1
|
Sinha I, Bitzer Z, Barnett S, Reinhart L, Umstead TM, Chroneos ZC, Lanza M, Sun D, Zhu J, Richie JP, Sinha R. Short-Term and Long-Term Effects of Electronic Cigarettes on Mouse Lungs Following Nose-Only Exposures. Chem Res Toxicol 2025. [PMID: 40401807 DOI: 10.1021/acs.chemrestox.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Health effects of electronic cigarettes (ECs) remain unknown, despite their popularity. We have determined that ECs produce highly reactive free radicals that could potentially cause damage in exposed tissues, mainly lungs. Goal for this study was to investigate the short- and long-term effects of ECs in mouse lungs. We focused on evaluating lung functions, oxidative stress related markers, and lung injury following nose-only exposures in male and female mice after 4- and 12-week periods. The EC exposure was modeled in vivo using nose-only exposures to C57BL/6 mice. For all studies, E-liquid (60:40; PG:VG) aerosols were compared to sham (compressed air) and to very low non-nicotine cigarette smoke (CS) controls in both sexes. Oxidative stress biomarkers (GSH, 8-Isoprostane, REDD1, and pGSK3β) and their selected downstream (RPS6) as well as upstream (AKT) target proteins in addition to pH2AX were measured by Western blot analysis. Lung function in mice was assessed by flexiVent and the injury scores were calculated following lung histology. Changes in cytology were also observed in cytospins from bronchoalveolar lavage (BALF). The lung injury (LI) score following 12-week exposures was significantly higher with EC and CS in female mice. Higher cell counts in BALF were mainly observed in CS exposed males and females at 4 and 12 weeks. 8-Isoprostane levels were significantly higher in EC and CS exposed males at 12 weeks. pGSK3β/GSK3β was low in males and higher in female mice at 4 weeks, and this difference was more pronounced at 12 weeks in CS exposed mice. Some mice exposed to EC and CS also showed DNA damage, as measured by pH2AX/H2AX expression. Based on the LI score, ECs were placed in between compressed air and CS. Our results showed the differentially expressed inflammation and oxidative stress/damage-related pathways from in vivo exposures to EC aerosols vs CS that could be an effective strategy for identifying EC relevant biomarkers of exposure and potential harm.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Molecular and Precision Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Zachary Bitzer
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Stephanie Barnett
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Lisa Reinhart
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Todd M Umstead
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Zissis C Chroneos
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Matthew Lanza
- Department of Comparative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Dongxiao Sun
- Mass Spectrometry Core Facility (small molecule), Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - John P Richie
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Raghu Sinha
- Department of Molecular and Precision Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
2
|
Johnsen M, Lehmann M. [Physiological and pathophysiological changes of the ageing lung]. Z Gerontol Geriatr 2025; 58:85-90. [PMID: 39833352 DOI: 10.1007/s00391-024-02401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Due to age-related changes the lung function decreases. At the same time there is an increase in pulmonary diseases that lead to restrictions in mobility and autonomy. RESEARCH QUESTION What are the underlying changes in lung ageing? To what extent do they affect lung function and are there factors that can be influenced? METHOD Literature search. RESULTS Ageing of the lungs is associated with a loss of elasticity and distensibility. Senescence-associated factors play an important role at the molecular level. Accumulation of damaged DNA and proteins, oxidative stress and chronic inflammation are major factors. Avoidance of harmful environmental factors can reduce the disease burden. CONCLUSION Age-related pathophysiological changes lead to increased work of breathing with decreasing muscle strength. Patients should be encouraged to avoid inhaling noxious agents as these are associated with a diminution of lung function loss even in older age.
Collapse
Affiliation(s)
- Marc Johnsen
- Altersmedizinisches Zentrum Köln, Cellitinnen-Krankenhaus St. Marien, Köln, Deutschland.
| | - Mareike Lehmann
- Institut für Lungenforschung, Philipps-Universität Marburg, Deutsches Zentrum für Lungenforschung (DZL), Marburg, Deutschland
- Comprehensive Pneumology Center, Institut für Lungengesundheit und Immunität, Helmholtz Zentrum München, München, Deutschland
- Institut für Lungengesundheit (ILH), Gießen, Deutschland
| |
Collapse
|
3
|
Dai W, Shi J, Carreno J, Kleinman MT, Herman DA, Arechavala RJ, Renusch S, Hasen I, Ting A, Kloner RA. Impact of electronic cigarette vaping on the cardiovascular function in young and old rats. Sci Rep 2024; 14:30420. [PMID: 39639066 PMCID: PMC11621403 DOI: 10.1038/s41598-024-81398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND While the acute exposure to electronic cigarette (E-cig) vapor has been associated with an increase in blood pressure, the chronic effect of E-cig vapor on blood pressure compared to standard cigarette smoke has not been extensively studied. We determined the effect of E-cig exposure on blood pressure and other measures of cardiac function in both young and old rats. METHODS Young Sprague Dawley rats (6 weeks old, both sexes) were randomly exposed to air (n = 34), E-cig with nicotine (E-cig Nic+; n = 30), E-cig without nicotine (E-cig Nic-; n = 28) or standard cigarette smoke (n = 27). Old Fischer 344 rats (25 months old, both sexes) were randomized into 2 groups: (1) 26 rats in the purified air (negative control) group and (2) 17 rats in the electronic cigarette vapor plus nicotine group (E-cig Nic+). After 12 weeks of exposure, hemodynamics were determined by Millar catheter, echocardiography, and thermodilution catheter, a few days after their last exposure. RESULTS In young rats, cigarette smoke was associated with higher systolic, diastolic and mean blood pressures and peak LV systolic pressure, compared to air or E-cig Nic + or E-cig Nic- groups. Neither fractional shortening nor cardiac output differed among the groups. Absolute value for dp/dt min, a measure of diastolic LV function, was lowest in the E-cig Nic- group. Tau, a measure of LV relaxation was worse in this group as well. In old rats, E-cig vaping did not change heart rate, blood pressure, and cardiac function. However, E-cig Nic + exposure was associated with a greater heart weight/BW and LV weight/BW compared to air exposure in old rats. CONCLUSIONS Chronic exposure to E-cig vaping did not cause an increase in blood pressure or heart rate, nor did it change cardiac function compared to air in young rats after 12 weeks of exposure, while standard cigarette smoking was associated with an increase in blood pressure. E-cig vaping was associated with a greater heart weight/BW and LV weight/BW compared to air exposure in old rats, suggested that older animals might be more vulnerable to E-cig stimulus than younger ones.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA.
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA.
| | - Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - David A Herman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Samantha Renusch
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Irene Hasen
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Amanda Ting
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| |
Collapse
|
4
|
Gil A, Hoag GE, Salerno JP, Hornig M, Klimas N, Selin LK. Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/anti-pathogen agent in a retrospective case series. Brain Behav Immun Health 2024; 36:100720. [PMID: 38327880 PMCID: PMC10847863 DOI: 10.1016/j.bbih.2023.100720] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Background Patients with post-acute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC, i.e., Long COVID) have a symptom complex highly analogous to many features of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting they may share some aspects of pathogenesis in these similar disorders. ME/CFS is a complex disease affecting numerous organ systems and biological processes and is often preceded by an infection-like episode. It is postulated that the chronic manifestations of illness may result from an altered host response to infection or inability to resolve inflammation, as is being reported in Long COVID. The immunopathogenesis of both disorders is still poorly understood. Here, we show data that suggest Long COVID and ME/CFS may be due to an aberrant response to an immunological trigger-like infection, resulting in a dysregulated immune system with CD8 T-cell dysfunction reminiscent of some aspects of T-cell clonal exhaustion, a phenomenon associated with oxidative stress. As there is an urgent need for diagnostic tools and treatment strategies for these two related disabling disorders, here, in a retrospective case series, we have also identified a potential nebulized antioxidant/anti-pathogen treatment that has evidence of a good safety profile. This nebulized agent is comprised of five ingredients previously reported individually to relieve oxidative stress, attenuate NF-κB signaling, and/or to act directly to inhibit pathogens, including viruses. Administration of this treatment by nebulizer results in rapid access of small doses of well-studied antioxidants and agents with anti-pathogen potential to the lungs; components of this nebulized agent are also likely to be distributed systemically, with potential to enter the central nervous system. Methods and Findings: We conducted an analysis of CD8 T-cell function and severity of symptoms by self-report questionnaires in ME/CFS, Long COVID and healthy controls. We developed a CD8 T-cell functional assay, assessing CD8 T-cell dysfunction by intracellular cytokine staining (ICS) in a group of ME/CFS (n = 12) and Long COVID patients (n = 8), comparing to healthy controls (HC) with similar age and sex (n = 10). Magnet-enriched fresh CD8 T-cells in both patient groups had a significantly diminished capacity to produce both cytokines, IFNγ or TNFα, after PMA stimulation when compared to HC. The symptom severity questionnaire showed similar symptom profiles for the two disorders. Fortuitously, through a retrospective case series, we were able to examine the ICS and questionnaire data of 4 ME/CFS and 4 Long COVID patients in conjunction with their treatment (3-15 months). In parallel with the treatment pursued electively by participants in this retrospective case series, there was an increase in CD8 T-cell IFNγ and TNFα production and a decrease in overall self-reported symptom severity score by 54%. No serious treatment-associated side effects or laboratory anomalies were noted in these patients. Conclusions Here, in this small study, we present two observations that appear potentially fundamental to the pathogenesis and treatment of Long COVID and ME/CFS. The first is that both disorders appear to be characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα. The second is that in a small retrospective Long COVID and ME/CFS case series, this immune dysfunction and patient health improved in parallel with treatment with an immunomodulatory, antioxidant pharmacological treatment with anticipated anti-pathogen activity. This work provides evidence of the potential utility of a biomarker, CD8 T-cell dysfunction, and suggests the potential for benefit from a new nebulized antioxidant/anti-pathogen treatment. These immune biomarker data may help build capacity for improved diagnosis and tracking of treatment outcomes during clinical trials for both Long COVID and ME/CFS while providing clues to new treatment avenues that suggest potential efficacy for both conditions.
