1
|
Schedel M, Heimel V, Taube C. Type 2 inflammation, a common denominator in chronic airway disease? Curr Opin Pulm Med 2025; 31:302-309. [PMID: 40104899 DOI: 10.1097/mcp.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW This review addresses the growing understanding that a specific subset of patients with a respiratory disease, including asthma, chronic obstructive pulmonary disease (COPD), or bronchiectasis may have one thing in common: type 2 inflammation. In the era of personalized medicine, we need to refine clinical markers combined with molecular and cellular endotyping to improve patient outcomes. RECENT FINDINGS Recent literature reveals that type 2 markers such as blood eosinophils, fractional exhaled nitric oxide (FeNO), and immunglobulin E (IgE), can provide valuable insights into disease progression, exacerbation risk, and treatment response, but their stability remains to be investigated. Treating asthma and COPD patients with biologics to target IL-4/IL-13, IL-5, and alarmins have shown potential, although efficacy varied. In bronchiectasis, a subset of patients with type 2 inflammation may benefit from corticosteroid therapy, despite broader concerns regarding its use. SUMMARY This underscores the importance of improved disease endotyping to better characterize patients who may benefit from targeted therapies. In clinical practice, personalized treatment based on inflammatory profiles has been shown to improve outcomes in heterogeneous lung diseases. Future research needs to focus on validating reliable biomarkers and optimizing clinical trial designs to advance therapeutic strategies in respiratory diseases.
Collapse
Affiliation(s)
- Michaela Schedel
- Translational Pulmonology, Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik
- Translational Pulmonology, Department of Pulmonary Medicine, University Medical Center
| | - Victoria Heimel
- Translational Pulmonology, Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Essen, Germany
| |
Collapse
|
2
|
Grunwell JR, Fitzpatrick AM. Asthma Phenotypes and Biomarkers. Respir Care 2025. [PMID: 40013975 DOI: 10.1089/respcare.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Asthma experienced by both adults and children is a phenotypically heterogeneous condition. Severe asthma, characterized by ongoing symptoms and airway inflammation despite high doses of inhaled and/or systemic corticosteroids, is the focus of research efforts to understand this underlying heterogeneity. Clinical phenotypes in both adult and pediatric asthma have been determined using supervised definition-driven classification and unsupervised data-driven clustering methods. Efforts to understand the underlying inflammatory patterns of severe asthma have led to the seminal discovery of type 2-high versus type 2-low phenotypes and to the development of biologics targeted at type 2-high inflammation to reduce the rates of severe asthma exacerbations. Type 2-high asthma is characterized by upregulation of T helper 2 immune pathways including interleukin (IL)-4, IL-5, and IL-13 along with eosinophilic airway inflammation, sometimes allergic sensitization, and responsiveness to treatment with corticosteroids. Type 2-low asthma is poorly responsive to corticosteroids and is not as well characterized as type 2-high asthma. Type 2-low asthma is limited by being defined as the absence of type 2-high inflammatory markers. Choosing a biologic for the treatment of severe asthma involves the evaluation of a panel of biomarkers such as blood eosinophils, total and specific immunoglobulin E/allergic sensitization, and fractional exhaled nitric oxide. In this review, we focus on the underlying pathobiology of adult and pediatric asthma, discuss the different phenotype-based treatment options for adult and pediatric type 2-high with or without allergic asthma and type 2-low asthma, and describe a clinical phenotyping approach to patients to guide out-patient therapy. Finally, we end with a discussion of whether pediatric asthma exacerbations necessitating admission to an ICU constitute their own high-risk phenotype and/or whether it is a part of other previously defined high-risk subgroups such as difficult-to-control asthma, exacerbation-prone asthma, and severe treatment-resistant asthma.
Collapse
Affiliation(s)
- Jocelyn R Grunwell
- Dr. Grunwell is affiliated with Division of Critical Care Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Anne M Fitzpatrick
- Dr. Fitzpatrick is affiliated with Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
3
|
Boomer J, Choi J, Alsup A, McGregor MC, Lieu J, Johnson C, Hall C, Shi X, Kim T, Goss C, Lew D, Christensen S, Woodruff P, Hastie A, Mauger D, Wenzel SE, Hoffman E, Schechtman KB, Castro M. Increased Muc5AC and Decreased Ciliated Cells in Severe Asthma Partially Restored by Inhibition of IL-4Rα Receptor. Am J Respir Crit Care Med 2024; 210:1409-1420. [PMID: 38935626 PMCID: PMC11716027 DOI: 10.1164/rccm.202307-1266oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: The role of IL-13 on the airway epithelium in severe asthma leading to airway remodeling remains poorly understood. Objectives: To study IL-13-induced airway remodeling on goblet cells and cilia in the airway epithelium in severe asthma and the impact of an anti-IL4Rα antibody, dupilumab, in vitro. Methods: Quantitative computed tomography of the lungs and endobronchial biopsies and brushings were obtained in 51 participants (22 with severe asthma, 11 with nonsevere asthma, and 18 healthy participants) in SARPIII (Severe Asthma Research Program III) and measured for mucin and cilia-related proteins. Epithelial cells were differentiated at air-liquid interface (ALI) with IL-13 with or without dupilumab and assessed for mucin, cilia, cilia beat frequency (CBF), and epithelial integrity (transepithelial electrical resistance [TEER]). Measurements and Main Results: Increased Muc5AC (mucin 5AC) (Δ + 263.2 ± 92.7 luminosity/epithelial area) and decreased ciliated cells (Δ - 0.07 ± 0.03 Foxj1+ cells/epithelial area) were observed in biopsies from patients with severe asthma when compared with healthy control subjects (P < 0.01 and P = 0.047, respectively). RNA sequencing of endobronchial cell brushings confirmed a Muc5AC increase with a decrease in a five-gene cilia-related mean in patients with severe asthma compared with healthy subjects (all P < 0.05). IL-13 (5 ng/ml)-differentiated ALI cultures of healthy and asthmatic samples (from participants with severe and nonsevere asthma) increased Muc5AC, decreased cilia (α-aceytl-tubulin) in samples from healthy participants (Δ + 6.5% ± 1.5%, Δ - 14.1% ± 2.7%; all P < 0.001 respectively) and participants with asthma (Δ + 4.4% ± 2.5%, Δ - 13.1% ± 2.7%; P = 0.084, P < 0.001 respectively), and decreased epithelial integrity (TEER) in samples from healthy participants (-140.9 ± 21.3 [ohms], P < 0.001), while decreasing CBF in samples from participants with asthma (Δ - 4.4 ± 1.7 [Hz], P < 0.01). When dupilumab was added to ALI with IL-13, there was no significant decrease in Mu5AC, but there was restoration of cilia in healthy participants and participants with asthma (absolute increase of 67.5% and 32.5% cilia, all P < 0.05, respectively), whereas CBF increased (Δ + 3.6 ± 1.1 [Hz], P < 0.001) and TEER decreased (only in asthma, Δ - 37.8 ± 16.2 [ohms], P < 0.05). Conclusions: IL-13 drives features of airway remodeling in severe asthma, which are partially reversed by inhibiting the IL-4Rα receptor in vitro.
Collapse
Affiliation(s)
- Jonathan Boomer
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alexander Alsup
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Julia Lieu
- Division of Pulmonary and Critical Care Medicine and
| | | | - Chase Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaosong Shi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Taewon Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Charles Goss
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Daphne Lew
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Stephanie Christensen
- Division of Pulmonary, Allergy, and Critical Care, University of California San Francisco, San Francisco, California
| | - Prescott Woodruff
- Division of Pulmonary, Allergy, and Critical Care, University of California San Francisco, San Francisco, California
| | - Annette Hastie
- Section of Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Eric Hoffman
- Departments of Radiology, Biomedical Engineering and Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Kenneth B. Schechtman
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
4
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
5
|
Ma D, Muñoz X, Ojanguren I, Romero-Mesones C, Soler-Segovia D, Varona-Porres D, Cruz MJ. Increased TGFβ1, VEGF and IFN-γ in the Sputum of Severe Asthma Patients With Bronchiectasis. Arch Bronconeumol 2024; 60:682-689. [PMID: 38908944 DOI: 10.1016/j.arbres.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Bronchiectasis is one of the most common comorbidities in severe asthma. However, the mechanisms by which asthma promotes the development and progress of this condition are not well defined. This study aimed to analyze the inflammatory phenotypes and quantify the expression of proinflammatory and remodeling cytokines in asthma patients with and without bronchiectasis. METHODS The study sample comprised individuals with severe asthma and bronchiectasis (group AB, n=55) and a control population of individuals with severe asthma without bronchiectasis (group AC, n=45). Induced sputum samples were obtained and cell types determined by differential cell count. Proinflammatory and bronchial remodeling cytokines (IL-8, neutrophilic elastase, TGFβ1, VEGF, IFN-γ, TNF-α, and GM-CSF) were analyzed by immunoassay in sputum supernatant. RESULTS Neutrophilic inflammation was the primary phenotype in both asthma groups. Higher levels of TGFβ1, VEGF and IFN-γ were observed in asthma patients with bronchiectasis (group AB) than in controls (group AC) (15 vs 24pg/ml, p=0.014; 183 vs 272pg/ml, p=0.048; 0.85 vs 19pg/ml, p<0.001, respectively). Granulocyte-macrophage colony-stimulating factor (GM-CSF) levels were significantly lower in the AB group than in the AC group (1.2 vs 4.4pg/ml, p<0.001). IL-8, neutrophil elastase and TNF-α did not present significant differences between the groups. CONCLUSIONS Raised levels of TGFβ1 and VEGF cytokines may indicate airway remodeling activation in asthma patients with bronchiectasis. The type of inflammation in asthma patients did not differ according to the presence or absence of bronchiectasis.
Collapse
Affiliation(s)
- Donghai Ma
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain
| | - Xavier Muñoz
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universitat Autónoma de Barcelona, Spain.
| | - Iñigo Ojanguren
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Spain
| | | | - David Soler-Segovia
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain
| | - Diego Varona-Porres
- Servicio de Radiología, Hospital Universitario Vall d́Hebron, Barcelona, Spain
| | - María-Jesús Cruz
- Servicio de Neumología, Hospital Universitario Vall d́Hebron, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Spain
| |
Collapse
|
6
|
Karp T, Faiz A, van Nijnatten J, Kerstjens HAM, Boudewijn I, Kraft M, Vonk JM, Nawijn MC, Heijink IH, Beghé B, Rabe KF, Papi A, Brightling C, Singh D, van der Molen T, Siddiqui S, Christenson S, Guryev V, van den Berge M. Nasal epithelial gene expression identifies relevant asthma endotypes in the ATLANTIS study. Thorax 2024; 79:905-914. [PMID: 39009441 DOI: 10.1136/thorax-2023-221230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Asthma is an inflammatory airways disease encompassing multiple phenotypes and endotypes. Several studies suggested gene expression in nasal epithelium to serve as a proxy for bronchial epithelium, being a non-invasive approach to investigate lung diseases. We hypothesised that molecular differences in upper airway epithelium reflect asthma-associated differences in the lower airways and are associated with clinical expression of asthma. METHODS We analysed nasal epithelial gene expression data from 369 patients with asthma and 58 non-asthmatic controls from the Assessment of Small Airways Involvement in Asthma study. Unsupervised hierarchical clustering was performed on asthma-associated genes. Asthma-associated gene signatures were replicated in independent cohorts with nasal and bronchial brushes data by comparing Gene Set Variation Analysis scores between asthma patients and non-asthmatic controls. RESULTS We identified 67 higher expressed and 59 lower expressed genes in nasal epithelium from asthma patients compared with controls (false discovery rate<0.05), including CLCA1, CST1 and POSTN, genes well known to reflect asthma in bronchial airway epithelium. Hierarchical clustering revealed several molecular asthma endotypes with distinct clinical characteristics, including an endotype with higher blood and sputum eosinophils, high fractional exhaled nitric oxide, and more severe small airway dysfunction, as reflected by lower forced expiratory flow at 50%. In an independent cohort, we demonstrated that genes higher expressed in the nasal epithelium reflect asthma-associated changes in the lower airways. CONCLUSION Our results show that the nasal epithelial gene expression profile reflects asthma-related processes in the lower airways. We suggest that nasal epithelium may be a useful non-invasive tool to identify asthma endotypes and may advance personalised management of the disease.
