeding. EVs were isolated from culture supernatants and plasma of rats. By proton T1-relaxometry, magnetic particle spectroscopy, and analysis of genes, proteins, and GAG-contents, we analyzed the roles of GAGs in the ligand binding of EVs. By influencing GAG-associated genes in host cells, uremic toxins induced higher GAG contents in EVs, particularly of sulfated chondroitin sulfate and heparan sulfate chains. EVs with high GAG content interacted stronger with VSOPs compared to control ones. This was confirmed by experiments with GAG-depleted EVs from genetically modified CHO cells and with uremic rat-derived EVs. Mechanistically, uremic toxin-induced PI3K/AKT-signaling and expression of the sulfate transporter SLC26A2 in host cells contributed to high GAG contents in EVs. In conclusion, uremic conditions induce enhanced GAG contents in EVs, which entails a stronger interaction with VSOPs. VSOPs might be suitable for radiological imaging of EVs rich in GAGs.
Collapse
Affiliation(s)
- Christian Freise
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| | - Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany; (A.Z.); (K.P.)
| | - Norbert Löwa
- Metrology for Magnetic Nanoparticles Berlin, Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2, 10587 Berlin, Germany; (N.L.); (F.W.)
| | - Jörg Schnorr
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany; (A.Z.); (K.P.)
| | - Frank Wiekhorst
- Metrology for Magnetic Nanoparticles Berlin, Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2, 10587 Berlin, Germany; (N.L.); (F.W.)
| | - Matthias Taupitz
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| |
Collapse
|
21
|
Brown RB, Bigelow P, Dubin JA, Mielke JG. High Dietary Phosphorus Is Associated with Increased Breast Cancer Risk in a U.S. Cohort of Middle-Aged Women. Nutrients 2023; 15:3735. [PMID: 37686766 PMCID: PMC10490459 DOI: 10.3390/nu15173735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Research has shown that high amounts of dietary phosphorus that are twice the amount of the U.S. dietary reference intake of 700 mg for adults are associated with all-cause mortality, phosphate toxicity, and tumorigenesis. The present nested case-control study measured the relative risk of self-reported breast cancer associated with dietary phosphate intake over 10 annual visits in a cohort of middle-aged U.S. women from the Study of Women's Health Across the Nation. Analyzing data from food frequency questionnaires, the highest level of daily dietary phosphorus intake, >1800 mg of phosphorus, was approximately equivalent to the dietary phosphorus levels in menus promoted by the United States Department of Agriculture. After adjusting for participants' energy intake, this level of dietary phosphorus was associated with a 2.3-fold increased risk of breast cancer incidence compared to the reference dietary phosphorus level of 800 to 1000 mg, which is based on recommendations from the U.S. National Kidney Foundation, (RR: 2.30, 95% CI: 0.94-5.61, p = 0.07). Despite the lack of statistical significance, likely due to the small sample size of the cohort, the present nested case-control study's clinically significant effect size, dose-response, temporality, specificity, biological plausibility, consistency, coherence, and analogy with other research findings meet the criteria for inferred causality in observational studies, warranting further investigations. Furthermore, these findings suggest that a low-phosphate diet should be tested on patients with breast cancer.
Collapse
Affiliation(s)
- Ronald B. Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joel A. Dubin
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John G. Mielke
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
22
|
Brown RB. Dysregulated phosphate metabolism in autism spectrum disorder: associations and insights for future research. Expert Rev Mol Med 2023; 25:e20. [PMID: 37309057 PMCID: PMC10407224 DOI: 10.1017/erm.2023.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/14/2023]
Abstract
Studies of autism spectrum disorder (ASD) related to exposure to toxic levels of dietary phosphate are lacking. Phosphate toxicity from dysregulated phosphate metabolism can negatively impact almost every major organ system of the body, including the central nervous system. The present paper used a grounded theory-literature review method to synthesise associations of dysregulated phosphate metabolism with the aetiology of ASD. Cell signalling in autism has been linked to an altered balance between phosphoinositide kinases, which phosphorylate proteins, and the counteracting effect of phosphatases in neuronal membranes. Glial cell overgrowth in the developing ASD brain can lead to disturbances in neuro-circuitry, neuroinflammation and immune responses which are potentially related to excessive inorganic phosphate. The rise in ASD prevalence has been suggested to originate in changes to the gut microbiome from increasing consumption of additives in processed food, including phosphate additives. Ketogenic diets and dietary patterns that eliminate casein also reduce phosphate intake, which may account for many of the suggested benefits of these diets in children with ASD. Dysregulated phosphate metabolism is causatively linked to comorbid conditions associated with ASD such as cancer, tuberous sclerosis, mitochondrial dysfunction, diabetes, epilepsy, obesity, chronic kidney disease, tauopathy, cardiovascular disease and bone mineral disorders. Associations and proposals presented in this paper offer novel insights and directions for future research linking the aetiology of ASD with dysregulated phosphate metabolism and phosphate toxicity from excessive dietary phosphorus intake.
