1
|
Steffes LC, Kumar ME, Varghese NP. Why some and not others? Understanding vascular phenotypes in genetic developmental lung diseases. Curr Opin Pediatr 2025; 37:278-288. [PMID: 40172258 DOI: 10.1097/mop.0000000000001459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW Pulmonary vascular disease is more common in certain genetic developmental lung disorders. This review synthesizes clinical descriptions, molecular analyses, and single-cell transcriptional data to build a conceptual framework to help understand why some variants affect the vasculature while others primarily manifest with parenchymal disease. RECENT FINDINGS Genes predominantly expressed in endothelial and mesenchymal compartments ( TBX4 , FGF10 , FOXF1 , KDR ) commonly present with both parenchymal and pulmonary vascular disease, while epithelial-restricted genes ( SFTPC , ABCA3 , NKX2.1 ) typically manifest as parenchymal disease. Single-cell analyses reveal that compartment-specific expression patterns correlate with clinical phenotypes. Phenotypic variability, even among individuals sharing identical variants, suggests complex interactions between genetic modifiers, epigenetic factors, and developmental processes that remain poorly understood. SUMMARY Compartment-specific gene expression patterns fundamentally underlie the differential presence of vascular phenotypes in DEVLDs. Genetic advances and single cell technologies have revolutionized our understanding of these disorders, but we are in the early stages of translating this knowledge into meaningful clinical advances. Future efforts must bridge this gap to transform clinical care from supportive to targeted, disease-modifying treatment based on cell-specific molecular mechanisms.
Collapse
Affiliation(s)
- Lea C Steffes
- Division of Pulmonology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Maya E Kumar
- Division of Pulmonology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Nidhy P Varghese
- Division of Pulmonology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
2
|
Zhou H, Zhang Q, Huang W, Zhou S, Wang Y, Zeng X, Wang H, Xie W, Kong H. NLRP3 Inflammasome Mediates Silica-induced Lung Epithelial Injury and Aberrant Regeneration in Lung Stem/Progenitor Cell-derived Organotypic Models. Int J Biol Sci 2023; 19:1875-1893. [PMID: 37063430 PMCID: PMC10092774 DOI: 10.7150/ijbs.80605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Silica-induced lung epithelial injury and fibrosis are vital pathogeneses of silicosis. Although the NOD-like receptor protein 3 (NLRP3) inflammasome contributes to silica-induced chronic lung inflammation, its role in epithelial injury and regeneration remains unclear. Here, using mouse lung stem/progenitor cell-derived organotypic systems, including 2D air-liquid interface and 3D organoid cultures, we investigated the effects of the NLRP3 inflammasome on airway epithelial phenotype and function, cellular injury and regeneration, and the potential mechanisms. Our data showed that silica-induced NLRP3 inflammasome activation disrupted the epithelial architecture, impaired mucociliary clearance, induced cellular hyperplasia and the epithelial-mesenchymal transition in 2D culture, and inhibited organoid development in 3D system. Moreover, abnormal expression of the stem/progenitor cell markers SOX2 and SOX9 was observed in the 2D and 3D organotypic models after sustained silica stimulation. Notably, these silica-induced structural and functional abnormalities were ameliorated by MCC950, a selective NLRP3 inflammasome inhibitor. Further studies indicated that the NF-κB, Shh-Gli and Wnt/β-catenin pathways were involved in NLRP3 inflammasome-mediated abnormal differentiation and dysfunction of the airway epithelium. Thus, prolonged NLRP3 inflammasome activation caused injury and aberrant lung epithelial regeneration, suggesting that the NLRP3 inflammasome is a pivotal target for regulating tissue repair in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiping Xie
- ✉ Corresponding authors: Hui Kong, M.D., Ph.D., . Weiping Xie, M.D., Ph.D., . Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China. Tel: +86-25-68136426; Fax: +86-25-68136269
| | - Hui Kong
- ✉ Corresponding authors: Hui Kong, M.D., Ph.D., . Weiping Xie, M.D., Ph.D., . Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China. Tel: +86-25-68136426; Fax: +86-25-68136269
| |
Collapse
|
3
|
Soleas JP, D'Arcangelo E, Huang L, Karoubi G, Nostro MC, McGuigan AP, Waddell TK. Assembly of lung progenitors into developmentally-inspired geometry drives differentiation via cellular tension. Biomaterials 2020; 254:120128. [PMID: 32474250 DOI: 10.1016/j.biomaterials.2020.120128] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022]
Abstract
During organogenesis groups of differentiating cells self-organize into a series of structural intermediates with defined architectural forms. Evidence is emerging that such architectural forms are important in guiding cell fate, yet in vitro methods to guide cell fate have focused primarily on un-patterned exposure of stems cells to developmentally relevant chemical cues. We set out to ask if organizing differentiating lung progenitors into developmentally relevant structures could be used to influence differentiation status. Specifically, we use elastomeric substrates to guide self-assembly of human pluripotent stem cell-derived lung progenitors into developmentally-relevant sized tubes and assess the impact on differentiation. Culture in 100 μm tubes reduced the percentage of SOX2+SOX9+ cells and reduced proximal fate potential compared to culture in 400 μm tubes or on flat surfaces. Cells in 100 μm tubes curved to conform to the tube surface and experienced increased cellular tension and reduced elongation. Pharmacologic disruption of tension through inhibition of ROCK, myosin II activity and actin polymerization in tubes resulted in maintenance of SOX2+SOX9+ populations. Furthermore, this effect required canonical WNT signaling. This data suggests that structural forms, when developmentally relevant, can drive fate choice during directed differentiation via a tension-based canonical WNT dependent mechanism.
Collapse
Affiliation(s)
- John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Elisa D'Arcangelo
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Linwen Huang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Golnaz Karoubi
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, ON, M5S 3G8, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, 101 College St., Toronto, ON, M5G 1L7, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON, M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Schruf E, Schroeder V, Le HQ, Schönberger T, Raedel D, Stewart EL, Fundel-Clemens K, Bluhmki T, Weigle S, Schuler M, Thomas MJ, Heilker R, Webster MJ, Dass M, Frick M, Stierstorfer B, Quast K, Garnett JP. Recapitulating idiopathic pulmonary fibrosis related alveolar epithelial dysfunction in a human iPSC-derived air-liquid interface model. FASEB J 2020; 34:7825-7846. [PMID: 32297676 DOI: 10.1096/fj.201902926r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown cause that is characterized by progressive fibrotic lung remodeling. An abnormal emergence of airway epithelial-like cells within the alveolar compartments of the lung, herein termed bronchiolization, is often observed in IPF. However, the origin of this dysfunctional distal lung epithelium remains unknown due to a lack of suitable human model systems. In this study, we established a human induced pluripotent stem cell (iPSC)-derived air-liquid interface (ALI) model of alveolar epithelial type II (ATII)-like cell differentiation that allows us to investigate alveolar epithelial progenitor cell differentiation in vitro. We treated this system with an IPF-relevant cocktail (IPF-RC) to mimic the pro-fibrotic cytokine milieu present in IPF lungs. Stimulation with IPF-RC during differentiation increases secretion of IPF biomarkers and RNA sequencing (RNA-seq) of these cultures reveals significant overlap with human IPF patient data. IPF-RC treatment further impairs ATII differentiation by driving a shift toward an airway epithelial-like expression signature, providing evidence that a pro-fibrotic cytokine environment can influence the proximo-distal differentiation pattern of human lung epithelial cells. In conclusion, we show for the first time, the establishment of a human model system that recapitulates aspects of IPF-associated bronchiolization of the lung epithelium in vitro.