Collapse
Affiliation(s)
- Tatiana Karp
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Jos van Nijnatten
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Respiratory Bioinformatics and Molecular Biology, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Huib A M Kerstjens
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Ilse Boudewijn
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Monica Kraft
- Samuel Bronfman Department of Medicine, Icahn School of Medicine, Mount Sinai Medical Center, New York, New York, USA
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of Epidemiology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Irene H Heijink
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Bianca Beghé
- Department of Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Klaus F Rabe
- Department of Medicine, Christian Albrechts University Kiel, Kiel and LungenClinic, Grosshansdorf, Germany
| | - Alberto Papi
- Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Chris Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Thys van der Molen
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Salman Siddiqui
- Imperial College London National Heart and Lung Institute, London, UK
| | - Stephanie Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, San Francisco, California, USA
| | - Victor Guryev
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center, Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
7
|
Versi A, Azim A, Ivan FX, Abdel‐Aziz MI, Bates S, Riley J, Uddin M, Zounemat Kermani N, Maitland‐Van Der Zee A, Dahlen S, Djukanovic R, Chotirmall SH, Howarth P, Adcock IM, Chung KF, the U‐BIOPRED study group. A severe asthma phenotype of excessive airway Haemophilus influenzae relative abundance associated with sputum neutrophilia. Clin Transl Med 2024; 14:e70007. [PMID: 39187935 PMCID: PMC11347389 DOI: 10.1002/ctm2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Severe asthma (SA) encompasses several clinical phenotypes with a heterogeneous airway microbiome. We determined the phenotypes associated with a low α-diversity microbiome. METHODS Metagenomic sequencing was performed on sputum samples from SA participants. A threshold of 2 standard deviations below the mean of α-diversity of mild-moderate asthma and healthy control subjects was used to define those with an abnormal abundance threshold as relative dominant species (RDS). FINDINGS Fifty-one out of 97 SA samples were classified as RDSs with Haemophilus influenzae RDS being most common (n = 16), followed by Actinobacillus unclassified (n = 10), Veillonella unclassified (n = 9), Haemophilus aegyptius (n = 9), Streptococcus pseudopneumoniae (n = 7), Propionibacterium acnes (n = 5), Moraxella catarrhalis (n = 5) and Tropheryma whipplei (n = 5). Haemophilus influenzae RDS had the highest duration of disease, more exacerbations in previous year and greatest number on daily oral corticosteroids. Hierarchical clustering of RDSs revealed a C2 cluster (n = 9) of highest relative abundance of exclusively Haemophilus influenzae RDSs with longer duration of disease and higher sputum neutrophil counts associated with enrichment pathways of MAPK, NF-κB, TNF, mTOR and necroptosis, compared to the only other cluster, C1, which consisted of 7 Haemophilus influenzae RDSs out of 42. Sputum transcriptomics of C2 cluster compared to C1 RDSs revealed higher expression of neutrophil extracellular trap pathway (NETosis), IL6-transignalling signature and neutrophil activation. CONCLUSION We describe a Haemophilus influenzae cluster of the highest relative abundance associated with neutrophilic inflammation and NETosis indicating a host response to the bacteria. This phenotype of severe asthma may respond to specific antibiotics.
Collapse
Affiliation(s)
- Ali Versi
- National Heart & Lung InstituteImperial College LondonLondonUK
| | - Adnan Azim
- Respiratory Department, Faculty of MedicineSouthampton UniversitySouthamptonUK
| | | | - Mahmoud I Abdel‐Aziz
- Department of Pulmonary MedicineAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamNetherlands
| | | | - John Riley
- Respiratory Therapeutic UnitGSKStockley ParkUK
| | - Mohib Uddin
- AstraZeneca BioPharmaceuticals R&DGothenburgSweden
| | | | - Anke‐H Maitland‐Van Der Zee
- Department of Pulmonary MedicineAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamNetherlands
| | - Sven‐Eric Dahlen
- Department of Medicine HuddingeKarolinska InstituteStockholmSweden
| | - Ratko Djukanovic
- Respiratory Department, Faculty of MedicineSouthampton UniversitySouthamptonUK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Respiratory and Critical Care MedicineTan Tock Seng HospitalSingaporeSingapore
| | - Peter Howarth
- Respiratory Department, Faculty of MedicineSouthampton UniversitySouthamptonUK
| | - Ian M Adcock
- National Heart & Lung InstituteImperial College LondonLondonUK
| | - Kian Fan Chung
- National Heart & Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
8
|
Pham DD, Shin E, Lee JE, Lee JH, Song WJ, Kwon HS, Cho YS, Won S, Kim TB. Transcriptomic Expression of T2-Inflammation Genes in Peripheral Blood Mononuclear Cells and Longitudinal Clinical Outcomes in Asthma: Insights from the COREA Study. Lung 2024; 202:449-457. [PMID: 38995391 DOI: 10.1007/s00408-024-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Gene expression can provide distinct information compared to clinical biomarkers in the context of longitudinal clinical outcomes in asthma patients. OBJECTIVE This study examined the association between the gene expression levels of upstream (IL-25, IL-33, and TSLP) and downstream cytokines (IL-5, IL-4, and IL-13) in the T2 inflammatory pathway with a 12-month follow-up of exacerbation, lung function, and steroid use. METHODS Transcriptomic sequencing analysis was performed on peripheral blood mononuclear cells from 279 adult asthmatics. Survival analysis and linear mixed-effect models were used to investigate potential differences between the high-level and low-level gene expression groups and the clinical outcomes. Analysis was performed separately for the upstream, downstream, and all 6 cytokines. RESULTS In general, T2 inflammatory cytokine gene expression showed a weak correlation with blood eosinophil counts (all r < 0.1) and clinical outcomes. Among moderate-to-severe eosinophilic asthma (MSEA) patients, individuals with elevated levels of downstream cytokines were at increased risk of time-to-first exacerbation (p = 0.044) and a greater increase of inhaled corticosteroid use over time (p = 0.002) compared to those with lower gene expression. There was no association between baseline T2 inflammatory cytokine gene expression and the longitudinal changes in lung function over time among MSEA patients. CONCLUSION These findings suggest that, among MSEA patients, the gene expression levels of downstream cytokines in the T2 inflammatory pathway may serve as indicators for endotyping asthma.
Collapse
Affiliation(s)
- Duong Duc Pham
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | | | | | - Ji-Hyang Lee
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Woo-Jung Song
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Interdisciplinary Program of Bioinformatics, College of Natural Science, Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Tae-Bum Kim
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
9
|
Bunyavanich S, Becker PM, Altman MC, Lasky-Su J, Ober C, Zengler K, Berdyshev E, Bonneau R, Chatila T, Chatterjee N, Chung KF, Cutcliffe C, Davidson W, Dong G, Fang G, Fulkerson P, Himes BE, Liang L, Mathias RA, Ogino S, Petrosino J, Price ND, Schadt E, Schofield J, Seibold MA, Steen H, Wheatley L, Zhang H, Togias A, Hasegawa K. Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop. J Allergy Clin Immunol 2024; 153:954-968. [PMID: 38295882 PMCID: PMC10999353 DOI: 10.1016/j.jaci.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.
Collapse
Affiliation(s)
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Jessica Lasky-Su
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | | | - Talal Chatila
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | - Wendy Davidson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Dong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Fang
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Fulkerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Liming Liang
- Harvard T. H. Chan School of Public Health, Boston, Mass
| | | | - Shuji Ogino
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T. H. Chan School of Public Health, Boston, Mass; Broad Institute of MIT and Harvard, Boston, Mass
| | | | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Max A Seibold
- National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Hanno Steen
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Lisa Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Memphis, Tenn
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Kohei Hasegawa
- Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
10
|
An J, Jeong S, Park K, Jin H, Park J, Shin E, Lee JH, Song WJ, Kwon HS, Cho YS, Lee JE, Won S, Kim TB. Blood transcriptome differentiates clinical clusters for asthma. World Allergy Organ J 2024; 17:100871. [PMID: 38317769 PMCID: PMC10839776 DOI: 10.1016/j.waojou.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Background In previous studies, several asthma phenotypes were identified using clinical and demographic parameters. Transcriptional phenotypes were mainly identified using sputum and bronchial cells. Objective We aimed to investigate asthma phenotypes via clustering analysis using clinical variables and compare the transcription levels among clusters using gene expression profiling of the blood. Methods Clustering analysis was performed using 6 parameters: age of asthma onset, body mass index, pack-years of smoking, forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity, and blood eosinophil counts. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples and RNA was extracted from selected PBMCs. Transcriptional profiles were generated (Illumina NovaSeq 6000) and analyzed using the reference genome and gene annotation files (hg19.refGene.gft). Pathway enrichment analysis was conducted using GO, KEGG, and REACTOME databases. Results In total, 355 patients with asthma were included in the analysis, of whom 72 (20.3%) had severe asthma. Clustering of the 6 parameters revealed 4 distinct subtypes. Cluster 1 (n = 63) had lower predicted FEV1 % and higher pack-years of smoking and neutrophils in sputum. Cluster 2 (n = 43) had a higher proportion and number of eosinophils in sputum and blood, and severe airflow limitation. Cluster 3 (n = 110) consisted of younger subjects with atopic features. Cluster 4 (n = 139) included features of late-onset mild asthma. Differentially expressed genes between clusters 1 and 2 were related to inflammatory responses and cell activation. Th17 cell differentiation and interferon gamma-mediated signaling pathways were related to neutrophilic inflammation in asthma. Conclusion Four clinical clusters were differentiated based on clinical parameters and blood eosinophils in adult patients with asthma form the Cohort for Reality and Evolution of Adult Asthma in Korea (COREA) cohort. Gene expression profiling and molecular pathways are novel means of classifying asthma phenotypes.