Collapse
Affiliation(s)
- Ronald B. Brown
- University of Waterloo, School of Public Health Sciences, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
23
|
Bollenbecker S, Heitman K, Czaya B, Easter M, Hirsch MJ, Vang S, Harris E, Helton ES, Barnes JW, Faul C, Krick S. Phosphate induces inflammation and exacerbates injury from cigarette smoke in the bronchial epithelium. Sci Rep 2023; 13:4898. [PMID: 36966182 PMCID: PMC10039898 DOI: 10.1038/s41598-023-32053-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
An elevation in serum phosphate-also called hyperphosphatemia-is associated with reduced kidney function in chronic kidney disease (CKD). Reports show CKD patients are more likely to develop lung disease and have poorer kidney function that positively correlates with pulmonary obstruction. However, the underlying mechanisms are not well understood. Here, we report that two murine models of CKD, which both exhibit increased serum levels of phosphate and fibroblast growth factor (FGF) 23, a regulator of phosphate homeostasis, develop concomitant airway inflammation. Our in vitro studies point towards a similar increase of phosphate-induced inflammatory markers in human bronchial epithelial cells. FGF23 stimulation alone does not induce a proinflammatory response in the non-COPD bronchial epithelium and phosphate does not cause endogenous FGF23 release. Upregulation of the phosphate-induced proinflammatory cytokines is accompanied by activation of the extracellular-signal regulated kinase (ERK) pathway. Moreover, the addition of cigarette smoke extract (CSE) during phosphate treatments exacerbates inflammation as well as ERK activation, whereas co-treatment with FGF23 attenuates both the phosphate as well as the combined phosphate- and CS-induced inflammatory response, independent of ERK activation. Together, these data demonstrate a novel pathway that potentially explains pathological kidney-lung crosstalk with phosphate as a key mediator.
Collapse
Affiliation(s)
- Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Kylie Heitman
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Czaya
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Shia Vang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Elex Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - E Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Christian Faul
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Strategies to Reduce Purge Losses in Meat Products Stuffed in Plastic Casings. J FOOD QUALITY 2023. [DOI: 10.1155/2023/8536199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Two different meat emulsions were prepared with different physical stability: R1 with 6.28 ± 1.13% total expressible fluid and R2 with 17.7 ± 1.48%. The emulsions were placed in plastic casings at three different surface tensions (ST), expressed as contact angle, and three distinct overstuffing percentages (OS). The stuffed samples were cooked in an industrial oven. After cooling, purge losses (PL) and texture profile analysis (TPA) were measured. The reduced surface tension of the plastic casings significantly decreased the PL of both recipes. In the case of R2, a combination of high OS and low ST was necessary to reduce PL in a 60%. In the case of TPA, OS had a statistical influence on parameters like chewiness, cohesiveness, and hardness. Plastic casings with different surface tension (to increase adherence of meat emulsion to the casing) stuffed at different levels of overstuffing percentages (to reduce free space between meat emulsion and casing) represent a potential tool to reduce PL of products based on low stability meat emulsions.
Collapse
|
25
|
Analyses of regulatory network and discovery of potential biomarkers for Korean rockfish (Sebastes schlegelii) in responses to starvation stress through transcriptome and metabolome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101061. [PMID: 36796184 DOI: 10.1016/j.cbd.2023.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Whether in aquaculture or in nature, starvation stress limits the growth of fish. The purpose of the study was to clarify the detailed molecular mechanisms underlying starvation stress in Korean rockfish (Sebastes schlegelii) through liver transcriptome and metabolome analysis. Transcriptome results showed that liver genes associated with cell cycle and fatty acid synthesis were down-regulated, whereas those related to fatty acid decomposition were up-regulated in the experimental group (EG; starved for 72 days) compared to the control group (CG; feeding). Metabolomic results showed that there were significant differences in the levels of metabolites related to nucleotide metabolism and energy metabolism, such as purine metabolism, histidine metabolism and oxidative phosphorylation. Five fatty acids (C22:6n-3; C22:5n-3; C20:5n-3; C20:4n-3; C18:3n-6) were selected as possible biomarkers of starvation stress from the differential metabolites of metabolome. Subsequently, correlation between these differential genes of lipid metabolism and cell cycle and differential metabolites were analyzed, and observed that these five fatty acids were significantly correlated with the differential genes. These results provide new clues for understanding the role of fatty acid metabolism and cell cycle in fish under starvation stress. It also provides a reference for promoting the biomarker identification of starvation stress and stress tolerance breeding research.
Collapse
|
26
|
Banerjee S, Drapkin R, Richardson DL, Birrer M. Targeting NaPi2b in ovarian cancer. Cancer Treat Rev 2023; 112:102489. [PMID: 36446254 DOI: 10.1016/j.ctrv.2022.102489] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Novel biomarkers are needed to direct new treatments for ovarian cancer, a disease for which the standard of care remains heavily focused on platinum-based chemotherapy. Despite the success of PARP inhibitors, treatment options are limited, particularly in the platinum-resistant setting. NaPi2b is a cell surface sodium-dependent phosphate transporter that regulates phosphate homeostasis under normal physiological conditions and is a lineage marker that is expressed in select cancers, including ovarian, lung, thyroid, and breast cancers, with limited expression in normal tissues. Based on its increased expression in ovarian tumors, NaPi2b is a promising candidate to be studied as a biomarker for treatment and patient selection in ovarian cancer. In preclinical studies, the use of antibodies against NaPi2b showed that this protein can be exploited for tumor mapping and therapeutic targeting. Emerging data from phase 1 and 2 clinical trials in ovarian cancer have suggested that NaPi2b can be successfully detected in patient biopsy samples using immunohistochemistry, and the NaPi2b-targeting antibody-drug conjugate under evaluation appeared to elicit therapeutic responses. The aim of this review is to examine literature supporting NaPi2b as a novel biomarker for potential treatment and patient selection in ovarian cancer and to discuss the critical next steps and future analyses necessary to drive the study of this biomarker and therapeutic targeting forward.
