1
|
Xie YL, Modi N, Lopez K, Reiss R, Robledo J, Eichberg C, Hapeela N, Nakabugo E, Anyango I, Arora K, Odero R, Van Heerden J, Zemanay W, Kaipilyawar VS, Kennedy S, Banada P, Nakiyingi L, Joloba ML, Centner C, McCarthy K, Ellner J, Salgame P, Alland D, Dorman SE. Prominence of Mycobacterium tuberculosis biomarkers among sputum culture-negative clinic attendees, independent of Ultra status. J Infect Public Health 2025; 18:102791. [PMID: 40315556 DOI: 10.1016/j.jiph.2025.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Highly-sensitive molecular tests like GeneXpert MTB/RIF Ultra improve detection of paucibacillary pulmonary tuberculosis (TB) but occasionally detect Mycobacterium tuberculosis (Mtb) DNA in sputum from culture-negative individuals, with unclear significance. We hypothesized that Ultra may be detecting culture-negative TB, and manifest in a higher prevalence of TB biomarkers compared to Ultra-negative/culture-negative ('sputum-negative') individuals. METHODS From 1200 symptomatic African adults undergoing evaluation for TB, we identified 66 with discordant results (Ultra-positive, culture-negative), and matched 52 sputum-negative (Ultra-negative, culture-negative) and 30 sputum-positive (Ultra-positive, culture-positive) participants. Over 12 months, participants were assessed for Mtb biomarkers (Mtb growth in augmented or follow-up sputum cultures, Mtb mRNA in baseline sputum, and symptomatic Ultra-positive after baseline) and TB-associated host transcriptional signatures. RESULTS At baseline, TB-associated biomarker(s) were detected in 51.5 % of sputum-discordant versus 59.6 % of sputum-negative participants (p = 0.46), with at least one Mtb biomarker in 16.7 % versus 26.9 % respectively (p = 0.26). Longitudinally, 26.5 % of untreated sputum-discordant versus 41.7 % of untreated sputum-negative participants had Mtb biomarkers (p = 0.17) despite most reporting symptom improvement. Notably, 30 % of untreated sputum-negative participants converted to Ultra-positive at month 2. One sputum-discordant and one sputum-negative participant developed culture-confirmed TB at follow-up. CONCLUSION TB bacterial and host biomarkers were prevalent and no different between sputum-discordant and sputum-negative participants, raising concern for a considerable population of undiagnosed culture-negative TB. These findings parallel new evidence of Mtb aerosolization from sputum-negative individuals and highlight a need for more comprehensive diagnostics that detect sputum culture-negative TB with respect to infectiousness, pathology, and risk of progression.
Collapse
Affiliation(s)
- Yingda L Xie
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Nisha Modi
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Kattya Lopez
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Robert Reiss
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Jorge Robledo
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | - Nchimunya Hapeela
- Division of Medical Microbiology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | | | - Irene Anyango
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - Kiranjot Arora
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Ronald Odero
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - Judi Van Heerden
- Division of Medical Microbiology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Widaad Zemanay
- Division of Medical Microbiology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Vaishnavi S Kaipilyawar
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Samuel Kennedy
- Medical University of South Carolina, Charleston, SC, United States
| | - Padmapriya Banada
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lydia Nakiyingi
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Moses L Joloba
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Chad Centner
- Division of Medical Microbiology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | | | - Jerrold Ellner
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - David Alland
- Department of Medicine and Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Susan E Dorman
- Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
2
|
Gap-Gaupool B, Glenn SM, Milburn E, Turapov O, Crosatti M, Hincks J, Stewart B, Bacon J, Kendall SL, Voskuil MI, Riabova O, Monakhova N, Green J, Waddell SJ, Makarov VA, Mukamolova GV. Nitric oxide induces the distinct invisibility phenotype of Mycobacterium tuberculosis. Commun Biol 2024; 7:1206. [PMID: 39342050 PMCID: PMC11439070 DOI: 10.1038/s42003-024-06912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
During infection Mycobacterium tuberculosis (Mtb) forms physiologically distinct subpopulations that are recalcitrant to treatment and undetectable using standard diagnostics. These difficult to culture or differentially culturable (DC) Mtb are revealed in liquid media, their revival is often stimulated by resuscitation-promoting factors (Rpf) and prevented by Rpf inhibitors. Here, we investigated the role of nitric oxide (NO) in promoting the DC phenotype. Rpf-dependent DC Mtb were detected following infection of interferon-γ-induced macrophages capable of producing NO, but not when inducible NO synthase was inactivated. After exposure of Mtb to a new donor for sustained NO release (named NOD), the majority of viable cells were Rpf-dependent and undetectable on solid media. Gene expression analyses revealed a broad transcriptional response to NOD, including down-regulation of all five rpf genes. The DC phenotype was partially reverted by over-expression of Rpfs which promoted peptidoglycan remodelling. Thus, NO plays a central role in the generation of Rpf-dependent Mtb, with implications for improving tuberculosis diagnostics and treatments.
Collapse
Affiliation(s)
- Brindha Gap-Gaupool
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE1 9HN, UK
| | - Sarah M Glenn
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE1 9HN, UK
| | - Emily Milburn
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE1 9HN, UK
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE1 9HN, UK
| | - Marialuisa Crosatti
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE1 9HN, UK
| | - Jennifer Hincks
- FACS Facility Core Biotechnology Services, University of Leicester, Leicester, LE1 9HN, UK
| | - Bradley Stewart
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE1 9HN, UK
| | - Joanna Bacon
- Discovery Group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, SP4 0JG, UK
| | - Sharon L Kendall
- Centre for Endemic, Emerging and Exotic Disease, the Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Martin I Voskuil
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olga Riabova
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Monakhova
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Jeffrey Green
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Simon J Waddell
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK.
| | - Vadim A Makarov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE1 9HN, UK.
- The National Institute for Health and Care Research Leicester Biomedical Research Centre, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
3
|
Mariner-Llicer C, Goig GA, Torres-Puente M, Vashakidze S, Villamayor LM, Saavedra-Cervera B, Mambuque E, Khurtsilava I, Avaliani Z, Rosenthal A, Gabrielian A, Shurgaia M, Shubladze N, García-Basteiro AL, López MG, Comas I. Genetic diversity within diagnostic sputum samples is mirrored in the culture of Mycobacterium tuberculosis across different settings. Nat Commun 2024; 15:7114. [PMID: 39237504 PMCID: PMC11377819 DOI: 10.1038/s41467-024-51266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Culturing and genomic sequencing of Mycobacterium tuberculosis (MTB) from tuberculosis (TB) cases is the basis for many research and clinical applications. The alternative, culture-free sequencing from diagnostic samples, is promising but poses challenges to obtain and analyse the MTB genome. Paradoxically, culture is assumed to impose a diversity bottleneck, which, if true, would entail unexplored consequences. To unravel this paradox we generate high-quality genomes of sputum-culture pairs from two different settings after developing a workflow for sequencing from sputum and a tailored bioinformatics analysis. Careful downstream comparisons reveal sources of sputum-culture incongruences due to false positive/negative variation associated with factors like low input MTB DNA or variable genomic depths. After accounting for these factors, contrary to the bottleneck dogma, we identify a 97% variant agreement within sputum-culture pairs, with a high correlation also in the variants' frequency (0.98). The combined analysis from five different settings and more than 100 available samples shows that our results can be extrapolated to different TB epidemic scenarios, demonstrating that for the cases tested culture accurately mirrors clinical samples.
Collapse
Affiliation(s)
| | - Galo A Goig
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | | | - Sergo Vashakidze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
| | - Luis M Villamayor
- FISABIO, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, València, Spain
| | - Belén Saavedra-Cervera
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Wellcome Sanger Institute, Hinxton, UK
| | - Edson Mambuque
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Iza Khurtsilava
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- European University, Tbilisi, Georgia
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Marika Shurgaia
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Natalia Shubladze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Alberto L García-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- CIBERINFEC, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Mariana G López
- Instituto de Biomedicina de Valencia, IBV, CSIC, València, Spain.
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia, IBV, CSIC, València, Spain.