Collapse
Affiliation(s)
- Jin An
- Department of Pulmonary, Allergy and Critical Care Medicine, College of Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Seungpil Jeong
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
| | | | - Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Yoshida H. Dissecting the Immune System through Gene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:219-235. [PMID: 38467983 DOI: 10.1007/978-981-99-9781-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The immune system plays a dual role in human health, functioning both as a protector against pathogens and, at times, as a contributor to disease. This feature emphasizes the importance to uncover the underlying causes of its malfunctions, necessitating an in-depth analysis in both pathological and physiological conditions to better understand the immune system and immune disorders. Recent advances in scientific technology have enabled extensive investigations into gene regulation, a crucial mechanism governing cellular functionality. Studying gene regulatory mechanisms within the immune system is a promising avenue for enhancing our understanding of immune cells and the immune system as a whole. The gene regulatory mechanisms, revealed through various methodologies, and their implications in the field of immunology are discussed in this chapter.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
12
|
Rynne J, Ortiz-Zapater E, Bagley DC, Zanin O, Doherty G, Kanabar V, Ward J, Jackson DJ, Parsons M, Rosenblatt J, Adcock IM, Martinez-Nunez RT. The RNA binding proteins ZFP36L1 and ZFP36L2 are dysregulated in airway epithelium in human and a murine model of asthma. Front Cell Dev Biol 2023; 11:1241008. [PMID: 37928904 PMCID: PMC10624177 DOI: 10.3389/fcell.2023.1241008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Asthma is the most common chronic inflammatory disease of the airways. The airway epithelium is a key driver of the disease, and numerous studies have established genome-wide differences in mRNA expression between health and asthma. However, the underlying molecular mechanisms for such differences remain poorly understood. The human TTP family is comprised of ZFP36, ZFP36L1 and ZFP36L2, and has essential roles in immune regulation by determining the stability and translation of myriad mRNAs encoding for inflammatory mediators. We investigated the expression and possible role of the tristetraprolin (TTP) family of RNA binding proteins (RBPs), poorly understood in asthma. Methods: We analysed the levels of ZFP36, ZFP36L1 and ZFP36L2 mRNA in several publicly available asthma datasets, including single cell RNA-sequencing. We also interrogated the expression of known targets of these RBPs in asthma. We assessed the lung mRNA expression and cellular localization of Zfp36l1 and Zfp36l2 in precision cut lung slices in murine asthma models. Finally, we determined the expression in airway epithelium of ZFP36L1 and ZFP36L2 in human bronchial biopsies and performed rescue experiments in primary bronchial epithelium from patients with severe asthma. Results: We found ZFP36L1 and ZFP36L2 mRNA levels significantly downregulated in the airway epithelium of patients with very severe asthma in different cohorts (5 healthy vs. 8 severe asthma; 36 moderate asthma vs. 37 severe asthma on inhaled steroids vs. 26 severe asthma on oral corticoids). Integrating several datasets allowed us to infer that mRNAs potentially targeted by these RBPs are increased in severe asthma. Zfp36l1 was downregulated in the lung of a mouse model of asthma, and immunostaining of ex vivo lung slices with a dual antibody demonstrated that Zfp36l1/l2 nuclear localization was increased in the airway epithelium of an acute asthma mouse model, which was further enhanced in a chronic model. Immunostaining of human bronchial biopsies showed that airway epithelial cell staining of ZFP36L1 was decreased in severe asthma as compared with mild, while ZFP36L2 was upregulated. Restoring the levels of ZFP36L1 and ZFP36L2 in primary bronchial epithelial cells from patients with severe asthma decreased the mRNA expression of IL6, IL8 and CSF2. Discussion: We propose that the dysregulation of ZFP36L1/L2 levels as well as their subcellular mislocalization contributes to changes in mRNA expression and cytoplasmic fate in asthma.
Collapse
Affiliation(s)
- Jennifer Rynne
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Dustin C. Bagley
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Onofrio Zanin
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - George Doherty
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Varsha Kanabar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jon Ward
- Histochemistry Research Unit, University of Southampton, Southampton, United Kingdom
| | - David J. Jackson
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Maddy Parsons
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Jody Rosenblatt
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Ian M. Adcock
- National Heart and Lung Institute and Data Science Institute, Imperial College London, London, United Kingdom
| | - Rocio T. Martinez-Nunez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Huang GX, Hallen NR, Lee M, Zheng K, Wang X, Mandanas MV, Djeddi S, Fernandez D, Hacker J, Ryan T, Bergmark RW, Bhattacharyya N, Lee S, Maxfield AZ, Roditi RE, Buchheit KM, Laidlaw TM, Gern JE, Hallstrand TS, Ray A, Wenzel SE, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Increased epithelial mTORC1 activity in chronic rhinosinusitis with nasal polyps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562288. [PMID: 37904989 PMCID: PMC10614789 DOI: 10.1101/2023.10.13.562288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.
Collapse
Affiliation(s)
- George X. Huang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Nils R. Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Kelly Zheng
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | | | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital; Boston, MA
| | | | - Jonathan Hacker
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Regan W. Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary; Boston, MA
| | - Stella Lee
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Alice Z. Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Rachel E. Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Kathleen M. Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tanya M. Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - James E. Gern
- Division of Allergy, Immunology, and Rheumatology, University of Wisconsin School of Medicine and Public Health; Madison, WI
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center; Seattle, WA
| | - Anuradha Ray
- Department of Immunology, University of Pittsburgh; Pittsburgh, PA
| | - Sally E. Wenzel
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center; Pittsburgh, PA
| | - Joshua A. Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital; Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, MA
| | - Nora A. Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| |
Collapse
|
14
|
Duan W, Huang J, Wasti B, Chen Z, Yuan Y, He Y, Li D, Jia J, Liu S, Liu Y, Ma L, Zeng Q, Zhu L, Li J, Zhang X, Xiang X. miR-146a-3p as a potential novel therapeutic by targeting MBD2 to mediate Th17 differentiation in Th17 predominant neutrophilic severe asthma. Clin Exp Med 2023; 23:2839-2854. [PMID: 36961677 PMCID: PMC10543568 DOI: 10.1007/s10238-023-01033-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/25/2023] [Indexed: 03/25/2023]
Abstract
Th17 (T-helper 17) cells subtype of non-T2 (non-type 2) asthma is related to neutrophilic infiltration and resistance to inhaled corticosteroids (ICS), so is also known as severe asthma. Methyl-CpG binding domain protein 2 (MBD2) regulates the differentiation of the Th17 cells, tending to show a therapeutic target in severe asthma. miR-146a-3p is associated with anti-inflammatory characteristics and immunity. Moreover, bioinformatic analysis showed that MBD2 may be a target gene of miR-146a-3p. However, the role of miR-146a-3p in the differentiation of Th17 cells via MBD2 in severe asthma remains unknown. Here, we aimed to explore how miR-146a-3p interacts with MBD2 and affects the differentiation of Th17 cells in severe asthma. First, we recruited 30 eligible healthy people and 30 patients with severe asthma to detect the expression of miR-146a-3p in peripheral blood mononuclear cells (PBMCs) by qRT-PCR. Then, we established a HDM/LPS (house dust mite/lipopolysaccharide) exposure model of bronchial epithelial cells (BECs) to evaluate the expression of miR-146a-3p, the interaction between miR-146a-3p and MBD2 using western blot and luciferase reporter analysis and the effect of miR-146a-3p regulated Th17 cells differentiation by flow cytometry in BECs in vitro. Finally, we constructed a mouse model of Th17 predominant neutrophilic severe asthma to assess the therapeutic potential of miR-146a-3p in severe asthma and the effect of miR-146a-3p regulated Th17 cells differentiation via MBD2 in vivo. Decreased miR-146a-3p expression was noted in severe asthma patients, in the BECs and in the animal severe asthma models. Moreover, we demonstrated that miR-146a-3p suppressed Th17 cells differentiation by targeting the MBD2. miR-146a-3p overexpression significantly reduced airway hyperresponsiveness, airway inflammation and airway mucus secretion, while also inhibiting Th17 cells response in vivo, which relieved severe asthma. By targeting MBD2 to suppress Th17 cells differentiation, miR-146a-3p provides a potential novel therapeutic for Th17 predominant neutrophilic severe asthma.
Collapse
Affiliation(s)
- Wentao Duan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jin Huang
- Changsha Social Work College, Changsha, 410004, China
| | - Binaya Wasti
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhifeng Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yu Yuan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yi He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Danhong Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jingsi Jia
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle RenminRoad, 410011, Changsha, China
| | - Shaokun Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yi Liu
- Department of Respiratory and Critical Care Medicine, Zhuzhou City Central Hospital, Zhuzhou, 412007, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, China
| | - Qingping Zeng
- Department of Respiratory and Critical Care Medicine, Longshan County People's Hospital, Longshan, 416800, China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Guhan Road No. 89, Changsha, 410016, China.
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Guhan Road No. 89, Changsha, 410016, China.
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical College University, 570000, Haikou, China.
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle RenminRoad, 410011, Changsha, China.
| |
Collapse
|
15
|
Malik B, Bartlett NW, Upham JW, Nichol KS, Harrington J, Wark PAB. Severe asthma ILC2s demonstrate enhanced proliferation that is modified by biologics. Respirology 2023; 28:758-766. [PMID: 37114915 PMCID: PMC10946917 DOI: 10.1111/resp.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Type 2 (T2) innate lymphoid cells (ILC2s) contribute to airway inflammation and disease in asthma. We hypothesize that ILC2s isolated from people with severe allergic and eosinophilic asthma would exhibit an enhanced T2 inflammatory activity that would be altered following treatment with mepolizumab and omalizumab. We compare peripheral blood (PB) isolated ILC2's proliferative capacity, IL-5 and IL-13 secretion and phenotype between healthy without asthma (HC), non-asthma allergic (NAA), mild asthma (MA) and severe allergic and eosinophilic asthma (SA) subjects. We then determined the impact of 6 months treatment with either mepolizumab or omalizumab on ILC2s physiology of SA subjects. METHODS ILC2s were sorted and cultured in the presence of IL-2, IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) for 14 days. ILC2s proliferation, phenotypes and functions were assessed using flowcytometry. The ILC2s response was then reassessed following clinically successful treatment of SA subjects with mepolizumab and omalizumab. RESULTS SA ILC2s demonstrated increased proliferative capacity, TSLP receptor (TSLPR), GATA3 and NFATc1 protein expressions and increased IL-5 and IL-13 release. ILC2s were also capable of releasing IL-6 in response to stimulation. Mepolizumab treatment reduced ILC2s proliferative capacity and expression of TSLPR, GATA3 and NFATc1. Both mepolizumab and omalizumab were associated with reduced ILC2s release of IL-5 and IL-13, only mepolizumab reduced IL-6. CONCLUSION ILC2s from severe allergic and eosinophilic asthma demonstrated an active phenotype typified by increased proliferation, TSLPR, GATA3 and NFATc1 expression and increased IL-5, IL-13 and IL-6 release. Mepolizumab reduced markers of ILC2s activation.
Collapse
Affiliation(s)
- Bilal Malik
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Nathan W. Bartlett
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Upham
- Department of Respiratory MedicinePrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Kristy S. Nichol
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John Harrington
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| | - Peter A. B. Wark
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
16
|
Wu D, Zhang X, Zimmerly KM, Wang R, Wang C, Hunter R, Wu X, Campen M, Liu M, Yang XO. Unfolded protein response factor ATF6 augments T helper cell responses and promotes mixed granulocytic airway inflammation. Mucosal Immunol 2023; 16:499-512. [PMID: 37209959 PMCID: PMC10530451 DOI: 10.1016/j.mucimm.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
The unfolded protein response (UPR) is associated with the risk of asthma, including treatment-refractory severe asthma. Recent studies demonstrated a pathogenic role of activating transcription factor 6a (ATF6a or ATF6), an essential UPR sensor, in airway structural cells. However, its role in T helper (TH) cells has not been well examined. In this study, we found that ATF6 was selectively induced by signal transducer and activator of transcription6 (STAT6) and STAT3 in TH2 and TH17 cells, respectively. ATF6 upregulated UPR genes and promoted the differentiation and cytokine secretion of TH2 and TH17 cells. T cell-specific Atf6-deficiency impaired TH2 and TH17 responses in vitro and in vivo and attenuated mixed granulocytic experimental asthma. ATF6 inhibitor Ceapin A7 suppressed the expression of ATF6 downstream genes and TH cell cytokines by both murine and human memory clusters of differentiation 4 (CD4)+ T cells. At the chronic stage of asthma, administration of Ceapin A7 lessened TH2 and TH17 responses, leading to alleviation of both airway neutrophilia and eosinophilia. Thus, our results demonstrate a critical role of ATF6 in TH2 and TH17 cell-driven mixed granulocytic airway disease, suggesting a novel option to combat steroid-resistant mixed and even T2-low endotypes of asthma by targeting ATF6.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Kourtney M Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Ruoning Wang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Russell Hunter
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA; Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA.