Collapse
Affiliation(s)
- Anna Gil
- University of Massachusetts Chan Medical School, Department of Pathology, Worcester, MA, USA
| | | | - John P. Salerno
- Inspiritol, Inc., Fairfield, CT, USA
- The Salerno Center for Complementary Medicine, New York, USA
| | - Mady Hornig
- Columbia University Mailman School of Public Health, New York, USA
| | - Nancy Klimas
- Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Liisa K. Selin
- University of Massachusetts Chan Medical School, Department of Pathology, Worcester, MA, USA
| |
Collapse
|
5
|
Jaramillo-Rangel G, Chávez-Briones MDL, Ancer-Arellano A, Miranda-Maldonado I, Ortega-Martínez M. Back to the Basics: Usefulness of Naturally Aged Mouse Models and Immunohistochemical and Quantitative Morphologic Methods in Studying Mechanisms of Lung Aging and Associated Diseases. Biomedicines 2023; 11:2075. [PMID: 37509714 PMCID: PMC10377355 DOI: 10.3390/biomedicines11072075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging-related molecular and cellular alterations in the lung contribute to an increased susceptibility of the elderly to devastating diseases. Although the study of the aging process in the lung may benefit from the use of genetically modified mouse models and omics techniques, these approaches are still not available to most researchers and produce complex results. In this article, we review works that used naturally aged mouse models, together with immunohistochemistry (IHC) and quantitative morphologic (QM) methods in the study of the mechanisms of the aging process in the lung and its most commonly associated disorders: cancer, chronic obstructive pulmonary disease (COPD), and infectious diseases. The advantage of using naturally aged mice is that they present characteristics similar to those observed in human aging. The advantage of using IHC and QM methods lies in their simplicity, economic accessibility, and easy interpretation, in addition to the fact that they provide extremely important information. The study of the aging process in the lung and its associated diseases could allow the design of appropriate therapeutic strategies, which is extremely important considering that life expectancy and the number of elderly people continue to increase considerably worldwide.
Collapse
Affiliation(s)
- Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | | | - Adriana Ancer-Arellano
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Ivett Miranda-Maldonado
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Marta Ortega-Martínez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
6
|
Jiang S, Chen Y. The role of sulfur compounds in chronic obstructive pulmonary disease. Front Mol Biosci 2022; 9:928287. [PMID: 36339716 PMCID: PMC9626809 DOI: 10.3389/fmolb.2022.928287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that brings about great social and economic burden, with oxidative stress and inflammation affecting the whole disease progress. Sulfur compounds such as hydrogen sulfide (H2S), thiols, and persulfides/polysulfides have intrinsic antioxidant and anti-inflammatory ability, which is engaged in the pathophysiological process of COPD. Hydrogen sulfide mainly exhibits its function by S-sulfidation of the cysteine residue of the targeted proteins. It also interacts with nitric oxide and acts as a potential biomarker for the COPD phenotype. Thiols’ redox buffer such as the glutathione redox couple is a major non-enzymatic redox buffer reflecting the oxidative stress in the organism. The disturbance of redox buffers was often detected in patients with COPD, and redressing the balance could delay COPD exacerbation. Sulfane sulfur refers to a divalent sulfur atom bonded with another sulfur atom. Among them, persulfides and polysulfides have an evolutionarily conserved modification with antiaging effects. Sulfur compounds and their relative signaling pathways are also associated with the development of comorbidities in COPD. Synthetic compounds which can release H2S and persulfides in the organism have gradually been developed. Naturally extracted sulfur compounds with pharmacological effects also aroused great interest. This study discussed the biological functions and mechanisms of sulfur compounds in regulating COPD and its comorbidities.
Collapse
|
7
|
How Aging and Oxidative Stress Influence the Cytopathic and Inflammatory Effects of SARS-CoV-2 Infection: The Role of Cellular Glutathione and Cysteine Metabolism. Antioxidants (Basel) 2022; 11:antiox11071366. [PMID: 35883857 PMCID: PMC9311797 DOI: 10.3390/antiox11071366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients’ age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include defects in the homeostatic processes that control the cellular redox and its pivotal role in sustaining the immuno-inflammatory response to the host and the protection against oxidative stress and tissue degeneration. Pathogens may take advantage of such age-dependent abnormalities. Alterations of the thiol redox balance in the lung tissue and lining fluids may influence the risk of infection, and the host capability to respond to pathogens and to avoid severe complications. SARS-CoV-2, likewise other viruses, such as HIV, influenza, and HSV, benefits in its replication cycle of pro-oxidant conditions that the same viral infection seems to induce in the host cell with mechanisms that remain poorly understood. We recently demonstrated that the pro-oxidant effects of SARS-CoV-2 infection are associated with changes in the cellular metabolism and transmembrane fluxes of Cys and GSH. These appear to be the consequence of an increased use of Cys in viral protein synthesis and to ER stress pathway activation that interfere with transcription factors, as Nrf2 and NFkB, important to coordinate the metabolism of GSH with other aspects of the stress response and with the pro-inflammatory effects of this virus in the host cell. This narrative review article describes these cellular and molecular aspects of SARS-CoV-2 infection, and the role that antivirals and cytoprotective agents such as N-acetyl cysteine may have to limit the cytopathic effects of this virus and to recover tissue homeostasis after infection.
Collapse
|
8
|
Giustarini D, Santucci A, Bartolini D, Galli F, Rossi R. The age-dependent decline of the extracellular thiol-disulfide balance and its role in SARS-CoV-2 infection. Redox Biol 2021; 41:101902. [PMID: 33662873 PMCID: PMC7889000 DOI: 10.1016/j.redox.2021.101902] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 (COVID-19) infection can cause a severe respiratory distress syndrome. The risk of severe manifestations and mortality characteristically increase in the elderly and in the presence of non-COVID-19 comorbidity. We and others previously demonstrated that the low molecular weight (LMW) and protein thiol/disulfide ratio declines in human plasma with age and such decline is even more rapid in the case of inflammatory and premature aging diseases, which are also associated with the most severe complications of COVID-19 infection. The same decline with age of the LMW thiol/disulfide ratio observed in plasma appears to occur in the extracellular fluids of the respiratory tract and in association with many pulmonary diseases that characteristically reduce the concentrations and adaptive stress response of the lung glutathione. Early evidence in literature suggests that the thiol to disulfide balance of critical Cys residues of the COVID-19 spike protein and the ACE-2 receptor may influence the risk of infection and the severity of the disease, with a more oxidizing environment producing the worst prognosis. With this hypothesis paper we propose that the age-dependent decline of LMW thiol/disulfide ratio of the extracellular fluids, could play a role in promoting the physical (protein-protein) interaction of CoV-2 and the host cell in the airways. Therefore, this redox-dependent interaction is expected to affect the risk of severe infection in an age-dependent manner. The hypothesis can be verified in experimental models of in vitro CoV-2 infection and at the clinical level in that LMW thiols and protein thiolation can now be investigated with standardized, reliable and versatile laboratory protocols. Presenting the verification strategy of our hypothesis, we also discuss available nutritional and ancillary pharmacological strategies to intervene on the thiol/disulfide ratio of extracellular fluids of subjects at risk of infection and COVID-19 patients.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A Moro 2, 53100, Siena, Italy.
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A Moro 2, 53100, Siena, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Giochetto 06126, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Giochetto 06126, Perugia, Italy.
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A Moro 2, 53100, Siena, Italy
| |
Collapse
|
9
|
Abstract
Cigarette smoke (CS) is likely the most common preventable cause of human morbidity and mortality worldwide. Consequently, inexpensive interventional strategies for preventing CS-related diseases would positively impact health systems. Inhaled CS is a powerful inflammatory stimulus and produces a shift in the normal balance between antioxidants and oxidants, inducing oxidative stress in both the respiratory system and throughout the body. This enduring and systemic pro-oxidative state within the body is reflected by increased levels of oxidative stress and inflammation biomarkers seen in smokers. Smokers might benefit from consuming antioxidant supplements, or a diet rich in fruit and vegetables, which can reduce the CS-related oxidative stress. This review provides an overview of the plasma profile of antioxidants observable in smokers and examines the heterogeneous literature to elucidate and discuss the effectiveness of interventional strategies based on antioxidant supplements or an antioxidant-rich diet to improve the health of smokers. An antioxidant-rich diet can provide an easy-to-implement and cost-effective preventative strategy to reduce the risk of CS-related diseases, thus being one of the simplest ways for smokers to stay in good health for as long as possible. The health benefits attributable to the intake of antioxidants have been observed predominantly when these have been consumed within their natural food matrices in an optimal antioxidant-rich diet, while these preventive effects are rarely achieved with the intake of individual antioxidants, even at high doses.
Collapse
|
10
|
Zhao Z, Zhang Y, Liu L, Chen Y, Wang D, Jin X, Shen C. Metabolomics study of the effect of smoking and high-fat diet on metabolic responses and related mechanism following myocardial infarction in mice. Life Sci 2020; 263:118570. [PMID: 33058917 DOI: 10.1016/j.lfs.2020.118570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/24/2022]
Abstract
AIMS The present study aimed to evaluate the impact of chronic smoking and high fat diet on the post-MI metabolic features and inflammation resolution. MAIN METHODS Eight weeks old C57BL/6J mice were randomly divided into control(C), smoking(S), high-fat diet(H), and smoking plus high-fat diet(SH) groups for 16 weeks. MI was induced by permanent coronary ligation. Cardiac function was assessed by echocardiography at 5 days post-MI. The infarcted heart tissue was collected for the metabolic profile using metabolomics and quantification of pro-resolving mediators with immunoblotting. KEY FINDINGS Percentage of fractional shortening (FS%) and ejection fraction (EF%) were further reduced in SH than that in either S or H group (P < 0.05). Myocardial metabolomics analysis indicated that 3, 6, and 11 disturbed metabolic pathways were considered as the most relevant pathway (Impact > 0.1) in S, H, and SH groups, respectively. The common most relevant pathway among three groups was arachidonic acid metabolism. The levels of arachidonic acid and TXB2 were significantly higher, while the 5-LOX and HO-1 expression was significantly lower in SH group than that in either S or H group (P < 0.05). SIGNIFICANCE Smoking superimposed on high-fat diet could aggravate post-MI cardiac dysfunction and cause significant disturbance of metabolic pathways associated with inflammation, energy metabolism, as well as excessive oxidative stress. Smoking combined with high-fat diet could also magnify the post-MI inflammation and impair the resolution of inflammation in MI mice.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yaping Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Liang Liu
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yu Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Di Wang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xian Jin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China.