Collapse
Affiliation(s)
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Michael Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas Medical School, Little Rock, AR, United States.
| |
Collapse
|
27
|
Lacerda-Abreu MA, Dick CF, Meyer-Fernandes JR. The Role of Inorganic Phosphate Transporters in Highly Proliferative Cells: From Protozoan Parasites to Cancer Cells. MEMBRANES 2022; 13:42. [PMID: 36676849 PMCID: PMC9860751 DOI: 10.3390/membranes13010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In addition to their standard inorganic phosphate (Pi) nutritional function, Pi transporters have additional roles in several cells, including Pi sensing (the so-called transceptor) and a crucial role in Pi metabolism, where they control several phenotypes, such as virulence in pathogens and tumour aggressiveness in cancer cells. Thus, intracellular Pi concentration should be tightly regulated by the fine control of intake and storage in organelles. Pi transporters are classified into two groups: the Pi transporter (PiT) family, also known as the Pi:Na+ symporter family; and the Pi:H+ symporter (PHS) family. Highly proliferative cells, such as protozoan parasites and cancer cells, rely on aerobic glycolysis to support the rapid generation of biomass, which is equated with the well-known Warburg effect in cancer cells. In protozoan parasite cells, Pi transporters are strongly associated with cell proliferation, possibly through their action as intracellular Pi suppliers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Similarly, the growth rate hypothesis (GRH) proposes that the high Pi demands of tumours when achieving accelerated proliferation are mainly due to increased allocation to P-rich nucleic acids. The purpose of this review was to highlight recent advances in understanding the role of Pi transporters in unicellular eukaryotes and tumorigenic cells, correlating these roles with metabolism in these cells.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia Fernanda Dick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
28
|
Sinha S, Haque M. Obesity, Diabetes Mellitus, and Vascular Impediment as Consequences of Excess Processed Food Consumption. Cureus 2022; 14:e28762. [PMID: 36105908 PMCID: PMC9441778 DOI: 10.7759/cureus.28762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 12/15/2022] Open
Abstract
Regular intake of ready-to-eat meals is related to obesity and several noninfectious illnesses, such as cardiovascular diseases, hypertension, diabetes mellitus (DM), and tumors. Processed foods contain high calories and are often enhanced with excess refined sugar, saturated and trans fat, Na+ andphosphate-containing taste enhancers, and preservatives. Studies showed that monosodium glutamate (MSG) induces raised echelons of oxidative stress, and excessive hepatic lipogenesis is concomitant to obesity and type 2 diabetes mellitus (T2DM). Likewise, more than standard salt intake adversely affects the cardiovascular system, renal system, and central nervous system (CNS), especially the brain. Globally, excessive utilization of phosphate-containing preservatives and additives contributes unswervingly to excessive phosphate intake through food. In addition, communities and even health experts, including medical doctors, are not well-informed about the adverse effects of phosphate preservatives on human health. Dietary phosphate excess often leads to phosphate toxicity, ultimately potentiating kidney disease development. The mechanisms involved in phosphate-related adverse effects are not explainable. Study reports suggested that high blood level of phosphate causes vascular ossification through the deposition of Ca2+ and substantially alters fibroblast growth factor-23 (FGF23) and calcitriol.
Collapse
|
29
|
Bollenbecker S, Czaya B, Gutiérrez OM, Krick S. Lung-kidney interactions and their role in chronic kidney disease-associated pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2022; 322:L625-L640. [PMID: 35272496 PMCID: PMC11684991 DOI: 10.1152/ajplung.00152.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic illnesses rarely present in a vacuum, devoid of other complications, and chronic kidney disease is hardly an exception. Comorbidities associated with chronic kidney disease lead to faster disease progression, expedited dialysis dependency, and a higher mortality rate. Although chronic kidney disease is most commonly accompanied by cardiovascular diseases and diabetes, there is clear cross talk between the lungs and kidneys pH balance, phosphate metabolism, and immune system regulation. Our present understanding of the exact underlying mechanisms that contribute to chronic kidney disease-related pulmonary disease is poor. This review summarizes the current research on kidney-pulmonary interorgan cross talk in the context of chronic kidney disease, highlighting various acute and chronic pulmonary diseases that lead to further complications in patient care. Treatment options for patients presenting with chronic kidney disease and lung disease are explored by assessing activated molecular pathways and the body's compensatory response mechanisms following homeostatic imbalance. Understanding the link between the lungs and kidneys will potentially improve health outcomes for patients and guide healthcare professionals to better understand how and when to treat each of the pulmonary comorbidities that can present with chronic kidney disease.
Collapse
Affiliation(s)
- Seth Bollenbecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M Gutiérrez
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
30
|
Shanti A, Al Adem K, Stefanini C, Lee S. Hydrogen phosphate selectively induces MDA MB 231 triple negative breast cancer cell death in vitro. Sci Rep 2022; 12:5333. [PMID: 35351930 PMCID: PMC8964734 DOI: 10.1038/s41598-022-09299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphate ions are the most abundant anions inside the cells, and they are increasingly gaining attention as key modulators of cellular function and gene expression. However, little is known about the effect of inorganic phosphate ions on cancer cells, particularly breast cancer cells. Here, we investigated the toxicity of different phosphate compounds to triple-negative human breast cancer cells, particularly, MDA-MB-231, and compared it to that of human monocytes, THP-1. We found that, unlike dihydrogen phosphate (H2PO4−), hydrogen phosphate (HPO42−) at 20 mM or lower concentrations induced breast cancer cell death more than immune cell death, mainly via apoptosis. We correlate this effect to the fact that phosphate in the form of HPO42− raises pH levels to alkaline levels which are not optimum for transport of phosphate into cancer cells. The results in this study highlight the importance of further exploring hydrogen phosphate (HPO42−) as a potential therapeutic for the treatment of breast cancer.