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
17
|
Wu D, Zhang X, Zimmerly KM, Wang R, Livingston A, Iwawaki T, Kumar A, Wu X, Mandell MA, Liu M, Yang XO. Unconventional Activation of IRE1 Enhances TH17 Responses and Promotes Neutrophilic Airway Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547286. [PMID: 37461622 PMCID: PMC10349957 DOI: 10.1101/2023.06.30.547286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Treatment-refractory severe asthma manifests a neutrophilic phenotype associated with TH17 responses. Heightened unfolded protein responses (UPRs) are associated with the risk of asthma, including severe asthma. However, how UPRs participate in the deregulation of TH17 cells leading to this type of asthma remains elusive. In this study, we investigated the role of the UPR sensor IRE1 in TH17 cell function and neutrophilic airway inflammation. We found that IRE1 is induced in fungal asthma and is highly expressed in TH17 cells relative to naïve CD4+ T cells. Cytokine (e.g. IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by TH17 cells. Ern1 (encoding IRE1)-deficiency decreases the expression of ER stress factors and impairs the differentiation and cytokine secretion of TH17 cells. Genetic ablation of Ern1 leads to alleviated TH17 responses and airway neutrophilia in a Candida albicans asthma model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances TH17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPRmediated secretory function of TH17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in TH17-biased TH2-low asthma.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kourtney M. Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Ruoning Wang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Amanda Livingston
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
18
|
Tsaneva-Atanasova K, Scotton C. How to handle big data for disease stratification in respiratory medicine? Thorax 2023; 78:640-642. [PMID: 37225416 DOI: 10.1136/thorax-2023-220138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
|
19
|
Kermani N, Versi A, Gay A, Vlasma J, Jayalatha AKS, Koppelman GH, Nawijn M, Faiz A, van den Berge M, Adcock IM, Chung KF. Gene signatures in U-BIOPRED severe asthma for molecular phenotyping and precision medicine: time for clinical use. Expert Rev Respir Med 2023; 17:965-971. [PMID: 37997709 DOI: 10.1080/17476348.2023.2278606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION The use and generation of gene signatures have been established as a method to define molecular endotypes in complex diseases such as severe asthma. Bioinformatic approaches have now been applied to large omics datasets to define the various co-existing inflammatory and cellular functional pathways driving or characterizing a particular molecular endotype. AREAS COVERED Molecular phenotypes and endotypes of Type 2 inflammatory pathways and also of non-Type 2 inflammatory pathways, such as IL-6 trans-signaling, IL-17 activation, and IL-22 activation, have been defined in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes dataset. There has also been the identification of the role of mast cell activation and of macrophage dysfunction in various phenotypes of severe asthma. EXPERT OPINION Phenotyping on the basis of clinical treatable traits is not sufficient for understanding of mechanisms driving the disease in severe asthma. It is time to consider whether certain patients with severe asthma, such as those non-responsive to current therapies, including Type 2 biologics, would be better served using an approach of molecular endotyping using gene signatures for management purposes rather than the current sole reliance on blood eosinophil counts or exhaled nitric oxide measurements.
Collapse
Affiliation(s)
- Nazanin Kermani
- National Heart & Lung Institute & Data Science Institute, Imperial College London, London, UK
| | - Ali Versi
- National Heart & Lung Institute & Data Science Institute, Imperial College London, London, UK
| | - Aurore Gay
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands
| | - Jelmer Vlasma
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands
- Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, Groningen, the Netherlands
| | - Martijn Nawijn
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands
| | - Alen Faiz
- School of Life Sciences, Respiratory Bioinformatics and Molecular Biology, University of Technology Sydney, Sydney, Australia
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ian M Adcock
- National Heart & Lung Institute & Data Science Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart & Lung Institute & Data Science Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospital, London, UK
| |
Collapse
|
20
|
Donoghue LJ, McFadden KM, Vargas D, Smith GJ, Immormino RM, Moran TP, Kelada SNP. Collaborative cross strain CC011/UncJ as a novel mouse model of T2-high, severe asthma. Respir Res 2023; 24:153. [PMID: 37296458 PMCID: PMC10251525 DOI: 10.1186/s12931-023-02453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Among asthmatics, there is significant heterogeneity in the clinical presentation and underlying pathophysiological mechanisms, leading to the recognition of multiple disease endotypes (e.g., T2-high vs. T2-low). This heterogeneity extends to severe asthmatics, who may struggle to control symptoms even with high-dose corticosteroid treatment and other therapies. However, there are limited mouse models available to model the spectrum of severe asthma endotypes. We sought to identify a new mouse model of severe asthma by first examining responses to chronic allergen exposure among strains from the Collaborative Cross (CC) mouse genetics reference population, which contains greater genetic diversity than other inbred strain panels previously used for models of asthma. Mice from five CC strains and the often-used classical inbred strain BALB/cJ were chronically exposed to house dust mite (HDM) allergen for five weeks followed by measurements of airway inflammation. CC strain CC011/UncJ (CC011) exhibited extreme responses to HDM including high levels of airway eosinophilia, elevated lung resistance, and extensive airway wall remodeling, and even fatalities among ~ 50% of mice prior to study completion. Compared to BALB/cJ mice, CC011 mice had stronger Th2-mediated airway responses demonstrated by significantly elevated total and HDM-specific IgE and increased Th2 cytokines during tests of antigen recall, but not enhanced ILC2 activation. Airway eosinophilia in CC011 mice was completely dependent upon CD4+ T-cells. Notably, we also found that airway eosinophilia in CC011 mice was resistant to dexamethasone steroid treatment. Thus, the CC011 strain provides a new mouse model of T2-high, severe asthma driven by natural genetic variation likely acting through CD4+ T-cells. Future studies aimed at determining the genetic basis of this phenotype will provide new insights into mechanisms underlying severe asthma.
Collapse
Affiliation(s)
- Lauren J Donoghue
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn M McFadden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Vargas
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gregory J Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert M Immormino
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Moran
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
van der Burg N, Tufvesson E. Is asthma's heterogeneity too vast to use traditional phenotyping for modern biologic therapies? Respir Med 2023; 212:107211. [PMID: 36924848 DOI: 10.1016/j.rmed.2023.107211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Nicole van der Burg
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden.
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Lee JH, Dixey P, Bhavsar P, Raby K, Kermani N, Chadeau-Hyam M, Adcock IM, Song WJ, Kwon HS, Lee SW, Sook Cho Y, Fan Chung K, Kim TB. Precision Medicine Intervention in Severe Asthma (PRISM) study: molecular phenotyping of patients with severe asthma and response to biologics. ERJ Open Res 2023; 9:00485-2022. [PMID: 37057090 PMCID: PMC10086686 DOI: 10.1183/23120541.00485-2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023] Open
Abstract
Severe asthma represents an important clinical unmet need despite the introduction of biologic agents. Although advanced omics technologies have aided researchers in identifying clinically relevant molecular pathways, there is a lack of an integrated omics approach in severe asthma particularly in terms of its evolution over time. The collaborative Korea-UK research project Precision Medicine Intervention in Severe Asthma (PRISM) was launched in 2020 with the aim of identifying molecular phenotypes of severe asthma by analysing multi-omics data encompassing genomics, epigenomics, transcriptomics, proteomics, metagenomics and metabolomics. PRISM is a prospective, observational, multicentre study involving patients with severe asthma attending severe asthma clinics in Korea and the UK. Data including patient demographics, inflammatory phenotype, medication, lung function and control status of asthma will be collected along with biological samples (blood, sputum, urine, nasal epithelial cells and exhaled breath condensate) for omics analyses. Follow-up evaluations will be performed at baseline, 1 month, 4-6 months and 10-12 months to assess the stability of phenotype and treatment responses for those patients who have newly begun biologic therapy. Standalone and integrated omics data will be generated from the patient samples at each visit, paired with clinical information. By analysing these data, we will identify the molecular pathways that drive lung function, asthma control status, acute exacerbations and the requirement for daily oral corticosteroids, and that are involved in the therapeutic response to biological therapy. PRISM will establish a large multi-omics dataset of severe asthma to identify potential key pathophysiological pathways of severe asthma.
Collapse
Affiliation(s)
- Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Piers Dixey
- National Heart and Lung Institute, London, UK
| | | | - Katie Raby
- National Heart and Lung Institute, London, UK
| | | | | | | | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sei-Won Lee
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Simvastatin Reduces NETosis to Attenuate Severe Asthma by Inhibiting PAD4 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1493684. [PMID: 36778209 PMCID: PMC9911252 DOI: 10.1155/2023/1493684] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023]
Abstract
Objective Patients with severe asthma respond poorly to corticosteroids, and their care accounts for more than 60% of the total costs attributed to asthma. Neutrophils form neutrophil extracellular traps (NETs), which play a crucial role in severe asthma. Statins have shown anti-inflammatory effects by reducing NETosis. In this study, we investigate if simvastatin can attenuate severe asthma by reducing NETosis and the underlying mechanism. Methods Mice were concomitantly sensitized with ovalbumin (OVA), house dust mite (HDM), and lipopolysaccharide (LPS) during sensitization to establish a mouse model of severe asthma with neutrophil predominant inflammation (OVA+LPS mice) and treated with or without simvastatin. In inflammatory response, proportions of Th2, Th17, and Treg cells in lung tissue were detected by flow cytometry, and the levels of cytokines, dsDNA, and MPO-DNA in bronchoalveolar lavage fluid (BALF) were analyzed by ELISA. Citrullinated histone H3 (CitH3) and peptidyl arginine deiminase 4 (PAD4) in lung tissue were determined by Western blot and immunofluorescence imaging. PAD4 mRNA was determined by quantitative PCR (qPCR). HL-60 cells were differentiated into neutrophil-like cells by 1.25% DMSO. The neutrophil-like cells were treated with or without LPS, and simvastatin was then stimulated with PMA. CitH3 and PAD4 expressions were determined. Results Sensitization with OVA, HDM, and LPS resulted in neutrophilic inflammation and the formation of NETs in the lungs. Simvastatin treatment reduced the inflammation score, cytokine levels, total cells, and neutrophil counts in the BALF and reduced proportions of Th2 and Th17 but increased Treg cells in lungs of OVA+LPS mice. Simvastatin-treated OVA+LPS mice show reduced NET formation in BALF and lung tissue compared to control mice. Adoptive transfer of neutrophils was sufficient to restore NETosis and neutrophilic inflammation in simvastatin-treated OVA+LPS mice. Simvastatin reduced PAD4 mRNA and protein expression in lung tissues and neutrophils isolated from lungs of OVA+LPS mice and consequent NET formation. In vitro, simvastatin reduced LPS-induced PAD4 upregulation and NETosis in HL-60-differentiated neutrophil-like cells. Furthermore, PAD4-overexpressed lentiviral transduction was sufficient to restore PAD4 protein expression and NETosis in simvastatin-treated HL-60-differentiated neutrophil-like cells. Conclusions Simvastatin reduces Th17-mediated neutrophilic inflammation and airway hyperreactivity by reducing PAD4 expression and inhibiting NETosis in a mouse model of severe asthma. Severe asthmatic patients with high levels of circulating NETs or sputum NETs may show improved responses to statin treatment.