Collapse
Affiliation(s)
- Eva Schruf
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Victoria Schroeder
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Huy Q Le
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tanja Schönberger
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Dagmar Raedel
- Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Emily L Stewart
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Katrin Fundel-Clemens
- Global Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Teresa Bluhmki
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sabine Weigle
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Michael Schuler
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Matthew J Thomas
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ralf Heilker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Megan J Webster
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martin Dass
- Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Manfred Frick
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Karsten Quast
- Global Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - James P Garnett
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Arnal-Estapé A, Cai WL, Albert AE, Zhao M, Stevens LE, López-Giráldez F, Patel KD, Tyagi S, Schmitt EM, Westbrook TF, Nguyen DX. Tumor progression and chromatin landscape of lung cancer are regulated by the lineage factor GATA6. Oncogene 2020; 39:3726-3737. [PMID: 32157212 PMCID: PMC7190573 DOI: 10.1038/s41388-020-1246-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Lineage selective transcription factors (TFs) are important regulators of tumorigenesis, but their biological functions are often context dependent with undefined epigenetic mechanisms of action. In this study, we uncover a conditional role for the endodermal and pulmonary specifying TF GATA6 in lung adenocarcinoma (LUAD) progression. Impairing Gata6 in genetically engineered mouse models reduces the proliferation and increases the differentiation of Kras mutant LUAD tumors. These effects are influenced by the epithelial cell type that is targeted for transformation and genetic context of Kras-mediated tumor initiation. In LUAD cells derived from surfactant protein C expressing progenitors, we identify multiple genomic loci that are bound by GATA6. Moreover, suppression of Gata6 in these cells significantly alters chromatin accessibility, particularly at distal enhancer elements. Analogous to its paradoxical activity in lung development, GATA6 expression fluctuates during different stages of LUAD progression and can epigenetically control diverse transcriptional programs associated with bone morphogenetic protein signaling, alveolar specification, and tumor suppression. These findings reveal how GATA6 can modulate the chromatin landscape of lung cancer cells to control their proliferation and divergent lineage dependencies during tumor progression.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wesley L Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra E Albert
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Minghui Zhao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Laura E Stevens
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kiran D Patel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Siddhartha Tyagi
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Earlene M Schmitt
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Thomas F Westbrook
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX, USA
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA. .,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA. .,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Wang X, Xu C, Ji J, Cai Y, Shu Y, Chao Y, Wu X, Zou C, Wu X, Tang L. IL-4/IL-13 upregulates Sonic hedgehog expression to induce allergic airway epithelial remodeling. Am J Physiol Lung Cell Mol Physiol 2020; 318:L888-L899. [PMID: 32130032 DOI: 10.1152/ajplung.00186.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that upregulation of Sonic hedgehog (SHH) expression in allergic airway epithelia essentially contributes to the goblet cell metaplasia and mucous hypersecretion. However, the mechanism underlying the upregulation of SHH expression remains completely unknown. In cultured human airway epithelial cells, IL-4/IL-13 but not IL-5 robustly induces the mRNA and protein expression of SHH and in turn activates SHH signaling by promoting the JAK/STAT6-controlling transcription of SHH gene. Moreover, intratracheal instillation of IL-4 and/or IL-13 robustly activates STAT6 and concomitantly upregulates SHH expression in mouse airway epithelia, whereas, in Club cell 10-kDa protein (CC10)-positive airway epithelial cells of children with asthma, activated STAT6 closely correlates with the increased expression of SHH and high activity of SHH signaling. Finally, intratracheal inhibition of STAT6 by AS-1517499 significantly diminished the allergen-induced upregulation of SHH expression, goblet cell phenotypes, and airway hyperresponsiveness, in an ovalbumin- or house dust mite-induced mouse model with allergic airway inflammation,. Together, upregulation of SHH expression by IL-4/IL-13-induced JAK/STAT6 signaling contributes to allergic airway epithelial remodeling, and this study thus provides insight into how morphogen signaling is coordinated with Th2 cytokine pathways to regulate tissue remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Xiangzhi Wang
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Ji
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuqing Cai
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Yingying Shu
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunqi Chao
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiling Wu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Chaochun Zou
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanfang Tang
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
7
|
Liu J, Dong S, Li L, Wang H, Zhao J, Zhao Y. The E3 ubiquitin ligase HECW1 targets thyroid transcription factor 1 (TTF1/NKX2.1) for its degradation in the ubiquitin-proteasome system. Cell Signal 2019; 58:91-98. [PMID: 30849519 DOI: 10.1016/j.cellsig.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
Thyroid transcription factor 1 (TTF1/NKX2.1), is a nuclear protein member of the NKX2 family of homeodomain transcription factors. It plays a critical role in regulation of multiple organ functions by promoting gene expression, such as thyroid hormone in thyroid and surfactant proteins in the lung. However, molecular regulation of TTF1 has not been well investigated, especially regarding its protein degradation. Here we show that protein kinase C agonist, phorbol esters (PMA), reduces TTF1 protein levels in time- and dose-dependent manners, without altering TTF1 mRNA levels. TTF1 is ubiquitinated and degraded in the proteasome in response to PMA, suggesting that PMA induces TTF1 degradation in the ubiquitin-proteasome system. Furthermore, we demonstrate that an E3 ubiquitin ligase, named HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 (HECW1), targets TTF1 for its ubiquitination and degradation, while downregulation of HECW1 attenuates PMA-induced TTF1 ubiquitination and degradation. A lysine residue lys151 was identified as the ubiquitin acceptor site within the TTF1. A lys151 to arginine mutant of TTF1 (TTF1K151R) is resistant to PMA- or HECW1-mediated ubiquitination and degradation. Further, we reveal that overexpression of TTF1 increases lung epithelial cell migration and proliferation, while the effects are reversed by HECW1. This study is the first to demonstrate that the E3 ubiquitin ligase HECW1 regulates TTF1 degradation by site-specific ubiquitination. This study will provide a new direction to clarify the molecular regulation of TTF1 in lung and its role in lung epithelial remodeling after injury.
Collapse
Affiliation(s)
- Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Su Dong
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lian Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Heather Wang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Witten ML, Chau B, Sáez E, Boitano S, Clark Lantz R. Early life inhalation exposure to mine tailings dust affects lung development. Toxicol Appl Pharmacol 2019; 365:124-132. [PMID: 30641074 DOI: 10.1016/j.taap.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
Exposure to mine tailings dust from active and abandoned mining operations may be a very significant health hazard, especially to sensitive populations living in arid and semi-arid climates like the desert southwest of the US. It is anticipated that early life exposures during sensitive times of development can lead to adult disease. However, very few studies have investigated the effects of inhalation exposure to real world dusts during lung development. Using a mouse model, we have examined the effect(s) of inhalation of real world mine tailing dusts under three separate conditions: (1) Exposure only during in utero development (exposure of the pregnant moms) (2) exposure only after birth and (3) exposures that occurred continuously during in utero development, through gestation and birth until the mice reached adulthood (28 days old). We found that the most significant changes in lung structure and function were observed in male mice when exposure occurred continuously throughout development. These changes included increased airway hyper-reactivity, increased expression of epithelial to mesenchymal (EMT) transition protein markers and increased expression of cytokines related to eosinophils. The data also indicate that in utero exposures through maternal inhalation can prime the lung of male mice for more severe responses to subsequent postnatal exposures. This may be due to epigenetic alterations in gene regulation, immune response, molecular signaling, and growth factors involved in lung development that may make the neonatal lung more susceptible to continued dust exposure.