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
11
|
Dalle-Donne I, Garavaglia ML, Colombo G, Astori E, Lionetti MC, La Porta CAM, Santucci A, Rossi R, Giustarini D, Milzani A. Cigarette smoke and glutathione: Focus on in vitro cell models. Toxicol In Vitro 2020; 65:104818. [PMID: 32135238 DOI: 10.1016/j.tiv.2020.104818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
Abstract
Cigarette smoke (CS) is one of the most important preventable risk factors for the development of respiratory diseases, cardiovascular diseases, stroke, and various types of cancer. Due to its high intracellular concentration and central role in maintaining the cellular redox state, glutathione (GSH) is one of the key players in several enzymatic and non-enzymatic reactions necessary for protecting cells against CS-induced oxidative stress. A plethora of in vitro cell models have been used over the years to assess the effects of CS on intracellular GSH and its disulphide forms, i.e. glutathione disulphide (GSSG) and S-glutathionylated proteins. In this review, we described the effects of cell exposure to CS on cellular GSH and formation of its oxidized forms and adducts (GSH-conjugates). We also discussed the limitations and relevance of in vitro cell models of exposure to CS and critically assessed the congruence between smokers and in vitro cell models. What emerges clearly is that results obtained in vitro should be interpreted with extreme caution, bearing in mind the limitations of the specific cell model used. Despite this, in vitro cell models remain important tools in the assessment of CS-induced oxidative damage.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy.
| | - Maria L Garavaglia
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Maria C Lionetti
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| |
Collapse
|
12
|
Lin L, Hou G, Han D, Yin Y, Kang J, Wang Q. Ursolic acid alleviates airway-vessel remodeling and muscle consumption in cigarette smoke-induced emphysema rats. BMC Pulm Med 2019; 19:103. [PMID: 31170951 PMCID: PMC6555740 DOI: 10.1186/s12890-019-0826-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This study assessed the effects of ursolic acid (UA) on airway-vessel remodeling and muscle atrophy in cigarette smoke (CS)-induced emphysema rats and investigated potential underlying mechanisms. METHODS Emphysema was induced in a rat model with 3 months of CS exposure. Histology and immunohistochemistry (IHC) stains were used to assess airway-vessel remodeling and muscle atrophy-associated changes. Levels of cleaved-caspase3, 8-OHdG, and S100A4 were measured in airways and associated vessels to evaluate cell apoptosis, oxidant stress, epithelial-to-mesenchymal transition (EMT), and endothelial-to-mesenchymal transition (EndMT)-associated factors. Western blot and/or IHC analyses were performed to measure transforming growth factor-beta 1(TGF-β1)/Smad2.3, alpha-smooth muscle actin (α-SMA), and insulin-like growth factor 1 (IGF1) expression. We also gave cultured HBE and HUVEC cells Cigarette Smoke Extract (CSE) administration and UA intervention. Using Western blot method to measure TGF-β1/Smad2.3, α-SMA, S100A4, and IGF1 molecules expression. RESULTS UA decreased oxidant stress and cell apoptosis in airway and accompanying vascular walls of cigarette smoke-induced emphysema model rats. UA alleviated EMT, EndMT, changes associated with airway-vessel remodeling and muscle atrophy. The UA effects were associated with IGF1 and TGF-β1/Smad2.3 pathways. CONCLUSIONS UA reduced EMT, EndMT, airway-vessel remodeling, and musculi soleus atrophy in CS-induced emphysema model rats at least partly through IGF1 and TGF-β1/Smad2.3 signaling pathways.
Collapse
Affiliation(s)
- Li Lin
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Gang Hou
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Dan Han
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Yan Yin
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Jian Kang
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Qiuyue Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| |
Collapse
|
13
|
Sears CR. DNA repair as an emerging target for COPD-lung cancer overlap. Respir Investig 2019; 57:111-121. [PMID: 30630751 DOI: 10.1016/j.resinv.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Cigarette smoking is the leading cause of lung cancer and chronic obstructive pulmonary disease (COPD). Many of the detrimental effects of cigarette smoke have been attributed to the development of DNA damage, either directly from chemicals contained in cigarette smoke or as a product of cigarette smoke-induced inflammation and oxidative stress. In this review, we discuss the environmental, epidemiological, and physiological links between COPD and lung cancer and the likely role of DNA damage and repair in COPD and lung cancer development. We explore alterations in DNA damage repair by DNA repair proteins and pathways. We discuss emerging data supporting a key role for the DNA repair protein, xeroderma pigmentosum group C (XPC), in cigarette smoke-induced COPD and early lung cancer development. Understanding the interplay between cigarette smoke, DNA damage repair, COPD, and lung cancer may lead to prognostic tools and new, potentially targetable, pathways for lung cancer prevention and treatment.
Collapse
Affiliation(s)
- Catherine R Sears
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana; The Richard L. Roudebush Veterans Affairs Medical Center; 980W, Walnut Street, Walther Hall, C400, Indianapolis, IN, 46202, USA.
| |
Collapse
|
14
|
Bailey KL, Kharbanda KK, Katafiasz DM, Sisson JH, Wyatt TA. Oxidative stress associated with aging activates protein kinase Cε, leading to cilia slowing. Am J Physiol Lung Cell Mol Physiol 2018; 315:L882-L890. [PMID: 30211654 PMCID: PMC6295504 DOI: 10.1152/ajplung.00033.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022] Open
Abstract
Older people are four times more likely to develop pneumonia than younger people. As we age, many components of pulmonary innate immunity are impaired, including slowing of mucociliary clearance. Ciliary beat frequency (CBF) is a major determinant of mucociliary clearance, and it slows as we age. We hypothesized that CBF is slowed in aging because of increased oxidative stress, which activates PKCε signaling. We pharmacologically inhibited PKCε in ex vivo mouse models of aging. We measured a slowing of CBF with aging that was reversed with inhibition using the novel PKC inhibitor, Ro-31-8220, as well as the PKCε inhibitor, PKCe141. Inhibition of PKCε using siRNA in mouse trachea also returned CBF to normal. In addition, antioxidants decrease PKCε activity and speed cilia. We also aged wild-type and PKCε KO mice and measured CBF. The PKCε KO mice were spared from the CBF slowing of aging. Using human airway epithelial cells from younger and older donors at air-liquid interface (ALI), we inhibited PKCε with siRNA. We measured a slowing of CBF with aging that was reversed with siRNA inhibition of PKCε. In addition, we measured bead clearance speeds in human ALI, which demonstrated a decrease in bead velocity with aging and a return to baseline after inhibition of PKCε. In summary, in human and mouse models, aging is associated with increased oxidant stress, which activates PKCε and slows CBF.
Collapse
Affiliation(s)
- Kristina L Bailey
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Kusum K Kharbanda
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Departments of Internal Medicine and Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Dawn M Katafiasz
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Joseph H Sisson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Todd A Wyatt
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center , Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
15
|
Rashid K, Sundar IK, Gerloff J, Li D, Rahman I. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Sci Rep 2018; 8:9023. [PMID: 29899396 PMCID: PMC5998122 DOI: 10.1038/s41598-018-27209-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoke (CS) induces lung cellular senescence that plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). How aging influences cellular senescence and other molecular hallmarks, and increases the risk of CS-induced damage remains unknown. We hypothesized that aging-associated changes in lungs worsen the COPD/emphysema by CS exposure. Younger and older groups of C57BL/6J mice were exposed to chronic CS for 6 months with respective age-matched air-exposed controls. CS caused a decline in lung function and affected the lung structure of both groups of mice. No alterations were observed in the induction of inflammatory mediators between the air-exposed younger and older controls, but aging increased the severity of CS-induced lung inflammation. Aging per se increased lung cellular senescence and significant changes in damage-associated molecular patterns marker S100A8. Gene transcript analysis using the nanoString nCounter showed a significant upregulation of key pro-senescence targets by CS (Mmp12, Ccl2, Cdkn2a, Tert, Wrn, and Bub1b). Aging independently influenced lung function and structure, as well as increased susceptibility to CS-induced inflammation in emphysema, but had a negligible effect on cellular senescence. Thus, aging solely does not contribute to the induction of cellular senescence by CS in a mouse model of COPD/emphysema.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
16
|
Kania A, Krenke R, Kuziemski K, Czajkowska-Malinowska M, Celejewska-Wójcik N, Kuźnar-Kamińska B, Farnik M, Bokiej J, Miszczuk M, Damps-Konstańska I, Grabicki M, Trzaska-Sobczak M, Sładek K, Batura-Gabryel H, Barczyk A. Distribution and characteristics of COPD phenotypes - results from the Polish sub-cohort of the POPE study. Int J Chron Obstruct Pulmon Dis 2018; 13:1613-1621. [PMID: 29844667 PMCID: PMC5963485 DOI: 10.2147/copd.s154716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background This study aimed to examine the distribution of predefined phenotypes, demographic data, clinical outcomes, and treatment of patients who were included in the Polish cohort of the Phenotypes of COPD in Central and Eastern Europe (POPE) study. Patients and methods This was a sub-analysis of the data from the Polish cohort of the POPE study, an international, multicenter, observational cross-sectional survey of COPD patients in Central and Eastern European countries. The study included patients aged >40 years, with a confirmed diagnosis of COPD, and absence of exacerbation for at least 4 weeks before study inclusion. A total of seven Polish centers participated in the study. Results Among the 430 Polish COPD patients enrolled in the study, 61.6% were non-exacerbators (NON-AE), 25.3% were frequent exacerbators with chronic bronchitis (AE CB), 7.9% were frequent exacerbators without chronic bronchitis (AE NON-CB), and 5.1% met the definition of asthma-COPD overlap syndrome (ACOS). There were statistically significant differences among these phenotypes in terms of symptom load, lung function, comorbidities, and treatment. Patients with the AE CB phenotype were most symptomatic with worse lung function, and more frequently reported anxiety and depression. Patients with the ACOS phenotype were significantly younger and were diagnosed with COPD earlier than those with other COPD phenotypes; those with the ACOS phenotype were also more often atopic and obese. Conclusion There is significant heterogeneity among COPD patients in the Polish population in terms of phenotype and clinical outcome. The non-exacerbator phenotype is observed most frequently in Poland, while the frequent exacerbator with chronic bronchitis phenotype is the most symptomatic.
Collapse
Affiliation(s)
- Aleksander Kania
- Department of Pulmonology, II Chair of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Kuziemski
- Department of Allergology and Pneumonology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Natalia Celejewska-Wójcik
- Department of Pulmonology, II Chair of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Kuźnar-Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Małgorzata Farnik
- Department of Pneumology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Juliusz Bokiej
- Department of Lung Diseases, Regional Hospital Center Jelenia Góra, Jelenia Góra, Poland
| | - Marta Miszczuk
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Damps-Konstańska
- Department of Allergology and Pneumonology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Grabicki
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marzena Trzaska-Sobczak
- Department of Pneumology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Sładek
- Department of Pulmonology, II Chair of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Adam Barczyk
- Department of Pneumology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
17
|
Pujol CN, Paasche C, Laprevote V, Trojak B, Vidailhet P, Bacon E, Lalanne L. Cognitive effects of labeled addictolytic medications. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:306-332. [PMID: 28919445 DOI: 10.1016/j.pnpbp.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Alcohol, tobacco, and illegal drug usage is pervasive throughout the world, and abuse of these substances is a major contributor to the global disease burden. Many pharmacotherapies have been developed over the last 50years to target addictive disorders. While the efficacy of these pharmacotherapies is largely recognized, their cognitive impact is less known. However, all substance abuse disorders are known to promote cognitive disorders like executive dysfunction and memory impairment. These impairments are critical for the maintenance of addictive behaviors and impede cognitive behavioral therapies that are regularly administered in association with pharmacotherapies. It is also unknown if addictolytic medications have an impact on preexisting cognitive disorders, and if this impact is modulated by the indication of prescription, i.e. abstinence, reduction or substitution, or by the specific action of the medication. METHOD We reviewed the cognitive effects of labeled medications for tobacco addiction (varenicline, bupropion, nicotine patch and nicotine gums), alcohol addiction (naltrexone, nalmefene, baclofen, disulfiram, sodium oxybate, acamprosate), and opioid addiction (methadone, buprenorphine) in human studies. Studies were selected following MOOSE guidelines for systematic reviews of observational studies, using the keywords [Cognition] and [Cognitive disorders] and [treatment] for each medication. RESULTS 971 articles were screened and 77 studies met the inclusion criteria and were reported in this review (for alcohol abuse, n=21, for tobacco n=22, for opioid n=34. However, very few comparative clinical trials have explored the chronic effects of addictolytic medications on cognition in addictive behaviors, and there are no clinical trials on the cognitive impact of nalmefene in patients suffering from alcohol use disorders. DISCUSSION Although some medications seem to enhance cognition in patients suffering from cognitive disorders, others could promote cognitive impairments, and our work highlights a lack of literature on this subject. In conclusion, more comparative clinical trials are needed to better understand the cognitive impact of addictolytic medications.