- CIBERESP, Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain.
| |
Collapse
|
4
|
Wynn EA, Dide-Agossou C, Mubarak RA, Rossmassler K, Ektnitphong V, Bauman AA, Massoudi LM, Voskuil MI, Robertson GT, Moore CM, Walter ND. Emergence of antibiotic-specific Mycobacterium tuberculosis phenotypes during prolonged treatment of mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.607990. [PMID: 39229030 PMCID: PMC11370397 DOI: 10.1101/2024.08.20.607990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A major challenge in tuberculosis (TB) therapeutics is that antibiotic exposure leads to changes in the physiologic state of M. tuberculosis (Mtb) which may enable the pathogen to withstand treatment. While antibiotic-treated Mtb have been evaluated in short-term in vitro experiments, it is unclear if and how long-term in vivo treatment with diverse antibiotics with varying treatment-shortening activity (sterilizing activity) affect Mtb physiologic states differently. Here, we used SEARCH-TB, a pathogen-targeted RNA-sequencing platform, to characterize the Mtb transcriptome in the BALB/c high-dose aerosol infection mouse model following 4-week treatment with three sterilizing and three non-sterilizing antibiotics. Certain transcriptional changes were concordant among most antibiotics, including decreased expression of genes associated with protein synthesis and metabolism, and the induction of certain genes associated with stress responses. However, the magnitude of this concordant response differed between antibiotics. Sterilizing antibiotics rifampin, pyrazinamide, and bedaquiline generated a more quiescent Mtb state than did non-sterilizing antibiotics isoniazid, ethambutol, and streptomycin, as indicated by decreased expression of genes associated with translation, transcription, secretion of immunogenic proteins, metabolism, and cell wall synthesis. Additionally, we identified distinguishing transcriptional effects specific to each antibiotic, indicating that different mechanisms of action induce distinct patterns of cellular injury. In addition to elucidating Mtb physiologic changes associated with antibiotic stress, this study demonstrates the value of SEARCH-TB as a highly granular pharmacodynamic assay that reveals antibiotic effects that are not apparent based on culture alone.
Collapse
Affiliation(s)
- Elizabeth A Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria Ektnitphong
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Allison A Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lisa M Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Martin I Voskuil
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory T Robertson
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas D Walter
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Xie YL, Eichberg C, Hapeela N, Nakabugo E, Anyango I, Arora K, Korte JE, Odero R, van Heerden J, Zemanay W, Kennedy S, Nabeta P, Hanif M, Rodrigues C, Skrahina A, Stevens W, Dietze R, Liu X, Ellner JJ, Alland D, Joloba ML, Schumacher SG, McCarthy KD, Nakiyingi L, Dorman SE. Xpert MTB/RIF Ultra versus mycobacterial growth indicator tube liquid culture for detection of Mycobacterium tuberculosis in symptomatic adults: a diagnostic accuracy study. THE LANCET. MICROBE 2024; 5:e520-e528. [PMID: 38608680 DOI: 10.1016/s2666-5247(24)00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Xpert MTB/RIF Ultra (Ultra) is an automated molecular test for the detection of Mycobacterium tuberculosis in sputum. We compared the sensitivity of Ultra to that of mycobacterial growth indicator tube (MGIT) liquid culture, considered the most sensitive assay in routine clinical use. METHODS In this prospective, multicentre, cross-sectional diagnostic accuracy study, we used a non-inferiority design to assess whether the sensitivity of a single Ultra test was non-inferior to that of a single liquid culture for detection of M tuberculosis in sputum. We enrolled adults (age ≥18 years) with pulmonary tuberculosis symptoms in 11 countries and each adult provided three sputum specimens with a minimum volume of 2 mL over 2 days. Ultra was done directly on sputum 1, and Ultra and MGIT liquid culture were done on resuspended pellet from sputum 2. Results of MGIT and solid media cultures done on sputum 3 were considered the reference standard. The pre-defined non-inferiority margin was 5·0%. FINDINGS Between Feb 18, 2016, and Dec 4, 2019, we enrolled 2906 participants. 2600 (89%) participants were analysed, including 639 (25%) of 2600 who were positive for tuberculosis by the reference standard. Of the 2357 included in the non-inferiority analysis, 877 (37%) were HIV-positive and 984 (42%) were female. Sensitivity of Ultra performed directly on sputum 1 was non-inferior to that of sputum 2 MGIT culture (MGIT 91·1% vs Ultra 91·9%; difference -0·8 percentage points; 95% CI -2·8 to 1·1). Sensitivity of Ultra performed on sputum 2 pellet was also non-inferior to that of sputum 2 MGIT (MGIT 91·1% vs Ultra 91·9%; difference -0·8 percentage points; -2·7 to 1·0). INTERPRETATION For the detection of M tuberculosis in sputum from adults with respiratory symptoms, there was no difference in sensitivity of a single Ultra test to that of a single MGIT culture. Highly sensitive, rapid molecular approaches for M tuberculosis detection, combined with advances in genotypic methods for drug resistance detection, have potential to replace culture. FUNDING US National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Yingda L Xie
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Nchimunya Hapeela
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Irene Anyango
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - Kiranjot Arora
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Ronald Odero
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - Judi van Heerden
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Widaad Zemanay
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Samuel Kennedy
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Mahmud Hanif
- State TB Training and Demonstration Centre, New Delhi, India
| | | | - Alena Skrahina
- National Reference Laboratory, Republican Scientific and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Wendy Stevens
- Department of Molecular Medicine and Hematology, Faculty of Health Science, School of Pathology, and the National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Xin Liu
- Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jerrold J Ellner
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - David Alland
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Moses L Joloba
- Mycobacteriology Laboratory, Department of Microbiology, School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | | | | | - Lydia Nakiyingi
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Susan E Dorman
- Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
6
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
7
|
Gordhan BG, Padarath K, Sewcharran A, McIvor A, VanNieuwenhze MS, Waja Z, Martinson N, Kana BD. Clinical Strains of Mycobacterium tuberculosis Representing Different Genotype Families Exhibit Distinct Propensities to Adopt the Differentially Culturable State. Pathogens 2024; 13:318. [PMID: 38668273 PMCID: PMC11054447 DOI: 10.3390/pathogens13040318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Growing evidence points to the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens from individuals with active tuberculosis (TB) disease. These bacteria are unable to grow on solid media but can resuscitate in liquid media. Given the epidemiological success of certain clinical genotype families of Mycobacterium tuberculosis, we hypothesize that different strains may have distinct mechanisms of adaptation and tolerance. We used an in vitro carbon starvation model to determine the propensity of strains from lineages 2 and 4 that included the Beijing and LAM families respectively, to generate DCTB. Beijing strains were associated with a greater propensity to produce DCTB compared to LAM strains. Furthermore, LAM strains required culture filtrate (CF) for resuscitation whilst starved Beijing strains were not dependent on CF. Moreover, Beijing strains showed improved resuscitation with cognate CF, suggesting the presence of unique growth stimulatory molecules in this family. Analysis of starved Beijing and LAM strains showed longer cells, which with resuscitation were restored to a shorter length. Cell wall staining with fluorescent D-amino acids identified strain-specific incorporation patterns, indicating that cell surface remodeling during resuscitation was distinct between clinical strains. Collectively, our data demonstrate that M. tuberculosis clinical strains from different genotype lineages have differential propensities to generate DCTB, which may have implications for TB treatment success.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Innovation and the National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2017, South Africa; (B.G.G.); (K.P.); (A.S.); (A.M.)
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Kiyasha Padarath
- Department of Science and Innovation and the National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2017, South Africa; (B.G.G.); (K.P.); (A.S.); (A.M.)
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Astika Sewcharran
- Department of Science and Innovation and the National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2017, South Africa; (B.G.G.); (K.P.); (A.S.); (A.M.)
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Amanda McIvor
- Department of Science and Innovation and the National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2017, South Africa; (B.G.G.); (K.P.); (A.S.); (A.M.)
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | | | - Ziyaad Waja
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg 2017, South Africa; (Z.W.); (N.M.)
| | - Neil Martinson
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg 2017, South Africa; (Z.W.); (N.M.)
- Center for TB Research, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bavesh Davandra Kana
- Department of Science and Innovation and the National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2017, South Africa; (B.G.G.); (K.P.); (A.S.); (A.M.)