Collapse
Affiliation(s)
- Mark L Witten
- Phoenix Biometrics, Inc., Tucson, AZ 85710, United States
| | - Binh Chau
- Department of Cellular & Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, United States.
| | - Eduardo Sáez
- Department of Chemical and Environmental Engineering, University of Arizona, United States.
| | - Scott Boitano
- Department of Physiology, The Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85724, United States.
| | - R Clark Lantz
- Department of Cellular & Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, United States.
| |
Collapse
|
9
|
Xu C, Zou C, Hussain M, Shi W, Shao Y, Jiang Z, Wu X, Lu M, Wu J, Xie Q, Ke Y, Long F, Tang L, Wu X. High expression of Sonic hedgehog in allergic airway epithelia contributes to goblet cell metaplasia. Mucosal Immunol 2018; 11:1306-1315. [PMID: 29867080 PMCID: PMC6160330 DOI: 10.1038/s41385-018-0033-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/15/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Sonic hedgehog (SHH) is abundantly expressed and critical for morphogenesis in embryonic lungs; however, SHH expression drops to a much lower level in mice from E17.5 and in humans from the 21st gestational week. We find that SHH expression is robustly upregulated in the airway epithelia of children with asthma or mouse models with allergic airway disease. Specifically, airway-specific SMO loss of function significantly suppresses allergen-induced goblet cell phenotypes, whereas an airway-specific SMO gain of function markedly enhances the goblet cell phenotypes in mouse models with allergic airway disease. Notably, intratracheal administration with SHH-neutralizing antibody or cyclopamine robustly attenuates goblet cell phenotypes in mouse models with allergic airway disease. Finally, we identify that Muc5AC gene encoding MUC5AC mucin serves as a direct target of GLI transcriptional factors in response to SHH, whereas the SAM-pointed domain-containing ETS transcription factor and Forkhead box A2, critical transcriptional factors for goblet cell phenotypes, both function as the effectors of GLIs in response to SHH stimulation. Together, the upregulation of SHH expression in allergic bronchial epithelia contributes to goblet cell metaplasia; thus, blockage of SHH signaling is a rational approach in a therapeutic intervention of epithelial remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Chaochun Zou
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Wei Shi
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yanan Shao
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Ziyan Jiang
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiling Wu
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Meiping Lu
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedics of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Qiangmin Xie
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Fanxin Long
- Departments of Orthopedics, Medicine and Developmental Biology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lanfang Tang
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
10
|
Rao Y, Sun X, Yang N, Zhang F, Jiang X, Huang L, Guo X, Du W, Hao H, Zhao X, Jiang Q, Liu Y. Neonatal respiratory distress syndrome and underlying mechanisms in cloned cattle. Mol Reprod Dev 2018; 85:227-235. [PMID: 29388718 DOI: 10.1002/mrd.22956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/27/2017] [Accepted: 01/09/2018] [Indexed: 01/30/2023]
Abstract
Neonatal respiratory distress is a major mortality factor in cloned animals, but the pathogenesis of this disease is rarely investigated. In this study, four neonatal cloned cattle, born after full-term gestation, exhibited symptoms of neonatal respiratory distress syndrome (NRDS), which included symptoms of hyaline membrane disease as well as disordered surfactant homeostasis in their collapsed lungs. No differences in DNA methylation or histone modifications correlated with the suppressed SPB and SPC transcription observed in the cloned cattle group (p > 0.05), whereas TTF-1 occupancy at SPB and SPC promoter regions in cloned cattle was significantly reduced to 24% and 20% that of normal lungs, respectively (SPB, p < 0.05; SPC, p < 0.01). Decreased TTF1 expression, dysregulation of SPB and SPC transcription by TTF-1, and disordered proteolytic processing of Surfactant protein B precursor together potentially contribute to the disruption of surfactant homeostasis and NRDS in bovine clones. Elucidation of the associated mechanisms should facilitate the development of novel preventive or therapeutic strategies to reduce the mortality rate of cloned animals and to improve the efficiency of SCNT technology.
Collapse
Affiliation(s)
- Yifan Rao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Na Yang
- Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Fanyi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojing Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linhua Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaogai Guo
- Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Weihua Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haisheng Hao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueming Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuling Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Lambert L, Culley FJ. Innate Immunity to Respiratory Infection in Early Life. Front Immunol 2017; 8:1570. [PMID: 29184555 PMCID: PMC5694434 DOI: 10.3389/fimmu.2017.01570] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023] Open
Abstract
Early life is a period of particular susceptibility to respiratory infections and symptoms are frequently more severe in infants than in adults. The neonatal immune system is generally held to be deficient in most compartments; responses to innate stimuli are weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lymphocyte responses are limited, leading to poor immune memory and ineffective vaccine responses. For mucosal surfaces such as the lung, which is continuously exposed to airborne antigen and to potential pathogenic invasion, the ability to discriminate between harmless and potentially dangerous antigens is essential, to prevent inflammation that could lead to loss of gaseous exchange and damage to the developing lung tissue. We have only recently begun to define the differences in respiratory immunity in early life and its environmental and developmental influences. The innate immune system may be of relatively greater importance than the adaptive immune system in the neonatal and infant period than later in life, as it does not require specific antigenic experience. A better understanding of what constitutes protective innate immunity in the respiratory tract in this age group and the factors that influence its development should allow us to predict why certain infants are vulnerable to severe respiratory infections, design treatments to accelerate the development of protective immunity, and design age specific adjuvants to better boost immunity to infection in the lung.
Collapse
Affiliation(s)
- Laura Lambert
- Faculty of Medicine, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Fiona J Culley
- Faculty of Medicine, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Carta G, Murru E, Banni S, Manca C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front Physiol 2017; 8:902. [PMID: 29167646 PMCID: PMC5682332 DOI: 10.3389/fphys.2017.00902] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Palmitic acid (PA) has been for long time negatively depicted for its putative detrimental health effects, shadowing its multiple crucial physiological activities. PA is the most common saturated fatty acid accounting for 20–30% of total fatty acids in the human body and can be provided in the diet or synthesized endogenously via de novo lipogenesis (DNL). PA tissue content seems to be controlled around a well-defined concentration, and changes in its intake do not influence significantly its tissue concentration because the exogenous source is counterbalanced by PA endogenous biosynthesis. Particular physiopathological conditions and nutritional factors may strongly induce DNL, resulting in increased tissue content of PA and disrupted homeostatic control of its tissue concentration. The tight homeostatic control of PA tissue concentration is likely related to its fundamental physiological role to guarantee membrane physical properties but also to consent protein palmitoylation, palmitoylethanolamide (PEA) biosynthesis, and in the lung an efficient surfactant activity. In order to maintain membrane phospholipids (PL) balance may be crucial an optimal intake of PA in a certain ratio with unsaturated fatty acids, especially PUFAs of both n-6 and n-3 families. However, in presence of other factors such as positive energy balance, excessive intake of carbohydrates (in particular mono and disaccharides), and a sedentary lifestyle, the mechanisms to maintain a steady state of PA concentration may be disrupted leading to an over accumulation of tissue PA resulting in dyslipidemia, hyperglycemia, increased ectopic fat accumulation and increased inflammatory tone via toll-like receptor 4. It is therefore likely that the controversial data on the association of dietary PA with detrimental health effects, may be related to an excessive imbalance of dietary PA/PUFA ratio which, in certain physiopathological conditions, and in presence of an enhanced DNL, may further accelerate these deleterious effects.
Collapse
Affiliation(s)
- Gianfranca Carta
- Dipartimento Scienze Biomediche, Università degli studi di Cagliari, Cagliari, Italy
| | - Elisabetta Murru
- Dipartimento Scienze Biomediche, Università degli studi di Cagliari, Cagliari, Italy
| | - Sebastiano Banni
- Dipartimento Scienze Biomediche, Università degli studi di Cagliari, Cagliari, Italy
| | - Claudia Manca
- Dipartimento Scienze Biomediche, Università degli studi di Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Xia W, Xie L, Cao B, Cheng S, Wan H, Liu H. Genes involved in leukotriene synthesis pathway are dynamically regulated during lung development in Rhesus monkeys. Prostaglandins Leukot Essent Fatty Acids 2017; 122:1-6. [PMID: 28735623 DOI: 10.1016/j.plefa.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Leukotrienes play critical roles in many inflammatory lung diseases and several antagonists of their receptors have been used in the clinical settings. However, the physiological functions of leukotrienes in lung development are still unclear. METHOD The expression levels of 34 genes involved in leukotriene synthesis and function pathway in the lungs of Rhesus monkey during different developmental time points were determined on a MiSeq platform and analyzed by the reads per kilobase of transcript per million mapped reads (RPKM) method. RESULTS The results showed that the expression levels of PLA2G1B, PLA2G10, PLA2G2D, ALOX5, and ALOX5AP increased dramatically in the lung of Rhesus monkey, reflecting the changes in the pulmonary environment after delivery. Additionally, the different expression patterns between molecules related to LTB4 and LTC4 synthesis suggested distinct roles of LTB4 and LTC4 in lung development. Finally, the constant expression of CysLT1 during the development process provided new information to the pharmaceutical basis of the use of leukotriene receptor antagonists in the clinical setting. CONCLUSION The expression levels of several key genes involved in leukotriene synthesis changed dramatically during lung development in Rhesus monkeys, suggesting the potential roles of leukotrienes in lung development in this animal model.
