1
|
Guequen A, Tapia-Balladares B, Apablaza T, Guidone D, Cárcamo-Lemus N, Villanueva S, Sandoval PY, Galietta LJV, Flores CA. Sodium-Coupled Monocarboxylate Absorption in the Airway Epithelium Is Facilitated by the SLC5A8 Co-Transporter. Acta Physiol (Oxf) 2025; 241:e70051. [PMID: 40326639 DOI: 10.1111/apha.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
AIM Amino acids, sugars, short-chain fatty acids (SCFA), vitamins, and other small molecules compose the extracellular metabolome on the airway lumen surface, but how the airway epithelium deals with these molecules has not been deeply studied. Due to the broad spectrum of metabolites transported by SLC5A8 and SLC5A12, we aim to determine if they are functionally expressed and participate in the absorption of Na+, short-chain fatty acids, and monocarboxylates in mouse and human airway epithelium. METHODS Tracheas isolated from male or female mice and human bronchial epithelial cells (HBECs) were used for electrophysiological studies in the Ussing chamber and to detect members of the SLC16 family by RT-PCR and bulk RNAseq. Additionally, cell lines expressing the human and murine SLC5A8 transporter were employed for uptake studies using a fluorescent lactate probe. RESULTS We showed for the first time that human and murine airway epithelium express a functional SLC5A8 transporter, facilitating the absorption of glucose metabolites and SCFAs. The Na+-coupled monocarboxylate transport was not additive with ENaC-mediated Na+ absorption in mouse trachea. We observed that valproate acts as an inhibitor of the murine but not of the human SLC5A8 transporter. CONCLUSIONS Our results demonstrate that several metabolites derived from bacterial and cellular metabolism can be transported from the airway lumen into the epithelial cells, participating in a homeostatic relation of the tissue with its environment.
Collapse
Affiliation(s)
- Anita Guequen
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | | | - Tábata Apablaza
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Estudiante Programa de Doctorado en Enfermedades Crónicas, Facultad de Medicina, Universidad San Sebastián, Valdivia, Chile
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sandra Villanueva
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina, Universidad San Sebastián, Valdivia, Chile
| | - Pamela Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina, Universidad San Sebastián, Valdivia, Chile
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medical Sciences (DISMET), University of Napoli "Federico II", Napoli, Italy
| | - Carlos A Flores
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
2
|
Li H, Xiao F, Zhou C, Zhu T, Wang S. Metabolic Adaptations and Therapies in Cardiac Hypoxia: Mechanisms and Clinical Implications/ Potential Strategies. JACC Basic Transl Sci 2025:S2452-302X(24)00458-3. [PMID: 40265246 DOI: 10.1016/j.jacbts.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 04/24/2025]
Abstract
Cardiac hypoxia triggers a cascade of responses and functional changes in myocardial and non-myocardial cells, profoundly affecting cellular metabolism, oxygen-sensing mechanisms, and immune responses. Myocardial cells, being the primary cell type in cardiac tissue, undergo significant alterations in energy metabolism, including glycolysis, fatty acid metabolism, ketone body utilization, and branched-chain amino acid metabolism, to maintain cardiac function under hypoxic conditions. Non-myocardial cells, such as fibroblasts, endothelial cells, and immune cells, although fewer in number, play crucial roles in regulating cardiac homeostasis, maintaining structural integrity, and responding to injury. This review discusses the metabolic reprogramming of immune cells, particularly macrophages, during ischemia-reperfusion injury and explores various therapeutic strategies that modulate these metabolic pathways to protect the heart during hypoxia. Understanding these interactions provides valuable insights and potential therapeutic targets for heart disease treatment.
Collapse
Affiliation(s)
- Huili Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chenghui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012, West China Hospital, Sichuan University, Chengdu, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
3
|
Gabr A, Mohamed AM, Abou Khalil NS, Sayed AEDH. The protective effect of Chlorella vulgaris against diclofenac toxicity in Clarias gariepinus: haemato-immunological parameters and spleen histological features as outcome markers. Front Immunol 2025; 16:1566496. [PMID: 40230852 PMCID: PMC11994428 DOI: 10.3389/fimmu.2025.1566496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Diclofenac (DCF) is a commonly utilized medication in the non-steroidal anti-inflammatory drug category that is released into aquatic systems in significant amounts. Chlorella vulgaris (C. vulgaris) is rich in active phytochemicals known for their haemato-immunological boosting properties. Methods Our objective was to investigate the haemato-immunological protective properties of Chlorella in mitigating the toxic effects of DCF. Five groups of Clarias gariepinus, each comprising 36 fish, were assigned over a two-week period. The groups were assigned as follows: control group, which received a basal diet only; DCF1 group, which received a basal diet and was exposed to 20 μg/L of DCF; DCF2 group, which received a basal diet and was exposed to 10 mg/L of DCF; and Chlorella +DCF1 and Chlorella+DCF2 groups, which were exposed to the same DCF doses as Groups 2 and 3, respectively, while also being fed a diet containing 25% Chlorella. Results Exposure to both doses of DCF significantly decreased erythrocyte count, hemoglobin content, white blood cell count, phagocytic index, and lysozyme activity, while increased eosinophil and neutrophil % in an equipotent manner. The low dose caused a more pronounced reduction in packed cell volume (PCV)% and large lymphocyte% compared to the high dose. A significant decline in platelet count was observed only with the low DCF dose, while the high dose led to a decrease in monocyte%. DCF intoxication led to a dose-related decrease in small lymphocyte% and an increase in erythrocyte morphological alterations and interleukin (IL)-6 levels. The DCF2 group exhibited a higher increase in apoptotic RBCs than the DCF1 group. Intervention with Chlorella alongside the two DCF doses significantly normalized RBC count and eosinophil %, increased PCV% and small lymphocyte%, and decreased erythrocyte abnormalities to an equal extent. Large lymphocyte% in the Chlorella+DCF1 group was successfully restored to normal levels. Phagocytic index and lysozyme activity in the supplemented groups were lower, while IL-6 levels were higher than in the DCF groups. The percentage of apoptotic cells decreased with Chlorella administration, with the Chlorella+DCF1 group showing fewer apoptotic cells than the Chlorella+DCF2 group. Histopathological deterioration and excessive collagen deposition were observed in the spleen of DCF groups, while notable improvements were seen following C. vulgaris supplementation. Conclusion These findings suggest that dietary inclusion of C. vulgaris may antagonize the haemato-cytological abnormalities induced by DCF intoxication.
Collapse
Affiliation(s)
- Ahmed Gabr
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
| | - Amr M. Mohamed
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Peng Z, Huang R, Gan L, Wang J, Li X, Ding J, Han Y, Wu J, Xue K, Guo J, Zhang R, Qian J, Ma R. PDK2-enhanced glycolysis aggravates fibrosis via IL11 signaling pathway in Graves' orbitopathy. Front Immunol 2025; 16:1537365. [PMID: 40018034 PMCID: PMC11865214 DOI: 10.3389/fimmu.2025.1537365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Objectives Transforming growth factor β1 (TGFβ1)-interleukin 11 (IL11) is a newly found critical signaling pathway in fibrotic diseases such as Graves' orbitopathy (GO). It has now been confirmed that enhanced glycolysis plays a key role in the pathogenesis of GO. However, little is known about the relationship between glycolysis and IL11-mediated fibrosis in GO. This study aimed to identify the relationship between glycolysis and TGFβ1-IL11 signaling pathway and investigate the role of IL11 in glycolysis-facilitated fibrosis in GO. Methods Orbital connective tissues were collected from GO and control patients. Primary orbital fibroblasts (OFs) were cultured from clinical tissues. Patient-derived xenografts were established via intraorbital transplantation of GO orbital tissue in humanized NCG mice. Protein levels were measured using Capillary Western Immunoassay (WES). Small interfering RNA (siRNA) was used to construct transfected OF strains. Lactate production was measured to assess glycolysis status. Animal models were assessed by T2-weighted magnetic resonance (MR) scan. Immunohistochemistry staining was applied to patients' orbital connective tissues. Results Orbital connective tissues were collected from GO patients. Immunohistochemical (IHC) staining of GO tissues revealed the phenomenon of pyruvate dehydrogenase kinase 2 (PDK2)-enhanced glycolysis and upregulated IL11-IL11Rα pathway. In vitro experiments showed successful induction of fibrosis of patient-derived orbital fat/connective tissues, which could be alleviated by dichloroacetic acid (DCA). MRI images and analysis of hematoxylin and eosin (HE) and Masson-stained section demonstrated enhanced glycolysis in GO, facilitating fibrosis of the orbital tissue. Targeting PDK2 decreased IL11 expression to suppress fibrosis. In vivo experiment confirmed anti-fibrotic effect of inhibition of glycolysis. Conclusions PDK2-enhanced glycolysis exacerbates fibrosis via IL11-IL11Rα signaling pathway, shedding light on a potential therapeutic role of metabolic modulators such as DCA in GO treatment.
Collapse
Affiliation(s)
- Zhiyu Peng
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rui Huang
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Lu Gan
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jinghan Wang
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Xiaofeng Li
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jie Ding
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Yinan Han
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Kang Xue
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jie Guo
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| | - Jiang Qian
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| | - Ruiqi Ma
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Xie Y, Shi Y, Wang L, Li C, Wu M, Xu J. Outer membrane vesicle contributes to the Pseudomonas aeruginosa resistance to antimicrobial peptides in the acidic airway of bronchiectasis patients. MedComm (Beijing) 2025; 6:e70084. [PMID: 39896756 PMCID: PMC11782972 DOI: 10.1002/mco2.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/29/2024] [Accepted: 11/23/2024] [Indexed: 02/04/2025] Open
Abstract
Pseudomonas aeruginosa is the predominant pathogen causing chronic infection in the airway of patients with bronchiectasis (BE), a chronic respiratory disease with high prevalence worldwide. Environmental factors are vital for bacterial successful colonization. Here, with sputa and bronchoalveolar lavage fluids, we determined that the concentration of airway antimicrobial peptide LL-37 and lactate was elevated in BE patients, especially in those infected with P. aeruginosa. The in vitro antibacterial assay revealed the bactericidal activity of LL-37 against the clinical P. aeruginosa isolates, which were dampened in the acidic condition. P. aeruginosa production of outer membrane vesicles (OMVs) enhanced in the lactate-adjusted acidic condition. Transcriptomic analysis suggested that OMVs induce the hyperproduction of the chemical compound 2-heptyl-4-quinolone (HHQ) in the bacterial population, which was verified by high-performance liquid chromatography. The positively charged HHQ interfered with the binding of LL-37 to bacterial cell membrane, potentiating the P. aeruginosa resistance to LL-37. To our knowledge, this is a new resistance mechanism of P. aeruginosa against antimicrobial peptides and may provide theoretical support for the development of new antibacterial therapies.