- National Health Laboratory Service, Johannesburg 2000, South Africa
| |
Collapse
|
8
|
Kumari N, Sharma R, Ali J, Chandra G, Singh S, Krishnan MY. The use of Mycobacterium tuberculosis H37Ra-infected immunocompetent mice as an in vivo model of persisters. Tuberculosis (Edinb) 2024; 145:102479. [PMID: 38262199 DOI: 10.1016/j.tube.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Persistence of Mycobacterium tuberculosis (Mtb) is one of the challenges to successful treatment of tuberculosis (TB). In vitro models of non-replicating Mtb are used to test the efficacy of new molecules against Mtb persisters. The H37Ra strain is attenuated for growth in macrophages and mice. We validated H37Ra-infected immunocompetent mice for testing anti-TB molecules against slow/non-replicating Mtb in vivo. Swiss mice were infected intravenously with H37Ra and monitored for CFU burden and histopathology for a period of 12 weeks. The bacteria multiplied at a slow pace reaching a maximum load of ∼106 in 8-12 weeks depending on the infection dose, accompanied by time and dose-dependent histopathological changes in the lungs. Surprisingly, four-weeks of treatment with isoniazid-rifampicin-ethambutol-pyrazinamide combination caused only 0.4 log10 and 1 log10 reduction in CFUs in lungs and spleen respectively. The results show that ∼40 % of the H37Ra bacilli in lungs are persisters after 4 weeks of anti-TB therapy. Isoniazid/rifampicin monotherapy also showed similar results. A combination of bedaquiline and isoniazid reduced the CFU counts to <200 (limit of detection), compared to ∼5000 CFUs by isoniazid alone. The study demonstrates an in vivo model of Mtb persisters for testing new leads using a BSL-2 strain.
Collapse
Affiliation(s)
- Neetu Kumari
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Romil Sharma
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Juned Ali
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Gyan Chandra
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Manju Y Krishnan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
9
|
Brown TS, Tang L, Omar SV, Joseph L, Meintjes G, Maartens G, Wasserman S, Shah NS, Farhat MR, Gandhi NR, Ismail N, Brust JCM, Mathema B. Genotype-Phenotype Characterization of Serial Mycobacterium tuberculosis Isolates in Bedaquiline-Resistant Tuberculosis. Clin Infect Dis 2024; 78:269-276. [PMID: 37874928 PMCID: PMC11494438 DOI: 10.1093/cid/ciad596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Emerging resistance to bedaquiline (BDQ) threatens to undermine advances in the treatment of drug-resistant tuberculosis (DRTB). Characterizing serial Mycobacterium tuberculosis (Mtb) isolates collected during BDQ-based treatment can provide insights into the etiologies of BDQ resistance in this important group of DRTB patients. METHODS We measured mycobacteria growth indicator tube (MGIT)-based BDQ minimum inhibitory concentrations (MICs) of Mtb isolates collected from 195 individuals with no prior BDQ exposure who were receiving BDQ-based treatment for DRTB. We conducted whole-genome sequencing on serial Mtb isolates from all participants who had any isolate with a BDQ MIC >1 collected before or after starting treatment (95 total Mtb isolates from 24 participants). RESULTS Sixteen of 24 participants had BDQ-resistant TB (MGIT MIC ≥4 µg/mL) and 8 had BDQ-intermediate infections (MGIT MIC = 2 µg/mL). Participants with pre-existing resistance outnumbered those with resistance acquired during treatment, and 8 of 24 participants had polyclonal infections. BDQ resistance was observed across multiple Mtb strain types and involved a diverse catalog of mmpR5 (Rv0678) mutations, but no mutations in atpE or pepQ. Nine pairs of participants shared genetically similar isolates separated by <5 single nucleotide polymorphisms, concerning for potential transmitted BDQ resistance. CONCLUSIONS BDQ-resistant TB can arise via multiple, overlapping processes, including transmission of strains with pre-existing resistance. Capturing the within-host diversity of these infections could potentially improve clinical diagnosis, population-level surveillance, and molecular diagnostic test development.
Collapse
Affiliation(s)
- Tyler S Brown
- Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Linrui Tang
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Molecular Medicine & Hematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lavania Joseph
- Centre for Tuberculosis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - N Sarita Shah
- Departments of Epidemiology and Global Health and Medicine, Rollins School of Public Health and Emory School of Medicine, Atlanta, Georgia, USA
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Neel R Gandhi
- Departments of Epidemiology and Global Health and Medicine, Rollins School of Public Health and Emory School of Medicine, Atlanta, Georgia, USA
| | - Nazir Ismail
- Centre for Tuberculosis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - James C M Brust
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Barun Mathema
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
10
|
Rahman KMT, Butzin NC. Counter-on-chip for bacterial cell quantification, growth, and live-dead estimations. Sci Rep 2024; 14:782. [PMID: 38191788 PMCID: PMC10774380 DOI: 10.1038/s41598-023-51014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
Quantifying bacterial cell numbers is crucial for experimental assessment and reproducibility, but the current technologies have limitations. The commonly used colony forming units (CFU) method causes a time delay in determining the actual numbers. Manual microscope counts are often error-prone for submicron bacteria. Automated systems are costly, require specialized knowledge, and are erroneous when counting smaller bacteria. In this study, we took a different approach by constructing three sequential generations (G1, G2, and G3) of counter-on-chip that accurately and timely count small particles and/or bacterial cells. We employed 2-photon polymerization (2PP) fabrication technology; and optimized the printing and molding process to produce high-quality, reproducible, accurate, and efficient counters. Our straightforward and refined methodology has shown itself to be highly effective in fabricating structures, allowing for the rapid construction of polydimethylsiloxane (PDMS)-based microfluidic devices. The G1 comprises three counting chambers with a depth of 20 µm, which showed accurate counting of 1 µm and 5 µm microbeads. G2 and G3 have eight counting chambers with depths of 20 µm and 5 µm, respectively, and can quickly and precisely count Escherichia coli cells. These systems are reusable, accurate, and easy to use (compared to CFU/ml). The G3 device can give (1) accurate bacterial counts, (2) serve as a growth chamber for bacteria, and (3) allow for live/dead bacterial cell estimates using staining kits or growth assay activities (live imaging, cell tracking, and counting). We made these devices out of necessity; we know no device on the market that encompasses all these features.
Collapse
Affiliation(s)
- K M Taufiqur Rahman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, 57006, USA.
| |
Collapse
|
11
|
Ealand CS, Sewcharran A, Peters JS, Gordhan BG, Kamariza M, Bertozzi CR, Waja Z, Martinson NA, Kana BD. The performance of tongue swabs for detection of pulmonary tuberculosis. Front Cell Infect Microbiol 2023; 13:1186191. [PMID: 37743867 PMCID: PMC10512057 DOI: 10.3389/fcimb.2023.1186191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Oral and/or tongue swabs have demonstrated ability to detect Mycobacterium tuberculosis (Mtb) in adults with pulmonary tuberculosis (TB). Swabs provide useful alternative specimens for diagnosis of TB using molecular assays however, the diagnostic pickup by culture requires further improvement and development. Several studies identified the presence of differentially culturable tubercle bacilli (DCTB) populations in a variety of clinical specimens. These organisms do not grow in routine laboratory media and require growth factors in the form of culture filtrate (CF) from logarithmic phase cultures of Mtb H37Rv. Methods Herein, we compared the diagnostic performance of sputum and tongue swabs using Mycobacterial Growth Indicator Tube (MGIT) assays, Auramine smear, GeneXpert and DCTB assays supplemented with or without CF. Results From 89 eligible participants, 83 (93%), 66 (74%) and 79 (89%) were sputum positive by MGIT, smear and GeneXpert, respectively. The corresponding tongue swabs displayed a lower sensitivity with 39 (44%), 2 (2.0%) and 18 (20%) participants respectively for the same tests. We aimed to improve the diagnostic yield by utilizing DCTB assays. Sputum samples were associated with a higher positivity rate for CF-augmented DCTB at 82/89 (92%) relative to tongue swabs at 36/89 (40%). Similarly, sputum samples had a higher positivity rate for DCTB populations that were CF-independent at 64/89 (72%) relative to tongue swabs at 26/89 (29%). DCTB positivity increased significantly, relative to MGIT culture, for tongue swabs taken from HIV-positive participants. We next tested whether the use of an alternative smear stain, DMN-Trehalose, would improve diagnostic yield but noted no substantial increase. Discussion Collectively, our data show that while tongue swabs yield lower bacterial numbers for diagnostic testing, the use of growth supplementation may improve detection of TB particularly in HIV-positive people but this requires further interrogation in larger studies.