Collapse
Affiliation(s)
- Camille Noélie Pujol
- Department of Neurosciences, Institute for Functional Genomics, INSERM U-661, CNRS UMR-5203, 34094 Montpellier, France
| | - Cecilia Paasche
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, Laxou, F-54520, France.; EA 7298, INGRES, Université de Lorraine, Vandoeuvre-lès-, Nancy F-54000, France; CHU Nancy, Maison des Addictions, Nancy, F-54000, France.
| | - Benoit Trojak
- Department of Psychiatry and Addictology, University Hospital of Dijon, France; EA 4452, LPPM, University of Burgundy, France.
| | - Pierre Vidailhet
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| | - Elisabeth Bacon
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laurence Lalanne
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| |
Collapse
|
18
|
Abstract
Animal models of disease help accelerate the translation of basic science discoveries to the bedside, because they permit experimental interrogation of mechanisms at relatively high throughput, while accounting for the complexity of an intact organism. From the groundbreaking observation of emphysema-like alveolar destruction after direct instillation of elastase in the lungs to the more clinically relevant model of airspace enlargement induced by chronic exposure to cigarette smoke, animal models have advanced our understanding of alpha-1 antitrypsin (AAT) function. Experimental in vivo models that, at least in part, replicate clinical human phenotypes facilitate the translation of mechanistic findings into individuals with chronic obstructive pulmonary disease and with AAT deficiency. In addition, unexpected findings of alveolar enlargement in various transgenic mice have led to novel hypotheses of emphysema development. Previous challenges in manipulating the AAT genes in mice can now be overcome with new transgenic approaches that will likely advance our understanding of functions of this essential, lung-protective serine protease inhibitor (serpin).
Collapse
|
19
|
Protective effect of autophagy on endoplasmic reticulum stress induced apoptosis of alveolar epithelial cells in rat models of COPD. Biosci Rep 2017; 37:BSR20170803. [PMID: 28963374 PMCID: PMC5686393 DOI: 10.1042/bsr20170803] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
During the present study, we explored the protective effects of autophagy on endoplasmic reticulum (ER) stress (ERS) induced apoptosis belonging to alveolar epithelial cells (AECs) in rat models with chronic obstructive pulmonary disease (COPD). Fifty-six 12-week-old male Sprague–Dawley (SD) rats were randomly assigned into the COPD group (rats exposed to cigarette smoke (CS)), the 3-methyladenine (3-MA) intervention group (COPD rats were administrated with 10 mg/kg autophagy inhibitors), the chloroquine (CQ)-intervention group (COPD rats were administrated 40 mg/kg CQ), and the control group (rats breathed in normal saline). The forced expiratory volume in 0.3 s/forced vital capacity (FEV0.3/FVC%), inspiratory resistance (RI), and dynamic lung compliance (Cdyn) were measured and recorded. The expressions of PKR-like ER kinase (PERK) and CCAAT/enhancer-binding protein-homologous protein (CHOP) were detected by immunohistochemistry. The cell apoptotic rates of AECs were analyzed by terminal deoxynucleotidyl transferase (TdT) mediated dUTP-biotin nick end-labeling (TUNEL) staining. The expression levels of light chain 3 (LC3-II), p62, Beclin-1, ATG5, ATG7, Caspase-12, and Caspase-3 were detected by Western blotting. Results showed that the COPD group exhibited a lower FEV0.3/FVC% and Cdyn, and a higher RI than the control group. Compared with the control group, the integrated optical density (IOD) values of PERK and CHOP, the apoptotic rate of AECs, and expressions of LC3-II, Beclin-1, ATG5, ATG7, Caspase-3, and Caspase-12 expressions were significantly higher, whereas p62 expression was significantly lower in the COPD group. Based on the results obtained during the present study, it became clear that the inhibition of autophagy could attenuate the ERS-induced apoptosis of AECs in rats with COPD.
Collapse
|
20
|
Approaches for extending human healthspan: from antioxidants to healthspan pharmacology. Essays Biochem 2017; 61:389-399. [PMID: 28698312 DOI: 10.1042/ebc20160091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Dramatic increases in human lifespan and declining population growth are monumental achievements but these same achievements have also led to many societies today ageing at a faster rate than ever before. Extending healthy lifespan (healthspan) is a key translational challenge in this context. Disease-centric approaches to manage population ageing risk are adding years to life without adding health to these years. The growing consensus that ageing is driven by a limited number of interconnected processes suggests an alternative approach. Instead of viewing each age-dependent disease as the result of an independent chain of events, this approach recognizes that most age-dependent diseases depend on and are driven by a limited set of ageing processes. While the relative importance of each of these processes and the best intervention strategies targeting them are subjects of debate, there is increasing interest in providing preventative intervention options to healthy individuals even before overt age-dependent diseases manifest. Elevated oxidative damage is involved in the pathophysiology of most age-dependent diseases and markers of oxidative damage often increase with age in many organisms. However, correlation is not causation and, sadly, many intervention trials of supposed antioxidants have failed to extend healthspan and to prevent diseases. This does not, however, mean that reactive species (RS) and redox signalling are unimportant. Ultimately, the most effective antioxidants may not turn out to be the best geroprotective drugs, but effective geroprotective interventions might well turn out to also have excellent, if probably indirect, antioxidant efficacy.
Collapse
|
21
|
Glassberg MK, Catanuto P, Shahzeidi S, Aliniazee M, Lilo S, Rubio GA, Elliot SJ. Estrogen deficiency promotes cigarette smoke-induced changes in the extracellular matrix in the lungs of aging female mice. Transl Res 2016; 178:107-117. [PMID: 27519148 DOI: 10.1016/j.trsl.2016.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/12/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023]
Abstract
Female smokers have a faster decline in lung function with increasing age and overall develop a greater loss of lung function than male smokers. This raises the question of whether estrogen status in women affects susceptibility to cigarette smoke (CS)-induced lung disease. Mouse models suggest that female mice are more susceptible than males to CS-induced lung disease. Moreover, young CS-exposed female mice develop emphysema earlier than male mice. The purpose of this study was to characterize the relationship of estrogen status on the pattern and severity of CS-induced lung disease. In this study, 15-month-old female C57BL/6J mice were ovariectomized and administered either placebo (pla) or 17β-estradiol (E2, 0.025 mg) 2 weeks after ovariectomy. They were further divided into those that were exposed to CS and no-smoke controls (NSC). Mice were exposed to CS in stainless steel inhalation chambers 3 hours a day, 5 days a week for 6 months, and sacrificed after 24 weeks of CS exposure. Blood and urine were collected at sacrifice to measure estrogen and cotinine levels, a metabolite of nicotine. Uterine weight was recorded as an indicator of estrogen status. Results showed that CS in the absence of E2 induced a decrease in hydroxyproline content, macrophage number, and respiratory chain complex-1 protein. CS without E2 also resulted in an increase in matrix metalloproteinase-2 activity and apoptosis and a change in the ratio of estrogen receptor subtype. These findings were abrogated with administration of E2, suggesting that estrogen deficiency increases susceptibility to CS-induced lung disease.
Collapse
Affiliation(s)
- Marilyn K Glassberg
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Fla; Department of Surgery, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Paola Catanuto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Fla
| | - Shahriar Shahzeidi
- Division of Pediatric Pulmonology, Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Fla
| | | | - Sarit Lilo
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Fla
| | - Gustavo A Rubio
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Fla
| | - Sharon J Elliot
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Fla
| |
Collapse
|
22
|
Breitenstein A, Stämpfli SF, Reiner MF, Shi Y, Keller S, Akhmedov A, Schaub Clerigué A, Spescha RD, Beer HJ, Lüscher TF, Tanner FC, Camici GG. The MAP kinase JNK2 mediates cigarette smoke-induced arterial thrombosis. Thromb Haemost 2016; 117:83-89. [PMID: 27761579 DOI: 10.1160/th16-05-0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/29/2016] [Indexed: 01/26/2023]
Abstract
Despite public awareness of its deleterious effects, smoking remains a major cause of death. Indeed, it is a risk factor for atherothrombotic complications and in line with this, the introduction of smoking ban in public areas reduced smoking-associated cardiovascular complications. Nonetheless, smoking remains a major concern, and molecular mechanisms by which it causes cardiovascular disease are not known. Peripheral blood monocytes from healthy smokers displayed increased JNK2 and tissue factor (TF) gene expression compared to non-smokers (n=15, p<0.05). Similarly, human aortic endothelial cells exposed to cigarette smoke total particulate matter (CS-TPM) revealed increased TF expression mediated by JNK2 (n=4; p<0.05). Wild-type and JNK2-/- mice were exposed to cigarette smoke for two weeks after which arterial thrombosis was investigated. Wild-type mice exposed to smoke displayed reduced time to thrombotic arterial occlusion (n=8; p<0.05) and increased tissue factor activity (n=7; p<0.05) as compared to wild-type controls (n=6), while JNK2-/-mice exposed to smoke maintained an unaltered thrombotic potential (n=8; p=NS) and tissue factor activity (n=8) comparable to that of JNK2-/- and wild-type controls (n=6; p=NS). Smoking caused an increased production of reactive oxygen species (ROS) in wild-type but not in JNK2-/- mice (n=7; p<0.05 for wild-type mice and n=5-6; p=NS for JNK2-/- mice). In conclusion, the MAP kinase JNK2 mediates cigarette smoke-induced TF activation, arterial thrombosis and ROS production. These results underscore a major role of JNK2 in smoke-mediated thrombus formation and may offer an attractive target to prevent smoke-related thrombosis in those subjects which do not manage quitting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Giovanni G Camici
- Dr. Giovanni G. Camici, PhD, Center for Molecular Cardiology, Wagistrasse 12, 8952 Schlieren, Switzerland, Tel.: +41 44 635 64 68, Fax: +41 44 635 68 27, E-mail:
| |
Collapse
|
23
|
Cartwright MM, Schmuck SC, Corredor C, Wang B, Scoville DK, Chisholm CR, Wilkerson HW, Afsharinejad Z, Bammler TK, Posner JD, Shutthanandan V, Baer DR, Mitra S, Altemeier WA, Kavanagh TJ. The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis. Redox Biol 2016; 9:264-275. [PMID: 27596734 PMCID: PMC5013253 DOI: 10.1016/j.redox.2016.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Inhalation of multiwalled carbon nanotubes (MWCNTs) during their manufacture or incorporation into various commercial products may cause lung inflammation, fibrosis, and oxidative stress in exposed workers. Some workers may be more susceptible to these effects because of differences in their ability to synthesize the major antioxidant and immune system modulator glutathione (GSH). Accordingly, in this study we examined the influence of GSH synthesis and gender on MWCNT-induced lung inflammation in C57BL/6 mice. GSH synthesis was impaired through genetic manipulation of Gclm, the modifier subunit of glutamate cysteine ligase, the rate-limiting enzyme in GSH synthesis. Twenty-four hours after aspirating 25µg of MWCNTs, all male mice developed neutrophilia in their lungs, regardless of Gclm genotype. However, female mice with moderate (Gclm heterozygous) and severe (Gclm null) GSH deficiencies developed significantly less neutrophilia. We found no indications of MWCNT-induced oxidative stress as reflected in the GSH content of lung tissue and epithelial lining fluid, 3-nitrotyrosine formation, or altered mRNA or protein expression of several redox-responsive enzymes. Our results indicate that GSH-deficient female mice are rendered uniquely susceptible to an attenuated neutrophil response. If the same effects occur in humans, GSH-deficient women manufacturing MWCNTs may be at greater risk for impaired neutrophil-dependent clearance of MWCNTs from the lung. In contrast, men may have effective neutrophil-dependent clearance, but may be at risk for lung neutrophilia regardless of their GSH levels.