Collapse
|
24
|
Hizawa N. The understanding of asthma pathogenesis in the era of precision medicine. Allergol Int 2023; 72:3-10. [PMID: 36195530 DOI: 10.1016/j.alit.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Asthma is a syndrome with extremely diverse clinical phenotypes in which the onset, severity, and response to treatment are defined by the complex interplay of many genetic and environmental factors. Environmental factors epigenetically affect gene expression, and the disease is driven by a multidimensional dynamic network involving RNA and protein molecules derived from gene expression, as well as various metabolic products. In other words, specific pathophysiological mechanisms or endotypes are dynamic networks that arise in response to individual genotypes and the various environmental factors to which individuals have been exposed since before birth, such as diet, infection, air pollution, smoking, antibiotic use, and the bacterial flora of the intestinal tract, skin, and lungs. A key feature of asthma genome scans is their potential to reveal the molecular pathways that lead to pathogenesis. Endotypes that drive the disease have a significant impact on the phenotypes of asthma patients, including their drug responsiveness. Understanding endotypes will lead to not only the implementation of therapies that are tailored to the specific molecular network(s) underlying the patient's condition, but also to the development of therapeutic strategies that target individual endotypes, as well as to precision health, which will enable the prediction of disease onset with high accuracy from an early stage and the implementation of preventive strategies based on endotypes. Understanding of endotypes will pave the way for the practice of precision medicine in asthma care, moving away from 'one-size-fits-all' medicine and population-based prevention approaches that do not take individuals' susceptibility into account.
Collapse
Affiliation(s)
- Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
25
|
McIntyre AP, Viswanathan RK. Phenotypes and Endotypes in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:119-142. [PMID: 37464119 DOI: 10.1007/978-3-031-32259-4_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is a broadly encompassing diagnosis of airway inflammation with significant variability in presentation and response. Advances in molecular techniques and imaging have unraveled the delicate mechanistic tapestry responsible for the underlying inflammatory pathways in asthma. The elucidation of biomarkers and cellular components specific to these inflammatory pathways allowed for the categorization of asthma from generic phenotypes to more specific mechanistic endotypes, with two prominent subgroups emerging based on the level of Type 2 inflammation present - T2 high and T2 low (or non-T2). Sophisticated modeling and cluster analyses using a combination of clinical, physiologic, and biomarker parameters have permitted the identification of subendotypes within the broader T2 umbrella. This mechanistic-driven classification schema for asthma has dramatically altered the landscape of asthma management with the discovery and approval of targeted biologic therapies and has ushered in a new era of personalized precision medicine in asthma.
Collapse
Affiliation(s)
- Amanda P McIntyre
- Division of Allergy, Pulmonary & Critical Care, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Ravi K Viswanathan
- Division of Allergy, Pulmonary & Critical Care, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
| |
Collapse
|
26
|
Kermani NZ, Adcock IM, Djukanović R, Chung F, Schofield JPR. Systems Biology in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:215-235. [PMID: 37464123 DOI: 10.1007/978-3-031-32259-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The application of mathematical and computational analysis, together with the modelling of biological and physiological processes, is transforming our understanding of the pathophysiology of complex diseases. This systems biology approach incorporates large amounts of genomic, transcriptomic, proteomic, metabolomic, breathomic, metagenomic and imaging data from disease sites together with deep clinical phenotyping, including patient-reported outcomes. Integration of these datasets will provide a greater understanding of the molecular pathways associated with severe asthma in each individual patient and determine their personalised treatment regime. This chapter describes some of the data integration methods used to combine data sets and gives examples of the results obtained using single datasets and merging of multiple datasets (data fusion and data combination) from several consortia including the severe asthma research programme (SARP) and the Unbiased Biomarkers Predictive of Respiratory Disease Outcomes (U-BIOPRED) consortia. These results highlight the involvement of several different immune and inflammatory pathways and factors in distinct subsets of patients with severe asthma. These pathways often overlap in patients with distinct clinical features of asthma, which may explain the incomplete or no response in patients undergoing specific targeted therapy. Collaboration between groups will improve the predictions obtained using a systems medicine approach in severe asthma.
Collapse
Affiliation(s)
- Nazanin Zounemat Kermani
- Data Science Institute, Imperial College London, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Ratko Djukanović
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Fan Chung
- National Heart & Lung Institute, Imperial College London, London, UK
- Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - James P R Schofield
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK
- TopMD Precision Medicine Ltd, Southampton, UK
| |
Collapse
|
27
|
Principe S, Vijverberg SJH, Abdel-Aziz MI, Scichilone N, Maitland-van der Zee AH. Precision Medicine in Asthma Therapy. Handb Exp Pharmacol 2023; 280:85-106. [PMID: 35852633 DOI: 10.1007/164_2022_598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is a complex, heterogeneous disease that necessitates a proper patient evaluation to decide the correct treatment and optimize disease control. The recent introduction of new target therapies for the most severe form of the disease has heralded a new era of treatment options, intending to treat and control specific molecular pathways in asthma pathophysiology. Precision medicine, using omics sciences, investigates biological and molecular mechanisms to find novel biomarkers that can be used to guide treatment selection and predict response. The identification of reliable biomarkers indicative of the pathological mechanisms in asthma is essential to unravel new potential treatment targets. In this chapter, we provide a general description of the currently available -omics techniques, focusing on their implications in asthma therapy.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy.
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy
| | | |
Collapse
|
28
|
Agrawal K, Ong LC, Monkley S, Thörn K, Israelsson E, Baturcam E, Rist C, Schön K, Blake S, Magnusson B, Cartwright J, Mitra S, Ravi A, Zounemat-Kermani N, Krishnaswamy JK, Lycke NY, Gehrmann U, Mattsson J. Allergic sensitization impairs lung resident memory CD8 T-cell response and virus clearance. J Allergy Clin Immunol 2022; 150:1415-1426.e9. [PMID: 35917932 DOI: 10.1016/j.jaci.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with asthma often suffer from frequent respiratory viral infections and reduced virus clearance. Lung resident memory T cells provide rapid protection against viral reinfections. OBJECTIVE Because the development of resident memory T cells relies on the lung microenvironment, we investigated the impact of allergen sensitization on the development of virus-specific lung resident memory T cells and viral clearance. METHODS Mice were sensitized with house dust mite extract followed by priming with X47 and a subsequent secondary influenza infection. Antiviral memory T-cell response and protection to viral infection was assessed before and after secondary influenza infection, respectively. Gene set variation analysis was performed on data sets from the U-BIOPRED asthma cohort using an IFN-γ-induced epithelial cell signature and a tissue resident memory T-cell signature. RESULTS Viral loads were higher in lungs of sensitized compared with nonsensitized mice after secondary infection, indicating reduced virus clearance. X47 priming induced fewer antiviral lung resident memory CD8 T cells and resulted in lower pulmonary IFN-γ levels in the lungs of sensitized as compared with nonsensitized mice. Using data from the U-BIOPRED cohort, we found that patients with enrichment of epithelial IFN-γ-induced genes in nasal brushings and bronchial biopsies were also enriched in resident memory T-cell-associated genes, had more epithelial CD8 T cells, and reported significantly fewer exacerbations. CONCLUSIONS The allergen-sensitized lung microenvironment interferes with the formation of antiviral resident memory CD8 T cells in lungs and virus clearance. Defective antiviral memory response might contribute to increased susceptibility of patients with asthma to viral exacerbations.
Collapse
Affiliation(s)
- Komal Agrawal
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Li Ching Ong
- Department of Microbiology and Immunology, Gothenburg University, Gothenburg, Sweden
| | - Susan Monkley
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thörn
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Israelsson
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Engin Baturcam
- Early Clinical Research, R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cassie Rist
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Gothenburg University, Gothenburg, Sweden
| | - Sophia Blake
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Björn Magnusson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - James Cartwright
- Respiratory & Immunology (IA) Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Suman Mitra
- Inserm UMR1277 CNRS UMR9020 - CANTHER, Institut pour la Recherche sur le Cancer de Lille, Lille, France
| | - Abilash Ravi
- the Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jayendra Kumar Krishnaswamy
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Nils Y Lycke
- Department of Microbiology and Immunology, Gothenburg University, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Mattsson
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | | |
Collapse
|
29
|
Guida G, Bagnasco D, Carriero V, Bertolini F, Ricciardolo FLM, Nicola S, Brussino L, Nappi E, Paoletti G, Canonica GW, Heffler E. Critical evaluation of asthma biomarkers in clinical practice. Front Med (Lausanne) 2022; 9:969243. [PMID: 36300189 PMCID: PMC9588982 DOI: 10.3389/fmed.2022.969243] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The advent of personalized medicine has revolutionized the whole approach to the management of asthma, representing the essential basis for future developments. The cornerstones of personalized medicine are the highest precision in diagnosis, individualized prediction of disease evolution, and patient-tailored treatment. To this aim, enormous efforts have been established to discover biomarkers able to predict patients' phenotypes according to clinical, functional, and bio-humoral traits. Biomarkers are objectively measured characteristics used as indicators of biological or pathogenic processes or clinical responses to specific therapeutic interventions. The diagnosis of type-2 asthma, prediction of response to type-2 targeted treatments, and evaluation of the risk of exacerbation and lung function impairment have been associated with biomarkers detectable either in peripheral blood or in airway samples. The surrogate nature of serum biomarkers, set up to be less invasive than sputum analysis or bronchial biopsies, has shown several limits concerning their clinical applicability. Routinely used biomarkers, like peripheral eosinophilia, total IgE, or exhaled nitric oxide, result, even when combined, to be not completely satisfactory in segregating different type-2 asthma phenotypes, particularly in the context of severe asthma where the choice among different biologics is compelling. Moreover, the type-2 low fraction of patients is not only an orphan of biological treatments but is at risk of being misdiagnosed due to the low negative predictive value of type-2 high biomarkers. Sputum inflammatory cell analysis, considered the highest specific biomarker in discriminating eosinophilic inflammation in asthma, and therefore elected as the gold standard in clinical trials and research models, demonstrated many limits in clinical applicability. Many factors may influence the measure of these biomarkers, such as corticosteroid intake, comorbidities, and environmental exposures or habits. Not least, biomarkers variability over time is a confounding factor leading to wrong clinical choices. In this narrative review, we try to explore many aspects concerning the role of routinely used biomarkers in asthma, applying a critical view over the "state of the art" and contemporarily offering an overview of the most recent evidence in this field.
Collapse
Affiliation(s)
- Giuseppe Guida
- Severe Asthma and Rare Lung Disease Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Vitina Carriero
- Severe Asthma and Rare Lung Disease Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Francesca Bertolini
- Severe Asthma and Rare Lung Disease Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Fabio Luigi Massimo Ricciardolo
- Severe Asthma and Rare Lung Disease Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Stefania Nicola
- Allergy and Immunology, AO Mauriziano Hospital, University of Turin, Turin, Italy
| | - Luisa Brussino
- Allergy and Immunology, AO Mauriziano Hospital, University of Turin, Turin, Italy
| | - Emanuele Nappi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Paoletti
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giorgio Walter Canonica
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Enrico Heffler
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
30
|
The Role of Systems Biology in Deciphering Asthma Heterogeneity. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101562. [PMID: 36294997 PMCID: PMC9605413 DOI: 10.3390/life12101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Asthma is one of the most common and lifelong and chronic inflammatory diseases characterized by inflammation, bronchial hyperresponsiveness, and airway obstruction episodes. It is a heterogeneous disease of varying and overlapping phenotypes with many confounding factors playing a role in disease susceptibility and management. Such multifactorial disorders will benefit from using systems biology as a strategy to elucidate molecular insights from complex, quantitative, massive clinical, and biological data that will help to understand the underlying disease mechanism, early detection, and treatment planning. Systems biology is an approach that uses the comprehensive understanding of living systems through bioinformatics, mathematical, and computational techniques to model diverse high-throughput molecular, cellular, and the physiologic profiling of healthy and diseased populations to define biological processes. The use of systems biology has helped understand and enrich our knowledge of asthma heterogeneity and molecular basis; however, such methods have their limitations. The translational benefits of these studies are few, and it is recommended to reanalyze the different studies and omics in conjugation with one another which may help understand the reasons for this variation and help overcome the limitations of understanding the heterogeneity in asthma pathology. In this review, we aim to show the different factors that play a role in asthma heterogeneity and how systems biology may aid in understanding and deciphering the molecular basis of asthma.