Collapse
Affiliation(s)
- Yingzhou Xie
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of MedicineTongji UniversityShanghaiChina
| | - Yi‐Han Shi
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of MedicineTongji UniversityShanghaiChina
| | - Le‐Le Wang
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of MedicineTongji UniversityShanghaiChina
| | - Cheng‐Wei Li
- Department of Pulmonary and Critical Care MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Min Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, and Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Jin‐Fu Xu
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of MedicineTongji UniversityShanghaiChina
- Department of Respiratory and Critical Care MedicineHuadong Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
6
|
Gong C, Chen J, Zou P, Fang Z, Quan L, Wang J, Yin J, Lin B, Lang J, Chen M. Serum Pharmacochemistry and Network Pharmacology Reveal Active Compounds and Mechanisms of the Huaxian Formula in Alleviating Radiation-Induced Pulmonary Fibrosis. Drug Des Devel Ther 2025; 19:627-644. [PMID: 39896935 PMCID: PMC11784308 DOI: 10.2147/dddt.s490844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Purpose Radiation-induced pulmonary fibrosis (RIPF) is a serious complication of radiotherapy that lacks effective treatment options. The Huaxian formula (HXF), a traditional Chinese herbal remedy, shows promise in alleviating RIPF; however, its active ingredients and underlying mechanisms remain poorly understood. Methods Through serum pharmacochemistry, network pharmacology, molecular docking, and experimental validation, we investigate the potential mechanisms of HXF in the prevention and treatment of radiation-induced pulmonary fibrosis (RIPF). Results Histological examination and non-invasive computed tomography (CT) scans in animal experiments revealed that HXF improved extracellular matrix collagen deposition in the lung tissue of irradiated mice and reduced fibrosis manifestations on CT images. Analysis of post-HXF administration serum samples identified 21 enriched compounds as potential active compounds, with 430 corresponding prospective targets. Overlapping these compounds with 991 RIPF-related genes yielded 127 genes primarily associated with the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, and the MAPK signaling pathway. Molecular docking indicated that key compounds in HXF serum, 5,7,8-trimethoxyflavone, and hyperoside, exhibited strong affinity with key targets. Finally, animal experiments confirmed that HXF significantly inhibited the expression of p-Akt and p-PI3K proteins in the lung tissue of irradiated mice. Conclusion Our research results indicate that HXF may exert its effects on the prevention and treatment of radiation-induced pulmonary fibrosis (RIPF) through multiple pathways and targets, with the PI3K-Akt signaling pathway likely playing the most crucial role in this process.
Collapse
Affiliation(s)
- CuiCui Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610032, People’s Republic of China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine Cancer Research, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, People’s Republic of China
| | - Junyang Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Pingjin Zou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Zengyi Fang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Li Quan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610032, People’s Republic of China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine Cancer Research, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, People’s Republic of China
| | - Jing Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Jie Yin
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, People’s Republic of China
| | - Bing Lin
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610032, People’s Republic of China
| | - Jinyi Lang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610032, People’s Republic of China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine Cancer Research, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, People’s Republic of China
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine Cancer Research, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, People’s Republic of China
| |
Collapse
|
7
|
Spampinato M, Giallongo C, Giallongo S, Spina EL, Duminuco A, Longhitano L, Caltabiano R, Salvatorelli L, Broggi G, Pricoco EP, Del Fabro V, Dulcamare I, DI Mauro AM, Romano A, Di Raimondo F, Li Volti G, Palumbo GA, Tibullo D. Lactate accumulation promotes immunosuppression and fibrotic transformation of bone marrow microenvironment in myelofibrosis. J Transl Med 2025; 23:69. [PMID: 39810250 PMCID: PMC11734442 DOI: 10.1186/s12967-025-06083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule. METHODS To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets. Therefore, to assess the significance of its trafficking, we inhibited monocarboxylate transporter 1 (MCT1) by its selective antagonist, AZD3965, eventually finding a mitigation of lactate-mediated immunosuppressive subsets expansion. To further dig into the impact of lactate in tumor microenvironment, we evaluated the effect of this metabolite on mesenchymal stromal cells (MSCs) reprogramming. RESULTS Our results show an activation of a cancer-associated phenotype (CAF) related to mineralized matrix formation and early fibrosis development. Strikingly, MF serum, enriched in lactate, causes a strong deposition of collagen in healthy stromal cells, which was restrained by AZD3965. To corroborate these outcomes, we therefore generated for the first time a TPOhigh zebrafish model for the establishment of experimental fibrosis. By adopting this model, we were able to unveil a remarkable increase in lactate concentration and monocarboxylate transporter 1 (MCT1) expression in the site of hematopoiesis, associated with a strong downregulation of lactate export channel MCT4. Notably, exploiting MCTs expression in biopsy specimens from patients with myeloproliferative neoplasms, we found a loss of MCT4 expression in PMF, corroborating changes in MCT expression during BM fibrosis establishment. CONCLUSIONS In conclusion, our results unveil lactate as a key regulator of immune escape and BM fibrotic transformation in MF patients, suggesting MCT1 blocking as a novel antifibrotic strategy.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Vittorio Del Fabro
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Wang W, Gu L, Hong X, Gao Z, Liu S, Ren Y, Wang Y, Tian L, Wang C. Dynamic Metabolic Characterization of Lung Tissues in Rats Exposed to Whole-Thorax Irradiation Based on GC-MS. Biomed Chromatogr 2025; 39:e6061. [PMID: 39732522 DOI: 10.1002/bmc.6061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/30/2024]
Abstract
An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls. Time-series lung tissue samples during the progression of RILI were collected for dynamic metabolomics studies based on gas chromatography-mass spectrometry (GC-MS). Differential metabolites associated with radiation-induced lung injury were identified, followed by metabolite set enrichment analysis to uncover pathway changes in RILI. The results revealed dynamic metabolic alterations in the progression of RILI, primarily involving in glycine and serine metabolism, the urea cycle, the Warburg effect, glutamate metabolism, arginine and proline metabolism, glucose-alanine cycle, and ammonia recycling. In addition, the potential panel of biomarkers including taurine, lysine, and tyrosine of RILI was selected and then applied to evaluate the diagnostic potential for RILI based on the receiving operator characteristic curve (ROC) at the early-stage of RILI. The better sensitivity, specificity, and accuracy indicate the potential of early diagnosis for RILI. These findings suggest that dynamic metabolomics data could provide new insights into understanding the complex metabolic dysregulation underlying RILI, facilitating the selection of biomarkers for early diagnosis.
Collapse
Affiliation(s)
- WenLi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Liming Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiedong Hong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhipiao Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shanghai Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yifan Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yun Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lang Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Li K, Liu X, Lu R, Zhao P, Tian Y, Li J. Bleomycin pollution and lung health: The therapeutic potential of peimine in bleomycin-induced pulmonary fibrosis by inhibiting glycolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117451. [PMID: 39626488 DOI: 10.1016/j.ecoenv.2024.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/26/2025]
Abstract
The increasing use of anticancer drugs has led to the emergence of environmental contaminants such as bleomycin (BLM), which poses significant threats to both aquatic ecosystems and human health. Bleomycin, known for its DNA-damaging properties, is extensively used in oncology. Its resistance to biodegradation, along with the limitations of conventional wastewater treatment processes, facilitates environmental accumulation from various sources, highlighting the need for effective management and treatment strategies to mitigate ecological and health risks. This study investigates the link between BLM pollution and pulmonary fibrosis, a progressive lung disease characterized by tissue scarring and loss of function. We demonstrate that BLM induces pulmonary fibrosis in mice and enhances glycolysis and fibroblast activation. Our findings also indicate that peimine, a natural compound derived from Fritillaria, suppresses fibroblast activation and ameliorates pulmonary fibrosis by inhibiting glycolysis through the PI3K/Akt/PFKFB3 signaling pathway. Taken together, this study underscores the environmental and health risks associated with the accumulation of cytostatic drugs like BLM and highlights the therapeutic potential of natural compounds such as peimine. Our results contribute to the development of novel strategies for the prevention and treatment of pulmonary fibrosis and call for better management practices to mitigate the environmental impact of cytostatic drugs.
Collapse
Affiliation(s)
- Kangchen Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xuefang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ruilong Lu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yange Tian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China; Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
10
|
Miguel V, Shaw IW, Kramann R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol 2025; 21:39-56. [PMID: 39289568 DOI: 10.1038/s41581-024-00889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Isaac W Shaw
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Fleckner M, Döhmen NK, Salz K, Christophers T, Windolf J, Suschek CV, Oezel L. Exposure of Primary Human Skin Fibroblasts to Carbon Dioxide-Containing Solution Significantly Reduces TGF-β-Induced Myofibroblast Differentiation In Vitro. Int J Mol Sci 2024; 25:13013. [PMID: 39684728 DOI: 10.3390/ijms252313013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Wound healing as a result of a skin injury involves a series of dynamic physiological processes, leading to wound closure, re-epithelialization, and the remodeling of the extracellular matrix (ECM). The primary scar formed by the new ECM never fully regains the original tissue's strength or flexibility. Moreover, in some cases, due to dysregulated fibroblast activity, proliferation, and differentiation, the normal scarring can be replaced by pathological fibrotic tissue, leading to hypertrophic scars or keloids. These disorders can cause significant physical impairment and psychological stress and represent significant challenges in medical management in the wound-healing process. The present study aimed to investigate the therapeutic effects of exogenously applied carbon dioxide (CO2) on fibroblast behavior, focusing on viability, proliferation, migration, and differentiation to myofibroblasts. We found that CO2 exposure for up to 60 min did not significantly affect fibroblast viability, apoptosis rate, or proliferation and migration capacities. However, a notable finding was the significant reduction in α-smooth muscle actin (α-SMA) protein expression, indicative of myofibroblast differentiation inhibition, following CO2 exposure. This effect was specific to CO2 and concentration as well as time-dependent, with longer exposure durations leading to greater reductions in α-SMA expression. Furthermore, the inhibition of myofibroblast differentiation correlated with a statistically significantly reduced glycolytic and mitochondrial energy metabolism, and as a result, with a reduced ATP synthesis rate. This very noticeable decrease in cellular energy levels seemed to be specific to CO2 exposure and could not be observed in the control cultures using nitrogen (N2)-saturated solutions, indicating a unique and hypoxia-independent effect of CO2 on fibroblast metabolism. These findings suggest that exogenously applied CO2 may possess fibroblast differentiation-reducing properties by modulating fibroblast's energy metabolism and could offer new therapeutic options in the prevention of scar and keloid development.
Collapse
Affiliation(s)
- Maxine Fleckner
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Niklas K Döhmen
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Katharina Salz
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Till Christophers
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Christoph V Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| | - Lisa Oezel
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
12
|
Alvarado-Vasquez N, Rangel-Escareño C, de Jesús Ramos-Abundis J, Becerril C, Negrete-García MC. The possible role of hypoxia-induced exosomes on the fibroblast metabolism in idiopathic pulmonary fibrosis. Biomed Pharmacother 2024; 181:117680. [PMID: 39549361 DOI: 10.1016/j.biopha.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has a high incidence and prevalence among patients over 65 years old. While its exact etiology remains unknown, several risk factors have recently been identified. Hypoxia is associated with IPF due to the abnormal architecture of lung parenchyma and the accumulation of extracellular matrix produced by activated fibroblasts. Exosomes play a crucial role in intercellular communication during both physiological and pathological processes, including hypoxic diseases like IPF. Recent findings suggest that a hypoxic microenvironment influences the content of exosomes in various diseases, thereby altering cellular metabolism. Although the role of exosomes in IPF is an emerging area of research, the significance of hypoxic exosomes as inducers of metabolic reprogramming in fibroblasts is still underexplored. In this study, we analyze and discuss the relationship between hypoxia, exosomal cargo, and the metabolic reprogramming of fibroblasts in the progression of IPF.