Collapse
Affiliation(s)
- Aya Shanti
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Kenana Al Adem
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates. .,Khalifa University's Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
31
|
Venturelli S, Leischner C, Helling T, Renner O, Burkard M, Marongiu L. Minerals and Cancer: Overview of the Possible Diagnostic Value. Cancers (Basel) 2022; 14:1256. [PMID: 35267564 PMCID: PMC8909570 DOI: 10.3390/cancers14051256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide and is expected to increase by one-third over the next two decades, in parallel with the growing proportion of the elderly population. Treatment and control of cancer incidence is a global issue. Since there is no clear way to prevent or cure this deadly malignancy, diagnostic, predictive, and prognostic markers for oncological diseases are of great therapeutic value. Minerals and trace elements are important micronutrients for normal physiological function of the body. They are abundant in natural food sources and are regularly included in dietary supplements whereas highly processed industrial food often contains reduced or altered amounts of them. In modern society, the daily intake, storage pools, and homeostasis of these micronutrients are dependent on certain dietary habits and can be thrown out of balance by malignancies. The current work summarizes the data on minerals and trace elements associated with abnormal accumulation or depletion states in tumor patients and discusses their value as potential tumor-associated biomarkers that could be introduced into cancer therapy.
Collapse
Affiliation(s)
- Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| | - Thomas Helling
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| | - Olga Renner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| | - Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany; (S.V.); (C.L.); (T.H.); (O.R.)
| |
Collapse
|
32
|
Hetz R, Beeler E, Janoczkin A, Kiers S, Li L, Willard BB, Razzaque MS, He P. Excessive Inorganic Phosphate Burden Perturbed Intracellular Signaling: Quantitative Proteomics and Phosphoproteomics Analyses. Front Nutr 2022; 8:765391. [PMID: 35096927 PMCID: PMC8795896 DOI: 10.3389/fnut.2021.765391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for the human body which exerts adverse health effects in excess and deficit. High Pi-mediated cytotoxicity has been shown to induce systemic organ damage, though the underlying molecular mechanisms are poorly understood. In this study, we employed proteomics and phosphoproteomics to analyze Pi-mediated changes in protein abundance and phosphorylation. Bioinformatic analyses and literature review revealed that the altered proteins and phosphorylation were enriched in signaling pathways and diverse biological processes. Western blot analysis confirms the extensive change in protein level and phosphorylation in key effectors that modulate pre-mRNA alternative splicing. Global proteome and phospho-profiling provide a bird-eye view of excessive Pi-rewired cell signaling networks, which deepens our understanding of the molecular mechanisms of phosphate toxicity.
Collapse
Affiliation(s)
- Rebecca Hetz
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Erik Beeler
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Alexis Janoczkin
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Spencer Kiers
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Ling Li
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Belinda B Willard
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| |
Collapse
|
33
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
34
|
Alexander R, Debiec N, Razzaque MS, He P. Inorganic phosphate-induced cytotoxicity. IUBMB Life 2021; 74:117-124. [PMID: 34676972 DOI: 10.1002/iub.2561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Phosphate, an essential nutrient, is available in organic and inorganic forms. The balance of phosphate is central for cellular homeostasis through the genomic roles of DNA and RNA synthesis and cell signaling processes. Therefore, an imbalance of this nutrient, manifested, either as a deficiency or excess in phosphate levels, can result in pathology, ranging from cytotoxicity to musculoskeletal defects. Inorganic phosphate (Pi) overdosing can result in a wide spectrum of cytotoxicity processes, as noted in both animal models and human studies. These include rewired cell signaling pathways, impaired bone mineralization, infertility, premature aging, vascular calcification, and renal dysfunction. This article briefly reviews the regulation of phosphate homeostasis and elaborates on cytotoxic effects of excessive Pi, as documented in cell-based models.
Collapse
Affiliation(s)
- Rachel Alexander
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Nicholas Debiec
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Mohammad S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
35
|
Lacerda-Abreu MA, Russo-Abrahão T, Rocco-Machado N, Cosentino-Gomes D, Dick CF, Carvalho-Kelly LF, Cunha Nascimento MT, Rocha-Vieira TC, Meyer-Fernandes JR. Hydrogen Peroxide Generation as an Underlying Response to High Extracellular Inorganic Phosphate (Pi) in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms221810096. [PMID: 34576256 PMCID: PMC8468810 DOI: 10.3390/ijms221810096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
According to the growth rate hypothesis (GRH), tumour cells have high inorganic phosphate (Pi) demands due to accelerated proliferation. Compared to healthy individuals, cancer patients present with a nearly 2.5-fold higher Pi serum concentration. In this work, we show that an increasing concentration of Pi had the opposite effect on Pi-transporters only in MDA-MB-231 when compared to other breast cell lines: MCF-7 or MCF10-A (non-tumoural breast cell line). Here, we show for the first time that high extracellular Pi concentration mediates ROS production in TNBC (MDA-MB-231). After a short-time exposure (1 h), Pi hyperpolarizes the mitochondrial membrane, increases mitochondrial ROS generation, impairs oxygen (O2) consumption and increases PKC activity. However, after 24 h Pi-exposure, the source of H2O2 seems to shift from mitochondria to an NADPH oxidase enzyme (NOX), through activation of PKC by H2O2. Exogenous-added H2O2 modulated Pi-transporters the same way as extracellular high Pi, which could be reversed by the addition of the antioxidant N-acetylcysteine (NAC). NAC was also able to abolish Pi-induced Epithelial-mesenchymal transition (EMT), migration and adhesion of MDA-MB-231. We believe that Pi transporters support part of the energy required for the metastatic processes stimulated by Pi and trigger Pi-induced H2O2 production as a signalling response to promote cell migration and adhesion.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - Thais Russo-Abrahão
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - Nathália Rocco-Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Rockville, MD 20814, USA
| | - Daniela Cosentino-Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Claudia Fernanda Dick
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Luiz Fernando Carvalho-Kelly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - Michelle Tanny Cunha Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - Thaís Cristino Rocha-Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (M.A.L.-A.); (T.R.-A.); (N.R.-M.); (D.C.-G.); (C.F.D.); (L.F.C.-K.); (M.T.C.N.); (T.C.R.-V.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: ; Tel.: +55-21-3938-6781; Fax: +55-21-2270-8647
| |
Collapse
|
36
|
Johnson W, Boyer I, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Gill LJ, Heldreth B. Safety Assessment of Phosphoric Acid and Its Salts as Used in Cosmetics. Int J Toxicol 2021; 40:34S-85S. [PMID: 34259064 DOI: 10.1177/10915818211014499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Phosphoric Acid and its salts (31 ingredients), which are reported to function as buffering agents, corrosion inhibitors, chelating agents, and pH adjusters in cosmetic products. The Panel reviewed data relating to the safety of these ingredients and concluded that Phosphoric Acid and its salts are safe in the present practices of use and concentration in cosmetics when formulated to be nonirritating.