Collapse
|
31
|
Sesé L, Mahay G, Barnig C, Guibert N, Leroy S, Guilleminault L. [Markers of severity and predictors of response to treatment in severe asthma]. Rev Mal Respir 2022; 39:740-757. [PMID: 36115752 DOI: 10.1016/j.rmr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Asthma is a multifactorial disease with complex pathophysiology. Knowledge of its immunopathology and inflammatory mechanisms is progressing and has led to the development over recent years of increasingly targeted therapeutic strategies. The objective of this review is to pinpoint the different predictive markers of asthma severity and therapeutic response. Obesity, nasal polyposis, gastroesophageal reflux disease and intolerance to aspirin have all been considered as clinical markers associated with asthma severity, as have functional markers such as bronchial obstruction, low FEV1, small daily variations in FEV1, and high FeNO. While sinonasal polyposis and allergic comorbidities are associated with better response to omalizumab, nasal polyposis or long-term systemic steroid use are associated with better response to antibodies targeting the IL5 pathway. Elevated total IgE concentrations and eosinophil counts are classic biological markers regularly found in severe asthma. Blood eosinophils are predictive biomarkers of response to anti-IgE, anti-IL5, anti-IL5R and anti-IL4R biotherapies. Dupilumab is particularly effective in a subgroup of patients with marked type 2 inflammation (long-term systemic corticosteroid therapy, eosinophilia≥150/μl or FENO>20 ppb). Chest imaging may help to identify severe patients by seeking out bronchial wall thickening and bronchial dilation. Study of the patient's environment is crucial insofar as exposure to tobacco, dust mites and molds, as well as outdoor and indoor air pollutants (cleaning products), can trigger asthma exacerbation. Wider and more systematic use of markers of severity or response to treatment could foster increasingly targeted and tailored approaches to severe asthma.
Collapse
Affiliation(s)
- L Sesé
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - G Mahay
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Rouen, Rouen, France
| | - C Barnig
- INSERM, EFS BFC, LabEx LipSTIC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, Besançon, France; Service de pneumologie, oncologie thoracique et allergologie respiratoire, CHRU Besançon, Besançon, France
| | - N Guibert
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - S Leroy
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, CNRS UMR 7275-FHU OncoAge, service de pneumologie oncologie thoracique et soins intensifs respiratoires, CHU de Nice, hôpital Pasteur, Nice, France
| | - L Guilleminault
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France; Institut Toulousain des maladies infectieuses et inflammatoires (Infinity) inserm UMR1291-CNRS UMR5051-université Toulouse III, CRISALIS F-CRIN, Toulouse, France.
| |
Collapse
|
32
|
Luo W, Hu J, Xu W, Dong J. Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front Immunol 2022; 13:974066. [PMID: 36032162 PMCID: PMC9411752 DOI: 10.3389/fimmu.2022.974066] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Immune response in the asthmatic respiratory tract is mainly driven by CD4+ T helper (Th) cells, represented by Th1, Th2, and Th17 cells, especially Th2 cells. Asthma is a heterogeneous and progressive disease, reflected by distinct phenotypes orchestrated by τh2 or non-Th2 (Th1 and Th17) immune responses at different stages of the disease course. Heterogeneous cytokine expression within the same Th effector state in response to changing conditions in vivo and interlineage relationship among CD4+ T cells shape the complex immune networks of the inflammatory airway, making it difficult to find one panacea for all asthmatics. Here, we review the role of three T helper subsets in the pathogenesis of asthma from different stages, highlighting timing is everything in the immune system. We also discuss the dynamic topography of Th subsets and pathogenetic memory Th cells in asthma.
Collapse
Affiliation(s)
- Weihang Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| |
Collapse
|
33
|
Godbout K, Gibson PG. Defining Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:507-519. [PMID: 35965041 DOI: 10.1016/j.iac.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Much interest has been given to the asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) in the past 2 decades, but the condition is still ill-defined. There is general agreement that a patient with longstanding asthma who develops fixed airflow obstruction after years of smoking has ACO although defining asthma in the face of COPD can be challenging. Many features of asthma are also found in patients with COPD without indicating an overlap and no consensus exists on which characteristics should be included in the definition of ACO. Nevertheless, some guidance has been issued to help clinicians and researchers to make a diagnosis of ACO and these will be reviewed here.
Collapse
Affiliation(s)
| | - Peter G Gibson
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
34
|
Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022; 11:2132. [PMID: 35883573 PMCID: PMC9318387 DOI: 10.3390/cells11142132] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
IL-17 cytokines are expressed by numerous cells (e.g., gamma delta (γδ) T, innate lymphoid (ILC), Th17, epithelial cells). They contribute to the elimination of bacteria through the induction of cytokines and chemokines which mediate the recruitment of inflammatory cells to the site of infection. However, IL-17-driven inflammation also likely promotes the progression of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, and asthma. In this review, we highlight the role of IL-17 cytokines in chronic lung diseases.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Lars Peter Lunding
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
| |
Collapse
|
35
|
Liu M, Wang J, Sun X. A Meta-Analysis on Vitamin D Supplementation and Asthma Treatment. Front Nutr 2022; 9:860628. [PMID: 35873428 PMCID: PMC9300755 DOI: 10.3389/fnut.2022.860628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background Vitamin D, as an immunomodulator, may be related to the therapeutic effect of asthma patients, but the research in this area is still controversial. The aim of this meta-analysis was to analyze the role of vitamin D supplementation in the treatment of asthma patients. Materials and Methods Randomized Controlled Trials (RCTs) of vitamin D supplementation in asthma were searched in PubMed, EMBASE, and the Cochrane library. Primary outcomes were forced expiratory volume in one second (FEV1), asthma exacerbations, Asthma Control Test scores (ACT scores), and fractional exhaled nitric oxide (FENO). Results A total of 10 RCTs were included, including 1,349 patients. Vitamin D supplementation didn't affect the ACT scores (SMD = 0.04, 95% CI = -0.13 to 0.21, P = 0.87), FEV1 (SMD = 0.04, 95% CI = -0.35 to 0.43, P < 0.01) and FENO (SMD = -0.01, 95% CI = -0.22 to 0.20, P = 0.27), but reduced the rate of asthma exacerbations (RR = 0.69, 95% CI = 0.41 to 0.88, P < 0.01), especially in subgroups of children (RR = 0.46, 95% CI = 0.30 to 0.70, P = 0.83) and follow up time less than 6 months (RR = 0.45, 95% CI = 0.32 to 0.63, P = 0.95). Additionally, though there was only one study included in the subgroup, it significantly enhanced FEV1 at the last visit for patients whose FEV1 baseline value was less than 70% (SMD = 0.94, 95% CI = 0.47 to 1.41). Conclusion Vitamin D supplementation can reduce asthma exacerbations, especially in children, and within 6 months of follow up time. In addition, vitamin D has a positive effect on improving FEV1 of patients whose FEV1 baseline value is less than 70%, but more RCTs are still needed to support this conclusion. Systematic Review Registration [https://inplasy.com], identifier [10.37766/inplasy20 22.6.0049].
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Respiratory Medicine, Xi’an Children’s Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jun Wang
- Department and Institute of Infectious Disease, Xi’an Children’s Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xinrong Sun
- Department of Respiratory Medicine, Xi’an Children’s Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
36
|
Sánchez‐Ovando S, Pavlidis S, Kermani NZ, Baines KJ, Barker D, Gibson PG, Wood LG, Adcock IM, Chung KF, Simpson JL, Wark PA. Pathways linked to unresolved inflammation and airway remodelling characterize the transcriptome in two independent severe asthma cohorts. Respirology 2022; 27:730-738. [PMID: 35673765 PMCID: PMC9540453 DOI: 10.1111/resp.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Background and objective Severe asthma (SA) is a heterogeneous disease. Transcriptomic analysis contributes to the understanding of pathogenesis necessary for developing new therapies. We sought to identify and validate mechanistic pathways of SA across two independent cohorts. Methods Transcriptomic profiles from U‐BIOPRED and Australian NOVocastrian Asthma cohorts were examined and grouped into SA, mild/moderate asthma (MMA) and healthy controls (HCs). Differentially expressed genes (DEGs), canonical pathways and gene sets were identified as central to SA mechanisms if they were significant across both cohorts in either endobronchial biopsies or induced sputum. Results Thirty‐six DEGs and four pathways were shared across cohorts linking to tissue remodelling/repair in biopsies of SA patients, including SUMOylation, NRF2 pathway and oxidative stress pathways. MMA presented a similar profile to HCs. Induced sputum demonstrated IL18R1 as a shared DEG in SA compared with healthy subjects. We identified enrichment of gene sets related to corticosteroid treatment; immune‐related mechanisms; activation of CD4+ T cells, mast cells and IL18R1; and airway remodelling in SA. Conclusion Our results identified differentially expressed pathways that highlight the role of CD4+ T cells, mast cells and pathways linked to ongoing airway remodelling, such as IL18R1, SUMOylation and NRF2 pathways, as likely active mechanisms in the pathogenesis of SA. Transcriptome analysis from endobronchial biopsies and induced sputum from two independent cohorts of adults with severe asthma (SA) (U‐BIOPRED and Australian NOVocastrian Asthma cohort) demonstrated shared differentially expressed pathways previously linked to persistent unresolved inflammation and novel mechanisms of airway remodelling, which may represent potential novel mechanistic pathways involved in the pathogenesis of SA. See relatededitorial
Collapse
Affiliation(s)
- Stephany Sánchez‐Ovando
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | | | | | - Katherine Joanne Baines
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Daniel Barker
- Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Peter G. Gibson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
- Respiratory and Sleep Medicine John Hunter Hospital NSW New Lambton Heights New South Wales Australia
| | - Lisa G. Wood
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London London UK
| | - Kian Fan Chung
- National Heart and Lung Institute Imperial College London London UK
| | - Jodie Louise Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
- Respiratory and Sleep Medicine John Hunter Hospital NSW New Lambton Heights New South Wales Australia
| |
Collapse
|
37
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
38
|
Skaf Y, Laubenbacher R. Topological data analysis in biomedicine: A review. J Biomed Inform 2022; 130:104082. [PMID: 35508272 DOI: 10.1016/j.jbi.2022.104082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/20/2022] [Accepted: 04/23/2022] [Indexed: 01/22/2023]
Abstract
Significant technological advances made in recent years have shepherded a dramatic increase in utilization of digital technologies for biomedicine- everything from the widespread use of electronic health records to improved medical imaging capabilities and the rising ubiquity of genomic sequencing contribute to a "digitization" of biomedical research and clinical care. With this shift toward computerized tools comes a dramatic increase in the amount of available data, and current tools for data analysis capable of extracting meaningful knowledge from this wealth of information have yet to catch up. This article seeks to provide an overview of emerging mathematical methods with the potential to improve the abilities of clinicians and researchers to analyze biomedical data, but may be hindered from doing so by a lack of conceptual accessibility and awareness in the life sciences research community. In particular, we focus on topological data analysis (TDA), a set of methods grounded in the mathematical field of algebraic topology that seeks to describe and harness features related to the "shape" of data. We aim to make such techniques more approachable to non-mathematicians by providing a conceptual discussion of their theoretical foundations followed by a survey of their published applications to scientific research. Finally, we discuss the limitations of these methods and suggest potential avenues for future work integrating mathematical tools into clinical care and biomedical informatics.