Collapse
Affiliation(s)
- Noé Alvarado-Vasquez
- Department of Molecular Biomedicine and Translational Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics, National Institute of Genomic Medicine, Mexico City 14610, Mexico; School of Engineering and Sciences, Tecnologico de Monterrey, NL 64700, Mexico
| | | | - Carina Becerril
- Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico.
| |
Collapse
|
13
|
Zhang H, Zhao J, Yu J, Zhang X, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Li R, Lai L, Zheng K, Huang P, Zhou C, Wu J, Li Y, Xia J. Lactate metabolism and lactylation in cardiovascular disease: novel mechanisms and therapeutic targets. Front Cardiovasc Med 2024; 11:1489438. [PMID: 39664763 PMCID: PMC11631895 DOI: 10.3389/fcvm.2024.1489438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Cardiovascular disease (CVD) is responsible for approximately 30% of annual global mortality rates, yet existing treatments for this condition are considered less than ideal. Despite being previously overlooked, lactate, a byproduct of glycolysis, is now acknowledged for its crucial role in the cellular functions of the cardiovascular system. Recent studies have shown that lactate influences the proliferation, differentiation, and activation of immune cells through its modulation of post-translational protein modifications, thereby affecting the development and prognosis of cardiovascular disease. Consequently, there has been a notable increase in interest towards drug targets targeting lactylation in immune cells, prompting further exploration. In light of the swift advancements in this domain, this review article is dedicated to examining lactylation in cardiovascular disease and potential drug targets for regulating lactylation, with the aim of enhancing comprehension of this intricate field.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Song Wang
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ran Li
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kexiao Zheng
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, ChineseAcademy of Medical Sciences, Wuhan, Hubei, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, ChineseAcademy of Medical Sciences, Wuhan, Hubei, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Translational Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, ChineseAcademy of Medical Sciences, Wuhan, Hubei, China
| |
Collapse
|
14
|
Li M, Zheng C, Wang H, Wang S. Exploring the Antifibrotic Mechanisms of Ghrelin: Modulating TGF-β Signalling in Organ Fibrosis. Expert Rev Mol Med 2024; 27:e8. [PMID: 39569809 PMCID: PMC11879379 DOI: 10.1017/erm.2024.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Fibrosis is a pathological condition that affects various organs by increasing fibrous connective tissue while reducing parenchymal cells. This imbalance can lead to compromised organ function and potential failure, posing significant health risks. The condition's complexity necessitates the exploration of effective treatments to mitigate its progression and adverse outcomes. AIMS This study aims to investigate the role of ghrelin, a peptide hormone known for its anti-inflammatory and anti-fibrotic properties, in modulating fibrosis across different organs. By binding to the growth hormone secretagogue receptor type 1a (GHSR-1a), ghrelin has shown potential in attenuating the fibrotic process, particularly through its interaction with the TGF-β signalling pathway. METHODS An extensive review of clinical and animal model studies focusing on liver, kidney, lung, and myocardial fibrosis was conducted. The primary focus was on examining how ghrelin influences the TGF-β signalling pathway, with an emphasis on the regulation of TGF-β expression and the suppression of Smad signalling molecules. The methodology involved analysing data from various studies to understand ghrelin's molecular mechanisms in combating fibrosis. RESULTS The findings from the reviewed studies indicate that ghrelin exerts significant anti-fibrotic effects across multiple organ systems. Specifically, ghrelin was found to downregulate TGF-β expression and suppress Smad signalling molecules, leading to a marked reduction in fibrous tissue accumulation and preservation of organ function. In liver fibrosis models, ghrelin reduced TGF-β1 levels and Smad3 phosphorylation, while in kidney and cardiac fibrosis, similar protective effects were observed. The data also suggest that ghrelin's effects are mediated through both canonical and non-canonical TGF-β pathways. CONCLUSIONS Ghrelin presents a promising therapeutic agent in the management of fibrosis due to its potent anti-inflammatory and anti-fibrotic actions. Its ability to modulate the TGF-β signalling pathway underscores a vital molecular mechanism through which ghrelin can mitigate fibrotic progression in various organs. Future research should focus on further elucidating ghrelin's molecular interactions and potential clinical applications in fibrosis treatment, offering new avenues for developing effective anti-fibrotic therapies.
Collapse
Affiliation(s)
- Mei Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, P. R. China
| | - Chang Zheng
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, P. R. China
| | - Huiyi Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, P. R. China
| |
Collapse
|
15
|
Sun Z, He W, Meng H, Ji Z, Qu J, Yu G. Lactate activates ER stress to promote alveolar epithelial cells apoptosis in pulmonary fibrosis. Respir Res 2024; 25:401. [PMID: 39522031 PMCID: PMC11550544 DOI: 10.1186/s12931-024-03016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive lung disease characterized by fibroblast proliferation, extensive extracellular matrix and collagen deposition, accompanied by inflammatory damage, ultimately leading to death due to respiratory failure. Endoplasmic reticulum (ER) stress in pulmonary fibrotic tissue is indeed recognized as a significant factor exacerbating PF development. Emerging evidences indicated a potential association between ER stress induced by lactate and cellular apoptosis in PF. However, the mechanisms in this process need further elucidation. In this paper, pulmonary fibrosis model was induced by bleomycin (BLM) intratracheally in mice. In the cellular model, type II epithelial cells were treated by lactate and TGF-β to detect ER stress and apoptosis markers. Lactate could promote ER stress response and apoptosis. Mechanically, lactate activated Caspase-12 via ATF4-Chop axis to induce cell apoptosis and promote fibrosis. ER stress inhibitor could effectively suppress alveolar epithelial cells apoptosis and pulmonary fibrosis. We concluded that pro-fibrotic properties of lactate are associated with alveolar epithelial cells apoptosis by causing ER stress and thus provide new potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Zhihua Ji
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China.
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China.
| | - Guoying Yu
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| |
Collapse
|
16
|
Xie Y, Yang S, Xu Y, Gu P, Zhang Y, You X, Yin H, Shang B, Yao Y, Li W, Wang D, Zhou T, Song Y, Chen W, Ma J. Interleukin-11 drives fibroblast metabolic reprogramming in crystalline silica-induced lung fibrosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174976. [PMID: 39047838 DOI: 10.1016/j.scitotenv.2024.174976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Environmental exposure to crystalline silica (CS) particles is common and occurs during natural, industrial, and agricultural activities. Prolonged inhalation of CS particles can cause silicosis, a serious and incurable pulmonary fibrosis disease. However, the underlying mechanisms remain veiled. Herein, we aim to elucidate the novel mechanisms of interleukin-11 (IL-11) driving fibroblast metabolic reprogramming during the development of silicosis. We observed that CS exposure induced lung fibrosis in mice and activated fibroblasts, accompanied by increased IL-11 expression and metabolic reprogramming switched from mitochondrial respiration to glycolysis. Besides, we innovatively uncovered that elevated IL-11 promoted the glycolysis process, thereby facilitating the fibroblast-myofibroblast transition (FMT). Mechanistically, CS-stimulated IL-11 activated the extracellular signal-regulated kinase (ERK) pathway and the latter increased the expression of hypoxia inducible factor-1α (HIF-1α) via promoting the translation and delaying the degradation of the protein. HIF-1α further facilitated glycolysis, driving the FMT process and ultimately the formation of silicosis. Moreover, either silence or neutralization of IL-11 inhibited glycolysis augmentation and attenuated CS-induced lung myofibroblast generation and fibrosis. Overall, our findings elucidate the role of IL-11 in promoting fibroblast metabolic reprogramming through the ERK-HIF-1α axis during CS-induced lung fibrosis, providing novel insights into the molecular mechanisms and potential therapeutic targets of silicosis.
Collapse
Affiliation(s)
- Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyu Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiju Xu
- Chongchuan Center for Disease Control and Prevention, Nantong 226000, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoyu Yin
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingxin Shang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Yao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Li
- Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuanchao Song
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Guillard J, Schwörer S. Metabolic control of collagen synthesis. Matrix Biol 2024; 133:43-56. [PMID: 39084474 PMCID: PMC11402592 DOI: 10.1016/j.matbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The extracellular matrix (ECM) is present in all tissues and crucial in maintaining normal tissue homeostasis and function. Defects in ECM synthesis and remodeling can lead to various diseases, while overproduction of ECM components can cause severe conditions like organ fibrosis and influence cancer progression and therapy resistance. Collagens are the most abundant core ECM proteins in physiological and pathological conditions and are predominantly synthesized by fibroblasts. Previous efforts to target aberrant collagen synthesis in fibroblasts by inhibiting pro-fibrotic signaling cascades have been ineffective. More recently, metabolic rewiring downstream of pro-fibrotic signaling has emerged as a critical regulator of collagen synthesis in fibroblasts. Here, we propose that targeting the metabolic pathways involved in ECM biomass generation provides a novel avenue for treating conditions characterized by excessive collagen accumulation. This review summarizes the unique metabolic challenges collagen synthesis imposes on fibroblasts and discusses how underlying metabolic networks could be exploited to create therapeutic opportunities in cancer and fibrotic disease. Finally, we provide a perspective on open questions in the field and how conceptual and technical advances will help address them to unlock novel metabolic vulnerabilities of collagen synthesis in fibroblasts and beyond.