Collapse
Affiliation(s)
- Wanmin Xia
- Department of Pediatric Respiratory, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory, Chengdu Women & Children's Hospital, Chengdu 610091, China
| | - Liang Xie
- The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Bangrong Cao
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Molecular Oncology, Department of Aetiology and Carcinogenesis, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Aetiology and Carcinogenesis, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Huajing Wan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Lung Development and Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Hanmin Liu
- Department of Pediatric Respiratory, West China Second University Hospital, Sichuan University, Chengdu 610041, China; The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Developmental pathways in lung regeneration. Cell Tissue Res 2016; 367:677-685. [PMID: 27957616 DOI: 10.1007/s00441-016-2537-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/13/2016] [Indexed: 01/10/2023]
Abstract
The key processes of lung development have been elucidated in the past several decades, helping to identify and characterize the resident progenitor cells that ultimately generate the mature organ. The adult lung is a complex organ consisting in scores of different cell lineages that are remarkably quiescent in the absence of injury. Despite low cellular turnover, the lung can respond quickly and dramatically to acute damage, with spatially restricted stem and progenitor cells re-entering the cell cycle and differentiating to promote repair. The findings from lung developmental biology are now being used to examine the mechanisms that underlie lung regeneration. The use of in vitro models such as pluripotent stem cells and new methods of gene editing have provided models for understanding lung disease and exploring the mechanisms of lung regeneration and have raised the prospect of correcting lung dysfunction. We outline the way that basic studies into lung developmental biology are now being applied to lung regeneration, opening up new avenues of research that may ultimately be harnessed for treatments of lung disease.
Collapse
|
15
|
Gomez JC, Dang H, Martin JR, Doerschuk CM. Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:2864-79. [PMID: 27566827 DOI: 10.4049/jimmunol.1600043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Nrf2 regulates the transcriptional response to oxidative stress. These studies tested the role of Nrf2 during Streptococcus pneumoniae pneumonia and identified Nrf2-dependent genes and pathways in lung tissue and in recruited neutrophils. Nrf2 null and wild type (WT) mice were studied at 6 and 24 h after instillation of S. pneumoniae or PBS. At 6 h, fewer neutrophils were recruited and the number of bacteria remaining in the lungs tended to be less (p = 0.06) in the Nrf2 null compared with WT mice. In uninfected lungs, 53 genes were already differentially expressed in Nrf2 null compared with WT mouse lungs, and gene sets involved in phagocytosis, Fc receptor function, complement, and Ig regulation are enhanced in PBS-treated Nrf2 null gene profiles compared with those of WT mice. These results suggest that initial host defense is enhanced in Nrf2 null mice, resulting in less recruitment of neutrophils. At 24 h, neutrophil recruitment was greater. The percentages of early apoptotic and late apoptotic/necrotic neutrophils were similar. At increasing inoculum numbers, mortality rates strikingly increased from 15 to 31 and 100% in Nrf2 null mice, whereas all WT mice survived, and Nrf2 null mice had a defect in clearance, particularly at the intermediate dose. The mortality was due to enhanced lung injury and greater systemic response. Gene profiling identified differentially regulated genes and pathways in neutrophils and lung tissue, including those involved in redox stress response, metabolism, inflammation, immunoregulatory pathways, and tissue repair, providing insight into the mechanisms for the greater tissue damage and increased neutrophil accumulation.
Collapse
Affiliation(s)
- John C Gomez
- Center for Airways Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Jessica R Martin
- Center for Airways Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Claire M Doerschuk
- Center for Airways Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
16
|
Bertoncello I. Properties of Adult Lung Stem and Progenitor Cells. J Cell Physiol 2016; 231:2582-9. [PMID: 27062064 DOI: 10.1002/jcp.25404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022]
Abstract
The last decade has seen significant progress in understanding the organisation of regenerative cells in the adult lung. Cell-lineage tracing and in vitro clonogenic assays have enabled the identification and characterisation of endogenous lung epithelial stem and progenitor cells. Selective lung injury models, and genetically engineered mice have revealed highly conserved gene networks, factors, signalling pathways, and cellular interactions important in maintaining lung homeostasis and regulating lung regeneration and repair following injury. This review describes the current models of lung epithelial stem and progenitor cell organisation in adult mice, and the impediments encountered in translational studies aiming to identify and characterise their human homologs. J. Cell. Physiol. 231: 2582-2589, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ivan Bertoncello
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Yu X, Feng L, Han Z, Wu B, Wang S, Xiao Y, Li F, Zhang L, Cao B, Di X, Lu D, Li X, Jiang W, Zhang K, Cheng S. Crosstalk of dynamic functional modules in lung development of rhesus macaques. MOLECULAR BIOSYSTEMS 2016; 12:1342-9. [PMID: 26923754 DOI: 10.1039/c5mb00881f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung development follows a complex series of dynamic histogenic events that depend on the fluctuation of gene expression, and the disruption of gene regulation could lead to devastating consequences, such as diseases in adulthood. In order to investigate the mechanism of lung development, we performed RNA sequencing by Illumina HiSeq™ 2000 to measure mRNA expression in lung tissues of nine rhesus macaques spanning from foetuses at gestation of 45 days to postnatal at 7 days. This development period was divided into three developmental stages, including the early stage (45-100 gestational days), the middle stage (137-163 gestational days) and the late stage (after birth at 4-7 days). Firstly, we identified stage-specific genes, based on which we found that the principle biological processes of the early stage were mainly associated with internal growth signalling, while the middle and late stage-specific genes controlled the external stress signalling. Then, we constructed a stage-specific protein-protein interaction (PPI) subnetwork, extracted dynamic modules, and identified crosstalk between modules. Moreover, we found four active pathways that could mediate the crosstalk, including the Notch signalling pathway, cell cycle, NOD-like receptor signalling pathway, and Toll-like receptor signalling pathway. These pathways not only played crucial roles in lung development, but also were implicated in lung diseases. Finally, some important bridgers, such as PSEN2, HSP90AA1 and CASP8, were discovered to explain the potential mechanism of crosstalk. Therefore, our study presents the landscape of gene expression of lung development of rhesus macaques, and provides an extended insight into the lung development mechanism.
Collapse
Affiliation(s)
- Xuexin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mirzadeh Azad F, Naeli P, Malakootian M, Baradaran A, Tavallaei M, Ghanei M, Mowla SJ. Two lung development-related microRNAs, miR-134 and miR-187, are differentially expressed in lung tumors. Gene 2015; 577:221-6. [PMID: 26642897 DOI: 10.1016/j.gene.2015.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are involved in various cellular events needed for embryonic development and tumorigenesis. As some of the development-specific gene expression patterns could be observed in cancers, we speculated that the expression pattern of lung development-specific miRNAs miR-134 and miR-187 might be altered in lung tumor samples. Lung cancer is the first cause of cancer related deaths worldwide, mostly due to its late diagnosis. Therefore, finding a reliable diagnostic tumor marker, based on molecular profile of tumorigenesis, would be critical in lowering lung cancer mortality. METHODS We employed a real-time RT-PCR approach to evaluate the expression alteration of two lung development-related miRNAs in lung tumor tissues. The suitability of miRs expression alterations as lung tumor biomarkers was tested by receiver operating characteristic (ROC) curve analysis. The effect of miR-187 overexpression on a lung carcinoma cell cycle was assessed using flow cytometry analysis. RESULTS Our data revealed a significant upregulation (7.8 times, p<0.02) of miR-134 in lung tumors. However, its expression level failed to discriminate different tumor types and grades of malignancies from each other. Moreover, the ROC curves analysis did not give it a good score as a reliable biomarker (AUC=0.522, P=0.729). In contrast, miR-187 showed a significant down-regulation (P=0.008) in lung tumors. Similarly, its expression level failed to differentiate different tumor types or grades of malignancies. Nevertheless, ROC curve analysis gave it an AUC score of 0.669 (P=0.012), which suggests its suitability as a potential biomarker for lung cancer. Furthermore, ectopic expression of miR-187 in A549 cells caused a cell cycle arrest in G1 phase (P=0.013). CONCLUSION Altogether, our data demonstrated an altered expression of two development-related miRNAs namely miR-134 and miR-187 in lung tumors for the first time. Moreover we have shown that miR-134 and miR-187 expression alternation were in accordance with their approved regulatory roles, therefore these miRNAs could serve as new biomarkers with potential usefulness in lung cancer diagnosis and treatments. In addition, miR-187 expression in tumor cells could perturb cell cycle which supported its possible role as tumor suppressor.