Collapse
Affiliation(s)
- Christopher S. Ealand
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Astika Sewcharran
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Julian S. Peters
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bhavna G. Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Mireille Kamariza
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Chemistry, Stanford University, Stanford, CA, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Ziyaad Waja
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa
| | - Neil A. Martinson
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Centre for Tuberculosis Research, Baltimore, MD, United States
| | - Bavesh D. Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
12
|
Lanni A, Iacobino A, Fattorini L, Giannoni F. Eradication of Drug-Tolerant Mycobacterium tuberculosis 2022: Where We Stand. Microorganisms 2023; 11:1511. [PMID: 37375013 PMCID: PMC10301435 DOI: 10.3390/microorganisms11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The lungs of tuberculosis (TB) patients contain a spectrum of granulomatous lesions, ranging from solid and well-vascularized cellular granulomas to avascular caseous granulomas. In solid granulomas, current therapy kills actively replicating (AR) intracellular bacilli, while in low-vascularized caseous granulomas the low-oxygen tension stimulates aerobic and microaerophilic AR bacilli to transit into non-replicating (NR), drug-tolerant and extracellular stages. These stages, which do not have genetic mutations and are often referred to as persisters, are difficult to eradicate due to low drug penetration inside the caseum and mycobacterial cell walls. The sputum of TB patients also contains viable bacilli called differentially detectable (DD) cells that, unlike persisters, grow in liquid, but not in solid media. This review provides a comprehensive update on drug combinations killing in vitro AR and drug-tolerant bacilli (persisters and DD cells), and sterilizing Mycobacterium tuberculosis-infected BALB/c and caseum-forming C3HeB/FeJ mice. These observations have been important for testing new drug combinations in noninferiority clinical trials, in order to shorten the duration of current regimens against TB. In 2022, the World Health Organization, following the results of one of these trials, supported the use of a 4-month regimen for the treatment of drug-susceptible TB as a possible alternative to the current 6-month regimen.
Collapse
Affiliation(s)
| | | | | | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| |
Collapse
|
13
|
Kendall EA, Wong EB. Do chest x-ray-positive, sputum-negative individuals warrant more attention during tuberculosis screening? THE LANCET RESPIRATORY MEDICINE 2023; 11:304-306. [PMID: 36966790 DOI: 10.1016/s2213-2600(23)00085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
|
14
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
15
|
Peters JS, McIvor A, Papadopoulos AO, Masangana T, Gordhan BG, Waja Z, Otwombe K, Letutu M, Kamariza M, Sterling TR, Bertozzi CR, Martinson NA, Kana BD. Differentially culturable tubercle bacteria as a measure of tuberculosis treatment response. Front Cell Infect Microbiol 2023; 12:1064148. [PMID: 36710965 PMCID: PMC9877613 DOI: 10.3389/fcimb.2022.1064148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Routine efficacy assessments of new tuberculosis (TB) treatments include quantitative solid culture or routine liquid culture, which likely miss quantification of drug tolerant bacteria. To improve these assessments, comparative analyses using additional measures such as quantification of differentially culturable tubercle bacteria (DCTB) are required. Essential for enabling this is a comparative measure of TB treatment responses using routine solid and liquid culture with liquid limiting dilutions (LLDs) that detect DCTB in sputum. Methods We recruited treatment-naïve TB patients, with and without HIV-infection, and serially quantified their sputum for DCTB over the course of treatment. Results Serial sputum sampling in 73 individuals during their first 14 days of treatment demonstrated that clearance of DCTB was slower compared to routine solid culture. Treatment response appeared to be characterized by four patterns: (1) Classic bi-phasic bacterial clearance; (2) early non-responders with slower clearance; (3) paradoxical worsening with an increase in bacterial count upon treatment initiation; and (4) non-responders with no change in bacterial load. During treatment, LLDs displayed greater bacterial yield when compared with quantitative solid culture. Upon treatment completion, 74% [46/62] of specimens displayed residual DCTB and within this group, two recurrences were diagnosed. Residual DCTB upon treatment completion was associated with a higher proportion of MGIT culture, GeneXpert, and smear positivity at two months post treatment. No recurrences occurred in the group without residual DCTB. Discussion These data indicate that DCTB assays detect distinct subpopulations of organisms in sputum that are missed by routine solid and liquid culture, and offer important alternatives for efficacy assessments of new TB treatments. The residual DCTB observed upon treatment completion suggests that TB treatment does not always eliminate all bacterial populations, a finding that should be investigated in larger cohorts.
Collapse
Affiliation(s)
- Julian S. Peters
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda McIvor
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea O. Papadopoulos
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tshepiso Masangana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bhavna G. Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Matebogo Letutu
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Mireille Kamariza
- Department of Biology, Stanford University, Stanford, CA, United States
| | | | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, United States,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Neil A. Martinson
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa,Johns Hopkins University Center for TB Research, Baltimore, MD, United States
| | - Bavesh D. Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Bavesh D. Kana,
| |
Collapse
|
16
|
Zainabadi K, Saito K, Mishra S, Walsh KF, Mathurin LD, Vilbrun SC, Ocheretina O, Pape JW, Fitzgerald DW, Nathan CF, Lee MH. Transcriptional Biomarkers of Differentially Detectable Mycobacterium tuberculosis in Patient Sputum. mBio 2022; 13:e0270122. [PMID: 36326252 PMCID: PMC9765512 DOI: 10.1128/mbio.02701-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Certain populations of Mycobacterium tuberculosis go undetected by standard diagnostics but can be enumerated using limiting dilution assays. These differentially detectable M. tuberculosis (DD M. tuberculosis) populations may have relevance for persistence due to their drug tolerance. It is unclear how well DD M. tuberculosis from patients is modeled by a recently developed in vitro model in which M. tuberculosis starved in phosphate-buffered saline is incubated with rifampin to produce DD M. tuberculosis (the PBS-RIF model). This study attempted to answer this question. We selected 14 genes that displayed differential expression in the PBS-RIF model and evaluated their expression in patient sputa containing various proportions of DD M. tuberculosis. The expression of 12/14 genes correlated with the relative abundance of DD M. tuberculosis in patient sputa. Culture filtrate (CF), which promotes recovery of DD M. tuberculosis from certain patient sputa, improved these correlations in most cases. The gene whose reduced expression relative to M. tuberculosis 16S rRNA showed the greatest association with the presence and relative abundance of DD M. tuberculosis in patient sputa, icl1, was recently shown to play a functional role in restraining DD M. tuberculosis formation in the PBS-RIF model. Expression of icl1, combined with two additional DD M. tuberculosis-related genes, showed strong performance for predicting the presence or absence of DD M. tuberculosis in patient sputa (receiver operating characteristic [ROC] area under the curve [AUC] = 0.88). Thus, the in vitro DD M. tuberculosis model developed by Saito et al. (K. Saito, T. Warrier, S. Somersan-Karakaya, L. Kaminski, et al., Proc Natl Acad Sci U S A 114:E4832-E4840, 2017, https://doi.org/10.1073/pnas.1705385114) bears a resemblance to DD M. tuberculosis found in tuberculosis (TB) patients, and DD M. tuberculosis transcriptional profiles may be useful for monitoring DD M. tuberculosis populations in patient sputum. IMPORTANCE Differentially detectable M. tuberculosis (DD M. tuberculosis), which is detectable by limiting dilution assays but not by CFU, is present and enriched for in TB patient sputum after initiation of first-line therapy. These cryptic cells may play a role in disease persistence due to their phenotypic tolerance to anti-TB drugs. A recently developed in vitro model of DD M. tuberculosis (the PBS-RIF model) has expanded our understanding of these cells, though how well it translates to DD M. tuberculosis in patients is currently unknown. To answer this question, we selected 14 genes that displayed differential expression in the PBS-RIF model and evaluated their expression in TB patient sputa. We found that 12/14 of these genes showed a similar expression profile in patient sputa that correlated with the relative abundance of DD M. tuberculosis. Further, the expression of three of these genes showed strong performance for predicting the presence or absence of DD M. tuberculosis in patient sputa. The use of DD M. tuberculosis transcriptional profiles may allow for easier monitoring of DD M. tuberculosis populations in patient sputum in comparison to limiting dilution assays.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
| | - Kohta Saito
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Saurabh Mishra
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Kathleen Frances Walsh
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
- Department of Medicine, Division of General Internal Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Oksana Ocheretina
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
| | - Jean William Pape
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
- Les Centres GHESKIO, Port-au-Prince, Haiti
| | | | - Carl F. Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Myung Hee Lee
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
17
|
Parbhoo T, Schurz H, Mouton JM, Sampson SL. Persistence of Mycobacterium tuberculosis in response to infection burden and host-induced stressors. Front Cell Infect Microbiol 2022; 12:981827. [PMID: 36530432 PMCID: PMC9755487 DOI: 10.3389/fcimb.2022.981827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction As infection with Mycobacterium tuberculosis progresses, the bacilli experience various degrees of host stressors in the macrophage phagosome such as low pH, nutrient deprivation, or exposure to toxic agents, which promotes cell-to-cell phenotypic variation. This includes a physiologically viable but non- or slowly replicating persister subpopulation, which is characterised by a loss of growth on solid media, while remaining metabolically active. Persisters additionally evade the host immune response and macrophage antimicrobial processes by adapting their metabolic pathways to maintain survival and persistence in the host. Methods A flow cytometry-based dual-fluorescent replication reporter assay, termed fluorescence dilution, provided a culture-independent method to characterize the single-cell replication dynamics of M. tuberculosis persisters following macrophage infection. Fluorescence dilution in combination with reference counting beads and a metabolic esterase reactive probe, calcein violet AM, provided an effective approach to enumerate and characterize the phenotypic heterogeneity within M. tuberculosis following macrophage infection. Results Persister formation appeared dependent on the initial infection burden and intracellular bacterial burden. However, inhibition of phagocytosis by cytochalasin D treatment resulted in a significantly higher median percentage of persisters compared to inhibition of phagosome acidification by bafilomycin A1 treatment. Discussion Our results suggest that different host factors differentially impact the intracellular bacterial burden, adaptive mechanisms and entry into persistence in macrophages.