Collapse
Affiliation(s)
- Wilbur Johnson
- Cosmetic Ingredient Review Senior Scientific Analyst/Writer
| | - Ivan Boyer
- Cosmetic Ingredient Review Former Senior Toxicologist
| | | | | | - Ronald A Hill
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | | | |
Collapse
|
37
|
Wu DJ. Oversupply of Limiting Cell Resources and the Evolution of Cancer Cells: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.653622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cancer prevention is superior to cancer treatment—indeed, understanding and controlling cancer risk is a key question in the fields of applied ecology and evolutionary oncology. Ecological cancer risk models offer the dual benefit of being generalizable across cancer types, and unveiling common mechanisms underlying cancer development and spread. Understanding the biological mechanisms of cancer risk may also guide the design of interventions to prevent cancer. Ecological considerations are central to many of these mechanisms; as one example, the ecologically-based hypothesis of metabolic cancer suppression posits that restricted vascular supply of limiting resources to somatic tissues normally suppresses the evolution of somatic cells toward cancer. Here we present a critical review of published evidence relevant to this hypothesis, and we conclude that there is substantial evidence that cancer risk does increase with an abnormal excess of limiting cell resources, including both dietary macronutrients as well as certain micronutrients.
Collapse
|
38
|
Lacerda-Abreu MA, Russo-Abrahão T, Meyer-Fernandes JR. Resveratrol is an inhibitor of sodium-dependent inorganic phosphate transport in triple-negative MDA-MB-231 breast cancer cells. Cell Biol Int 2021; 45:1768-1775. [PMID: 33851766 DOI: 10.1002/cbin.11616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Metastasis is a major cause of death in patients with breast cancer. A growing body of evidence has demonstrated the antitumour effects of resveratrol, a non-flavonoid polyphenol. Resveratrol inhibits metastatic processes, such as the migration and invasion of cancer cells. In several cancer types, the importance of inorganic phosphate (Pi) for tumor progression has been demonstrated. The metastatic process in breast cancer is associated with Na+ -dependent Pi transporters. In this study, we demonstrate, for the first time, that resveratrol inhibits the Na+ -dependent Pi transporter. Results from kinetic analysis shows that resveratrol inhibits Na+ -dependent Pi transport non-competitively. Resveratrol also inhibits adhesion/migration in MDA-MB-231 cells, likely related to inhibition of the Na+ -dependent Pi transporter.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Russo-Abrahão
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Kim HS, Jang DY, Koo YJ, Pack EC, Lee SH, Choi DW. Safety assessment of condensed phosphate intake from fishery and processed marine food products in Korea with respect to gender, age, and region. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Condensed phosphates are used as food additives, especially in marine products and meat, to improve food quality. The import and consumption of fishery and processed marine food products in Republic of Korea have reportedly increased by ~5 per cent annually. However, processed marine food products are often intentionally adulterated with excessive amounts of condensed phosphates to increase their weight. Excessive intake of condensed phosphates via consuming processed marine food products can lead to various adverse effects on human health due to anionic imbalance. Herein, we conducted a safety assessment of condensed phosphates in 14 types of fishery and processed marine food products in Korea for the first time. Subgroup analysis of various factors including gender, age, and region was also performed, and the risk level of exposure for each group was estimated. Safety assessments by age and gender indicated that infants were at the highest risk. In the regional safety assessment, Chungnam, the most inland region, showed the lowest risk. For both the general and the high-intake groups (95th percentile) in all classifications, the risk was lower (<20 per cent) than the international standard, and the phosphorus content of the 14 types of processed marine products in Korea was confirmed to be safe for human consumption.