Collapse
Affiliation(s)
- Megan M Cartwright
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Charlie Corredor
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bingbing Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Claire R Chisholm
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Hui-Wen Wilkerson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theodor K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jonathan D Posner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Donald R Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Zbozinkova Z, Barczyk A, Tkacova R, Valipour A, Tudoric N, Zykov K, Somfay A, Miravitlles M, Koblizek V. POPE study: rationale and methodology of a study to phenotype patients with COPD in Central and Eastern Europe. Int J Chron Obstruct Pulmon Dis 2016; 11:611-22. [PMID: 27042048 PMCID: PMC4809323 DOI: 10.2147/copd.s88846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) constitutes a major health challenge in Central and Eastern European (CEE) countries. However, clinical phenotypes, symptom load, and treatment habits of patients with COPD in CEE countries remain largely unknown. This paper provides a rationale for phenotyping COPD and describes the methodology of a large study in CEE. Methods/design The POPE study is an international, multicenter, observational cross-sectional survey of patients with COPD in CEE. Participation in the study is offered to all consecutive outpatients with stable COPD in 84 centers across the CEE region if they fulfill the following criteria: age >40 years, smoking history ≥10 pack-years, a confirmed diagnosis of COPD with postbronchodilator FEV1/FVC <0.7, and absence of COPD exacerbation ≥4 weeks. Medical history, risk factors for COPD, comorbidities, lung function parameters, symptoms, and pharmaceutical and nonpharmaceutical treatment are recorded. The POPE project is registered in ClinicalTrials.gov with the identifier NCT02119494. Outcomes The primary aim of the POPE study was to phenotype patients with COPD in a real-life setting within CEE countries using predefined classifications. Secondary aims of the study included analysis of differences in symptoms, and diagnostic and therapeutic behavior in participating CEE countries. Conclusion There is increasing acceptance toward a phenotype-driven therapeutic approach in COPD. The POPE study may contribute to reveal important information regarding phenotypes and therapy in real-life CEE.
Collapse
Affiliation(s)
- Zuzana Zbozinkova
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Adam Barczyk
- Department of Pneumology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ruzena Tkacova
- Department of Respiratory Medicine, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Arschang Valipour
- Department of Respiratory and Critical Care Medicine, Ludwig-Boltzmann-Institute for COPD and Respiratory Epidemiology, Otto-Wagner-Spital, Wien, Austria
| | - Neven Tudoric
- School of Medicine Zagreb, University Hospital Dubrava, Zagreb, Croatia
| | - Kirill Zykov
- Laboratory of Pulmonology, Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia
| | - Attila Somfay
- Department of Pulmonology, University of Szeged, Deszk, Hungary
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Vladimir Koblizek
- Department of Pneumology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| |
Collapse
|
26
|
Allinson JP, Hardy R, Donaldson GC, Shaheen SO, Kuh D, Wedzicha JA. The Presence of Chronic Mucus Hypersecretion across Adult Life in Relation to Chronic Obstructive Pulmonary Disease Development. Am J Respir Crit Care Med 2016; 193:662-72. [PMID: 26695373 PMCID: PMC4824943 DOI: 10.1164/rccm.201511-2210oc] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Chronic mucus hypersecretion (CMH) is common among smokers and is associated with chronic obstructive pulmonary disease development and progression. OBJECTIVES To understand how the relationships between smoking, CMH, and chronic obstructive pulmonary disease develop during adult life, and facilitate earlier disease detection and intervention. METHODS We analyzed data on CMH, smoking, and lung function prospectively collected by the Medical Research Council National Survey of Health and Development, a nationally representative British cohort followed since birth in 1946. We analyzed the longitudinal relationships between smoking and CMH, how symptoms during life related to airflow limitation at 60-64 years, and how CMH duration between ages 43 and 60-64 years related to concurrent FEV1 decline. MEASUREMENTS AND MAIN RESULTS From 5,362 individuals enrolled at birth, 4,427 contributed data between ages 20 and 64 years (52% male; 63% ever-smoker). Among smokers CMH prevalence escalated between ages 36 and 43 from 7.6 ± 2.0% to 13.0 ± 2.6%. At these ages, symptoms were associated with a higher risk of subsequent airflow limitation (odds ratio [95% confidence interval], 3.70 [1.62-8.45] and 4.11 [1.85-9.13], respectively). Across adult life, CMH followed a dynamic remitting-relapsing course. Symptom prevalence following smoking cessation returned to levels seen among never-smokers. The longer CMH was present across three occasions (ages 43, 53, and 60-64 yr), the greater the concurrent FEV1 decline, corresponding to an additional decrement of 3.6 ± 2.5 ml/yr per occasion that CMH was present (P = 0.005). CONCLUSIONS CMH among middle-aged smokers represents an early developmental phase of chronic obstructive pulmonary disease. Smoking-related CMH usually resolves following smoking cessation but the longer its duration the greater the FEV1 lost, suggesting the course of CMH across adult life may reflect the underlying course of airway disease activity.
Collapse
Affiliation(s)
- James P. Allinson
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom; and
| | - Gavin C. Donaldson
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Seif O. Shaheen
- Centre for Primary Care and Public Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom; and
| | - Jadwiga A. Wedzicha
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Pole A, Dimri M, P. Dimri G. Oxidative stress, cellular senescence and ageing. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.300] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
28
|
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88:314-336. [PMID: 26066302 PMCID: PMC4628850 DOI: 10.1016/j.freeradbiomed.2015.05.036] [Citation(s) in RCA: 617] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; School of Natural Science, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
29
|
Wagner K, Gröger M, McCook O, Scheuerle A, Asfar P, Stahl B, Huber-Lang M, Ignatius A, Jung B, Duechs M, Möller P, Georgieff M, Calzia E, Radermacher P, Wagner F. Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100% O2. PLoS One 2015. [PMID: 26225825 PMCID: PMC4520521 DOI: 10.1371/journal.pone.0132810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cigarette smoking (CS) aggravates post-traumatic acute lung injury and increases ventilator-induced lung injury due to more severe tissue inflammation and apoptosis. Hyper-inflammation after chest trauma is due to the physical damage, the drop in alveolar PO2, and the consecutive hypoxemia and tissue hypoxia. Therefore, we tested the hypotheses that 1) CS exposure prior to blunt chest trauma causes more severe post-traumatic inflammation and thereby aggravates lung injury, and that 2) hyperoxia may attenuate this effect. Immediately after blast wave-induced blunt chest trauma, mice (n=32) with or without 3-4 weeks of CS exposure underwent 4 hours of pressure-controlled, thoraco-pulmonary compliance-titrated, lung-protective mechanical ventilation with air or 100 % O2. Hemodynamics, lung mechanics, gas exchange, and acid-base status were measured together with blood and tissue cytokine and chemokine concentrations, heme oxygenase-1 (HO-1), activated caspase-3, and hypoxia-inducible factor 1-α (HIF-1α) expression, nuclear factor-κB (NF-κB) activation, nitrotyrosine formation, purinergic receptor 2X4 (P2XR4) and 2X7 (P2XR7) expression, and histological scoring. CS exposure prior to chest trauma lead to higher pulmonary compliance and lower PaO2 and Horovitz-index, associated with increased tissue IL-18 and blood MCP-1 concentrations, a 2-4-fold higher inflammatory cell infiltration, and more pronounced alveolar membrane thickening. This effect coincided with increased activated caspase-3, nitrotyrosine, P2XR4, and P2XR7 expression, NF-κB activation, and reduced HIF-1α expression. Hyperoxia did not further affect lung mechanics, gas exchange, pulmonary and systemic cytokine and chemokine concentrations, or histological scoring, except for some patchy alveolar edema in CS exposed mice. However, hyperoxia attenuated tissue HIF-1α, nitrotyrosine, P2XR7, and P2XR4 expression, while it increased HO-1 formation in CS exposed mice. Overall, CS exposure aggravated post-traumatic inflammation, nitrosative stress and thereby organ dysfunction and injury; short-term, lung-protective, hyperoxic mechanical ventilation have no major beneficial effect despite attenuation of nitrosative stress, possibly due to compensation of by regional alveolar hypoxia and/or consecutive hypoxemia, resulting in down-regulation of HIF-1α expression.