Collapse
|
18
|
Beltran CGG, Venter R, Mann TN, Davis JH, Kana BD, Walzl G. Culture filtrate supplementation can be used to improve Mycobacterium tuberculosis culture positivity for spinal tuberculosis diagnosis. Front Cell Infect Microbiol 2022; 12:1065893. [PMID: 36506008 PMCID: PMC9732374 DOI: 10.3389/fcimb.2022.1065893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Culture remains the gold standard to diagnose spinal tuberculosis (STB) despite the paucibacillary nature of the disease. Current methods can take up to 42 days to yield a result, delaying the ability to rapidly detect drug resistance. Studies have demonstrated the use of supplementation with culture filtrate (CF) from an axenic culture of Mycobacterium tuberculosis (Mtb) as a source of growth factors to improve culture rates. Our objective was to test a modified culture assay, utilizing CF supplemented media (CFSM), to improve culture positivity rates for suspected STB. Twelve patients with suspected STB were assessed by conventional culture (BACTEC™ MGIT 960), GeneXpert™ and standard histopathological examination. Spinal biopsies were taken from areas of diseased vertebral tissue or abscess, predetermined from MRI. Additional biopsies were obtained to assess CFSM for improved detection and faster culture of Mtb. All cases were diagnosed as STB and treated empirically for tuberculosis based on either bacteriological evidence (GeneXpert™, MGIT and/or CFSM positive), or based on clinical presentation. 5 specimens (45.45%) were positive for Mtb DNA as detected by GeneXpert™ and 1 specimen (8.33%) was cultured using MGIT (time to detection; 18 days). CFSM was able to culture 7 specimens (58.3%), with all CFSM positive specimens yielding a culture within 14 days. Two samples were positive only using the CFSM assay pointing to additional yield for diagnostic workup. Modification of standard culture can improve detection of Mtb and reduce time to positivity in individuals with STB where culture material is a requirement.
Collapse
Affiliation(s)
- Caroline G. G. Beltran
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,*Correspondence: Caroline G. G. Beltran,
| | - Rouxjeane Venter
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Theresa N. Mann
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Johan H. Davis
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bavesh D. Kana
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa,Medical Research Council Centre for the Aids Programme of Research in South Africa (MRC-CAPRISA) HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa
| | - Gerhard Walzl
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Chengalroyen MD, Beukes GM, Otwombe K, Gordhan BG, Martinson N, Kana B. The detection of mixed tuberculosis infections using culture filtrate and resuscitation promoting factor deficient filtrate. Front Cell Infect Microbiol 2022; 12:1072073. [PMID: 36506007 PMCID: PMC9729742 DOI: 10.3389/fcimb.2022.1072073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) infected individuals harbor a heterogenous population of differentially culturable tubercle bacilli (DCTB). Herein, we describe how DCTB assays using culture filtrate either containing or deficient in resuscitation promoting factors can uncover mixed infections. We demonstrate that Mycobacterium tuberculosis (Mtb) strain genotypes can be separated in DCTB assays based on their selective requirement for growth stimulatory factors. Beijing mixed infections appear to be associated with a higher bacterial load and reduced reliance on growth stimulatory factors. These data have important implications for identifying mixed infections and hetero-resistance, which in turn can affect selection of treatment regimen and establishment of transmission links.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa
| | - Germar M. Beukes
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bhavna G. Gordhan
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa,Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Center for TB Research, Johns Hopkins University, Baltimore, MD, United States
| | - Bavesh Kana
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Bavesh Kana,
| |
Collapse
|
20
|
Mishra S, Saito K. Clinically encountered growth phenotypes of tuberculosis-causing bacilli and their in vitro study: A review. Front Cell Infect Microbiol 2022; 12:1029111. [PMID: 36439231 PMCID: PMC9684195 DOI: 10.3389/fcimb.2022.1029111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 07/11/2024] Open
Abstract
The clinical manifestations of tuberculosis (TB) vary widely in severity, site of infection, and outcomes of treatment-leading to simultaneous efforts to individualize therapy safely and to search for shorter regimens that can be successfully used across the clinical spectrum. In these endeavors, clinicians and researchers alike employ mycobacterial culture in rich media. However, even within the same patient, individual bacilli among the population can exhibit substantial variability in their culturability. Bacilli in vitro also demonstrate substantial heterogeneity in replication rate and cultivation requirements, as well as susceptibility to killing by antimicrobials. Understanding parallels in clinical, ex vivo and in vitro growth phenotype diversity may be key to identifying those phenotypes responsible for treatment failure, relapse, and the reactivation of bacilli that progresses TB infection to disease. This review briefly summarizes the current role of mycobacterial culture in the care of patients with TB and the ex vivo evidence of variability in TB culturability. We then discuss current advances in in vitro models that study heterogenous subpopulations within a genetically identical bulk culture, with an emphasis on the effect of oxidative stress on bacillary cultivation requirements. The review highlights the complexity that heterogeneity in mycobacterial growth brings to the interpretation of culture in clinical settings and research. It also underscores the intricacies present in the interplay between growth phenotypes and antimicrobial susceptibility. Better understanding of population dynamics and growth requirements over time and space promises to aid both the attempts to individualize TB treatment and to find uniformly effective therapies.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Kohta Saito
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
21
|
Brown TS, Robinson DA, Buckee CO, Mathema B. Connecting the dots: understanding how human mobility shapes TB epidemics. Trends Microbiol 2022; 30:1036-1044. [PMID: 35597716 PMCID: PMC10068677 DOI: 10.1016/j.tim.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/13/2023]
Abstract
Tuberculosis (TB) remains a leading infectious cause of death worldwide. Reducing TB infections and TB-related deaths rests ultimately on stopping forward transmission from infectious to susceptible individuals. Critical to this effort is understanding how human host mobility shapes the transmission and dispersal of new or existing strains of Mycobacterium tuberculosis (Mtb). Important questions remain unanswered. What kinds of mobility, over what temporal and spatial scales, facilitate TB transmission? How do human mobility patterns influence the dispersal of novel Mtb strains, including emergent drug-resistant strains? This review summarizes the current state of knowledge on mobility and TB epidemic dynamics, using examples from three topic areas, including inference of genetic and spatial clustering of infections, delineating source-sink dynamics, and mapping the dispersal of novel TB strains, to examine scientific questions and methodological issues within this topic. We also review new data sources for measuring human mobility, including mobile phone-associated movement data, and discuss important limitations on their use in TB epidemiology.