Collapse
Affiliation(s)
- Hyung Soo Kim
- Health Science Research Center, Korea University, Seoul, Republic of Korea
| | - Dae Yong Jang
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Ye Ji Koo
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Chul Pack
- School of Health and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Seung Ha Lee
- Health Science Research Center, Korea University, Seoul, Republic of Korea
| | - Dal Woong Choi
- Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Dobenecker B, Reese S, Herbst S. Effects of dietary phosphates from organic and inorganic sources on parameters of phosphorus homeostasis in healthy adult dogs. PLoS One 2021; 16:e0246950. [PMID: 33606750 PMCID: PMC7894875 DOI: 10.1371/journal.pone.0246950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/28/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The impact of dietary phosphorus (P) excess, especially on renal and cardiovascular health, has been investigated in several species, but little is known in dogs. OBJECTIVE The aim of this study was to examine effects of different P sources on concentration and postprandial kinetics of selected parameters of P homeostasis in dogs. METHODS Eight beagles received one control diet (P 0.5% dry matter [DM]) and three high P diets (poultry meal, NaH2PO4, and KH2PO4; P 1.7% DM) for 18d. Urine samples were collected pre- and postprandially while faeces were collected quantitatively for 5d and analysed for minerals. On day 18, blood was sampled 1h pre- and 0.5, 1, 1.5, 2, 3, 5 and 7h postprandially. RESULTS Pi (KH2PO4, NaH2PO4) but not organic P caused an increased apparent P digestibility and significantly influenced kinetics of serum FGF23, parathyroid hormone, P, CrossLaps and bonespecific alkaline phosphatase, demonstrating a disrupted calcium (Ca) and P homeostasis with potential harm for renal, cardiovascular and skeletal health. CONCLUSIONS Results of feeding Pi to dogs indicate distinct disturbances of Ca and P metabolism, in contrast to organic sources. The use of Pi in food can therefore not be considered as safe. Further research, especially on dose and long-term effects, is warranted.
Collapse
Affiliation(s)
- Britta Dobenecker
- Chair of Animal Nutrition and Dietetics, Department of Animal Science, Ludwig-Maximilians- Universität, Munich, Germany
| | - Sven Reese
- Chair of Anatomy, Histology and Embryology, Department of Animal Science, Ludwig-Maximilians- Universität, Munich, Germany
| | - Sarah Herbst
- Chair of Animal Nutrition and Dietetics, Department of Animal Science, Ludwig-Maximilians- Universität, Munich, Germany
| |
Collapse
|
41
|
The Roles of Sodium-Independent Inorganic Phosphate Transporters in Inorganic Phosphate Homeostasis and in Cancer and Other Diseases. Int J Mol Sci 2020; 21:ijms21239298. [PMID: 33291240 PMCID: PMC7729900 DOI: 10.3390/ijms21239298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for the maintenance of cells. In healthy mammals, extracellular Pi is maintained within a narrow concentration range of 0.70 to 1.55 mM. Mammalian cells depend on Na+/Pi cotransporters for Pi absorption, which have been well studied. However, a new type of sodium-independent Pi transporter has been identified. This transporter assists in the absorption of Pi by intestinal cells and renal proximal tubule cells and in the reabsorption of Pi by osteoclasts and capillaries of the blood–brain barrier (BBB). Hyperphosphatemia is a risk factor for mineral deposition, the development of diseases such as osteoarthritis, and vascular calcifications (VCs). Na+-independent Pi transporters have been identified and biochemically characterized in vascular smooth muscle cells (VSMCs), chondrocytes, and matrix vesicles, and their involvement in mineral deposition in the extracellular microenvironment has been suggested. According to the growth rate hypothesis, cancer cells require more phosphate than healthy cells due to their rapid growth rates. Recently, it was demonstrated that breast cancer cells (MDA-MB-231) respond to high Pi concentration (2 mM) by decreasing Na+-dependent Pi transport activity concomitant with an increase in Na+-independent (H+-dependent) Pi transport. This Pi H+-dependent transport has a fundamental role in the proliferation and migratory capacity of MDA-MB-231 cells. The purpose of this review is to discuss experimental findings regarding Na+-independent inorganic phosphate transporters and summarize their roles in Pi homeostasis, cancers and other diseases, such as osteoarthritis, and in processes such as VC.
Collapse
|
42
|
Arnst JL, Beck GR. Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis. Biochem Pharmacol 2020; 183:114305. [PMID: 33129806 DOI: 10.1016/j.bcp.2020.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many levels; it is required as an integral component of kinase signaling, in the formation and function of DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell mitosis - such as DNA synthesis and ATP energy generation - elevate the cellular requirement for Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might influence the initiation of aberrant growth during malignant transformation, and if reducing the bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells represents a novel approach to cancer prevention and control, although current data remains insufficient as to rigorously assess the therapeutic value and physiological relevance of this strategy. With this review, we present a critical evaluation of the paradox of how an element critical to essential cellular functions can, when available in excess, influence and promote a cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation and/or progression.
Collapse
Affiliation(s)
- Jamie L Arnst
- Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
43
|
Contaminated Land by Wildfire Effect on Ultramafic Soil and Associated Human Health and Ecological Risk. LAND 2020. [DOI: 10.3390/land9110409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study is the evaluation of fire effect on contaminated land and the assessment of the associated risk of human health and terrestrial ecological receptors. Ash and soil samples were gathered from burned and unburned areas (central Evia, Greece) which are adjacent with a Natura 2000 area. The geochemical dataset includes 20 sampling sites and 35 elements. The wildfire severity was investigated by applying a macroscopic approach and field observations. Statistical and spatial analysis were applied for delineating the distribution of elements in ash and soil. Elemental balance approach was performed for estimating net gain (+) or loss (−) to the ash. Element contents in sampling sites were compared to screening values proposed by the literature. Hundreds of hectares of burned land including wildland areas in central Evia are contaminated with (contents in mg Kg−1), Co (up to 43.5), Cr (up to 244), Mn (up to 1158), Ni (up to 463) associated with geogenic sources such as serpentinite peridotites and Ni-laterite deposits. Aluminum, As, Cd, Co, Cr, Fe, Mn, Ni, Pb, V and Zn contents recorded in the sampling sites are posing a potential risk to human health and ecological receptors.