Collapse
MESH Headings
- Acute Lung Injury/etiology
- Acute Lung Injury/physiopathology
- Acute Lung Injury/therapy
- Animals
- Disease Models, Animal
- Female
- Hyperoxia/complications
- Hyperoxia/pathology
- Hyperoxia/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Oxidative Stress
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/therapy
- Reactive Nitrogen Species/metabolism
- Receptors, Purinergic P2X/metabolism
- Respiration, Artificial/adverse effects
- Smoking/adverse effects
- Thoracic Injuries/complications
- Thoracic Injuries/physiopathology
- Thoracic Injuries/therapy
- Wounds, Nonpenetrating/complications
- Wounds, Nonpenetrating/physiopathology
- Wounds, Nonpenetrating/therapy
Collapse
Affiliation(s)
- Katja Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| | - Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | | | - Pierre Asfar
- Laboratoire HIFIH, UPRES EA 3859, PRES l’UNAM, IFR 132, CNRS UMR 6214, INSERM U1083, Université Angers, Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Bettina Stahl
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Markus Huber-Lang
- Klinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum, Ulm, Germany
| | - Anita Ignatius
- Institut für Unfallchirurgische Forschung und Biomechanik, Universitätsklinikum, Ulm, Germany
| | - Birgit Jung
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Matthias Duechs
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Peter Möller
- Institut für Pathologie, Universitätsklinikum, Ulm, Germany
| | | | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- * E-mail:
| | - Florian Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
30
|
Gould NS, Min E, Huang J, Chu HW, Good J, Martin RJ, Day BJ. Glutathione Depletion Accelerates Cigarette Smoke-Induced Inflammation and Airspace Enlargement. Toxicol Sci 2015; 147:466-74. [PMID: 26149495 DOI: 10.1093/toxsci/kfv143] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The study objective was to assess age-related changes in glutathione (GSH) adaptive response to cigarette smoke (CS) exposure. Older cigarette smokers show a decline (67%) in lung epithelial lining fluid (ELF) GSH and a 1.8-fold decreased GSH adaptive response to cigarette smoking with a concomitant elevation (47%) of exhaled nitric oxide compared with younger smokers. In order to isolate the changes in tissue GSH from other age-related effects, pharmacological inhibition of the rate limiting step in GSH synthesis was employed to examine the lung's response to CS exposure in young mice. The γ-glutamylcysteine ligase inhibitor L-buthionine-sulfoximine (BSO) was administered in the drinking water (20 mM) to decrease by half the in vivo GSH levels to those found in aged mice and humans. Mice were then exposed to CS (3 h/day) for 5 or 15 days. Biochemical analysis of the ELF and lung tissue revealed an inhibition of the CS-induced GSH adaptive response by BSO with a concurrent increase in mixed protein-GSH disulfides indicating increased cysteine oxidation. The prevention of the GSH adaptive response led to an increase in pro-inflammatory cytokines present in the lung. Airspace enlargement is a hallmark of lung emphysema and was observed in mice treated with BSO and exposed to CS for as little as 15 days, whereas these types of changes normally take up to 6 months in this model. BSO treatment potentiated both lung elastase and matrix metalloproteinase activity in the CS group. These data suggest that age-related decline in the GSH adaptive response can markedly accelerate many of the factors thought to drive CS-induced emphysema.
Collapse
Affiliation(s)
- Neal S Gould
- *Department of Medicine, National Jewish Health, Denver, Colorado 80206; Departments of Pharmaceutical Sciences
| | - Elysia Min
- *Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Jie Huang
- *Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Hong Wei Chu
- *Department of Medicine, National Jewish Health, Denver, Colorado 80206; Medicine and Immunology, University of Colorado at Denver, Aurora, Colorado 80045
| | - Jim Good
- *Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Richard J Martin
- *Department of Medicine, National Jewish Health, Denver, Colorado 80206; Medicine and
| | - Brian J Day
- *Department of Medicine, National Jewish Health, Denver, Colorado 80206; Departments of Pharmaceutical Sciences, Medicine and Immunology, University of Colorado at Denver, Aurora, Colorado 80045
| |
Collapse
|
31
|
Wu JP, Hsieh DJY, Kuo WW, Han CK, Pai P, Yeh YL, Lin CC, Padma VV, Day CH, Huang CY. Secondhand Smoke Exposure Reduced the Compensatory Effects of IGF-I Growth Signaling in the Aging Rat Hearts. Int J Med Sci 2015; 12:708-18. [PMID: 26392808 PMCID: PMC4571548 DOI: 10.7150/ijms.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/09/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. METHODS Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. RESULTS Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. CONCLUSIONS Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke.
Collapse
Affiliation(s)
- Jia-Ping Wu
- 1. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- 2. School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- 3. Department of Biological Science and Technology, China Medical University, Taichung
| | - Chien-Kuo Han
- 4. Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Peiying Pai
- 5. Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Lan Yeh
- 6. Department of pathology, Changhua Christian Hospital, Changhua ; 7. Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chien-Chung Lin
- 8. Orthopaedic Department, Armed Forces General Hospital, Taichung, Taiwan
| | - V Vijaya Padma
- 9. Department of Biotechnology, Bharathiar University, Coimbatore-641 046, India
| | - Cecilia Hsuan Day
- 10. Department of Nursing, Mei Ho University, 23 Pingguang Road, Pingtung 91202, Taiwan
| | - Chih-Yang Huang
- 1. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan ; 11. School of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan ; 12. Department of Health and Nutrition Biotechnology, Asia University, 500 Lioufeng Road, Taichung 41354, Taiwan
| |
Collapse
|
32
|
Yáñez A, Cho SH, Soriano JB, Rosenwasser LJ, Rodrigo GJ, Rabe KF, Peters S, Niimi A, Ledford DK, Katial R, Fabbri LM, Celedón JC, Canonica GW, Busse P, Boulet LP, Baena-Cagnani CE, Hamid Q, Bachert C, Pawankar R, Holgate ST. Asthma in the elderly: what we know and what we have yet to know. World Allergy Organ J 2014; 7:8. [PMID: 25152804 PMCID: PMC4137434 DOI: 10.1186/1939-4551-7-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023] Open
Abstract
In the past, asthma was considered mainly as a childhood disease. However, asthma is an important cause of morbidity and mortality in the elderly nowadays. In addition, the burden of asthma is more significant in the elderly than in their younger counterparts, particularly with regard to mortality, hospitalization, medical costs or health-related quality of life. Nevertheless, asthma in the elderly is still been underdiagnosed and undertreated. Therefore, it is an imperative task to recognize our current challenges and to set future directions. This project aims to review the current literature and identify unmet needs in the fields of research and practice for asthma in the elderly. This will enable us to find new research directions, propose new therapeutic strategies, and ultimately improve outcomes for elderly people with asthma. There are data to suggest that asthma in older adults is phenotypically different from young patients, with potential impact on the diagnosis, assessment and management in this population. The diagnosis of AIE in older populations relies on the same clinical findings and diagnostic tests used in younger populations, but the interpretation of the clinical data is more difficult. The challenge today is to encourage new research in AIE but to use the existing knowledge we have to make the diagnosis of AIE, educate the patient, develop a therapeutic approach to control the disease, and ultimately provide a better quality of life to our elderly patients.
Collapse
Affiliation(s)
- Anahí Yáñez
- Investigaciones en Alergia y Enfermedades Respiratorias- InAER, Buenos Aires, Argentina
| | - Sang-Hoen Cho
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea
| | - Joan B Soriano
- Programa de Epidemiologia e Investigacion Clinica, Fundación Caubet-CIMERA, Illes Balears, Spain
| | - Lanny J Rosenwasser
- Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missoui, United States of America
| | - Gustavo J Rodrigo
- Departamento de Emergencia, Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Klaus F Rabe
- Krankenhaus Lungen Clinic, Grosshansdorf, Germany
| | - Stephen Peters
- Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Akio Niimi
- Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, Kyoto, Japan
| | - Dennis K Ledford
- Division of Allergy and Immunology, Department of Medicine, Morsani University of South Florida College of Medicine, James A Haley Veterans Hospital, Tampa, Florida, United States of America
| | - Rohit Katial
- Division of Allergy and Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Leonardo M Fabbri
- Department of Oncology, Haematology, and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Juan C Celedón
- Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
| | | | - Paula Busse
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Louis-Phillippe Boulet
- Institut universitaire de cardiologie et de pneumologie de Québec, (Quebec Heart and Lung Institute, Laval University), Quebéc, Canada
| | - Carlos E Baena-Cagnani
- Centre for Research in Respiratory Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Qutayba Hamid
- Meakins-Christie Laboratories, McGill University, Quebéc, Canada
| | - Claus Bachert
- Upper Airways Research Laboratory (URL), Clinics ENT-Department, University Hospital Ghent, Ghent, Belgium
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Stephen T Holgate
- Faculty of Medicine Clinical and Experimental Sciences, University of Southampton, Hampshire, United Kingdom
| |
Collapse
|
33
|
Ren X, Du H, Li Y, Yao X, Huang J, Li Z, Wang W, Li J, Han S, Wang C, Huang K. Age-related activation of MKK/p38/NF-κB signaling pathway in lung: from mouse to human. Exp Gerontol 2014; 57:29-40. [PMID: 24802989 DOI: 10.1016/j.exger.2014.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
We and others previously reported that the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 significantly accumulate with age in mouse lung. This is accompanied by elevated phosphorylation of p38. Here, we further investigate whether aging affects activation of p38 signaling and the inflammatory reaction after exposure to lipopolysaccharide (LPS) in the lungs of mice in vivo and humans ex vivo. The data showed that activation of p38 peaked at 0.5h and then rapidly declined in young (2-month-old) mouse lung, after intranasal inhalation challenge with LPS. In contract, activation of p38 peaked at 24h and was sustained longer in aged (20-month-old) mice. As well as altered p38, activations of its upstream activator MKK and downstream substrate NF-κB were also changed in the lungs of aged mice, which corresponded with the absence in the early phase but delayed increases in concentrations of TNF-α, IL-1β and IL-6. Consistent with the above observations in mice, similar patterns of p38 signaling also occurred in human lungs. Compared with younger lungs from adult-middle aged subjects, the activation of p38, MKK and NF-κB, as well as the production of pro-inflammatory cytokines were significantly increased in the lungs of older subjects ex vivo. Exposure of human lung cells to LPS induced rapid activation of p38, MKK and NF-κB in these cells from adult-middle aged subjects, but not older subjects, with increases in the production of the pro-inflammatory cytokines. The LPS-induced rapid activation in the lung cells from adult-middle aged subjects occurred as early as 0.25h after exposure, and then declined. Compared with adult-middle aged subjects, the LPS exposure did not induce marked changes in the early phase, either in the activation of p38, MKK and NF-κB, or in the production of TNF-α, IL-1β or IL-6 in the lung cells from older subjects. In contrast, these changes occurred relatively late, peaked at 16h and were sustained longer in the lungs of older subjects. These data support the hypothesis that the sustained activation of the p38 signaling pathway at baseline and the absence in the early phase but delayed of p38 signaling pathway response to LPS in the elderly may play important roles in increased susceptibility of aged lungs to inflammatory injury.