Collapse
Affiliation(s)
- F Mirzadeh Azad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - P Naeli
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Malakootian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - A Baradaran
- Department of Pathology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Tavallaei
- Genetic Research Center, Baqiatallah University of Medical Sciences, Tehran, Iran
| | - M Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - S J Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Saini Y, Proper SP, Dornbos P, Greenwood KK, Kopec AK, Lynn SG, Grier E, Burgoon LD, Zacharewski TR, Thomas RS, Harkema JR, LaPres JJ. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS One 2015; 10:e0139270. [PMID: 26422241 PMCID: PMC4589293 DOI: 10.1371/journal.pone.0139270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
Hypoxia is a state of decreased oxygen reaching the tissues of the body. During prenatal development, the fetus experiences localized occurrences of hypoxia that are essential for proper organogenesis and survival. The response to decreased oxygen availability is primarily regulated by hypoxia-inducible factors (HIFs), a family of transcription factors that modulate the expression of key genes involved in glycolysis, angiogenesis, and erythropoiesis. HIF-1α and HIF-2α, two key isoforms, are important in embryonic development, and likely are involved in lung morphogenesis. We have recently shown that the inducible loss of Hif-1α in lung epithelium starting at E4.5 leads to death within an hour of parturition, with symptoms similar to neonatal respiratory distress syndrome (RDS). In addition to Hif-1α, Hif-2α is also expressed in the developing lung, although the overlapping roles of Hif-1α and Hif-2α in this context are not fully understood. To further investigate the independent role of Hif-2α in lung epithelium and its ability to alter Hif-1α-mediated lung maturation, we generated two additional lung-specific inducible Hif-α knockout models (Hif-2α and Hif-1α+Hif-2α). The intrauterine loss of Hif-2α in the lungs does not lead to decreased viability or observable phenotypic changes in the lung. More interestingly, survivability observed after the loss of both Hif-1α and Hif-2α suggests that the loss of Hif-2α is capable of rescuing the neonatal RDS phenotype seen in Hif-1α-deficient pups. Microarray analyses of lung tissue from these three genotypes identified several factors, such as Scd1, Retlnγ, and Il-1r2, which are differentially regulated by the two HIF-α isoforms. Moreover, network analysis suggests that modulation of hormone-mediated, NF-κB, C/EBPα, and c-MYC signaling are central to HIF-mediated changes in lung development.
Collapse
Affiliation(s)
- Yogesh Saini
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Steven P. Proper
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Krista K. Greenwood
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Anna K. Kopec
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Scott G. Lynn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Elizabeth Grier
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Lyle D. Burgoon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Timothy R. Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Russell S. Thomas
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Jack R. Harkema
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - John J. LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cardnell RJ, Behrens C, Diao L, Fan Y, Tang X, Tong P, John D. M, Mills GB, Heymach JV, Wistuba II, Wang J, Byers. LA. An Integrated Molecular Analysis of Lung Adenocarcinomas Identifies Potential Therapeutic Targets among TTF1-Negative Tumors, Including DNA Repair Proteins and Nrf2. Clin Cancer Res 2015; 21:3480-91. [PMID: 25878335 PMCID: PMC4526428 DOI: 10.1158/1078-0432.ccr-14-3286] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/08/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Thyroid transcription factor-1 (TTF1) immunohistochemistry (IHC) is used clinically to differentiate primary lung adenocarcinomas (LUAD) from squamous lung cancers and metastatic adenocarcinomas from other primary sites. However, a subset of LUAD (15%-20%) does not express TTF1, and TTF1-negative patients have worse clinical outcomes. As there are no established targeted agents with activity in TTF1-negative LUAD, we performed an integrated molecular analysis to identify potential therapeutic targets. EXPERIMENTAL DESIGN Using two clinical LUAD cohorts (274 tumors), one from our institution (PROSPECT) and The Cancer Genome Atlas, we interrogated proteomic profiles (by reverse phase protein array, RPPA), gene expression, and mutational data. Drug response data from 74 cell lines were used to validate potential therapeutic agents. RESULTS Strong correlations were observed between TTF1 IHC and TTF1 measurements by RPPA (Rho = 0.57, P < 0.001) and gene expression (NKX2-1, Rho = 0.61, P < 0.001). Established driver mutations (e.g., BRAF and EGFR) were associated with high TTF1 expression. In contrast, TTF1-negative LUAD had a higher frequency of inactivating KEAP1 mutations (P = 0.001). Proteomic profiling identified increased expression of DNA repair proteins (e.g., Chk1 and the DNA repair score) and suppressed PI3k/mTOR signaling among TTF1-negative tumors, with differences in total proteins confirmed at the mRNA level. Cell line analysis showed drugs targeting DNA repair to be more active in TTF1-low cell lines. CONCLUSIONS Combined genomic and proteomic analyses demonstrated infrequent alteration of validated lung cancer targets (including the absence of BRAF mutations in TTF1-negative LUAD), but identified novel potential targets for TTF1-negative LUAD, including KEAP1/Nrf2 and DNA repair pathways.
Collapse
Affiliation(s)
- Robert J.G. Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston TX
| | - Carmen Behrens
- Department of Thoracic/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston TX
| | - Lixia Diao
- Department of Bioinformatics & Computational Biology, UT MD Anderson Cancer Center, Houston TX
| | - YouHong Fan
- Department of Thoracic/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston TX
| | - Ximing Tang
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston TX
| | - Pan Tong
- Department of Bioinformatics & Computational Biology, UT MD Anderson Cancer Center, Houston TX
| | - Minna John D.
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, UT Southwestern, Dallas TX
| | | | - John V. Heymach
- Department of Thoracic/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston TX
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston TX
| | - Jing Wang
- Department of Bioinformatics & Computational Biology, UT MD Anderson Cancer Center, Houston TX
| | - Lauren A. Byers.
- Department of Thoracic/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston TX
| |
Collapse
|
21
|
McCauley HA, Guasch G. Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. Trends Mol Med 2015; 21:492-503. [PMID: 26144290 DOI: 10.1016/j.molmed.2015.06.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/16/2022]
Abstract
Many organs throughout the body maintain epithelial homeostasis by employing a mucosal barrier which acts as a lubricant and helps to preserve a near-sterile epithelium. Goblet cells are largely responsible for secreting components of this mucosal barrier and represent a major cellular component of the innate defense system. In this review we summarize what is known about the signaling pathways that control goblet cell differentiation in the intestine, the lung, and the ocular surface, and we discuss a novel functional role for goblet cells in mucosal epithelial immunology. We highlight the cell type-specificity of the circuitry regulating goblet cell differentiation and shed light on how changes to these pathways lead to altered goblet cell function, a prominent feature of mucosa-associated diseases.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Géraldine Guasch
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA; CRCM, Inserm UMR1068, Département d'Oncologie Moléculaire, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Univ, UM 105, 13009, Marseille, France.