Collapse
Affiliation(s)
- Yara Skaf
- University of Florida, Department of Mathematics, Gainesville, FL, USA; University of Florida, Department of Medicine, Division of Pulmonary, Critical Care, & Sleep Medicine, Gainesville, FL, USA.
| | - Reinhard Laubenbacher
- University of Florida, Department of Mathematics, Gainesville, FL, USA; University of Florida, Department of Medicine, Division of Pulmonary, Critical Care, & Sleep Medicine, Gainesville, FL, USA.
| |
Collapse
|
39
|
Abstract
ABSTRACT Severe asthma is "asthma which requires treatment with high dose inhaled corticosteroids (ICS) plus a second controller (and/or systemic corticosteroids) to prevent it from becoming 'uncontrolled' or which remains 'uncontrolled' despite this therapy." The state of control was defined by symptoms, exacerbations and the degree of airflow obstruction. Therefore, for the diagnosis of severe asthma, it is important to have evidence for a diagnosis of asthma with an assessment of its severity, followed by a review of comorbidities, risk factors, triggers and an assessment of whether treatment is commensurate with severity, whether the prescribed treatments have been adhered to and whether inhaled therapy has been properly administered. Phenotyping of severe asthma has been introduced with the definition of a severe eosinophilic asthma phenotype characterized by recurrent exacerbations despite being on high dose ICS and sometimes oral corticosteroids, with a high blood eosinophil count and a raised level of nitric oxide in exhaled breath. This phenotype has been associated with a Type-2 (T2) inflammatory profile with expression of interleukin (IL)-4, IL-5, and IL-13. Molecular phenotyping has also revealed non-T2 inflammatory phenotypes such as Type-1 or Type-17 driven phenotypes. Antibody treatments targeted at the T2 targets such as anti-IL5, anti-IL5Rα, and anti-IL4Rα antibodies are now available for treating severe eosinophilic asthma, in addition to anti-immunoglobulin E antibody for severe allergic asthma. No targeted treatments are currently available for non-T2 inflammatory phenotypes. Long-term azithromycin and bronchial thermoplasty may be considered. The future lies with molecular phenotyping of the airway inflammatory process to refine asthma endotypes for precision medicine.
Collapse
|
40
|
Diver S, Sridhar S, Khalfaoui LC, Russell RJ, Emson C, Griffiths JM, de los Reyes M, Yin D, Colice G, Brightling CE. FeNO differentiates epithelial gene expression clusters: exploratory analysis from the MESOS randomised controlled trial. J Allergy Clin Immunol 2022; 150:830-840. [DOI: 10.1016/j.jaci.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022]
|
41
|
Hoda U, Pavlidis S, Bansal AT, Takahashi K, Hu S, Ng Kee Kwong F, Rossios C, Sun K, Bhavsar P, Loza M, Baribaud F, Chanez P, Fowler SJ, Horvath I, Montuschi P, Singer F, Musial J, Dahlen B, Krug N, Sandstrom T, Shaw DE, Lutter R, Fleming LJ, Howarth PH, Caruso M, Sousa AR, Corfield J, Auffray C, De Meulder B, Lefaudeux D, Dahlen SE, Djukanovic R, Sterk PJ, Guo Y, Adcock IM, Chung KF. Clinical and transcriptomic features of persistent exacerbation-prone severe asthma in U-BIOPRED cohort. Clin Transl Med 2022; 12:e816. [PMID: 35474304 PMCID: PMC9043117 DOI: 10.1002/ctm2.816] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/28/2023] Open
Abstract
Background Exacerbation‐prone asthma is a feature of severe disease. However, the basis for its persistency remains unclear. Objectives To determine the clinical and transcriptomic features of frequent exacerbators (FEs) and persistent FEs (PFEs) in the U‐BIOPRED cohort. Methods We compared features of FE (≥2 exacerbations in past year) to infrequent exacerbators (IE, <2 exacerbations) and of PFE with repeat ≥2 exacerbations during the following year to persistent IE (PIE). Transcriptomic data in blood, bronchial and nasal epithelial brushings, bronchial biopsies and sputum cells were analysed by gene set variation analysis for 103 gene signatures. Results Of 317 patients, 62.4% had FE, of whom 63.6% had PFE, while 37.6% had IE, of whom 61.3% had PIE. Using multivariate analysis, FE was associated with short‐acting beta‐agonist use, sinusitis and daily oral corticosteroid use, while PFE was associated with eczema, short‐acting beta‐agonist use and asthma control index. CEA cell adhesion molecule 5 (CEACAM5) was the only differentially expressed transcript in bronchial biopsies between PE and IE. There were no differentially expressed genes in the other four compartments. There were higher expression scores for type 2, T‐helper type‐17 and type 1 pathway signatures together with those associated with viral infections in bronchial biopsies from FE compared to IE, while there were higher expression scores of type 2, type 1 and steroid insensitivity pathway signatures in bronchial biopsies of PFE compared to PIE. Conclusion The FE group and its PFE subgroup are associated with poor asthma control while expressing higher type 1 and type 2 activation pathways compared to IE and PIE, respectively.
Collapse
Affiliation(s)
- Uruj Hoda
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Stelios Pavlidis
- Department of Computing & Data Science Institute, Imperial College London
| | | | - Kentaro Takahashi
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Research Centre for Allergy and Clinical Immunology, Asahi General Hospital, Asahi, Japan
| | | | - Francois Ng Kee Kwong
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Christos Rossios
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | | | - Pankaj Bhavsar
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Matthew Loza
- Janssen Research and Development, High Wycombe, Buckinghamshire, UK
| | | | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille, Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ildiko Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | | | - Florian Singer
- Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, and Department of Paediatrics, Inselspital, University of Bern, Switzerland
| | - Jacek Musial
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Barbro Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrom
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Rene Lutter
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Peter H Howarth
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Massimo Caruso
- Department of Biochemical and Biotechnological Medicine, University of Catania, Catania, Italy
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - Julie Corfield
- AstraZeneca R&D, Molndal, Sweden, and Areteva R&D, Nottingham, UK
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Sven-Erik Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Ratko Djukanovic
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Peter J Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | | |
Collapse
|
42
|
Wu X, Li R, Xu Q, Liu F, Jiang Y, Zhang M, Tong M. Identification of key genes and pathways between mild-moderate and severe asthmatics via bioinformatics analysis. Sci Rep 2022; 12:2549. [PMID: 35169275 PMCID: PMC8847662 DOI: 10.1038/s41598-022-06675-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 01/09/2023] Open
Abstract
Severe asthma is the main reason for death and disability caused by asthma. However, effective biomarkers for severe asthma have not been identified. Here, we aimed to identify potential biomarkers in severe asthma. We identified 202 differentially expressed genes (DEGs) between severe asthma and mild-moderate asthma after integrating the results from GSE69683 and GSE27011 datasets. The enrichment analysis indicated that 202 DEGs were associated with metabolism- and immune-related processes. 10 hub genes were identified by Cytoscape and five of these genes’ AUC (area under the curve) values were greater than 0.6 in GSE69683. The AUC value reached to 0.701 when combined SEC61A1 and ALDH18A1 expression. The expression of the five hub genes was verified in an external dataset. The network analysis revealed that transcription factor (TF) WT1, ZEB1, RERE, FOSL1, and miR-20a may be involved in the development of asthma. In addition, we found cyclosporine and acetaminophen could interact with these hub genes and may be negatively associated with most of the five hub genes according to previous reports. Overall, key genes were identified between mild-moderate and severe asthmatics, which contributed to the understanding of the development of asthma.
Collapse
Affiliation(s)
- Xiaolu Wu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qu Xu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Feng Liu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yue Jiang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Min Zhang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| | - Meiling Tong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| |
Collapse
|
43
|
Williams JG, Joshi R, Haslam D, Yehya N, Jones RL, Paranjpe A, Pujato M, Roskin KM, Lahni PM, Wong HR, Varisco BM. Multi-omic characterization of pediatric ARDS via nasal brushings. Respir Res 2022; 23:181. [PMID: 35804409 PMCID: PMC9270778 DOI: 10.1186/s12931-022-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022] Open
Abstract
RATIONALE While nasal brushing transcriptomics can identify disease subtypes in chronic pulmonary diseases, it is unknown whether this is true in pediatric acute respiratory distress syndrome (PARDS). OBJECTIVES Determine whether nasal transcriptomics and methylomics can identify clinically meaningful PARDS subgroups that reflect important pathobiological processes. METHODS Nasal brushings and serum were collected on days 1, 3, 7, and 14 from control and PARDS subjects from two centers. PARDS duration was the primary endpoint. MEASUREMENTS AND MAIN RESULTS Twenty-four control and 39 PARDS subjects were enrolled. Two nasal methylation patterns were identified. Compared to Methyl Subgroup 1, Subgroup 2 had hypomethylation of inflammatory genes and was enriched for immunocompromised subjects. Four transcriptomic patterns were identified with temporal patterns indicating injury, repair, and regeneration. Over time, both inflammatory (Subgroup B) and cell injury (Subgroup D) patterns transitioned to repair (Subgroup A) and eventually homeostasis (Subgroup C). When control specimens were included, they were largely Subgroup C. In comparison with 17 serum biomarkers, the nasal transcriptome was more predictive of prolonged PARDS. Subjects with initial Transcriptomic Subgroup B or D assignment had median PARDS duration of 8 days compared to 2 in A or C (p = 0.02). For predicting PARDS duration ≥ 3 days, nasal transcriptomics was more sensitive and serum biomarkers more specific. CONCLUSIONS PARDS nasal transcriptome may reflect distal lung injury, repair, and regeneration. A combined nasal PCR and serum biomarker assay could be useful for predictive and diagnostic enrichment. Trial registration Clinicaltrials.gov NCT03539783 May 29, 2018.