Collapse
Affiliation(s)
- Julien Guillard
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Simon Schwörer
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA; Committee on Cancer Biology, Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
18
|
Liu C, Zhang Q, Zhou H, Jin L, Liu C, Yang M, Zhao X, Ding W, Xie W, Kong H. GLP-1R activation attenuates the progression of pulmonary fibrosis via disrupting NLRP3 inflammasome/PFKFB3-driven glycolysis interaction and histone lactylation. J Transl Med 2024; 22:954. [PMID: 39434134 PMCID: PMC11492558 DOI: 10.1186/s12967-024-05753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a serious interstitial lung disease with no viable treatment except for lung transplantation. Glucagon-like peptide-1 receptor (GLP-1R), commonly regarded as an antidiabetic target, exerts antifibrotic effects on various types of organ fibrosis. However, whether GLP-1R modulates the development and progression of pulmonary fibrosis remains unclear. In this study, we investigated the antifibrotic effect of GLP-1R using in vitro and in vivo models of pulmonary fibrosis. METHODS A silica-induced pulmonary fibrosis mouse model was established to evaluate the protective effects of activating GLP-1R with liraglutide in vivo. Primary cultured lung fibroblasts treated with TGF-β1 combined with IL-1β (TGF-β1 + IL-1β) were used to explore the specific effects of liraglutide, MCC950, and 3PO on fibroblast activation in vitro. Cell metabolism assay was performed to determine the glycolytic rate and mitochondrial respiration. RNA sequencing was utilized to analyse the underlying molecular mechanisms by which liraglutide affects fibroblast activation. ChIP‒qPCR was used to evaluate histone lactylation at the promoters of profibrotic genes in TGF-β1 + IL-1β- or exogenous lactate-stimulated lung fibroblasts. RESULTS Activating GLP-1R with liraglutide attenuated pulmonary inflammation and fibrosis in mice exposed to silica. Pharmacological inhibition of the NLRP3 inflammasome suppressed PFKFB3-driven glycolysis and vice versa, resulting in decreased lactate production in TGF-β1 + IL-1β-stimulated lung fibroblasts. Activating GLP-1R inhibited TGF-β1 + IL-1β-induced fibroblast activation by disrupting the interaction between the NLRP3 inflammasome and PFKFB3-driven glycolysis and subsequently prevented lactate-mediated histone lactylation to reduce pro-fibrotic gene expression. In addition, activating GLP-1R protected mitochondria against the TGF-β1 + IL-1β-induced increase in oxidative phosphorylation in fibroblasts. In exogenous lactate-treated lung fibroblasts, activating GLP-1R not only repressed NLRP3 inflammasome activation but also alleviated p300-mediated histone lactylation. Finally, GLP-1R activation blocked silica-treated macrophage-conditioned media-induced lung fibroblast activation. CONCLUSIONS The antifibrotic effects of GLP-1R activation on pulmonary fibrosis could be attributed to the inhibition of the interaction between NLRP3 inflammasome and PFKFB3-driven glycolysis, and histone lactylation in lung fibroblasts. Thus, GLP-1R is a specific therapeutic target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Qun Zhang
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Hong Zhou
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Linling Jin
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Mingxia Yang
- Department of Pulmonary & Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213003, P. R. China
| | - Xinyun Zhao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Wenqiu Ding
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| |
Collapse
|
19
|
Yan P, Yang K, Xu M, Zhu M, Duan Y, Li W, Liu L, Liang C, Li Z, Pan X, Wang L, Yu G. CCT6A alleviates pulmonary fibrosis by inhibiting HIF-1α-mediated lactate production. J Mol Cell Biol 2024; 16:mjae021. [PMID: 38760881 PMCID: PMC11574388 DOI: 10.1093/jmcb/mjae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/03/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal progressive fibrotic lung disease. The development of IPF involves different molecular and cellular processes, and recent studies indicate that lactate plays a significant role in promoting the progression of the disease. Nevertheless, the mechanism by which lactate metabolism is regulated and the downstream effects remain unclear. The molecular chaperone CCT6A performs multiple functions in a variety of biological processes. Our research has identified a potential association between CCT6A and serum lactate levels in IPF patients. Herein, we found that CCT6A was highly expressed in type 2 alveolar epithelial cells (AEC2s) of fibrotic lung tissues and correlated with disease severity. Lactate increases the accumulation of lipid droplets in epithelial cells. CCT6A inhibits lipid synthesis by blocking the production of lactate in AEC2s and alleviates bleomycin-induced pulmonary fibrosis in mice. In addition, our results revealed that CCT6A blocks HIF-1α-mediated lactate production by driving the VHL-dependent ubiquitination and degradation of HIF-1α and further inhibits lipid accumulation in fibrotic lungs. In conclusion, we propose that there is a pivotal regulatory role of CCT6A in lactate metabolism in pulmonary fibrosis, and strategies aimed at targeting these key molecules could represent potential therapeutic approaches for pulmonary fibrosis.
Collapse
Affiliation(s)
- Peishuo Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kun Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengwei Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Lulu Liu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Chenxi Liang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
20
|
Huang Y, Wang C, Zhou T, Xie F, Liu Z, Xu H, Liu M, Wang S, Li L, Chi Q, Shi J, Dong N, Xu K. Lumican promotes calcific aortic valve disease through H3 histone lactylation. Eur Heart J 2024; 45:3871-3885. [PMID: 38976370 DOI: 10.1093/eurheartj/ehae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND AIMS Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.
Collapse
Affiliation(s)
- Yuming Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunli Wang
- Hubei Shizhen Laboratory, Wuhan 430065, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Xie
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiying Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shunshun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lanqing Li
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kang Xu
- Hubei Shizhen Laboratory, Wuhan 430065, China
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
21
|
Miller HA, Suliman S, Frieboes HB. Pulmonary Fibrosis Diagnosis and Disease Progression Detected Via Hair Metabolome Analysis. Lung 2024; 202:581-593. [PMID: 38861171 DOI: 10.1007/s00408-024-00712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Fibrotic interstitial lung disease is often identified late due to non-specific symptoms, inadequate access to specialist care, and clinical unawareness precluding proper and timely treatment. Biopsy histological analysis is definitive but rarely performed due to its invasiveness. Diagnosis typically relies on high-resolution computed tomography, while disease progression is evaluated via frequent pulmonary function testing. This study tested the hypothesis that pulmonary fibrosis diagnosis and progression could be non-invasively and accurately evaluated from the hair metabolome, with the longer-term goal to minimize patient discomfort. METHODS Hair specimens collected from pulmonary fibrosis patients (n = 56) and healthy subjects (n = 14) were processed for metabolite extraction using 2DLC/MS-MS, and data were analyzed via machine learning. Metabolomic data were used to train machine learning classification models tuned via a rigorous combination of cross validation, feature selection, and testing with a hold-out dataset to evaluate classifications of diseased vs. healthy subjects and stable vs. progressed disease. RESULTS Prediction of pulmonary fibrosis vs. healthy achieved AUROCTRAIN = 0.888 (0.794-0.982) and AUROCTEST = 0.908, while prediction of stable vs. progressed disease achieved AUROCTRAIN = 0.833 (0.784 - 0.882) and AUROCTEST = 0. 799. Top metabolites for diagnosis included ornithine, 4-(methylnitrosamino)-1-3-pyridyl-N-oxide-1-butanol, Thr-Phe, desthiobiotin, and proline. Top metabolites for progression included azelaic acid, Thr-Phe, Ala-Tyr, indoleacetyl glutamic acid, and cytidine. CONCLUSION This study provides novel evidence that pulmonary fibrosis diagnosis and progression may in principle be evaluated from the hair metabolome. Longer term, this approach may facilitate non-invasive and accurate detection and monitoring of fibrotic lung diseases.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA
| | - Sally Suliman
- Division of Pulmonary Medicine, University of Louisville, Louisville, KY, USA
- University of Arizona Medical Center Phoenix, Phoenix, AZ, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA.
- UofL Health - Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
22
|
He XY, Liang JT, Xiao JY, Li X, Zhang XB, Chen DY, Wu LJ. Dahuang Zhechong Pill Improves Pulmonary Fibrosis through miR-29b-2-5p/HK2 Mediated Glycolysis Pathway. Chin J Integr Med 2024:10.1007/s11655-024-3765-x. [PMID: 39231918 DOI: 10.1007/s11655-024-3765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To explore the preventive and therapeutic effects of Dahuang Zhechong Pill (DZP) on pulmonary fibrosis and the underlying mechanisms. METHODS The first key rate-limiting enzyme hexokinase 2 (HK2) of glycolysis was silenced and over-expressed through small interfering RNA and lentivirus using lung fibroblast MRC-5 cell line, respectively. The cell viability, migration, invasion and proliferation were detected by cell counting kit-8, wound healing assay, transwell assay, and flow cytometry. The mRNA and protein expression levels of HK2 were detected by RT-PCR and Western blotting, respectively. The contents of glucose, adenosine triphosphate (ATP) and lactate in MRC-5 cells were determined by enzyme-linked immunosorbnent assay (ELISA). Then, the relationship between miR-29b-2-5p and HK2 was explored by luciferase reporter gene assay. Pulmonary fibrosis cell model was induced by transforming growth factor-β 1 (TGF-β 1) in MRC-5 cells, and the medicated serum of DZP (DMS) was prepared in rats. MRC-5 cells were divided into control, TGF-β 1, TGF-β 1+10% DMS, TGF-β 1+10% DMS+miR-29b-2-5p inhibitor, TGF-β 1+10% DMS+inhibitor negative control, TGF-β 1+10% DMS+miR-29b-2-5p mimic and TGF-β 1+10% DMS+mimic negative control groups. After miR-29b-2-5p mimics and inhibitors were transfected into MRC-5 cells, all groups except control and model group were treated with DMS. The effect of DMS on MRC-5 cells were detected using aforementioned methods and immunofluorescence. Similarly, the contents of glucose, ATP and lactate in each group were measured by ELISA. RESULTS The mRNA and protein expressions of HK2 in MRC-5 cells were successfully silenced and overexpressed through si-HK2-3 and lentiviral transfection, respectively. After silencing HK2, the mRNA and protein expressions of HK2 were significantly decreased (P<0.01), and the concentrations of glucose, ATP and lactate were also significantly decreased (P<0.05). The proliferation, migration and invasion of MRC-5 cells were significantly declined (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly increased (P<0.01). After overexpressing HK2, the mRNA and protein expressions of HK2 were significantly increased (P<0.05), and the concentrations of glucose, ATP and lactate were also significantly increased (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were significantly increased (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly decreased (P<0.05). The relative luciferase activity of 3'UTR-WT+hsa-miR-29b-2-5p transfected with HK2 was significantly decreased (P<0.01). After miR-29b-2-5p mimic and inhibitor were transfected into the MRC-5 cells, DMS intervention could significantly reduce the concentration of glucose, ATP and lactate, and the mRNA and proteins expressions of HK2, phosphofructokinase and pyruvate kinase isoform M2 (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were alleviated (P<0.05 or P<0.01), and the deposition of fibronectin, α-smooth muscle actin, and collagen I were significantly decreased (P<0.05 or P<0.01). CONCLUSIONS Glycolysis is closely related to pulmonary fibrosis. DZP reduced glycolysis and inhibited fibroblasts' excessive differentiation and abnormal collagen deposition through the miR-29b-2-5p/HK2 pathway, which played a role in delaying the process of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiao-Yan He
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Tao Liang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing-Yi Xiao
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Li
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Bo Zhang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Da-Yi Chen
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Juan Wu
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
23
|
Park SS, Ward R, Geraghty P, Garcia‐Arcos I. Extracellular glucose triggers metabolic reprogramming of cultured human bronchial epithelial cells and indirect fibroblast activation. FEBS Open Bio 2024; 14:1441-1454. [PMID: 38952051 PMCID: PMC11492325 DOI: 10.1002/2211-5463.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Glucose is essential for energy metabolism, and its usage can determine other cellular functions, depending on the cell type. In some pathological conditions, cells are exposed to high concentrations of glucose for extended periods. In this study, we investigated metabolic, oxidative stress, and cellular senescence pathways in human bronchial epithelial cells (HBECs) cultured in media with physiologically low (5 mm) and high (12.5 mm) glucose concentrations. HBECs exposed to 12.5 mm glucose showed increased glucose routing toward the pentose phosphate pathway, lactate synthesis, and glycogen, but not triglyceride synthesis. These metabolic shifts were not associated with changes in cell proliferation rates, oxidative stress, or cellular senescence pathways. Since hyperglycemia is associated with fibrosis in the lung, we asked whether HBECS could activate fibroblasts. Primary human lung fibroblasts cultured in media conditioned by 12.5 mm glucose-exposed HBECs showed a 1.3-fold increase in the gene expression of COL1A1 and COL1A2, along with twofold increased protein levels of smooth muscle cell actin and 2.4-fold of COL1A1. Consistently, HBECs cultured with 12.5 mm glucose secreted proteins associated with inflammation and fibrosis, such as interleukins IL-1β, IL-10, and IL-13, CC chemokine ligands CCL2 and CCL24, and with extracellular matrix remodeling, such as metalloproteinases (MMP)-1, MMP-3, MMP-9, and MMP-13 and tissue inhibitors of MMPs (TIMP)-1 and -2. This study shows that HBECs undergo metabolic reprogramming and increase the secretion of profibrotic mediators following exposure to high concentrations of glucose, and it contributes to the understanding of the metabolic crosstalk of neighboring cells in diabetes-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Sangmi S. Park
- Department of Cell BiologyState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
| | - Rafael Ward
- Department of MedicineState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
| | - Patrick Geraghty
- Department of Cell BiologyState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
- Department of MedicineState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
| | - Itsaso Garcia‐Arcos
- Department of Cell BiologyState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
- Department of MedicineState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
| |
Collapse
|
24
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
25
|
Zhu W, Guo S, Sun J, Zhao Y, Liu C. Lactate and lactylation in cardiovascular diseases: current progress and future perspectives. Metabolism 2024; 158:155957. [PMID: 38908508 DOI: 10.1016/j.metabol.2024.155957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Cardiovascular diseases (CVDs) are often linked to structural and functional impairments, such as heart defects and circulatory dysfunction, leading to compromised peripheral perfusion and heightened morbidity risks. Metabolic remodeling, particularly in the context of cardiac fibrosis and inflammation, is increasingly recognized as a pivotal factor in the pathogenesis of CVDs. Metabolic syndromes further predispose individuals to these conditions, underscoring the need to elucidate the metabolic underpinnings of CVDs. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that connects cellular metabolism with the regulation of cellular activity. The transport of lactate between different cells is essential for metabolic homeostasis and signal transduction. Disruptions to lactate dynamics are implicated in various CVDs. Furthermore, lactylation, a novel post-translational modification, has been identified in cardiac cells, where it influences protein function and gene expression, thereby playing a significant role in CVD pathogenesis. In this review, we summarized recent advancements in understanding the role of lactate and lactylation in CVDs, offering fresh insights that could guide future research directions and therapeutic interventions. The potential of lactate metabolism and lactylation as innovative therapeutic targets for CVD is a promising avenue for exploration.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China.