Collapse
Affiliation(s)
- Tyler S Brown
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA
| | - D Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol 2022; 20:685-701. [PMID: 35478222 PMCID: PMC9045034 DOI: 10.1038/s41579-022-00731-y] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Despite two decades of intensified research to understand and cure tuberculosis disease, biological uncertainties remain and hamper progress. However, owing to collaborative initiatives including academia, the pharmaceutical industry and non-for-profit organizations, the drug candidate pipeline is promising. This exceptional success comes with the inherent challenge of prioritizing multidrug regimens for clinical trials and revamping trial designs to accelerate regimen development and capitalize on drug discovery breakthroughs. Most wanted are markers of progression from latent infection to active pulmonary disease, markers of drug response and predictors of relapse, in vitro tools to uncover synergies that translate clinically and animal models to reliably assess the treatment shortening potential of new regimens. In this Review, we highlight the benefits and challenges of 'one-size-fits-all' regimens and treatment duration versus individualized therapy based on disease severity and host and pathogen characteristics, considering scientific and operational perspectives.
Collapse
Affiliation(s)
- Véronique A Dartois
- Center for Discovery and Innovation, and Hackensack Meridian School of Medicine, Department of Medical Sciences, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| |
Collapse
|
23
|
Coleman M, Martinez L, Theron G, Wood R, Marais B. Mycobacterium tuberculosis Transmission in High-Incidence Settings-New Paradigms and Insights. Pathogens 2022; 11:1228. [PMID: 36364978 PMCID: PMC9695830 DOI: 10.3390/pathogens11111228] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis has affected humankind for thousands of years, but a deeper understanding of its cause and transmission only arose after Robert Koch discovered Mycobacterium tuberculosis in 1882. Valuable insight has been gained since, but the accumulation of knowledge has been frustratingly slow and incomplete for a pathogen that remains the number one infectious disease killer on the planet. Contrast that to the rapid progress that has been made in our understanding SARS-CoV-2 (the cause of COVID-19) aerobiology and transmission. In this Review, we discuss important historical and contemporary insights into M. tuberculosis transmission. Historical insights describing the principles of aerosol transmission, as well as relevant pathogen, host and environment factors are described. Furthermore, novel insights into asymptomatic and subclinical tuberculosis, and the potential role this may play in population-level transmission is discussed. Progress towards understanding the full spectrum of M. tuberculosis transmission in high-burden settings has been hampered by sub-optimal diagnostic tools, limited basic science exploration and inadequate study designs. We propose that, as a tuberculosis field, we must learn from and capitalize on the novel insights and methods that have been developed to investigate SARS-CoV-2 transmission to limit ongoing tuberculosis transmission, which sustains the global pandemic.
Collapse
Affiliation(s)
- Mikaela Coleman
- WHO Collaborating Centre for Tuberculosis and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney 2006, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia
| | - Leonardo Martinez
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Robin Wood
- Desmond Tutu Health Foundation and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Ben Marais
- WHO Collaborating Centre for Tuberculosis and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
24
|
Zainabadi K, Lee MH, Walsh KF, Vilbrun SC, Mathurin LD, Ocheretina O, Pape JW, Fitzgerald DW. An optimized method for purifying, detecting and quantifying Mycobacterium tuberculosis RNA from sputum for monitoring treatment response in TB patients. Sci Rep 2022; 12:17382. [PMID: 36253384 PMCID: PMC9574834 DOI: 10.1038/s41598-022-19985-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Diagnostics that more accurately detect and quantify viable Mycobacterium tuberculosis (Mtb) in the sputum of patients undergoing therapy are needed. Current culture- and molecular-based tests have shown limited efficacy for monitoring treatment response in TB patients, either due to the presence of viable sub-populations of Mtb which fail to grow under standard culture conditions (termed differentially detectable/culturable Mtb, DD Mtb) or the prolonged half-life of Mtb DNA in sputum. Here, we report an optimized RNA-based method for detecting and quantifying viable Mtb from patient sputum during the course of therapy. We first empirically derived a novel RNA extraction protocol from sputum that improves recovery of Mtb RNA while almost completely eliminating contamination from Mtb DNA and host nucleic acids. Next, we identified five Mtb 16S rRNA primer sets with varying limits of detection that were capable of distinguishing between live versus dead H37Rv Mtb. This combined protocol was then tested on sputa from a longitudinal cohort of patients receiving therapy for drug sensitive (DS) or drug resistant (DR) TB with first-line or second-line regimens, respectively. Results were compared with that of culture, including CFU, BACTEC MGIT, and a limiting dilution assay capable of detecting DD Mtb. The five 16S rRNA primer sets positively identified nearly all (range 94-100%) culture positive sputa, and a portion (19-37%) of culture negative sputa. In comparison, ten highly expressed Mtb mRNAs showed positivity in 72-86% of culture positive sputa, and in 0-13% of culture negative sputa. Two of the five 16S rRNA primer sets were able to positively identify 100% of culture positive sputa, and when tested on culture negative sputa from the DS cohort at 2 months post-initiation of therapy, identified 40% of samples as positive; a percentage that is in line with expected treatment failure rates when first-line therapy is discontinued early. These two primer sets also detected 16S rRNA in 13-20% of sputa at 6 months post-initiation of therapy in the DR cohort. Cycle threshold values for 16S rRNA showed a strong correlation with Mtb numbers as determined by culture (R > 0.87), including as Mtb numbers declined during the course of treatment with first-line and second-line regimens. The optimized molecular assay outlined here may have utility for monitoring treatment response in TB patients.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Center for Global Health, Weill Cornell Medicine, New York, NY, USA.
| | - Myung Hee Lee
- Center for Global Health, Weill Cornell Medicine, New York, NY, USA
| | - Kathleen Frances Walsh
- Center for Global Health, Weill Cornell Medicine, New York, NY, USA
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Jean William Pape
- Center for Global Health, Weill Cornell Medicine, New York, NY, USA
- Les Centres GHESKIO, Port-au-Prince, Haiti
| | | |
Collapse
|
25
|
Stanley S, Liu Q, Fortune SM. Mycobacterium tuberculosis functional genetic diversity, altered drug sensitivity, and precision medicine. Front Cell Infect Microbiol 2022; 12:1007958. [PMID: 36262182 PMCID: PMC9574059 DOI: 10.3389/fcimb.2022.1007958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
In the face of the unrelenting global burden of tuberculosis (TB), antibiotics remain our most effective tools to save lives and control the spread of Mycobacterium tuberculosis (Mtb). However, we confront a dual challenge in our use of antibiotics: simplifying and shortening the TB drug regimen while also limiting the emergence and propagation of antibiotic resistance. This task is now more feasible due to the increasing availability of bacterial genomic data at or near the point of care. These resources create an opportunity to envision how integration of bacterial genetic determinants of antibiotic response into treatment algorithms might transform TB care. Historically, Mtb drug resistance studies focused on mutations in genes encoding antibiotic targets and the resulting increases in the minimal inhibitory concentrations (MICs) above a breakpoint value. But recent progress in elucidating the effects of functional genetic diversity in Mtb has revealed various genetic loci that are associated with drug phenotypes such as low-level MIC increases and tolerance which predict the development of resistance and treatment failure. As a result, we are now poised to advance precision medicine approaches in TB treatment. By incorporating information regarding Mtb genetic characteristics into the development of drug regimens, clinical care which tailors antibiotic treatment to maximize the likelihood of success has come into reach.