Collapse
Affiliation(s)
- James G. Williams
- grid.239573.90000 0000 9025 8099Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7006, Cincinnati, OH 45229 USA
| | - Rashika Joshi
- grid.239573.90000 0000 9025 8099Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7006, Cincinnati, OH 45229 USA
| | - David Haslam
- grid.239573.90000 0000 9025 8099Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Nadir Yehya
- grid.239552.a0000 0001 0680 8770Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.261870.a0000 0001 2326 0313Perlman School of Medicine, University of Philadelphia, Philadelphia, PA USA
| | - Rhonda L. Jones
- grid.239573.90000 0000 9025 8099Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7006, Cincinnati, OH 45229 USA
| | - Aditi Paranjpe
- grid.239573.90000 0000 9025 8099Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Mario Pujato
- Production Informatics, AstraZeneca Oncology Division, Gaithersburg, MD USA
| | - Krishna M. Roskin
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Patrick M. Lahni
- grid.239573.90000 0000 9025 8099Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7006, Cincinnati, OH 45229 USA
| | - Hector R. Wong
- grid.239573.90000 0000 9025 8099Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7006, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Brian M. Varisco
- grid.239573.90000 0000 9025 8099Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7006, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
44
|
Logotheti M, Agioutantis P, Katsaounou P, Loutrari H. Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma. J Pers Med 2021; 11:jpm11121299. [PMID: 34945771 PMCID: PMC8707330 DOI: 10.3390/jpm11121299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a multifactorial inflammatory disorder of the respiratory system characterized by high diversity in clinical manifestations, underlying pathological mechanisms and response to treatment. It is generally established that human microbiota plays an essential role in shaping a healthy immune response, while its perturbation can cause chronic inflammation related to a wide range of diseases, including asthma. Systems biology approaches encompassing microbiome analysis can offer valuable platforms towards a global understanding of asthma complexity and improving patients' classification, status monitoring and therapeutic choices. In the present review, we summarize recent studies exploring the contribution of microbiota dysbiosis to asthma pathogenesis and heterogeneity in the context of asthma phenotypes-endotypes and administered medication. We subsequently focus on emerging efforts to gain deeper insights into microbiota-host interactions driving asthma complexity by integrating microbiome and host multi-omics data. One of the most prominent achievements of these research efforts is the association of refractory neutrophilic asthma with certain microbial signatures, including predominant pathogenic bacterial taxa (such as Proteobacteria phyla, Gammaproteobacteria class, especially species from Haemophilus and Moraxella genera). Overall, despite existing challenges, large-scale multi-omics endeavors may provide promising biomarkers and therapeutic targets for future development of novel microbe-based personalized strategies for diagnosis, prevention and/or treatment of uncontrollable asthma.
Collapse
Affiliation(s)
- Marianthi Logotheti
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Agioutantis
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
| | - Paraskevi Katsaounou
- Pulmonary Dept First ICU, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, Ipsilantou 45-7, 10675 Athens, Greece;
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Correspondence:
| |
Collapse
|
45
|
Suzuki M, Cole JJ, Konno S, Makita H, Kimura H, Nishimura M, Maciewicz RA. Large-scale plasma proteomics can reveal distinct endotypes in chronic obstructive pulmonary disease and severe asthma. Clin Transl Allergy 2021; 11:e12091. [PMID: 34962717 PMCID: PMC8686766 DOI: 10.1002/clt2.12091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Chronic airway diseases including chronic obstructive pulmonary disease (COPD) and asthma are heterogenous in nature and endotypes within are underpinned by complex biology. This study aimed to investigate the utility of proteomic profiling of plasma combined with bioinformatic mining, and to define molecular endotypes and expand our knowledge of the underlying biology in chronic respiratory diseases. METHODS The plasma proteome was evaluated using an aptamer-based affinity proteomics platform (SOMAscan®), representing 1238 proteins in 34 subjects with stable COPD and 51 subjects with stable but severe asthma. For each disease, we evaluated a range of clinical/demographic characteristics including bronchodilator reversibility, blood eosinophilia levels, and smoking history. We applied modified bioinformatic approaches used in the evaluation of RNA transcriptomics. RESULTS Subjects with COPD and severe asthma were distinguished from each other by 365 different protein abundancies, with differential pathway networks and upstream modulators. Furthermore, molecular endotypes within each disease could be defined. The protein groups that defined these endotypes had both known and novel biology including groups significantly enriched in exosomal markers derived from immune/inflammatory cells. Finally, we observed associations to clinical characteristics that previously have been under-explored. CONCLUSION This investigational study evaluating the plasma proteome in clinically-phenotyped subjects with chronic airway diseases provides support that such a method can be used to define molecular endotypes and pathobiological mechanisms that underpins these endotypes. It provided new concepts about the complexity of molecular pathways that define these diseases. In the longer term, such information will help to refine treatment options for defined groups.
Collapse
Affiliation(s)
- Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - John J. Cole
- GLAZgo Discovery CentreUniversity of GlasgowGlasgowUK
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hironi Makita
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Hokkaido Medical Research Institute for Respiratory DiseasesSapporoJapan
| | - Hiroki Kimura
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Hokkaido Medical Research Institute for Respiratory DiseasesSapporoJapan
| | - Rose A. Maciewicz
- GLAZgo Discovery CentreUniversity of GlasgowGlasgowUK
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech UnitAstraZenecaGothenburgSweden
| |
Collapse
|
46
|
Reinke SN, Naz S, Chaleckis R, Gallart-Ayala H, Kolmert J, Kermani NZ, Tiotiu A, Broadhurst DI, Lundqvist A, Olsson H, Ström M, Wheelock ÅM, Gómez C, Ericsson M, Sousa AR, Riley JH, Bates S, Scholfield J, Loza M, Baribaud F, Bakke PS, Caruso M, Chanez P, Fowler SJ, Geiser T, Howarth P, Horváth I, Krug N, Montuschi P, Behndig A, Singer F, Musial J, Shaw DE, Dahlén B, Hu S, Lasky-Su J, Sterk PJ, Chung KF, Djukanovic R, Dahlén SE, Adcock IM, Wheelock CE. Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study. Eur Respir J 2021; 59:13993003.01733-2021. [PMID: 34824054 PMCID: PMC9245194 DOI: 10.1183/13993003.01733-2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Asthma is a heterogeneous disease with poorly defined phenotypes. Severe asthmatics often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS Baseline urine was collected prospectively from healthy participants (n=100), mild-to-moderate asthmatics (n=87) and severe asthmatics (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from severe asthmatics (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS Ninety metabolites were identified, with 40 significantly altered (p<0.05, FDR<0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and mild-to-moderate asthmatics differed significantly from severe asthmatics (p=2.6×10-20), OCS-treated asthmatics differed significantly from non-treated (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the necessity to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.
Collapse
Affiliation(s)
- Stacey N Reinke
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia.,equal contribution
| | - Shama Naz
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,equal contribution
| | - Romanas Chaleckis
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Hector Gallart-Ayala
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johan Kolmert
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Angelica Tiotiu
- National Heart and Lung Institute, Imperial College, London, U.K.,Department of Pulmonology, University Hospital of Nancy, Nancy, France
| | - David I Broadhurst
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Anders Lundqvist
- Respiratory & Immunology, BioPharmaceuticals R&D, DMPK, Research and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Marika Ström
- Respiratory Medicine Unit, K2 Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, K2 Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Cristina Gómez
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ericsson
- Department of Clinical Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | - James Scholfield
- Faculty of Medicine, Southampton University and NIHR Southampton Respiratory Biomedical Research Center, University Hospital Southampton, Southampton, U.K
| | - Matthew Loza
- Janssen Research and Development, High Wycombe, U.K
| | | | - Per S Bakke
- Institute of Medicine, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences and Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille, Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital, University of Bern, Switzerland
| | - Peter Howarth
- Faculty of Medicine, Southampton University and NIHR Southampton Respiratory Biomedical Research Center, University Hospital Southampton, Southampton, U.K
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Florian Singer
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jacek Musial
- Dept of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dominick E Shaw
- Nottingham NIHR Biomedical Research Centre, University of Nottingham, U.K
| | - Barbro Dahlén
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Sile Hu
- Data Science Institute, Imperial College, London, U.K
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, U.K
| | - Ratko Djukanovic
- Faculty of Medicine, Southampton University and NIHR Southampton Respiratory Biomedical Research Center, University Hospital Southampton, Southampton, U.K
| | - Sven-Erik Dahlén
- The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, U.K
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden .,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
47
|
Camiolo MJ, Zhou X, Wei Q, Trejo Bittar HE, Kaminski N, Ray A, Wenzel SE. Machine learning implicates the IL-18 signaling axis in severe asthma. JCI Insight 2021; 6:e149945. [PMID: 34591794 PMCID: PMC8663569 DOI: 10.1172/jci.insight.149945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Asthma is a common disease with profoundly variable natural history and patient morbidity. Heterogeneity has long been appreciated, and much work has focused on identifying subgroups of patients with similar pathobiological underpinnings. Previous studies of the Severe Asthma Research Program (SARP) cohort linked gene expression changes to specific clinical and physiologic characteristics. While invaluable for hypothesis generation, these data include extensive candidate gene lists that complicate target identification and validation. In this analysis, we performed unsupervised clustering of the SARP cohort using bronchial epithelial cell gene expression data, identifying a transcriptional signature for participants suffering exacerbation-prone asthma with impaired lung function. Clinically, participants in this asthma cluster exhibited a mixed inflammatory process and bore transcriptional hallmarks of NF-κB and activator protein 1 (AP-1) activation, despite high corticosteroid exposure. Using supervised machine learning, we found a set of 31 genes that classified patients with high accuracy and could reconstitute clinical and transcriptional hallmarks of our patient clustering in an external cohort. Of these genes, IL18R1 (IL-18 Receptor 1) negatively associated with lung function and was highly expressed in the most severe patient cluster. We validated IL18R1 protein expression in lung tissue and identified downstream NF-κB and AP-1 activity, supporting IL-18 signaling in severe asthma pathogenesis and highlighting this approach for gene and pathway discovery.
Collapse
Affiliation(s)
- Matthew J. Camiolo
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiuxia Zhou
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qi Wei
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E. Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Giannini HM, Meyer NJ. Genetics of Acute Respiratory Distress Syndrome: Pathways to Precision. Crit Care Clin 2021; 37:817-834. [PMID: 34548135 DOI: 10.1016/j.ccc.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Clinical risk factors alone fail to fully explain acute respiratory distress syndrome (ARDS) risk or ARDS death, suggesting that individual risk factors contribute. The goals of genomic ARDS studies include better mechanistic understanding, identifying dysregulated pathways that may be amenable to pharmacologic targeting, using genomic causal inference techniques to find measurable traits with meaning, and deconvoluting ARDS heterogeneity by proving reproducible subpopulations that may share a unique biology. This article discusses the latest advances in ARDS genomics, provides historical perspective, and highlights some of the ways that the coronavirus disease 2019 (COVID-19) pandemic is accelerating genomic ARDS research.
Collapse
Affiliation(s)
- Heather M Giannini
- University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5038 Gates Building, Philadelphia, PA 19104, USA
| | - Nuala J Meyer
- University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5038 Gates Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Platelets, Not an Insignificant Player in Development of Allergic Asthma. Cells 2021; 10:cells10082038. [PMID: 34440807 PMCID: PMC8391764 DOI: 10.3390/cells10082038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a chronic and heterogeneous pulmonary disease in which platelets can be activated in an IgE-mediated pathway and migrate to the airways via CCR3-dependent mechanism. Activated platelets secrete IL-33, Dkk-1, and 5-HT or overexpress CD40L on the cell surfaces to induce Type 2 immune response or interact with TSLP-stimulated myeloid DCs through the RANK-RANKL-dependent manner to tune the sensitization stage of allergic asthma. Additionally, platelets can mediate leukocyte infiltration into the lungs through P-selectin-mediated interaction with PSGL-1 and upregulate integrin expression in activated leukocytes. Platelets release myl9/12 protein to recruit CD4+CD69+ T cells to the inflammatory sites. Bronchoactive mediators, enzymes, and ROS released by platelets also contribute to the pathogenesis of allergic asthma. GM-CSF from platelets inhibits the eosinophil apoptosis, thus enhancing the chronic inflammatory response and tissue damage. Functional alterations in the mitochondria of platelets in allergic asthmatic lungs further confirm the role of platelets in the inflammation response. Given the extensive roles of platelets in allergic asthma, antiplatelet drugs have been tested in some allergic asthma patients. Therefore, elucidating the role of platelets in the pathogenesis of allergic asthma will provide us with new insights and lead to novel approaches in the treatment of this disease.
Collapse
|
50
|
Affiliation(s)
- Christian Martin
- University Hospital Aachen, RWTH, Aachen, Institute of Pharmacology and Toxicology, Aachen, Germany;
| |
Collapse
|