| | - Siyu Guo
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Junyi Sun
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Yudan Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, PR China.
| | - Chen Liu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
26
|
Masoumi M, Bodaghi AB, Khorramdelazad H, Ebadi E, Houshmandfar S, Saeedi-Boroujeni A, Karami J. Unraveling the immunometabolism puzzle: Deciphering systemic sclerosis pathogenesis. Heliyon 2024; 10:e35445. [PMID: 39170585 PMCID: PMC11336762 DOI: 10.1016/j.heliyon.2024.e35445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The article delves into the pathogenesis of systemic sclerosis (SSc) with an emphasis on immunometabolism dysfunctions. SSc is a complex autoimmune connective tissue disorder with skin and organ fibrosis manifestation, vasculopathy, and immune dysregulation. A growing amount of research indicates that immunometabolism plays a significant role in the pathogenesis of autoimmune diseases, including SSc. The review explores the intricate interplay between immune dysfunction and metabolic alterations, focusing on the metabolism of glucose, lipids, amino acids, the TCA (tricarboxylic acid) cycle, and oxidative stress in SSc disease. According to recent research, there are changes in various metabolic pathways that could trigger or perpetuate the SSc disease. Glycolysis and TCA pathways play a pivotal role in SSc pathogenesis through inducing fibrosis. Dysregulated fatty acid β-oxidation (FAO) and consequent lipid metabolism result in dysregulated extracellular matrix (ECM) breakdown and fibrosis induction. The altered metabolism of amino acids can significantly be involved in SSc pathogenesis through various mechanisms. Reactive oxygen species (ROS) production has a crucial role in tissue damage in SSc patients. Indeed, immunometabolism involvement in SSc is highlighted, which offers potential therapeutic avenues. The article underscores the need for comprehensive studies to unravel the multifaceted mechanisms driving SSc pathogenesis and progression.
Collapse
Affiliation(s)
- Maryam Masoumi
- Clinical Research Development Unit, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Ali Bayat Bodaghi
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Ebadi
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Sheyda Houshmandfar
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Jafar Karami
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
27
|
Zhang YZ, Jia XJ, Xu WJ, Ding XQ, Wang XM, Chi XS, Hu Y, Yang XH. Metabolic profiling of idiopathic pulmonary fibrosis in a mouse model: implications for pathogenesis and biomarker discovery. Front Med (Lausanne) 2024; 11:1410051. [PMID: 39175820 PMCID: PMC11340507 DOI: 10.3389/fmed.2024.1410051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Background Alterations in metabolites and metabolic pathways are thought to be important triggers of idiopathic pulmonary fibrosis (IPF), but our lack of a comprehensive understanding of this process has hampered the development of IPF-targeted drugs. Methods To fully understand the metabolic profile of IPF, C57BL/6 J male mice were injected intratracheally with bleomycin so that it could be used to construct a mouse model of IPF, and lung tissues from 28-day and control IPF mice were analyzed by pathology and immunohistochemistry. In addition, serum metabolites from IPF mice were examined using LC-ESI-MS/MS, and the differential metabolites were analyzed for KEGG metabolic pathways and screened for biomarkers using machine learning algorithms. Results In total, the levels of 1465 metabolites were detected, of which 104 metabolites were significantly altered after IPF formation. In IPF mouse serum, 52% of metabolite expression was downregulated, with lipids (e.g., GP, FA) and organic acids and their derivatives together accounting for more than 70% of the downregulated differentially expressed metabolites. In contrast, FA and oxidised lipids together accounted for 60% of the up-regulated differentially expressed metabolites. KEGG pathway enrichment analyses of differential metabolites were mainly enriched in the biosynthesis of unsaturated fatty acids, pentose phosphate pathway, and alanine, aspartate, and glutamate metabolism. Seven metabolites were screened by machine learning LASSO models and evaluated as ideal diagnostic tools by receiver operating characteristic curves (ROCs). Discussion In conclusion, the serum metabolic disorders found to be associated with pulmonary fibrosis formation will help to deepen our understanding of the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-zhu Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiu-juan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-juan Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-qian Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-meng Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-sa Chi
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Hu
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-hui Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Lou Y, Zou X, Pan Z, Huang Z, Zheng S, Zheng X, Yang X, Bao M, Zhang Y, Gu J, Zhang Y. The mechanism of action of Botrychium (Thunb.) Sw. for prevention of idiopathic pulmonary fibrosis based on 1H-NMR-based metabolomics. J Pharm Pharmacol 2024; 76:1018-1027. [PMID: 38776436 DOI: 10.1093/jpp/rgae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES This study aimed to reveal the anti-fibrotic effects of Botrychium ternatum (Thunb.) Sw. (BT) against idiopathic pulmonary fibrosis (IPF) and to preliminarily analyze its potential mechanism on bleomycin-induced IPF rats. METHODS The inhibition of fibrosis progression in vivo was assessed by histopathology combined with biochemical indicators. In addition, the metabolic regulatory mechanism was investigated using 1H-nuclear magnetic resonance-based metabolomics combined with multivariate statistical analysis. KEY FINDINGS Firstly, biochemical analysis revealed that BT notably suppressed the expression of hydroxyproline and transforming growth factor-β1 in the pulmonary tissue. Secondly, Masson's trichrome staining and hematoxylin and eosin showed that BT substantially improved the structure of the damaged lung and significantly inhibited the proliferation of collagen fibers and the deposition of extracellular matrix. Finally, serum metabolomic analysis suggested that BT may exert anti-fibrotic effects by synergistically regulating tyrosine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and synthesis and degradation of ketone bodies. CONCLUSIONS Our study not only clarifies the potential anti-fibrotic mechanism of BT against IPF at the metabolic level but also provides a theoretical basis for developing BT as an effective anti-fibrotic agent.
Collapse
Affiliation(s)
- Yutao Lou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Zou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zongfu Pan
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhongjie Huang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shuilian Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaowei Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiuli Yang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Meihua Bao
- Academician Workstation, School of Stomatology, Changsha Medical University, Changsha, Hunan 410219, China
| | - Yuan Zhang
- Department of Pharmacy, Zhejiang Provincial People' s Hospital Bijie Hospital, Bijie, Guizhou 551799, China
| | - Jinping Gu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yiwen Zhang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
29
|
Lebel M, Cliche DO, Charbonneau M, Brochu-Gaudreau K, Adam D, Brochiero E, Dubois CM, Cantin AM. Hypoxia Promotes Invadosome Formation by Lung Fibroblasts. Cells 2024; 13:1152. [PMID: 38995003 PMCID: PMC11240699 DOI: 10.3390/cells13131152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Lung parenchymal hypoxia has emerged as a cardinal feature of idiopathic pulmonary fibrosis (IPF). Hypoxia promotes cancer cell invasion and metastasis through signaling that is dependent upon the lysophosphatidic acid (LPA) receptor, LPA1 (LPAR1). Abundant data indicate that LPA1-dependent signaling also enhances lung fibrogenesis in IPF. We recently reported that fibroblasts isolated from the lungs of individuals with IPF have an increased capacity to form subcellular matrix-degradative structures known as invadosomes, an event that correlates with the degree of lung fibrosis. We therefore hypothesized that hypoxia promotes invadosome formation in lung fibroblasts through LPA1-dependent signaling. Here, it is demonstrated that invadosome formation by fibroblasts from the lungs of individuals with advanced IPF is inhibited by both the tyrosine receptor kinase inhibitor nintedanib and inhibition of LPA1. In addition, exposure of normal human lung fibroblasts to either hypoxia or LPA increased their ability to form invadosomes. Mechanistically, the hypoxia-induced invadosome formation by lung fibroblasts was found to involve LPA1 and PDGFR-Akt signaling. We concluded that hypoxia increases the formation of invadosomes in lung fibroblasts through the LPA1 and PDGFR-Akt signaling axis, which represents a potential target for suppressing lung fibrosis.
Collapse
Affiliation(s)
- Mégane Lebel
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (M.L.); (D.O.C.); (A.M.C.)
| | - Dominic O. Cliche
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (M.L.); (D.O.C.); (A.M.C.)
| | - Martine Charbonneau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (M.C.); (K.B.-G.)
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (M.C.); (K.B.-G.)
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (D.A.); (E.B.)
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (D.A.); (E.B.)