Collapse
Affiliation(s)
| | | | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
26
|
Liebenberg D, Gordhan BG, Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol 2022; 12:943545. [PMID: 36211964 PMCID: PMC9538507 DOI: 10.3389/fcimb.2022.943545] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023] Open
Abstract
Drug resistant tuberculosis contributes significantly to the global burden of antimicrobial resistance, often consuming a large proportion of the healthcare budget and associated resources in many endemic countries. The rapid emergence of resistance to newer tuberculosis therapies signals the need to ensure appropriate antibiotic stewardship, together with a concerted drive to develop new regimens that are active against currently circulating drug resistant strains. Herein, we highlight that the current burden of drug resistant tuberculosis is driven by a combination of ongoing transmission and the intra-patient evolution of resistance through several mechanisms. Global control of tuberculosis will require interventions that effectively address these and related aspects. Interrupting tuberculosis transmission is dependent on the availability of novel rapid diagnostics which provide accurate results, as near-patient as is possible, together with appropriate linkage to care. Contact tracing, longitudinal follow-up for symptoms and active mapping of social contacts are essential elements to curb further community-wide spread of drug resistant strains. Appropriate prophylaxis for contacts of drug resistant index cases is imperative to limit disease progression and subsequent transmission. Preventing the evolution of drug resistant strains will require the development of shorter regimens that rapidly eliminate all populations of mycobacteria, whilst concurrently limiting bacterial metabolic processes that drive drug tolerance, mutagenesis and the ultimate emergence of resistance. Drug discovery programs that specifically target bacterial genetic determinants associated with these processes will be paramount to tuberculosis eradication. In addition, the development of appropriate clinical endpoints that quantify drug tolerant organisms in sputum, such as differentially culturable/detectable tubercle bacteria is necessary to accurately assess the potential of new therapies to effectively shorten treatment duration. When combined, this holistic approach to addressing the critical problems associated with drug resistance will support delivery of quality care to patients suffering from tuberculosis and bolster efforts to eradicate this disease.
Collapse
|
27
|
Heyckendorf J, Georghiou SB, Frahm N, Heinrich N, Kontsevaya I, Reimann M, Holtzman D, Imperial M, Cirillo DM, Gillespie SH, Ruhwald M, on behalf of the UNITE4TB Consortium. Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies. Clin Microbiol Rev 2022; 35:e0022721. [PMID: 35311552 PMCID: PMC9491169 DOI: 10.1128/cmr.00227-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the advent of new diagnostics, drugs and regimens, tuberculosis (TB) remains a global public health threat. A significant challenge for TB control efforts has been the monitoring of TB therapy and determination of TB treatment success. Current recommendations for TB treatment monitoring rely on sputum and culture conversion, which have low sensitivity and long turnaround times, present biohazard risk, and are prone to contamination, undermining their usefulness as clinical treatment monitoring tools and for drug development. We review the pipeline of molecular technologies and assays that serve as suitable substitutes for current culture-based readouts for treatment response and outcome with the potential to change TB therapy monitoring and accelerate drug development.
Collapse
Affiliation(s)
- Jan Heyckendorf
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | | | - Nicole Frahm
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Norbert Heinrich
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Munich, Germany
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Maja Reimann
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - David Holtzman
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Marjorie Imperial
- University of California San Francisco, San Francisco, California, USA, United States
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stephen H. Gillespie
- School of Medicine, University of St Andrewsgrid.11914.3c, St Andrews, Fife, Scotland
| | - Morten Ruhwald
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | | |
Collapse
|
28
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
29
|
Gordhan BG, Sewcharran A, Letsoalo M, Chinappa T, Yende-Zuma N, Padayatchi N, Naidoo K, Kana BD. Detection of differentially culturable tubercle bacteria in sputum from drug-resistant tuberculosis patients. Front Cell Infect Microbiol 2022; 12:949370. [PMID: 36159642 PMCID: PMC9500503 DOI: 10.3389/fcimb.2022.949370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies described the presence of non-replicating, drug-tolerant differentially culturable tubercle bacteria (DCTB) in sputum from patients with active tuberculosis (TB). These organisms are unable to form colonies on agar but can be recovered in liquid media supplemented with culture filtrate as a source of growth factors. Herein, we undertook to investigate the response of DCTB during the treatment of individuals with drug-resistant TB. A cohort of 100 participants diagnosed with rifampicin-resistant TB were enrolled and prospectively followed to monitor response to therapy using routine culture and limiting dilution assays, supplemented with culture filtrate (CF) to quantify DCTB. Fifteen participants were excluded due to contamination, and of the remaining 85 participants, 29, 49, and 7 were infected with rifampicin mono-resistant (RMR), multidrug-resistant (MDR), or extremely drug-resistant (XDR) TB, respectively. Analysis of baseline sputum demonstrated that CF supplementation of limiting dilution assays detected notable amounts of DCTB. Prevalence of DCTB was not influenced by smear status or mycobacterial growth indicator tube time to positivity. CF devoid of resuscitation promoting factors (Rpfs) yielded a greater amount of DCTB in sputum from participants with MDR-TB compared with those with RMR-TB. A similar effect was noted in DCTB assays without CF supplementation, suggesting that CF is dispensable for the detection of DCTB from drug-resistant strains. The HIV status of participants, and CD4 count, did not affect the amount of DCTB recovered. During treatment with second-line drug regimens, the probability of detecting DCTB from sputum specimens in liquid media with or without CF was higher compared with colony forming units, with DCTB detected up to 16 weeks post treatment. Collectively, these data point to differences in the ability of drug-resistant strains to respond to CF and Rpfs. Our findings demonstrate the possible utility of DCTB assays to diagnose and monitor treatment response for drug-resistant TB, particularly in immune compromised individuals with low CD4 counts.
Collapse
Affiliation(s)
- Bhavna G. Gordhan
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis (TB) Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Astika Sewcharran
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis (TB) Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Marothi Letsoalo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilgavathy Chinappa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC)-Centre for the AIDS Programme of Research in South Africa (CAPRISA) Human Immunodeficiency Virus- Tuberculosis (HIV-TB) Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC)-Centre for the AIDS Programme of Research in South Africa (CAPRISA) Human Immunodeficiency Virus- Tuberculosis (HIV-TB) Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC)-Centre for the AIDS Programme of Research in South Africa (CAPRISA) Human Immunodeficiency Virus- Tuberculosis (HIV-TB) Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Bavesh D. Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis (TB) Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
- *Correspondence: Bavesh D. Kana,
| |
Collapse
|
30
|
Dide-Agossou C, Bauman AA, Ramey ME, Rossmassler K, Al Mubarak R, Pauly S, Voskuil MI, Garcia-Cremades M, Savic RM, Nahid P, Moore CM, Tasneen R, Nuermberger EL, Robertson GT, Walter ND. Combination of Mycobacterium tuberculosis RS Ratio and CFU Improves the Ability of Murine Efficacy Experiments to Distinguish between Drug Treatments. Antimicrob Agents Chemother 2022; 66:e0231021. [PMID: 35311519 PMCID: PMC9017352 DOI: 10.1128/aac.02310-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions. We confirmed that different pharmacodynamic markers measure distinct biological responses. We found that a combination of pharmacodynamic markers distinguishes between treatments better than any single marker. The combination of the RS ratio with CFU showed the greatest ability to recapitulate the rank order of regimen treatment-shortening activity, providing proof of concept that simultaneous assessment of pharmacodynamic markers measuring different properties will enhance insight gained from animal models and accelerate development of new combination regimens. These results suggest potential for a new era in which antimicrobial therapies are evaluated not only on culture-based measures of bacterial burden but also on molecular assays that indicate how drugs impact the physiological state of the pathogen.
Collapse
Affiliation(s)
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Michelle E. Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samantha Pauly
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin I. Voskuil
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Maria Garcia-Cremades
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Rada M. Savic
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, USA
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, California, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, USA
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Tuberculosis, San Francisco, California, USA
| | - Camille M. Moore
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric L. Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gregory T. Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| |
Collapse
|
31
|
Hiza H, Hella J, Arbués A, Sasamalo M, Misana V, Fellay J, Gagneux S, Reither K, Portevin D. CD38 Expression by Antigen-Specific CD4 T Cells Is Significantly Restored 5 Months After Treatment Initiation Independently of Sputum Bacterial Load at the Time of Tuberculosis Diagnosis. Front Med (Lausanne) 2022; 9:821776. [PMID: 35492319 PMCID: PMC9051241 DOI: 10.3389/fmed.2022.821776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
T cell activation markers (TAM) expressed by antigen-specific T cells constitute promising candidates to attest the presence of an active infection by Mycobacterium tuberculosis (Mtb). Reciprocally, their modulation may be used to assess antibiotic treatment efficacy and eventually attest disease resolution. We hypothesized that the phenotype of Mtb-specific T cells may be quantitatively impacted by the load of bacteria present in a patient. We recruited 105 Tanzanian adult tuberculosis (TB) patients and obtained blood before and after 5 months of antibiotic treatment. We studied relationships between patients' clinical characteristics of disease severity and microbiological as well as molecular proxies of bacterial load in sputum at the time of diagnosis. Besides, we measured by flow cytometry the expression of CD38 or CD27 on CD4+ T cells producing interferon gamma (IFN-γ) and/or tumor necrosis factor alpha (TNF-α) in response to a synthetic peptide pool covering the sequences of Mtb antigens ESAT-6, CFP-10, and TB10.4. Reflecting the difficulty to extrapolate bacterial burden from a single end-point read-out, we observed statistically significant but weak correlations between Xpert MTB/RIF, molecular bacterial load assay and time to culture positivity. Unlike CD27, the resolution of CD38 expression by antigen-specific T cells was observed readily following 5 months of antibiotic therapy. However, the intensity of CD38-TAM signals measured at diagnosis did not significantly correlate with Mtb 16S RNA or rpoB DNA detected in patients' sputa. Altogether, our data support CD38-TAM as an accurate marker of infection resolution independently of sputum bacterial load.