Collapse
|
44
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
45
|
He P, Mann-Collura O, Fling J, Edara N, Hetz R, Razzaque MS. High phosphate actively induces cytotoxicity by rewiring pro-survival and pro-apoptotic signaling networks in HEK293 and HeLa cells. FASEB J 2020; 35:e20997. [PMID: 32892444 DOI: 10.1096/fj.202000799rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for human health. Due to the changes in our dietary pattern, dietary Pi overload engenders systemic phosphotoxicity, including excessive Pi-related vascular calcification and chronic tissue injury. The molecular mechanisms of the seemingly distinct phenotypes remain elusive. In this study, we investigated Pi-mediated cellular response in HEK293 and HeLa cells. We found that abnormally high Pi directly mediates diverse cellular toxicity in a dose-dependent manner. Up to 10 mM extracellular Pi promotes cell proliferation by activating AKT signaling cascades and augmenting cell cycle progression. By introducing additional Pi, higher than the concentration of 40 mM, we observed significant cell damage caused by the interwoven Pi-related biological processes. Elevated Pi activates mitogen-activated protein kinase (MAPK) signaling, encompassing extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and Jun amino-terminal kinase (JNK), which consequently potentiates Pi triggered lethal epithelial-mesenchymal transition (EMT). Synergistically, high Pi-caused endoplasmic reticulum (ER) stress also contributes to apparent apoptosis. To counteract, Pi-activated AKT signaling promotes cell survival by activating the mammalian target of rapamycin (mTOR) signaling and blocking ER stress. Pharmacologically or genetically abrogating Pi transport, the impact of high Pi-induced cytotoxicity could be reduced. Taken together, abnormally high extracellular Pi results in a broad spectrum of toxicity by rewiring complicated signaling networks that control cell growth, cell death, and homeostasis.
Collapse
Affiliation(s)
- Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Olivia Mann-Collura
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Jacob Fling
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Naga Edara
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Rebecca Hetz
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
46
|
Luo Y, Deng J, Cui Y, Li T, Bai J, Huang L, Sun Y, Dong F, Zhang Q. Long-term instillation to four natural representative chrysotile of China induce the inactivation of P53 and P16 and the activation of C-JUN and C-FOS in the lung tissues of Wistar rats. Toxicol Lett 2020; 333:140-149. [PMID: 32755622 DOI: 10.1016/j.toxlet.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
Chrysotile is the only type of asbestos still widely exploited, and all kinds of asbestos including chrysotile was classified as a group I carcinogen by the IARC. There is a wealth of evidence that chrysotile can cause a range of cancers, including cancer of the lung, larynx, ovary, and mesothelioma. As the second largest chrysotile producer, China is at great risk of occupational exposure. Moreover, our previous experiment and some other studies have shown that the toxicity of mineral fibre from various mining areas may be different. To explore the oncogenic potential of chrysotile from different mining areas of China, Wistar rats were administered 0.5 mL chrysotile asbestos suspension of 2.0 mg/mL (from Akesai, Gansu; Mangnai, Qinghai; XinKang, Sichuan; and Shannan, Shaanxi) dissolved in saline by intratracheal instillation once-monthly and were sacrificed at 1 mo, 6 mo, and 12 mo. Our results found that chrysotile caused lung inflammation and lung tissue damage. Moreover, prolonged exposure of chrysotile can induce inactivation of the tumor suppressor gene P53 and P16 and activation of the protooncogene C-JUN and C-FOS both in the messenger RNA and protein level. In addition, chrysotile from Shannan and XinKang has a stronger effect which may link to cancer than that from Akesai and Mangnai.
Collapse
Affiliation(s)
- Yingyu Luo
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianjun Deng
- Medical Laboratory, Sichuan Mianyang 404 Hospital, No.2 Affiliated Hospital of North Sichuan Medical College, Mianyang 621000, Sichuan Province, China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Li
- Key Laboratory of Ministry of Education, Myocardial electrical laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liuwen Huang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yaochuan Sun
- School of Earth Science and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
47
|
The SLC Family Are Candidate Diagnostic and Prognostic Biomarkers in Clear Cell Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1932948. [PMID: 32461965 PMCID: PMC7212275 DOI: 10.1155/2020/1932948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/29/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common lethal subtype of renal cancer, and changes in tumor metabolism play a key role in its development. Solute carriers (SLCs) are important in the transport of small molecules in humans, and defects in SLC transporters can lead to serious diseases. The expression patterns and prognostic values of SLC family transporters in the development of ccRCC are still unclear. The current study analyzed the expression levels of SLC family members and their correlation with prognosis in ccRCC patients with data from Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), cBioPortal, the Human Protein Atlas (HPA), the International Cancer Genome Consortium (ICGC), and the Gene Expression Omnibus (GEO). We found that the mRNA expression levels of SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were significantly lower in ccRCC tissues than in normal tissues and the protein expression levels of SLC22A6, SLC22A7, SLC22A13, and SLC34A1 were also significantly lower. Except for SLC22A7, the expression levels of SLC22A6, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were correlated with the clinical stage of ccRCC patients. The lower the expression levels of SLC22A6, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were, the later the clinical stage of ccRCC patients was. Further experiments revealed that the expression levels of SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were significantly associated with overall survival (OS) and disease-free survival (DFS) in ccRCC patients. High SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 expression predicted improved OS and DFS. Finally, GSE53757 and ICGC were used to revalidate the differential expression and clinical prognostic value. This study suggests that SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 may be potential targets for the clinical diagnosis, prognosis, and treatment of ccRCC patients.