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (M.C.); (K.B.-G.)
| | - André M. Cantin
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (M.L.); (D.O.C.); (A.M.C.)
| |
Collapse
|
30
|
Hamed M, Kotob MH, Abou Khalil NS, Anwari EA, El Gazzar WB, Idriss SKA, Fakhry ME, Farag AA, Sabra MS, Salaah SM, Abdel-Zaher S, Yehia Saad FA, Naguib M, Lee JS, Sayed AEDH. Hyaluronic acid impacts hematological endpoints and spleen histological features in African catfish (Clarias gariepinus). BMC Vet Res 2024; 20:294. [PMID: 38970005 PMCID: PMC11225171 DOI: 10.1186/s12917-024-04113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Since its identification in the vitreous humour of the eye and laboratory biosynthesis, hyaluronic acid (HA) has been a vital component in several pharmaceutical, nutritional, medicinal, and cosmetic uses. However, little is known about its potential toxicological impacts on aquatic inhabitants. Herein, we investigated the hematological response of Clarias gariepinus to nominal doses of HA. To achieve this objective, 72 adult fish were randomly and evenly distributed into four groups: control, low-dose (0.5 mg/l HA), medium-dose (10 mg/l HA), and high-dose (100 mg/l HA) groups for two weeks each during both the exposure and recovery periods. The findings confirmed presence of anemia, neutrophilia, leucopoenia, lymphopenia, and eosinophilia at the end of exposure to HA. In addition, poikilocytosis and a variety of cytomorphological disturbances were observed. Dose-dependent histological alterations in spleen morphology were observed in the exposed groups. After HA removal from the aquarium for 2 weeks, the groups exposed to the two highest doses still exhibited a notable decline in red blood cell count, hemoglobin concentration, mean corpuscular hemoglobin concentration, and an increase in mean corpuscular volume. Additionally, there was a significant rise in neutrophils, eosinophils, cell alterations, and nuclear abnormalities percentages, along with a decrease in monocytes, coupled with a dose-dependent decrease in lymphocytes. Furthermore, only the highest dose of HA in the recovered groups continued to cause a significant increase in white blood cells. White blood cells remained lower, and the proportion of apoptotic RBCs remained higher in the high-dose group. The persistence of most of the haematological and histological disorders even after recovery period indicates a failure of physiological compensatory mechanisms to overcome the HA-associated problems or insufficient duration of recovery. Thus, these findings encourage the inclusion of this new hazardous agent in the biomonitoring program and provide a specific pattern of hematological profile in HA-challenged fish. Further experiments are highly warranted to explore other toxicological hazards of HA using dose/time window protocols.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Mohamed H Kotob
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Nasser S Abou Khalil
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assuit, Egypt
- Department of Medical Physiology, Faculty of Medicine, Assuit University, Assiut, 71516, Egypt
| | - Esraa A Anwari
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, the Hashemite University, Zarqa, 13133, Jordan
- 9Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, 13518, Egypt
| | - Shaimaa K A Idriss
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Michel E Fakhry
- Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, 13518, Egypt
| | - Mahmoud S Sabra
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Sally M Salaah
- Fresh Water Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Souzan Abdel-Zaher
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Fatma Alzahraa Yehia Saad
- Department of Biotechnology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Mervat Naguib
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
31
|
Wang Y, Wang X, Du C, Wang Z, Wang J, Zhou N, Wang B, Tan K, Fan Y, Cao P. Glycolysis and beyond in glucose metabolism: exploring pulmonary fibrosis at the metabolic crossroads. Front Endocrinol (Lausanne) 2024; 15:1379521. [PMID: 38854692 PMCID: PMC11157045 DOI: 10.3389/fendo.2024.1379521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
At present, pulmonary fibrosis (PF) is a prevalent and irreversible lung disease with limited treatment options, and idiopathic pulmonary fibrosis (IPF) is one of its most common forms. Recent research has highlighted PF as a metabolic-related disease, including dysregulated iron, mitochondria, lipid, and glucose homeostasis. Systematic reports on the regulatory roles of glucose metabolism in PF are rare. This study explores the intricate relationships and signaling pathways between glucose metabolic processes and PF, delving into how key factors involved in glucose metabolism regulate PF progression, and the interplay between them. Specifically, we examined various enzymes, such as hexokinase (HK), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), pyruvate kinase (PK), and lactate dehydrogenase (LDH), illustrating their regulatory roles in PF. It highlights the significance of lactate, alongside the role of pyruvate dehydrogenase kinase (PDK) and glucose transporters (GLUTs) in modulating pulmonary fibrosis and glucose metabolism. Additionally, critical regulatory factors such as transforming growth factor-beta (TGF-β), interleukin-1 beta (IL-1β), and hypoxia-inducible factor 1 subunit alpha (HIF-1α) were discussed, demonstrating their impact on both PF and glucose metabolic pathways. It underscores the pivotal role of AMP-activated protein kinase (AMPK) in this interplay, drawing connections between diabetes mellitus, insulin, insulin-like growth factors, and peroxisome proliferator-activated receptor gamma (PPARγ) with PF. This study emphasizes the role of key enzymes, regulators, and glucose transporters in fibrogenesis, suggesting the potential of targeting glucose metabolism for the clinical diagnosis and treatment of PF, and proposing new promising avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Yuejiao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Xue Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Chaoqi Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Zeming Wang
- Department of Laboratory, Hebei Provincial People’s Hospital, Shijiazhuang, Hebei, China
| | - Jiahui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Nan Zhou
- Department of Gynecology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| |
Collapse
|
32
|
Ren Y, Zhang Y, Cheng Y, Qin H, Zhao H. Genetic liability of gut microbiota for idiopathic pulmonary fibrosis and lung function: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1348685. [PMID: 38841114 PMCID: PMC11150651 DOI: 10.3389/fcimb.2024.1348685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
Background The microbiota-gut-lung axis has elucidated a potential association between gut microbiota and idiopathic pulmonary fibrosis (IPF). However, there is a paucity of population-level studies with providing robust evidence for establishing causality. This two-sample Mendelian randomization (MR) analysis aimed to investigate the causal relationship between the gut microbiota and IPF as well as lung function. Materials and methods Adhering to Mendel's principle of inheritance, this MR analysis utilized summary-level data from respective genome-wide association studies (GWAS) involving 211 gut microbial taxa, IPF, and lung function indicators such as FEV1, FVC, and FEV1/FVC. A bidirectional two-sample MR design was employed, utilizing multiple MR analysis methods, including inverse variance-weighted (IVW), weighted median, MR-Egger, and weighted mode. Multivariable MR (MVMR) was used to uncover mediating factors connecting the exposure and outcome. Additionally, comprehensive sensitivity analyses were conducted to ensure the robustness of the results. Results The MR results confirmed four taxa were found causally associated with the risk of IPF. Order Bifidobacteriales (OR=0.773, 95% CI: 0.610-0.979, p=0.033), Family Bifidobacteriaceae (OR=0.773, 95% CI: 0.610-0.979, p=0.033), and Genus RuminococcaceaeUCG009 (OR=0.793, 95% CI: 0.652-0.965, p=0.020) exerted protective effects on IPF, while Genus Coprococcus2 (OR=1.349, 95% CI: 1.021-1.783, p=0.035) promote the development of IPF. Several taxa were causally associated with lung function, with those in Class Deltaproteobacteria, Order Desulfovibrionales, Family Desulfovibrionaceae, Class Verrucomicrobiae, Order Verrucomicrobiales and Family Verrucomicrobiaceae being the most prominent beneficial microbiota, while those in Family Lachnospiraceae, Genus Oscillospira, and Genus Parasutterella were associated with impaired lung function. As for the reverse analysis, MR results confirmed the effects of FEV1 and FVC on the increased abundance of six taxa (Phylum Actinobacteria, Class Actinobacteria, Order Bifidobacteriales, Family Bifidobacteriaceae, Genus Bifidobacterium, and Genus Ruminiclostridium9) with a boosted level of evidence. MVMR suggested monounsaturated fatty acids, total fatty acids, saturated fatty acids, and ratio of omega-6 fatty acids to total fatty acids as potential mediating factors in the genetic association between gut microbiota and IPF. Conclusion The current study suggested the casual effects of the specific gut microbes on the risk of IPF and lung function. In turn, lung function also exerted a positive role in some gut microbes. A reasonable dietary intake of lipid substances has a certain protective effect against the occurrence and progression of IPF. This study provides novel insights into the potential role of gut microbiota in IPF and indicates a possible gut microbiota-mediated mechanism for the prevention of IPF.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- The Second Clinical Mediccal college, Shanxi Medical University, Taiyuan, China
| | - Yao Zhang
- The Second Clinical Mediccal college, Shanxi Medical University, Taiyuan, China
| | - Yanan Cheng
- The Second Clinical Mediccal college, Shanxi Medical University, Taiyuan, China
| | - Hao Qin
- The Second Clinical Mediccal college, Shanxi Medical University, Taiyuan, China
| | - Hui Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
33
|
Feng J, Zhong H, Mei S, Tang R, Zhou Y, Xing S, Gao Y, Xu Q, He Z. LPS-induced monocarboxylate transporter-1 inhibition facilitates lactate accumulation triggering epithelial-mesenchymal transformation and pulmonary fibrosis. Cell Mol Life Sci 2024; 81:206. [PMID: 38709307 DOI: 10.1007/s00018-024-05242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.
Collapse
Affiliation(s)
- Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Han Zhong
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Ri Tang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China.
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China.
| |
Collapse
|
34
|
Wang Y, Huang X, Luo G, Xu Y, Deng X, Lin Y, Wang Z, Zhou S, Wang S, Chen H, Tao T, He L, Yang L, Yang L, Chen Y, Jin Z, He C, Han Z, Zhang X. The aging lung: microenvironment, mechanisms, and diseases. Front Immunol 2024; 15:1383503. [PMID: 38756780 PMCID: PMC11096524 DOI: 10.3389/fimmu.2024.1383503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunying Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiqian Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Lei He
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Luchuan Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Li Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chengshi He
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Zhang
- Department of Emergency Medicine Center, Sichuan Province People’s Hospital University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
35
|
Ziehr DR, Li F, Parnell KM, Krah NM, Leahy KJ, Guillermier C, Varon J, Baron RM, Maron BA, Philp NJ, Hariri LP, Kim EY, Steinhauser ML, Knipe RS, Rutter J, Oldham WM. Lactate transport inhibition therapeutically reprograms fibroblast metabolism in experimental pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591150. [PMID: 38712233 PMCID: PMC11071479 DOI: 10.1101/2024.04.25.591150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Myofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal that inhibiting MCT1 or MCT4 reduces TGFβ-stimulated pulmonary myofibroblast differentiation in vitro and decreases bleomycin-induced pulmonary fibrosis in vivo. Through comprehensive metabolic analyses, including bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice, with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited therapeutic options currently exist.