Collapse
Affiliation(s)
- Xiaoxia Ren
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Huadong Du
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yan Li
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Xiujuan Yao
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Junmin Huang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Zongli Li
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Wei Wang
- Department of Immunology, Capital Medical University, Beijing 100069, PR China
| | - Junfa Li
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - Song Han
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - Chen Wang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Kewu Huang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China.
| |
Collapse
|
34
|
Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov 2014; 9:629-45. [PMID: 24754714 DOI: 10.1517/17460441.2014.909805] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a leading global cause of mortality and chronic morbidity. Inhalation of cigarette smoke is the principal risk factor for development of this disease. COPD is a progressive disease that is typically characterised by chronic pulmonary inflammation, mucus hypersecretion, airway remodelling and emphysema that collectively reduce lung function. There are currently no therapies that effectively halt or reverse disease progression. It is hoped that the development of animal models that develop the hallmark features of COPD, in a short time frame, will aid in the identifying and testing of new therapeutic approaches. AREAS COVERED The authors review the recent developments in mouse models of chronic cigarette smoke-induced COPD as well as the principal findings. Furthermore, the authors discuss the use of mouse models to understand the pathogenesis and the contribution of infectious exacerbations. They also discuss the investigations of the systemic co-morbidities of COPD (pulmonary hypertension, cachexia and osteoporosis). EXPERT OPINION Recent advances in the field mark a point where animal models recapitulate the pathologies of COPD patients in a short time frame. They also reveal novel insights into the pathogenesis and potential treatment of this debilitating disease.
Collapse
Affiliation(s)
- Michael Fricker
- University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Asthma and Respiratory Disease , New Lambton Heights, New South Wales , Australia
| | | | | |
Collapse
|
35
|
Abstract
Evolution has favored the utilization of dioxygen (O2) in the development of complex multicellular organisms. O2 is actually a toxic mutagenic gas that is highly oxidizing and combustible. It is thought that plants are largely to blame for polluting the earth's atmosphere with O2 owing to the development of photosynthesis by blue-green algae over 2 billion years ago. The rise of the plants and atmospheric O2 levels placed evolutionary stress on organisms to adapt or become extinct. This implies that all the surviving creatures on our planet are mutants that have adapted to the "abnormal biology" of O2. Much of the adaptation to the presence of O2 in biological systems comes from well-coordinated antioxidant and repair systems that focus on converting O2 to its most reduced form, water (H2O), and the repair and replacement of damaged cellular macromolecules. Biological systems have also harnessed O2's reactive properties for energy production, xenobiotic metabolism, and host defense and as a signaling messenger and redox modulator of a number of cell signaling pathways. Many of these systems involve electron transport systems and offer many different mechanisms by which antioxidant therapeutics can alternatively produce an antioxidant effect without directly scavenging oxygen-derived reactive species. It is likely that each agent will have a different set of mechanisms that may change depending on the model of oxidative stress, organ system, or disease state. An important point is that all biological processes of aerobes have coevolved with O2 and this creates a Pandora's box for trying to understand the mechanism(s) of action of antioxidants being developed as therapeutic agents.
Collapse
Affiliation(s)
- Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
36
|
Oxidative Stress in Lung Cancer. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
37
|
Abstract
Ion channels perform a variety of cellular functions in lung epithelia. Oxidant- and antioxidant-mediated mechanisms (that is, redox regulation) of ion channels are areas of intense research. Significant progress has been made in our understanding of redox regulation of ion channels since the last Experimental Biology report in 2003. Advancements include: 1) identification of nonphagocytic NADPH oxidases as sources of regulated reactive species (RS) production in epithelia, 2) an understanding that excessive treatment with antioxidants can result in greater oxidative stress, and 3) characterization of novel RS signaling pathways that converge upon ion channel regulation. These advancements, as discussed at the 2013 Experimental Biology Meeting in Boston, MA, impact our understanding of oxidative stress in the lung, and, in particular, illustrate that the redox state has profound effects on ion channel and cellular function.
Collapse
|
38
|
Aging does not enhance experimental cigarette smoke-induced COPD in the mouse. PLoS One 2013; 8:e71410. [PMID: 23936505 PMCID: PMC3732225 DOI: 10.1371/journal.pone.0071410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that the development of COPD is driven by premature aging/premature senescence of lung parenchyma cells. There are data suggesting that old mice develop a greater inflammatory and lower anti-oxidant response after cigarette smoke compared to young mice, but whether these differences actually translate into greater levels of disease is unknown. We exposed C57Bl/6 female mice to daily cigarette smoke for 6 months starting at age 3 months (Ayoung@) or age 12 months (Aold@), with air-exposed controls. There were no differences in measures of airspace size between the two control groups and cigarette smoke induced exactly the same amount of emphysema in young and old. The severity of smoke-induced small airway remodeling using various measures was identical in both groups. Smoke increased numbers of tissue macrophages and neutrophils and levels of 8-hydroxyguanosine, a marker of oxidant damage, but there were no differences between young and old. Gene expression studies using laser capture microdissected airways and parenchyma overall showed a trend to lower levels in older animals and a somewhat lesser response to cigarette smoke in both airways and parenchyma but the differences were usually not marked. Telomere length was greatest in young control mice and was decreased by both smoking and age. The senescence marker p21Waf1 was equally upregulated by smoke in young and old, but p16INK4a, another senescence marker, was not upregulated at all. We conclude, in this model, animal age does not affect the development of emphysema and small airway remodeling.
Collapse
|
39
|
Goldklang MP, Marks SM, D'Armiento JM. Second hand smoke and COPD: lessons from animal studies. Front Physiol 2013; 4:30. [PMID: 23450717 PMCID: PMC3583033 DOI: 10.3389/fphys.2013.00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 02/07/2013] [Indexed: 12/25/2022] Open
Abstract
Exposure to second hand smoke is a major cause of chronic obstructive pulmonary disease (COPD) in the non-smoker. In this review we explore the use of animal smoke exposure models and their insight into disease pathogenesis. The methods of smoke exposure, including exposure delivery systems, are described. Key findings from the acute and chronic smoke exposure models are outlined, including descriptions of the inflammation processes, proteases involved, oxidative stress, and apoptosis. Finally, alternatives to rodent models of lung disease are presented.
Collapse
|
40
|
Evaluation of the oxidant and antioxidant balance in the pathogenesis of chronic obstructive pulmonary disease. REVISTA PORTUGUESA DE PNEUMOLOGIA 2012. [PMID: 23199890 DOI: 10.1016/j.rppneu.2012.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is one of the most common chronic diseases and a major cause of morbility and mortality. An imbalance between oxidants and antioxidants (oxidative stress) has been proposed as a critical event in the pathogenesis of COPD. The increased oxidative stress in patients with COPD is the result of exogenous oxidants namely pollutants and cigarette smoke as well as endogenous oxidant production during inflammation. The aim of the present study was to clarify the hypothesis about the presence of an imbalance between oxidants and the antioxidant defences associated to COPD. In this study, we evaluated a biomarker of oxidative stress (malondialdehyde, a lipid peroxidation derived product) and non-enzymatic antioxidants (vitamin C and the sulphydryl groups) in COPD patients and healthy controls. The marker of oxidative stress was found to be significantly (p<0,001) higher in COPD patients when compared with the control group. No age dependent changes in the plasma levels of lipid peroxidation products were found. COPD patients had a significant (p<0,001) decrease in antioxidant status compared with control group. Our results show that oxidative stress is an important pathophysiologic change in COPD.
Collapse
|
41
|
Acquaah-Mensah GK, Malhotra D, Vulimiri M, McDermott JE, Biswal S. Suppressed expression of T-box transcription factors is involved in senescence in chronic obstructive pulmonary disease. PLoS Comput Biol 2012; 8:e1002597. [PMID: 22829758 PMCID: PMC3400575 DOI: 10.1371/journal.pcbi.1002597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/02/2012] [Indexed: 01/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR), Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes differentially expressed in COPD, as reported in a previous study were superposed with the resulting transcriptional regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-domain interactions involving protein products of genes in the generated networks, several molecular candidates were predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed; while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the peripheral lung tissue samples from patients with COPD. The critical balance between senescence and anti-senescence factors is disrupted towards senescence in COPD lungs.
Collapse
Affiliation(s)
- George K Acquaah-Mensah
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
42
|
Zhang H, Liu H, Davies KJ, Sioutas C, Finch CE, Morgan TE, Forman HJ. Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radic Biol Med 2012; 52:2038-46. [PMID: 22401859 PMCID: PMC3342863 DOI: 10.1016/j.freeradbiomed.2012.02.042] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/30/2012] [Accepted: 02/25/2012] [Indexed: 01/05/2023]
Abstract
Many xenobiotic detoxifying (phase II) enzymes are induced by sublethal doses of environmental toxicants. However, these adaptive mechanisms have not been studied in response to vehicular-derived airborne nano-sized particulate matter (nPM). Because aging is associated with increased susceptibility to environmental toxicants, we also examined the expression of Nrf2-regulated phase II genes in middle-aged mice and their inducibility by chronic nPM. The nPM from vehicular traffic was collected in urban Los Angeles and reaerosolized for exposure of C57BL/6J male mice (3 and 18 months old) for 150 h over 10 weeks. Brain (cerebellum), liver, and lung were assayed by RT-PCR and/or Western blots for the expression of phase II enzymes, glutamate cysteine ligase (catalytic GCLC, and modifier GCLM subunits), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), and relevant transcription factors, NF-E2-related factor 2 (Nrf2), c-Myc, Bach1. Chronic nPM exposure induced GCLC, GCLM, HO-1, NQO1 mRNA, and protein similarly in cerebellum, liver, and lung of young mice. Middle-aged mice had elevated basal levels, but showed impaired further induction by nPM. Similarly, Nrf2 increased with age and was induced by nPM in young but not old. c-Myc showed the same age and induction profile while the age increase in Bach1 was further induced by nPM. Chronic exposure to nanoparticles induced Nrf2-regulated detoxifying enzymes in brain (cerebellum), liver, and lung of young adult mice, indicating a systemic impact of nPM. In contrast, middle-aged mice did not respond above their elevated basal levels except for Bach1. The lack of induction of phase II enzymes in aging mice may be a model for the vulnerability of elderly to air pollution.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Honglei Liu
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Kelvin J.A. Davies
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Constantinos Sioutas
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Caleb E. Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Todd E. Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Henry Jay Forman
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- University of California at Merced, Merced, CA 95343
| |
Collapse
|
43
|
Burnham EL, McCord JM, Bose S, Brown LAS, House R, Moss M, Gaydos J. Protandim does not influence alveolar epithelial permeability or intrapulmonary oxidative stress in human subjects with alcohol use disorders. Am J Physiol Lung Cell Mol Physiol 2012; 302:L688-99. [PMID: 22268125 PMCID: PMC3330762 DOI: 10.1152/ajplung.00171.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/20/2012] [Indexed: 12/22/2022] Open
Abstract
Alcohol use disorders (AUDs), including alcohol abuse and dependence, have been linked to the development of acute lung injury (ALI). Prior clinical investigations suggested an association between AUDs and abnormal alveolar epithelial permeability mediated through pulmonary oxidative stress that may partially explain this relationship. We sought to determine if correcting pulmonary oxidative stress in the setting of AUDs would normalize alveolar epithelial permeability in a double-blinded, randomized, placebo-controlled trial of Protandim, a nutraceutical reported to enhance antioxidant activity. We randomized 30 otherwise healthy AUD subjects to receive directly observed inpatient oral therapy with either Protandim (1,350 mg/day) or placebo. Subjects underwent bronchoalveolar lavage (BAL) and blood sampling before study drug administration and after 7 days of therapy; all AUD subjects completed the study protocol without adverse events. BAL total protein was measured at each timepoint as an indicator of alveolar epithelial permeability. In subjects with AUDs, before study drug initiation, BAL total protein values were not significantly higher than in 11 concurrently enrolled controls (P = 0.07). Over the 7-day study period, AUD subjects did not exhibit a significant change in BAL total protein, regardless of their randomization to Protandim {n = 14, -2% [intraquartile range (IQR), -56-146%]} or to placebo [n = 16, 77% (IQR -20-290%); P = 0.19]. Additionally, among those with AUDs, no significant changes in BAL oxidative stress indexes, epithelial growth factor, fibroblast growth factor, interleukin-1β, or interleukin-10 were observed regardless of drug type received. Plasma thiobarbituric acid reactive substances, a marker of lipid peroxidation, decreased significantly over time among AUD subjects randomized to placebo (P < 0.01). These results suggest that Protandim for 7 days in individuals with AUDs who are newly abstinent does not alter alveolar epithelial permeability. However, our work demonstrates the feasibility of safely conducting clinical trials that include serial bronchoscopies in a vulnerable population at risk for acute lung injury.