| |
Collapse
|
22
|
Kistemaker LEM, Hiemstra PS, Bos IST, Bouwman S, van den Berge M, Hylkema MN, Meurs H, Kerstjens HAM, Gosens R. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax 2015; 70:668-76. [PMID: 25995156 DOI: 10.1136/thoraxjnl-2014-205731] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 04/30/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND It has been shown that acetylcholine is both a neurotransmitter and acts as a local mediator, produced by airway cells including epithelial cells. In vivo studies have demonstrated an indirect role for acetylcholine in epithelial cell differentiation. Here, we aimed to investigate direct effects of endogenous non-neuronal acetylcholine on epithelial cell differentiation. METHODS Human airway epithelial cells from healthy donors were cultured at an air-liquid interface (ALI). Cells were exposed to the muscarinic antagonist tiotropium (10 nM), interleukin (IL)-13 (1, 2 and 5 ng/mL), or a combination of IL-13 and tiotropium, during or after differentiation at the ALI. RESULTS Human airway epithelial cells expressed all components of the non-neuronal cholinergic system, suggesting acetylcholine production. Tiotropium had no effects on epithelial cell differentiation after air exposure. Differentiation into goblet cells was barely induced after air exposure. Therefore, IL-13 (1 ng/mL) was used to induce goblet cell metaplasia. IL-13 induced MUC5AC-positive cells (5-fold) and goblet cells (14-fold), as assessed by histochemistry, and MUC5AC gene expression (105-fold). These effects were partly prevented by tiotropium (47-92%). Goblet cell metaplasia was induced by IL-13 in a dose-dependent manner, which was inhibited by tiotropium. In addition, tiotropium reversed goblet cell metaplasia induced by 2 weeks of IL-13 exposure. IL-13 decreased forkhead box protein A2 (FoxA2) expression (1.6-fold) and increased FoxA3 (3.6-fold) and SAM-pointed domain-containing ETS transcription factor (SPDEF) (5.2-fold) expression. Tiotropium prevented the effects on FoxA2 and FoxA3, but not on SPDEF. CONCLUSIONS We demonstrate that tiotropium has no effects on epithelial cell differentiation after air exposure, but inhibits and reverses IL-13-induced goblet cell metaplasia, possibly via FoxA2 and FoxA3. This indicates that non-neuronal acetylcholine contributes to goblet cell differentiation by a direct effect on epithelial cells.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susanne Bouwman
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Machteld N Hylkema
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Huib A M Kerstjens
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
McCulley D, Wienhold M, Sun X. The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev 2015; 32:98-105. [PMID: 25796078 PMCID: PMC4763935 DOI: 10.1016/j.gde.2015.01.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/22/2022]
Abstract
Each of the steps of respiratory system development relies on intricate interactions and coordinated development of the lung epithelium and mesenchyme. In the past, more attention has been paid to the epithelium than the mesenchyme. The mesenchyme is a source of specification and morphogenetic signals as well as a host of surprisingly complex cell lineages that are critical for normal lung development and function. This review highlights recent research focusing on the mesenchyme that has revealed genetic and epigenetic mechanisms of its development in the context of other cell layers during respiratory lineage specification, branching morphogenesis, epithelial differentiation, lineage distinction, vascular development, and alveolar maturation.
Collapse
Affiliation(s)
- David McCulley
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mark Wienhold
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
24
|
Rankin SA, Zorn AM. Gene regulatory networks governing lung specification. J Cell Biochem 2015; 115:1343-50. [PMID: 24644080 DOI: 10.1002/jcb.24810] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
The epithelial lining of the respiratory system originates from a small group of progenitor cells in the ventral foregut endoderm of the early embryo. Research in the last decade has revealed a number of paracrine signaling pathways that are critical for the development of these respiratory progenitors. In the post-genomic era the challenge now is to figure out at the genome wide level how these different signaling pathways and their downstream transcription factors interact in a complex "gene regulatory network" (GRN) to orchestrate early lung development. In this prospective, we review our growing understanding of the GRN governing lung specification. We discuss key gaps in our knowledge and describe emerging opportunities that will soon provide an unprecedented understanding of lung development and accelerate our ability to apply this knowledge to regenerative medicine.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio, 45229
| | | |
Collapse
|
25
|
Xiang C, Wang J, Kou X, Chen X, Qin Z, Jiang Y, Sun C, Xu J, Tan W, Jin L, Lin D, He F, Wang H. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer. FASEB J 2015; 29:1986-98. [PMID: 25667220 DOI: 10.1096/fj.14-264580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/24/2014] [Indexed: 01/04/2023]
Abstract
Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.
Collapse
Affiliation(s)
- Chan Xiang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiucun Wang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Kou
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiabin Chen
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhaoyu Qin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan Jiang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang Sun
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jibin Xu
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen Tan
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Jin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dongxin Lin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuchu He
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Haijian Wang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
26
|
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic illnesses in the world. The disease encompasses emphysema, chronic bronchitis, and small airway obstruction and can be caused by environmental exposures, primarily cigarette smoking. Since only a small subset of smokers develop COPD, it is believed that host factors interact with the environment to increase the propensity to develop disease. The major pathogenic factors causing disease include infection and inflammation, protease and antiprotease imbalance, and oxidative stress overwhelming antioxidant defenses. In this review, we will discuss the major environmental and host sources for oxidative stress; discuss how oxidative stress regulates chronic bronchitis; review the latest information on genetic predisposition to COPD, specifically focusing on oxidant/antioxidant imbalance; and review future antioxidant therapeutic options for COPD. The complexity of COPD will necessitate a multi-target therapeutic approach. It is likely that antioxidant supplementation and dietary antioxidants will have a place in these future combination therapies.
Collapse
Affiliation(s)
- Bernard M Fischer
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Judith A Voynow
- Department of Pediatrics, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Hammad H. Epithelial Cell Regulation of Immune Responses in the Lung. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
|
29
|
Rankin SA, Thi Tran H, Wlizla M, Mancini P, Shifley ET, Bloor SD, Han L, Vleminckx K, Wert SE, Zorn AM. A Molecular atlas of Xenopus respiratory system development. Dev Dyn 2014; 244:69-85. [PMID: 25156440 DOI: 10.1002/dvdy.24180] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. RESULTS In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. CONCLUSIONS We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital, and the Department of Pediatrics, College of Medicine University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cheung WK, Zhao M, Liu Z, Stevens LE, Cao PD, Fang JE, Westbrook TF, Nguyen DX. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis. Cancer Cell 2013; 23:725-38. [PMID: 23707782 PMCID: PMC3697763 DOI: 10.1016/j.ccr.2013.04.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/10/2012] [Accepted: 04/08/2013] [Indexed: 12/21/2022]
Abstract
Molecular programs that mediate normal cell differentiation are required for oncogenesis and tumor cell survival in certain cancers. How cell-lineage-restricted genes specifically influence metastasis is poorly defined. In lung cancers, we uncovered a transcriptional program that is preferentially associated with distal airway epithelial differentiation and lung adenocarcinoma (ADC) progression. This program is regulated in part by the lineage transcription factors GATA6 and HOPX. These factors can cooperatively limit the metastatic competence of ADC cells, by modulating overlapping alveolar differentiation and invasogenic target genes. Thus, GATA6 and HOPX are critical nodes in a lineage-selective pathway that directly links effectors of airway epithelial specification to the inhibition of metastasis in the lung ADC subtype.
Collapse
Affiliation(s)
- William K.C. Cheung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Minghui Zhao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Zongzhi Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Laura E. Stevens
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Paul D. Cao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Justin E. Fang
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, U.S.A
| | | | - Don X. Nguyen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
31
|
Wong AP, Rossant J. Generation of Lung Epithelium from Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2013; 1:137-145. [PMID: 23662247 PMCID: PMC3646155 DOI: 10.1007/s40139-013-0016-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The understanding of key processes and signaling mechanisms in lung development has been mainly demonstrated through gain and loss of function studies in mice, while human lung development remains largely unexplored due to inaccessibility. Several recent reports have exploited the identification of key signaling mechanisms that regulate lineage commitment and restriction in mouse lung development, to direct differentiation of both mouse and human pluripotent stem cells towards lung epithelial cells. In this review, we discuss the recent advances in the generation of respiratory epithelia from pluripotent stem cells and the potential of these engineered cells for novel scientific discoveries in lung diseases and future translation into regenerative therapies.