Collapse
Affiliation(s)
- David R. Ziehr
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Fei Li
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | | | - Nathan M. Krah
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Kevin J. Leahy
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Christelle Guillermier
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jack Varon
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Rebecca M. Baron
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Bradley A. Maron
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Institute for Health Computing, Bethesda, MD
| | - Nancy J. Philp
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Lida P. Hariri
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Edy Y. Kim
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Matthew L. Steinhauser
- Aging Institute, University of Pittsburgh, Pittsburgh, PA
- UPMC Heart and Vascular Institute, UPMC Presbyterian, Pittsburgh, PA
| | - Rachel S. Knipe
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - William M. Oldham
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Zhang LX, Hu DH. [Research advances on the role of aerobic glycolysis in skin fibrosis diseases]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:389-394. [PMID: 38664034 DOI: 10.3760/cma.j.cn501225-20230712-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Skin fibrosis diseases mainly include hypertrophic scar, keloid, and systemic sclerosis, etc. The main pathological features are excessive activation of fibroblasts and abnormal deposition of extracellular matrix. In recent years, studies have shown that aerobic glycolysis is closely related to the occurrence and development of skin fibrosis diseases. Drugs targeting aerobic glycolysis has provided new ideas for skin anti-fibrosis treatment. This article reviews the role of enzymes and products related to aerobic glycolysis in the occurrence and development of skin fibrosis diseases and the drugs targeting aerobic glycolysis for the treatment of skin fibrosis diseases.
Collapse
Affiliation(s)
- L X Zhang
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - D H Hu
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
37
|
Alhakamy NA, Alamoudi AJ, Asfour HZ, Ahmed OAA, Abdel-Naim AB, Aboubakr EM. L-arginine mitigates bleomycin-induced pulmonary fibrosis in rats through regulation of HO-1/PPAR-γ/β-catenin axis. Int Immunopharmacol 2024; 131:111834. [PMID: 38493696 DOI: 10.1016/j.intimp.2024.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-β and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and β-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of β-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/β-catenin axis.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J Alamoudi
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hani Z Asfour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam M Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
38
|
Cicchinelli S, Gemma S, Pignataro G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F, Candelli M. Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals (Basel) 2024; 17:490. [PMID: 38675450 PMCID: PMC11053610 DOI: 10.3390/ph17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Fibrosis, sustained by the transformation of intestinal epithelial cells into fibroblasts (epithelial-to-mesenchymal transition, EMT), has been extensively studied in recent decades, with the molecular basis well-documented in various diseases, including inflammatory bowel diseases (IBDs). However, the factors influencing these pathways remain unclear. In recent years, the role of the gut microbiota in health and disease has garnered significant attention. Evidence suggests that an imbalanced or dysregulated microbiota, along with environmental and genetic factors, may contribute to the development of IBDs. Notably, microbes produce various metabolites that interact with host receptors and associated signaling pathways, influencing physiological and pathological changes. This review aims to present recent evidence highlighting the emerging role of the most studied metabolites as potential modulators of molecular pathways implicated in intestinal fibrosis and EMT in IBDs. These studies provide a deeper understanding of intestinal inflammation and fibrosis, elucidating the molecular basis of the microbiota role in IBDs, paving the way for future treatments.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
39
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
40
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
41
|
Lv S, Cao M, Luo J, Fu K, Yuan W. Search progress of pyruvate kinase M2 (PKM2) in organ fibrosis. Mol Biol Rep 2024; 51:389. [PMID: 38446272 DOI: 10.1007/s11033-024-09307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Fibrosis is characterized by abnormal deposition of the extracellular matrix (ECM), leading to organ structural remodeling and loss of function. The principal cellular effector in fibrosis is activated myofibroblasts, which serve as the main source of matrix proteins. Metabolic reprogramming, transitioning from mitochondrial oxidative phosphorylation to aerobic glycolysis, is widely observed in rapidly dividing cells such as tumor cells and activated myofibroblasts and is increasingly recognized as a fundamental pathogenic basis in organ fibrosis. Targeting metabolism represents a promising strategy to mitigate fibrosis. PKM2, a key enzyme in glycolysis, plays a pivotal role in metabolic reprogramming through allosteric regulation, impacting both metabolic and non-metabolic pathways. Therefore, metabolic reprogramming induced by PKM2 activation is involved in the occurrence and development of fibrosis in various organs. A comprehensive understanding of the role of PKM2 in fibrotic diseases is crucial for seeking new anti-fibrotic therapeutic targets. In this context, we summarize PKM2's role in glycolysis, mediating the intricate mechanisms underlying fibrosis in multiple organs, and discuss the potential value of PKM2 inhibitors and allosteric activators in future clinical treatments, aiming to identify novel therapeutic targets for proliferative fibrotic diseases.
Collapse
Affiliation(s)
- Shumei Lv
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Mengfei Cao
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Jie Luo
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Kewei Fu
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Wei Yuan
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| |
Collapse
|
42
|
Lin X, Lei Y, Pan M, Hu C, Xie B, Wu W, Su J, Li Y, Tan Y, Wei X, Xue Z, Xu R, Di M, Deng H, Liu S, Yang X, Qu J, Chen W, Zhou X, Zhao F. Augmentation of scleral glycolysis promotes myopia through histone lactylation. Cell Metab 2024; 36:511-525.e7. [PMID: 38232735 DOI: 10.1016/j.cmet.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Myopia is characterized of maladaptive increases in scleral fibroblast-to-myofibroblast transdifferentiation (FMT). Scleral hypoxia is a significant factor contributing to myopia, but how hypoxia induces myopia is poorly understood. Here, we showed that myopia in mice and guinea pigs was associated with hypoxia-induced increases in key glycolytic enzymes expression and lactate levels in the sclera. Promotion of scleral glycolysis or lactate production induced FMT and myopia; conversely, suppression of glycolysis or lactate production eliminated or inhibited FMT and myopia. Mechanistically, increasing scleral glycolysis-lactate levels promoted FMT and myopia via H3K18la, and this promoted Notch1 expression. Genetic analyses identified a significant enrichment of two genes encoding glycolytic enzymes, ENO2 and TPI1. Moreover, increasing sugar intake in guinea pigs not only induced myopia but also enhanced the response to myopia induction via the scleral glycolysis-lactate-histone lactylation pathway. Collectively, we suggest that scleral glycolysis contributes to myopia by promoting FMT via lactate-induced histone lactylation.
Collapse
Affiliation(s)
- Xiaolei Lin
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yi Lei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Miaozhen Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Changxi Hu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Bintao Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Wenjing Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jianzhong Su
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Yating Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuhan Tan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaohuan Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zhengbo Xue
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ruiyan Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Mengqi Di
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Hanyu Deng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shengcong Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xingxing Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Wei Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China.
| | - Xiangtian Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China.
| | - Fei Zhao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China.
| |
Collapse
|
43
|
Dufeys C, Bodart J, Bertrand L, Beauloye C, Horman S. Fibroblasts and platelets: a face-to-face dialogue at the heart of cardiac fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H655-H669. [PMID: 38241009 DOI: 10.1152/ajpheart.00559.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
Myocardial fibrosis is a feature found in most cardiac diseases and a key element contributing to heart failure and its progression. It has therefore become a subject of particular interest in cardiac research. Mechanisms leading to pathological cardiac remodeling and heart failure are diverse, including effects on cardiac fibroblasts, the main players in cardiac extracellular matrix synthesis, but also on cardiomyocytes, immune cells, endothelial cells, and more recently, platelets. Although transforming growth factor-β (TGF-β) is a primary regulator of fibrosis development, the cellular and molecular mechanisms that trigger its activation after cardiac injury remain poorly understood. Different types of anti-TGF-β drugs have been tested for the treatment of cardiac fibrosis and have been associated with side effects. Therefore, a better understanding of these mechanisms is of great clinical relevance and could allow us to identify new therapeutic targets. Interestingly, it has been shown that platelets infiltrate the myocardium at an early stage after cardiac injury, producing large amounts of cytokines and growth factors. These molecules can directly or indirectly regulate cells involved in the fibrotic response, including cardiac fibroblasts and immune cells. In particular, platelets are known to be a major source of TGF-β1. In this review, we have provided an overview of the classical cellular effectors involved in the pathogenesis of cardiac fibrosis, focusing on the emergent role of platelets, while discussing opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Cécile Dufeys
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Julie Bodart
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
44
|
Voisin T, Joannes A, Morzadec C, Lagadic-Gossmann D, Naoures CL, De Latour BR, Rouze S, Jouneau S, Vernhet L. Antifibrotic effects of vitamin D3 on human lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. J Nutr Biochem 2024; 125:109558. [PMID: 38185349 DOI: 10.1016/j.jnutbio.2023.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Up to now, no treatment can stop the progression of IPF. Vitamin D3 (VD) reduces experimental lung fibrosis in murine models and depletion of vitamin D3 might be associated with the reduced survival of patients with IPF. In this context, we determined if VD can prevent the pro-fibrotic functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and control HLFs were derived from surgical lung biopsies collected from patients with IPF or with primary lung cancer, respectively. VD (3-100 nM) markedly reduced the basal and PDGF-induced proliferation of HLFs. VD also altered cell cycle by increasing the percentage of IPF HLFs arrested in the G0/G1 phase, and by downregulating the expression of various cell cycle regulatory proteins. In addition, VD barely prevented the TGF-β1-induced differentiation in HLFs. At 100 nM, VD slightly reduced the expression of the pro-fibrotic marker α-smooth muscle actin, and had no effect on fibronectin and collagen-1 expression. In contrast, 100 nM VD strongly inhibited the aerobic glycolytic metabolism induced by TGF- β1. Finally, VD reduced both the secretion of lactate, the levels of lactate deshydrogenase mRNA and the activity of intracellular LDH in IPF HLFs. In conclusion, our study shows that VD reduced pro-fibrotic functions of HLFs. These findings suggest that it might be interesting to assess the potential clinical benefits of vitamin D supplementation in patients with IPF, especially on lung function decline.
Collapse
Affiliation(s)
- Tom Voisin
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Audrey Joannes
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Cécile Le Naoures
- Department of pathology and cytology, Rennes University Hospital, France
| | | | - Simon Rouze
- Department of Thoracic, cardiac and vascular surgery, Rennes University Hospital, France
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France; Department of Respiratory Diseases, Competence Center for Rare Pulmonary Diseases, Rennes University Hospital, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France.
| |
Collapse
|
45
|
Wang L, Yuan H, Li W, Yan P, Zhao M, Li Z, Zhao H, Wang S, Wan R, Li Y, Yang J, Pan X, Rosas I, Yu G. ACSS3 regulates the metabolic homeostasis of epithelial cells and alleviates pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166960. [PMID: 37979225 DOI: 10.1016/j.bbadis.2023.166960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease of unknown etiology. The emerging evidence demonstrates that metabolic homeostatic imbalance caused by repetitive injuries of the alveolar epithelium is the potential pathogenesis of IPF. Proteomic analysis identified that Acetyl-CoA synthetase short chain family member 3 (ACSS3) expression was decreased in IPF patients and mice with bleomycin-induced fibrosis. ACSS3 participated in lipid and carbohydrate metabolism. Increased expression of ACSS3 downregulated carnitine palmitoyltransferase 1A (CPT-1A) and resulted in the accumulation of lipid droplets, while enhanced glycolysis which led to an increase in extracellular lactic acid levels in A549 cells. ACSS3 increases the production of succinyl-CoA through propionic acid metabolism, and decreases the generation of acetyl-CoA and ATP in alveolar epithelial cells. Overexpression of Acss3 inhibited the excessive deposition of ECM and attenuated the ground-glass opacity which determined by micro-CT in vivo. In a nutshell, our findings demonstrate that ACSS3 decreased the fatty acid oxidation through CPT1A deficiency and enhanced anaerobic glycolysis, this metabolic reprogramming deactivate the alveolar epithelial cells by lessen mitochondrial fission and fusion, increase of ROS production, suppression of mitophagy, promotion of apoptosis, suggesting that ACSS3 might be potential therapeutic target in pulmonary fibrosis.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Hongmei Yuan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Wenwen Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Peishuo Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Mengxia Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Huabin Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Shenghui Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Yajun Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal university, Xinxiang 453007, China.