Collapse
Affiliation(s)
- Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Univ. of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Gould NS, Min E, Martin RJ, Day BJ. CFTR is the primary known apical glutathione transporter involved in cigarette smoke-induced adaptive responses in the lung. Free Radic Biol Med 2012; 52:1201-6. [PMID: 22266045 PMCID: PMC3920665 DOI: 10.1016/j.freeradbiomed.2012.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/14/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
One of the most abundant antioxidants in the lung is glutathione (GSH), a low-molecular-weight thiol, which functions to attenuate both oxidative stress and inflammation. GSH is concentrated in the epithelial lining fluid (ELF) of the lung and can be elevated in response to the increased oxidant burden from cigarette smoke (CS). However, the transporter(s) responsible for the increase in ELF GSH with cigarette smoke is not known. Three candidate apical GSH transporters in the lung are CFTR, BCRP, and MRP2, but their potential roles in ELF GSH transport in response to CS have not been investigated. In vitro, the inhibition of CFTR, BCRP, or MRP2 resulted in decreased GSH efflux in response to cigarette smoke extract. In vivo, mice deficient in CFTR, BCRP, or MRP2 were exposed to either air or acute CS. CFTR-deficient mice had reduced basal and CS-induced GSH in the ELF, whereas BCRP or MRP2 deficiency had no effect on ELF GSH basal or CS-exposed levels. Furthermore, BCRP or MRP2 deficiency had little effect on lung tissue GSH. These data indicate that CFTR is predominantly involved in maintaining basal ELF GSH and increasing ELF GSH in response to CS.
Collapse
Affiliation(s)
- Neal S. Gould
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, CO
| | - Richard J. Martin
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Brian J. Day
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO
- Department of Medicine, University of Colorado Denver, Aurora, CO
- Department of Immunology, University of Colorado Denver, Aurora, CO
| |
Collapse
|
45
|
Keith RC, Powers JL, Redente EF, Sergew A, Martin RJ, Gizinski A, Holers VM, Sakaguchi S, Riches DWH. A novel model of rheumatoid arthritis-associated interstitial lung disease in SKG mice. Exp Lung Res 2011; 38:55-66. [PMID: 22185348 DOI: 10.3109/01902148.2011.636139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is associated with increased mortality in up to 10% of patients with rheumatoid arthritis. Lung exposure to cigarette smoke has been implicated in disease development. Little is known about the mechanisms underlying the development of RA-ILD, in part due to the lack of an appropriate mouse model. The objectives of this study were (i) to test the suitability of SKG mice as a model of cellular and fibrotic interstitial pneumonia in the setting of autoimmune arthritis, and (ii) to determine the role of lung injury in the development of arthritis in SKG mice. Lung tissues were evaluated in arthritic SKG mice by quantifying cell accumulation in bronchoalveolar lavage, static compliance, collagen levels, and infiltrating cell phenotypes by flow cytometry and histology. Lung injury was induced by exposure to cigarette smoke or bleomycin. Arthritic SKG mice developed a patchy cellular and fibrotic interstitial pneumonia associated with reduced static compliance, increased collagen levels, and accumulation of inflammatory cells. Infiltrating cells comprised CD4+ T cells, B cells, macrophages, and neutrophils. Chronic exposure to cigarette smoke or initiation of lung injury with bleomycin did not cause arthritis. The pattern of lung disease suggests that arthritic SKG mice represent an authentic model of nonspecific interstitial pneumonia in RA-ILD patients. The lack of arthritis development after cigarette smoke or lung injury suggests that a model where breaches in immunologic tolerance are induced by lung inflammation and injury alone may be overly simplistic.
Collapse
Affiliation(s)
- Rebecca C Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gould NS, Min E, Gauthier S, Martin RJ, Day BJ. Lung glutathione adaptive responses to cigarette smoke exposure. Respir Res 2011; 12:133. [PMID: 21982222 PMCID: PMC3215650 DOI: 10.1186/1465-9921-12-133] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/07/2011] [Indexed: 01/21/2023] Open
Abstract
Background Smoking tobacco is a leading cause of chronic obstructive pulmonary disease (COPD), but although the majority of COPD cases can be directly related to smoking, only a quarter of smokers actually develop the disease. A potential reason for the disparity between smoking and COPD may involve an individual's ability to mount a protective adaptive response to cigarette smoke (CS). Glutathione (GSH) is highly concentrated in the lung epithelial lining fluid (ELF) and protects against many inhaled oxidants. The changes in GSH that occur with CS are not well investigated; therefore the GSH adaptive response that occurs with a commonly utilized CS exposure was examined in mice. Methods Mice were exposed to CS for 5 h after which they were rested in filtered air for up to 16 h. GSH levels were measured in the ELF, bronchoalveolar lavage cells, plasma, and tissues. GSH synthesis was assessed by measuring γ-glutamylcysteine ligase (GCL) activity in lung and liver tissue. Results GSH levels in the ELF, plasma, and liver were decreased by as much as 50% during the 5 h CS exposure period whereas the lung GSH levels were unchanged. Next, the time course of rebound in GSH levels after the CS exposure was examined. CS exposure initially decreased ELF GSH levels by 50% but within 2 h GSH levels rebound to about 3 times basal levels and peaked at 16 h with a 6-fold increase and over repeat exposures were maintained at a 3-fold elevation for up to 2 months. Similar changes were observed in tissue GCL activity which is the rate limiting step in GSH synthesis. Furthermore, elevation in ELF GSH levels was not arbitrary since the CS induced GSH adaptive response after a 3d exposure period prevented GSH levels from dropping below basal levels. Conclusions CS exposures evoke a powerful GSH adaptive response in the lung and systemically. These data suggests there may be a sensor that sets the ELF GSH adaptive response to prevent GSH levels from dipping below basal levels. Factors that disrupt GSH adaptive responses may contribute to the pathophysiology of COPD.
Collapse
Affiliation(s)
- Neal S Gould
- Department of Pharmaceutical Sciences, University of Colorado, Denver, CO, USA
| | | | | | | | | |
Collapse
|
47
|
Gould NS, Min E, Day BJ. Macropinocytosis of extracellular glutathione ameliorates tumor necrosis factor α release in activated macrophages. PLoS One 2011; 6:e25704. [PMID: 21991336 PMCID: PMC3185039 DOI: 10.1371/journal.pone.0025704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023] Open
Abstract
A number of inflammatory lung diseases have abnormally low glutathione (GSH) levels in the airway fluids. Lung macrophages are common mediators of inflammation, make up the majority of cells that are found in the airway epithelial lining fluid (ELF), and are commonly elevated in many lung diseases. Several animal models with altered ELF GSH levels are associated with similar alterations in the intracellular GSH levels of bronchoalveolar lavage (BAL) cells. The possible mechanisms and outcomes for this association between ELF GSH levels and intracellular BAL cell GSH are unknown. To investigate these issues, macrophages were grown in media supplemented with 500 µM GSH. GSH supplementation resulted in a 2–3 fold increase in macrophage intracellular GSH levels. The increase in macrophage intracellular GSH levels was associated with a significant reduction in NF-κB nuclear translocation and tumor necrosis factor α (TNFα) release upon LPS stimulation. Furthermore, co-treatment of macrophages with GSH and inhibitors of GSH breakdown or synthesis did not block GSH accumulation. In contrast, treatment with cytochalasin D, an inhibitor of actin dependent endocytosis, and amiloride, an inhibitor of macropinocytosis blocked, at least in part, GSH uptake. Furthermore, using two cigarette smoke exposure paradigms that result in two different GSH levels in the ELF and thus in the BAL cells resulted in modulation of cytokine release when stimulated with LPS ex vivo. These data suggest that macrophages are able to utilize extracellular GSH which can then modulate inflammatory signaling in response to proinflammatory stimuli. This data also suggests the lung can modulate inflammatory responses triggered by proinflammatory stimuli by altering ELF GSH levels and may help explain the dysregulated inflammation associated with lung diseases that have low ELF GSH levels.
Collapse
Affiliation(s)
- Neal S. Gould
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Brian J. Day
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
48
|
Affiliation(s)
- Meilan K Han
- Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, MI 48109-5360, USA.
| |
Collapse
|
49
|
Redente EF, Jacobsen KM, Solomon JJ, Lara AR, Faubel S, Keith RC, Henson PM, Downey GP, Riches DWH. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 301:L510-8. [PMID: 21743030 DOI: 10.1152/ajplung.00122.2011] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fibrotic interstitial pneumonias are more prevalent in males of advancing age, although little is known about the underlying mechanisms. To evaluate the contributions of age and sex to the development of pulmonary fibrosis, we intratracheally instilled young (8-12 wk) and aged (52-54 wk) male and female mice with bleomycin and assessed the development and severity of fibrotic lung disease by measurements of lung collagen levels, static compliance, leukocyte infiltration, and stereological quantification of fibrotic areas in histological sections. We also quantified proinflammatory and profibrotic chemokine and cytokine levels in the bronchoalveolar lavage fluid. Aged male mice developed more severe lung disease, indicated by increased mortality, increased collagen deposition, and neutrophilic alveolitis compared with aged female mice or young mice of either sex. Aged male mice also exhibited increased levels of transforming growth factor-β, IL-17A, and CXCL1 in their bronchoalveolar lavage fluid. Young male mice developed a more fibrotic disease after bleomycin instillation compared with female mice, regardless of age. There was no difference in fibrosis between young and aged female mice. Taken together, these findings suggest that the variables of advanced age and male sex contribute to the severity of pulmonary fibrosis in this model. Our findings also emphasize the importance of stratifying experimental groups on the basis of age and sex in experimental and epidemiological studies of this nature.
Collapse
Affiliation(s)
- Elizabeth F Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|