Collapse
Affiliation(s)
- Amy P. Wong
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
| | - Janet Rossant
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| |
Collapse
|
32
|
Ganesan S, Sajjan US. Repair and Remodeling of airway epithelium after injury in Chronic Obstructive Pulmonary Disease. ACTA ACUST UNITED AC 2013; 2. [PMID: 24187653 DOI: 10.1007/s13665-013-0052-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
COPD is thought to develop as a result of chronic exposure to cigarette smoke, occupational or other environmental hazards and it comprises both airways and parenchyma. Acute infections or chronic colonization of airways with bacteria may also contribute to development and/or progression of COPD lung disease. Airway epithelium is the primary target for the inhaled environmental factors and pathogens. The repetitive injury as a result of chronic exposure to environmental factors may result in persistent activation of pathways involved in airway epithelial repair, such as epithelial to mesenchymal transition, altered migration and proliferation of progenitor cells, and abnormal redifferentiation leading to airway remodeling. Development of model systems which mimics chronic airways disease as observed in COPD is required to understand the molecular mechanisms underlying the abnormal airway epithelial repair that are specific to COPD and to also develop novel therapies focused on airway epithelial repair.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | | |
Collapse
|
33
|
Holgate ST. Immune circuits in asthma. Curr Opin Pharmacol 2013; 13:345-50. [PMID: 23639506 DOI: 10.1016/j.coph.2013.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 01/29/2013] [Accepted: 03/22/2013] [Indexed: 11/28/2022]
Abstract
Asthma is an inflammatory disorder of the conducting airways that has traditionally been classified according to severity. While this has been helpful in guiding treatment with drugs that are currently available such as β2-adrenoceptor agonists and corticosteroids, it takes little account of disease heterogeneity and causal pathways. This review draws attention to subphenotypes of asthma involving different mechanisms and moves the focus away from the adaptive immune response more towards innate immune mechanisms. This mandates a new view of the disease in which causal pathways linked to biomarkers are found and treatments targeted to these pathways as described in a more personalised approach to medicine.
Collapse
Affiliation(s)
- Stephen T Holgate
- Clinical and Experimental Sciences, Mail Point 810, Level F South Block, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
34
|
Mercer PF, Chambers RC. New tale for an old fox in IPF? Am J Physiol Lung Cell Mol Physiol 2013; 304:L466-8. [PMID: 23316070 DOI: 10.1152/ajplung.00286.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Ramakrishna L, de Vries VC, Curotto de Lafaille MA. Cross-roads in the lung: immune cells and tissue interactions as determinants of allergic asthma. Immunol Res 2012; 53:213-28. [PMID: 22447350 DOI: 10.1007/s12026-012-8296-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allergic asthma is a chronic disease of the lung characterized by underlying Th2- and IgE-mediated inflammation, structural alterations of the bronchial wall, and airway hyperresponsiveness. Initial allergic sensitization and later development of chronic disease are determined by close interactions between lung structural cells and the resident and migratory immune cells in the lung. Epithelial cells play a crucial role in allergic sensitization by directly influencing dendritic cells induction of tolerant or effector T cells and production of type 2 cytokines by innate immune cells. During chronic disease, the bronchial epithelium, stroma, and smooth muscle become structurally and functionally altered, contributing to the perpetuation of tissue remodeling. Thus, targeting tissue-driven pathology in addition to inflammation may increase the effectiveness of asthma treatment.
Collapse
Affiliation(s)
- Lakshmi Ramakrishna
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, #4-06 Immunos, Singapore
| | | | | |
Collapse
|
36
|
Maeda Y, Tsuchiya T, Hao H, Tompkins DH, Xu Y, Mucenski ML, Du L, Keiser AR, Fukazawa T, Naomoto Y, Nagayasu T, Whitsett JA. Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. J Clin Invest 2012; 122:4388-400. [PMID: 23143308 DOI: 10.1172/jci64048] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022] Open
Abstract
Mucinous adenocarcinoma of the lung is a subtype of highly invasive pulmonary tumors and is associated with decreased or absent expression of the transcription factor NK2 homeobox 1 (NKX2-1; also known as TTF-1). Here, we show that haploinsufficiency of Nkx2-1 in combination with oncogenic Kras(G12D), but not with oncogenic EGFR(L858R), caused pulmonary tumors in transgenic mice that were phenotypically similar to human mucinous adenocarcinomas. Gene expression patterns distinguished tumor goblet (mucous) cells from nontumorigenic airway and intestinal goblet cells. Expression of NKX2-1 inhibited urethane and oncogenic Kras(G12D)-induced tumorigenesis in vivo. Haploinsufficiency of Nkx2-1 enhanced Kras(G12D)-mediated tumor progression, but reduced EGFR(L858R)-mediated progression. Genome-wide analysis of gene expression demonstrated that a set of genes induced in mucinous tumors was shared with genes induced in a nontumorigenic chronic lung disease, while a distinct subset of genes was specific to mucinous tumors. ChIP with massively parallel DNA sequencing identified a direct association of NKX2-1 with the genes induced in mucinous tumors. NKX2-1 associated with the AP-1 binding element as well as the canonical NKX2-1 binding element. NKX2-1 inhibited both AP-1 activity and tumor colony formation in vitro. These data demonstrate that NKX2-1 functions in a context-dependent manner in lung tumorigenesis and inhibits Kras(G12D)-driven mucinous pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Yutaka Maeda
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McColley SA, Morty RE. Update in pediatric lung disease 2011. Am J Respir Crit Care Med 2012; 186:30-4. [PMID: 22753687 DOI: 10.1164/rccm.201203-0568up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Susanna A McColley
- Division of Pulmonary Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | | |
Collapse
|
38
|
Boucherat O, Chakir J, Jeannotte L. The loss of Hoxa5 function promotes Notch-dependent goblet cell metaplasia in lung airways. Biol Open 2012; 1:677-91. [PMID: 23213461 PMCID: PMC3507293 DOI: 10.1242/bio.20121701] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hox genes encode transcription factors controlling complex developmental processes in various organs. Little is known, however, about how HOX proteins control cell fate. Herein, we demonstrate that the goblet cell metaplasia observed in lung airways from Hoxa5−/− mice originates from the transdifferentiation of Clara cells. Reduced CC10 expression in Hoxa5−/− embryos indicates that altered cell specification occurs prior to birth. The loss of Hoxa5 function does not preclude airway repair after naphthalene exposure, but the regenerated epithelium presents goblet cell metaplasia and less CC10-positive cells, demonstrating the essential role of Hoxa5 for correct differentiation. Goblet cell metaplasia in Hoxa5−/− mice is a FOXA2-independent process. However, it is associated with increased Notch signaling activity. Consistent with these findings, expression levels of activated NOTCH1 and the effector gene HEY2 are enhanced in patients with chronic obstructive pulmonary disease. In vivo administration of a γ-secretase inhibitor attenuates goblet cell metaplasia in Hoxa5−/− mice, highlighting the contribution of Notch signaling to the phenotype and suggesting a potential therapeutic strategy to inhibit goblet cell differentiation and mucus overproduction in airway diseases. In summary, the loss of Hoxa5 function in lung mesenchyme impacts on epithelial cell fate by modulating Notch signaling.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec , L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec QC G1R 2J6 , Canada
| | | | | |
Collapse
|
39
|
Abstract
Asthma is a T lymphocyte-controlled disease of the airway wall caused by inflammation, overproduction of mucus and airway wall remodeling leading to bronchial hyperreactivity and airway obstruction. The airway epithelium is considered an essential controller of inflammatory, immune and regenerative responses to allergens, viruses and environmental pollutants that contribute to asthma pathogenesis. Epithelial cells express pattern recognition receptors that detect environmental stimuli and secrete endogenous danger signals, thereby activating dendritic cells and bridging innate and adaptive immunity. Improved understanding of the epithelium's function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.