| |
Collapse
|
46
|
Zhong H, Tang R, Feng JH, Peng YW, Xu QY, Zhou Y, He ZY, Mei SY, Xing SP. METFORMIN MITIGATES SEPSIS-ASSOCIATED PULMONARY FIBROSIS BY PROMOTING AMPK ACTIVATION AND INHIBITING HIF-1α-INDUCED AEROBIC GLYCOLYSIS. Shock 2024; 61:283-293. [PMID: 38010091 DOI: 10.1097/shk.0000000000002275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Recent research has revealed that aerobic glycolysis has a strong correlation with sepsis-associated pulmonary fibrosis (PF). However, at present, the mechanism and pathogenesis remain unclear. We aimed to test the hypothesis that the adenosine monophosphate-activated protein kinase (AMPK) activation and suppression of hypoxia-inducible factor 1α (HIF-1α)-induced aerobic glycolysis play a central role in septic pulmonary fibrogenesis. Cellular experiments demonstrated that lipopolysaccharide increased fibroblast activation through AMPK inactivation, HIF-1α induction, alongside an augmentation of aerobic glycolysis. By contrast, the effects were reversed by AMPK activation or HIF-1α inhibition. In addition, pretreatment with metformin, which is an AMPK activator, suppresses HIF-1α expression and alleviates PF associated with sepsis, which is caused by aerobic glycolysis, in mice. Hypoxia-inducible factor 1α knockdown demonstrated similar protective effects in vivo . Our research implies that targeting AMPK activation and HIF-1α-induced aerobic glycolysis with metformin might be a practical and useful therapeutic alternative for sepsis-associated PF.
Collapse
Affiliation(s)
- Han Zhong
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li N, Li K, Zhao W, Wang Y, Xu C, Wang Q, Pan L, Li Q, Ji K, He N, Liu Y, Wang J, Zhang M, Yang M, Du L, Liu Q. Small extracellular vesicles from irradiated lung epithelial cells promote the activation of fibroblasts in pulmonary fibrosis. Int J Radiat Biol 2024; 100:268-280. [PMID: 37747344 DOI: 10.1080/09553002.2023.2263550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Alveolar epithelial injury and dysfunction are the risk factors for radiation-induced pulmonary fibrosis (RIPF). However, it is not clear about the relationship between RIPF and the small extracellular vesicles (sEV) secreted by irradiated alveolar epithelial cells. Based on the activation of fibroblasts, this study explored the role of sEV derived from alveolar epithelial cells in RIPF and the potential mechanisms. METHODS Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting were used to characterize sEV. Western blotting was used to detect fibrosis-associated proteins. Cell counts and transwell assays were used to evaluate the proliferation and migration ability of fibroblasts. RT-PCR was used to observe the extracellular matrix (ECM) synthesized by fibroblasts, miRNA changes in the sEV were determined by second-generation sequencing. RESULTS TEM, NTA, and western blotting showed the extracellular vesicles with a double-layer membrane structure of approximately 100 nm in diameter. The sEV derived from irradiated A549, HBEC3-KT, and MLE12 cells upregulated FN1 and alpha-SMA proteins expression in fibroblasts and drove the fibroblast to myofibroblast transition, and the sEV from irradiated mouse bronchoalveolar lavage fluid (BALF) affirmed the same results. In addition, the sEV derived from irradiated alveolar epithelial cells significantly increased the migration ability of fibroblasts and the expression of extracellular matrix proteins such as FN1. The results of miRNA sequencing of sEV in BALF of rats with RIPF showed that the metabolic pathway may be important for miRNA to regulate the activation of fibroblasts. CONCLUSION The sEV derived from radiated pulmonary epithelial cells promote the activation, migration and extracellular matrix proteins expression of lung fibroblasts; miRNA in sEV may be an important molecular that affects the activation of lung fibroblasts.
Collapse
Affiliation(s)
- Na Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kejun Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenyue Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lifeng Pan
- The general surgery department of Chu Hsien-I Memorial Hospital of Tianjin Medical University, Tianjin, China
| | - Qiang Li
- The general surgery department of Chu Hsien-I Memorial Hospital of Tianjin Medical University, Tianjin, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
48
|
Summer R, Todd JL, Neely ML, Lobo LJ, Namen A, Newby LK, Shafazand S, Suliman S, Hesslinger C, Keller S, Leonard TB, Palmer SM, Ilkayeva O, Muehlbauer MJ, Newgard CB, Roman J. Circulating metabolic profile in idiopathic pulmonary fibrosis: data from the IPF-PRO Registry. Respir Res 2024; 25:58. [PMID: 38273290 PMCID: PMC10809477 DOI: 10.1186/s12931-023-02644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The circulating metabolome, reflecting underlying cellular processes and disease biology, has not been fully characterized in patients with idiopathic pulmonary fibrosis (IPF). We evaluated whether circulating levels of metabolites correlate with the presence of IPF, with the severity of IPF, or with the risk of clinically relevant outcomes among patients with IPF. METHODS We analyzed enrollment plasma samples from 300 patients with IPF in the IPF-PRO Registry and 100 individuals without known lung disease using a set of targeted metabolomics and clinical analyte modules. Linear regression was used to compare metabolite and clinical analyte levels between patients with IPF and controls and to determine associations between metabolite levels and measures of disease severity in patients with IPF. Unadjusted and adjusted univariable Cox regression models were used to evaluate associations between circulating metabolites and the risk of mortality or disease progression among patients with IPF. RESULTS Levels of 64 metabolites and 5 clinical analytes were significantly different between patients with IPF and controls. Among analytes with greatest differences were non-esterified fatty acids, multiple long-chain acylcarnitines, and select ceramides, levels of which were higher among patients with IPF versus controls. Levels of the branched-chain amino acids valine and leucine/isoleucine were inversely correlated with measures of disease severity. After adjusting for clinical factors known to influence outcomes, higher levels of the acylcarnitine C:16-OH/C:14-DC were associated with all-cause mortality, lower levels of the acylcarnitine C16:1-OH/C14:1DC were associated with all-cause mortality, respiratory death, and respiratory death or lung transplant, and higher levels of the sphingomyelin d43:2 were associated with the risk of respiratory death or lung transplantation. CONCLUSIONS IPF has a distinct circulating metabolic profile characterized by increased levels of non-esterified fatty acids, long-chain acylcarnitines, and ceramides, which may suggest a more catabolic environment that enhances lipid mobilization and metabolism. We identified select metabolites that were highly correlated with measures of disease severity or the risk of disease progression and that may be developed further as biomarkers. TRIAL REGISTRATION ClinicalTrials.gov; No: NCT01915511; URL: www. CLINICALTRIALS gov .
Collapse
Affiliation(s)
- Ross Summer
- Thomas Jefferson University, Philadelphia, PA, USA.
| | - Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - L Jason Lobo
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew Namen
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - L Kristin Newby
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | | | | | | | - Sascha Keller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Scott M Palmer
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Jesse Roman
- Jane and Leonard Korman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
49
|
Guo F, Xu F, Li S, Zhang Y, Lv D, Zheng L, Gan Y, Zhou M, Zhao K, Xu S, Wu B, Deng Z, Fu P. Amifostine ameliorates bleomycin-induced murine pulmonary fibrosis via NAD +/SIRT1/AMPK pathway-mediated effects on mitochondrial function and cellular metabolism. Eur J Med Res 2024; 29:68. [PMID: 38245795 PMCID: PMC10799491 DOI: 10.1186/s40001-023-01623-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/25/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating chronic lung disease characterized by irreversible scarring of the lung parenchyma. Despite various interventions aimed at mitigating several different molecular aspects of the disease, only two drugs with limited clinical efficacy have so far been approved for IPF therapy. OBJECTIVE We investigated the therapeutic efficacy of amifostine, a detoxifying drug clinically used for radiation-caused cytotoxicity, in bleomycin-induced murine pulmonary fibrosis. METHODS C57BL6/J mice were intratracheally instilled with 3 U/kg of bleomycin. Three doses of amifostine (WR-2721, 200 mg/kg) were administered intraperitoneally on days 1, 3, and 5 after the bleomycin challenge. Bronchoalveolar lavage fluid (BALF) was collected on day 7 and day 21 for the assessment of lung inflammation, metabolites, and fibrotic injury. Human fibroblasts were treated in vitro with transforming growth factor beta 1 (TGF-β1), followed by amifostine (WR-1065, 1-4 µg/mL) treatment. The effects of TGF-β1 and amifostine on the mitochondrial production of reactive oxygen species (ROS) were assessed by live cell imaging of MitoSOX. Cellular metabolism was assessed by the extracellular acidification rate (ECAR), the oxygen consumption rate (OCR), and the concentrations of various energy-related metabolites as measured by mass spectrum (MS). Western blot analysis was performed to investigate the effect of amifostine on sirtuin 1 (SIRT1) and adenosine monophosphate activated kinase (AMPK). RESULTS Three doses of amifostine significantly attenuated lung inflammation and pulmonary fibrosis. Pretreatment and post-treatment of human fibroblast cells with amifostine blocked TGF-β1-induced mitochondrial ROS production and mitochondrial dysfunction in human fibroblast cells. Further, treatment of fibroblasts with TGF-β1 shifted energy metabolism away from mitochondrial oxidative phosphorylation (OXPHOS) and towards glycolysis, as observed by an altered metabolite profile including a decreased ratio of NAD + /NADH and increased lactate concentration. Treatment with amifostine significantly restored energy metabolism and activated SIRT1, which in turn activated AMPK. The activation of AMPK was required to mediate the effects of amifostine on mitochondrial homeostasis and pulmonary fibrosis. This study provides evidence that repurposing of the clinically used drug amifostine may have therapeutic applications for IPF treatment. CONCLUSION Amifostine inhibits bleomycin-induced pulmonary fibrosis by restoring mitochondrial function and cellular metabolism.
Collapse
Affiliation(s)
- Feng Guo
- Department of Biochemistry, Health Science Center, Ningbo University, Ningbo, 315041, China
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Feng Xu
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shujuan Li
- Department of Biochemistry, Health Science Center, Ningbo University, Ningbo, 315041, China
| | - Yun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, 315041, China
| | - Dan Lv
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, 315041, China
| | - Lin Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongxiong Gan
- Department of Emergency Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Miao Zhou
- Department of Biochemistry, Health Science Center, Ningbo University, Ningbo, 315041, China
| | - Keyu Zhao
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shuling Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Bin Wu
- Department of Pulmonary and Critical Care Medicine, South China Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Zaichun Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, 315041, China.
| | - Panfeng Fu
- Department of Biochemistry, Health Science Center, Ningbo University, Ningbo, 315041, China.
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
50
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|