Collapse
|
48
|
He J, Zhou M, Li X, Gu S, Cao Y, Xing T, Chen W, Chu C, Gu F, Zhou J, Jin Y, Ma J, Ma D, Zou Q. SLC34A2 simultaneously promotes papillary thyroid carcinoma growth and invasion through distinct mechanisms. Oncogene 2020; 39:2658-2675. [PMID: 32005974 DOI: 10.1038/s41388-020-1181-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the fastest growing cancer among all solid tumors in recent decades. Papillary thyroid carcinoma (PTC) is the most predominant type of thyroid cancer. Around 30% of PTC patients with distant metastases and local invasion receive poor prognosis. Thus, the identification of new druggable biological targets is of great importance. Accumulating evidence indicates that solute carrier family numbers have emerged as obligate effectors during the progression of multiple malignancies. Here, we uncovered the functional significance, molecular mechanisms, and clinical impact of solute carrier family 34 member A2 (SLC34A2) in PTC. SLC34A2 was markedly overexpressed in PTC tissues at both mRNA and protein levels compared with matched adjacent normal tissues due to promoter hypomethylation mediated by the DNA methyltransferase 3 beta (DNMT3B). Furthermore, a series of in vivo and in vitro gain- or loss-of-functional assays elucidated the role of SLC34A2 in boosting cell proliferation, cell cycle progression, migration, invasion, and adhesion of PTC cells. Using immunoprecipitation and mass spectrometry, we discovered that SLC34A2 bound to the actin-binding repeats domain of Cortactin (CTTN), thereby inducing the invadopodia formation of PTC cells to promote the metastasis potential of PTC cells. Besides, our mechanistic studies, as well as gene set enrichment analysis (GSEA), have pinpointed the PTEN/AKT/FOXO3a pathway as a major signaling functioning downstream of SLC34A2 regulated cell growth. Taken together, our results highlighted that SLC34A2 plays a pivotal oncogenic role during carcinogenesis and metastasis through distinct mechanisms in PTC.
Collapse
Affiliation(s)
- Jing He
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaoyan Li
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Siwen Gu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Yun Cao
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Tengfei Xing
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Wei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Chengyu Chu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Fei Gu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Jian Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Yiting Jin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institute of Biomedical Sciences, Fudan University, 130 Dong'an Road, Shanghai, 200032, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institute of Biomedical Sciences, Fudan University, 130 Dong'an Road, Shanghai, 200032, China.
| | - Qiang Zou
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
49
|
Brown RB. Diabetes, Diabetic Complications, and Phosphate Toxicity: A Scoping Review. Curr Diabetes Rev 2020; 16:674-689. [PMID: 31686640 DOI: 10.2174/1573399815666191104113236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
This article presents a scoping review and synthesis of research findings investigating the toxic cellular accumulation of dysregulated inorganic phosphate-phosphate toxicity-as a pathophysiological determinant of diabetes and diabetic complications. Phosphorus, an essential micronutrient, is closely linked to the cellular metabolism of glucose for energy production, and serum inorganic phosphate is often transported into cells along with glucose during insulin therapy. Mitochondrial dysfunction and apoptosis, endoplasmic reticulum stress, neuronal degeneration, and pancreatic cancer are associated with dysregulated levels of phosphate in diabetes. Ectopic calcification involving deposition of calcium-phosphate crystals is prevalent throughout diabetic complications, including vascular calcification, nephropathy, retinopathy, and bone disorders. A low-glycemic, low-phosphate dietary intervention is proposed for further investigations in the treatment and prevention of diabetes and related diabetic pathologies.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
50
|
Fu X, Zhao J, Liang QR, Luo RG, Fan GQ, Tang Q. Intratumoral inorganic phosphate deprivation: A new anticancer strategy? Med Hypotheses 2019; 135:109497. [PMID: 31759311 DOI: 10.1016/j.mehy.2019.109497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022]
Abstract
Tumor epidemiology, as well as tumor microenvironments and cancer cell signaling study, has been presented with statistical relevance of inorganic phosphate (Pi) to tumorigenesis. Although serum Pi is still not acknowledged as a clinical tumor biomarker, abnormally high Pi concentration in serum or tumor lesions is gradually recognized as a characteristic of malignancy. On the other hand, phosphate binder (e.g. La2 (CO3)3, Fosrenols) has been clinically approved to treat hyperphosphatemia, a metabolic disease characterized by a high serum phosphate level. We hypothesize that, if reducing phosphate burden comes to benefit tumor therapy, could systemic or intratumoral administration of phosphate binder effectively deprive tumor Pi concentration, and then inhibit tumor growth and metastases? From the past clinical and preclinical outcomes, we'd conclude that Pi is not only a metabolite during tumor growth but also a force to trigger tumor progression and metastases. Two types of cancer models were developed to initiate this study. Firstly, a patient-derived xenograft mouse model of colorectal cancer was designed, where mice were administered systemically or intratumorally with lanthanum acetate (a molecular phosphate binder), and the serum or intratumoral Pi concentration levels were found to a dropdown. Secondly, a rabbit VX2 liver tumor was set up for the local-regional therapy model, where lanthanum acetate was intratumorally administered by the standard transcatheter arterial chemoembolization procedure, and it significantly reduced intratumoral Pi concentration. Therefore, Pi deprivation by phosphate binder might be a new anticancer strategy if reducing phosphate burden could effectively arrest tumor growth and delay metastatic progression.
Collapse
Affiliation(s)
- Xin Fu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Jun Zhao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Qing-Rong Liang
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Rong-Guang Luo
- Department of Medical Imaging and Interventional Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guang-Qin Fan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Qun Tang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China; Institute for Advanced Study, Nanchang University, Nanchang, China.
| |
Collapse
|