Collapse
|
40
|
Richards TJ, Park C, Chen Y, Gibson KF, Peter Di Y, Pardo A, Watkins SC, Choi AMK, Selman M, Pilewski J, Kaminski N, Zhang Y. Allele-specific transactivation of matrix metalloproteinase 7 by FOXA2 and correlation with plasma levels in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2012; 302:L746-54. [PMID: 22268124 PMCID: PMC3331579 DOI: 10.1152/ajplung.00319.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/06/2012] [Indexed: 01/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex disease with poorly understood etiology. Previously, we reported upregulation of matrix metalloproteinase 7 (MMP7) in both lung and peripheral blood of IPF patients. Here we report evidence for genetic correlation of plasma levels and promoter polymorphisms (rs11568818 and rs11568819) of MMP7 in a well-characterized IPF cohort. Both the AA genotype of rs11568818 and the CT genotype of rs11568819 were found to be significantly associated with higher MMP7 plasma levels. These associations were observed only in IPF patients and not in healthy controls. The G-to-A transition of rs11568818 resulted in a novel binding site for the forkhead box A2 (FOXA2) transcription factor, a key regulator of embryonic lung development and proper function of the mature lung. In vitro, this transition led to increased sensitivity of the MMP7 promoter to FOXA2. In IPF lungs, FOXA2 was localized in the nucleus of epithelial cells that expressed MMP7 in the cytoplasm. These results suggest that increased sensitivity of the polymorphic MMP7 promoter to FOXA2 provides one of the genetic bases for the upregulation of MMP7 in IPF.
Collapse
Affiliation(s)
- Thomas J Richards
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Buczynski BW, Yee M, Paige Lawrence B, O'Reilly MA. Lung development and the host response to influenza A virus are altered by different doses of neonatal oxygen in mice. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1078-87. [PMID: 22408042 DOI: 10.1152/ajplung.00026.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxygen exposure in preterm infants has been associated with altered lung development and increased risk for respiratory viral infections later in life. Although the dose of oxygen sufficient to exert these changes in humans remains unknown, adult mice exposed to 100% oxygen between postnatal days 1-4 exhibit alveolar simplification and increased sensitivity to influenza virus infection. Additionally, two nonlinear thresholds of neonatal oxygen exposures were previously identified that promote modest (between 40% and 60% oxygen) and severe (between 80% and 100% oxygen) changes in lung development. Here, we investigate whether these two thresholds correlate with the severity of lung disease following respiratory viral infection. Adult mice exposed to 100% oxygen at birth, and to a lesser extent 80% oxygen, demonstrated enhanced body weight loss, persistent inflammation, and fibrosis following infection compared with infected siblings exposed to room air at birth. In contrast, the host response to infection was indistinguishable between mice exposed to room air and 40% or 60% oxygen. Interestingly, levels of monocyte chemoattractant protein (MCP)-1 were equivalently elevated in infected mice that had been exposed to 80% or 100% oxygen as neonates. However, reducing levels of MCP-1 using heterozygous Mcp-1 mice did not affect oxygen-dependent changes in the response to infection. Thus lung development and the host response to respiratory viral infection are disrupted by different doses of oxygen. Our findings suggest that measuring lung function alone may not be sufficient to identify individuals born prematurely who have increased risk for respiratory viral infection.
Collapse
Affiliation(s)
- Bradley W Buczynski
- Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Lung cancer, of which non-small-cell lung cancer comprises the majority, is the leading cause of cancer-related deaths in the United States and worldwide. Lung adenocarcinomas are a major subtype of non-small-cell lung cancers, are increasing in incidence globally in both males and females and in smokers and non-smokers, and are the cause for almost 50% of deaths attributable to lung cancer. Lung adenocarcinoma is a tumour with complex biology that we have recently started to understand with the advent of various histological, transcriptomic, genomic and proteomic technologies. However, the histological and molecular pathogenesis of this malignancy is still largely unknown. This review will describe advances in the molecular pathology of lung adenocarcinoma with emphasis on genomics and DNA alterations of this disease. Moreover, the review will discuss recognized lung adenocarcinoma preneoplastic lesions and current concepts of the early pathogenesis and progression of the disease. We will also portray the field cancerization phenomenon and lineage-specific oncogene expression pattern in lung cancer and how both remerging concepts can be exploited to increase our understanding of lung adenocarcinoma pathogenesis for subsequent development of biomarkers for early detection of adenocarcinomas and possibly personalized prevention.
Collapse
Affiliation(s)
- Humam Kadara
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | | | | |
Collapse
|
43
|
Ramsey BW, Banks-Schlegel S, Accurso FJ, Boucher RC, Cutting GR, Engelhardt JF, Guggino WB, Karp CL, Knowles MR, Kolls JK, LiPuma JJ, Lynch S, McCray PB, Rubenstein RC, Singh PK, Sorscher E, Welsh M. Future directions in early cystic fibrosis lung disease research: an NHLBI workshop report. Am J Respir Crit Care Med 2012; 185:887-92. [PMID: 22312017 DOI: 10.1164/rccm.201111-2068ws] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the 1989 discovery that mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), there has been substantial progress toward understanding the molecular basis for CF lung disease, leading to the discovery and development of new therapeutic approaches. However, the earliest impact of the loss of CFTR function on airway physiology and structure and its relationship to initial infection and inflammation are poorly understood. Universal newborn screening for CF in the United States represents an unprecedented opportunity for investigating CF clinical manifestations very early in life. Recently developed animal models with pulmonary phenotypic manifestations also provide a window into the early consequences of this genetic disorder. For these reasons, the National Heart, Lung, and Blood Institute (NHLBI) convened a working group of extramural experts, entitled "Future Research Directions in Early CF Lung Disease" on September 21-22, 2010, to identify future research directions of great promise in CF. The priority areas identified included (1) exploring pathogenic mechanisms of early CF lung disease; (2) leveraging newborn screening to elucidate the natural history of early lung disease; (3) developing a spectrum of biomarkers of early lung disease that reflects CF pathophysiology, clinical outcome, and response to treatment; (4) exploring the role of genetics/genomics (e.g., modifier genes, gene-environmental interactions, and epigenetics) in early CF pathogenesis; (5) defining early microbiological events in CF lung disease; and (6) elucidating the initial airway inflammatory, remodeling, and repair mechanisms in CF lung disease.
Collapse
|
44
|
Liu M, Lee DF, Chen CT, Yen CJ, Li LY, Lee HJ, Chang CJ, Chang WC, Hsu JM, Kuo HP, Xia W, Wei Y, Chiu PC, Chou CK, Du Y, Dhar D, Karin M, Chen CH, Hung MC. IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell 2012; 45:171-84. [PMID: 22196886 PMCID: PMC3268914 DOI: 10.1016/j.molcel.2011.11.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 09/27/2011] [Accepted: 11/01/2011] [Indexed: 12/15/2022]
Abstract
Proinflammatory cytokine TNFα plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFα-mediated tumor development remains unclear. Here, we show that IKKα, an important downstream kinase of TNFα, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKα, pFOXA2 (S107/111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKα and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFα/IKKα-associated FOXA2 inhibition likely contributes to inflammation-mediated cancer pathogenesis. Here, we report a TNFα/IKKα/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.
Collapse
Affiliation(s)
- Mo Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chia-Jui Yen
- National Cheng Kung University Hospital, Department of Internal Medicine, No. 138, Sheng-Li Road, Tainan City 701, Taiwan
| | - Long-Yuan Li
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Hong-Jen Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chun-Ju Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 105, Taiwan
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Hsu-Ping Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei-Chun Chiu
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Chung-Hsuan Chen
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 105, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
| |
Collapse
|
45
|
Abstract
Respiratory disorders that present in the newborn period may result from structural, functional, or acquired mechanisms that limit gas exchange between the airspace and vascular bed. Exciting new imaging, gene sequencing, mass spectrometry, and molecular and cell-based techniques are enhancing our understanding of mechanisms of disease; highlighting the complexity of interactions between genes, development, and environment in the manifestation of health and disease; and becoming part of the clinical armamentarium for the care of patients. Some of these technologies and their clinical potential are briefly reviewed in this paper.
Collapse
Affiliation(s)
- Aaron Hamvas
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo 63110, USA
| |
Collapse
|