Collapse
Affiliation(s)
- Hellen Hiza
- Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ainhoa Arbués
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mohamed Sasamalo
- Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Veronica Misana
- Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- *Correspondence: Damien Portevin
| |
Collapse
|
32
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
33
|
Du F, Xing A, Li Z, Pan L, Jia H, Du B, Sun Q, Wei R, Liu Z, Zhang Z. Rapid Detection of Mycobacterium tuberculosis in Pleural Fluid Using Resuscitation-Promoting Factor-Based Thin Layer Agar Culture Method. Front Microbiol 2022; 13:803521. [PMID: 35250926 PMCID: PMC8888910 DOI: 10.3389/fmicb.2022.803521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background Pleural tuberculous is difficult to diagnose. Culture is still considered the gold standard, especially in resource-limited settings where quick, cheap, and easy techniques are needed. The aim of the study was to evaluate resuscitation-promoting factors (Rpfs)-based thin layer agar (TLA) culture method for quick detection of Mycobacterium tuberculosis in pleural fluid. Methods Patients with suspected pleural TB were enrolled prospectively in our hospital, pleural fluid of all patients were collected, stained with Ziehl–Neelsen for acid-fast bacilli (AFB), cultured on Rpfs-TLA, TLA, and Löwenstein–Jensen (LJ) medium, and identified according to recommended procedures. Results A total of 137 suspected pleural TB were enrolled and categorized, including 103 pleural TB (49 confirmed and 54 probable pleural TB) and 34 non-TBP patients. The sensitivity of Rpfs-TLA for total pleural TB was 43.7% (34.5∼53.3%), higher than that of TLA 29.1% (21.2∼38.5%) and LJ 26.2% (18.7∼35.5%) (p < 0.01), and all specificity was 100% in the diagnosis of pleural TB. Median time to detection of a positive culture was 11.8 days (95% CI 10.4∼13.4) for Rpfs-TLA, 21.0 days (95% CI 19.1∼22.9) for TLA, and 30.5 days (95% CI 28.5∼32.5) for LJ (p < 0.001). Conclusion Rpfs-TLA is an accurate, rapid, cheap, and easy culture method, which makes it promising for use in clinical laboratories.
Collapse
Affiliation(s)
- Fengjiao Du
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Zihui Li
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Liping Pan
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Boping Du
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Qi Sun
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Rongrong Wei
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Zhongquan Liu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Auty JM, Jenkins CH, Hincks J, Straatman-Iwanowska AA, Allcock N, Turapov O, Galyov EE, Harding SV, Mukamolova GV. Generation of Distinct Differentially Culturable Forms of Burkholderia following Starvation at Low Temperature. Microbiol Spectr 2022; 10:e0211021. [PMID: 34985335 PMCID: PMC8729786 DOI: 10.1128/spectrum.02110-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/04/2021] [Indexed: 11/20/2022] Open
Abstract
Bacteria have developed unique mechanisms to adapt to environmental stresses and challenges of the immune system. Here, we report that Burkholderia pseudomallei, the causative agent of melioidosis, and its laboratory surrogate, Burkholderia thailandensis, utilize distinct mechanisms for surviving starvation at different incubation temperatures. At 21°C, Burkholderia are present as short rods which can rapidly reactivate and form colonies on solid media. At 4°C, Burkholderia convert into coccoid forms that cannot be cultured on solid agar but can be resuscitated in liquid media supplemented with supernatant obtained from logarithmic phase cultures of B. thailandensis, or catalase and Tween 80, thus displaying characteristics of differentially culturable bacteria (DCB). These DCB have low intensity fluorescence when stained with SYTO 9, have an intact cell membrane (propidium iodide negative), and contain 16S rRNA at levels comparable with growing cells. We also present evidence that lytic transglycosylases, a family of peptidoglycan-remodeling enzymes, are involved in the generation of coccoid forms and their resuscitation to actively growing cells. A B. pseudomallei ΔltgGCFD mutant with four ltg genes deleted did not produce coccoid forms at 4°C and could not be resuscitated in the liquid media evaluated. Our findings provide insights into the adaptation of Burkholderia to nutrient limitation and the generation of differentially culturable bacteria. IMPORTANCE Bacterial pathogens exhibit physiologically distinct forms that enable their survival in an infected host, the environment and following exposure to antimicrobial agents. B. pseudomallei causes the disease melioidosis, which has a high mortality rate and is difficult to treat with antibiotics. The bacterium is endemic to several countries and detected in high abundance in the environment. Here, we report that during starvation at low temperature, B. pseudomallei produces coccoid forms that cannot grow in standard media and which, therefore, can be challenging to detect using common tools. We provide evidence that the formation of these cocci is mediated by cell wall-specialized enzymes and lytic transglycosylases, and that resuscitation of these forms occurs following the addition of catalase and Tween 80. Our findings have important implications for the disease control and detection of B. pseudomallei, an agent of both public health and defense interest.
Collapse
Affiliation(s)
- Joss M. Auty
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Christopher H. Jenkins
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Jennifer Hincks
- FACS Facility Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Anna A. Straatman-Iwanowska
- Electron Microscopy Facility, Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Natalie Allcock
- Electron Microscopy Facility, Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Obolbek Turapov
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Edouard E. Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sarah V. Harding
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Galina V. Mukamolova
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
35
|
Evangelopoulos D, Shoen CM, Honeyborne I, Clark S, Williams A, Mukamolova GV, Cynamon MH, McHugh TD. Culture-Free Enumeration of Mycobacterium tuberculosis in Mouse Tissues Using the Molecular Bacterial Load Assay for Preclinical Drug Development. Microorganisms 2022; 10:microorganisms10020460. [PMID: 35208914 PMCID: PMC8876813 DOI: 10.3390/microorganisms10020460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The turnaround times for phenotypic tests used to monitor the bacterial load of Mycobacterium tuberculosis, in both clinical and preclinical studies, are delayed by the organism’s slow growth in culture media. The existence of differentially culturable populations of M.tuberculosis may result in an underestimate of the true number. Moreover, culture methods are susceptible to contamination resulting in loss of critical data points. Objectives: We report the adaptation of our robust, culture-free assay utilising 16S ribosomal RNA, developed for sputum, to enumerate the number of bacteria present in animal tissues as a tool to improve the read-outs in preclinical drug efficacy studies. Methods: Initial assay adaptation was performed using naïve mouse lungs spiked with known quantities of M. tuberculosis and an internal RNA control. Tissues were homogenised, total RNA extracted, and enumeration performed using RT-qPCR. We then evaluated the utility of the assay, in comparison to bacterial counts estimated using growth assays on solid and liquid media, to accurately inform bacterial load in tissues from M. tuberculosis-infected mice before and during treatment with a panel of drug combinations. Results: When tested on lung tissues derived from infected mice, the MBL assay produced comparable results to the bacterial counts in solid culture (colony forming units: CFU). Notably, under specific drug treatments, the MBL assay was able to detect a significantly higher number of M. tuberculosis compared to CFU, likely indicating the presence of bacteria that were unable to produce colonies in solid-based culture. Additionally, growth recovery in liquid media using the most probable number (MPN) assay was able to account for the discrepancy between the MBL assay and CFU number, suggesting that the MBL assay detects differentially culturable sub-populations of M. tuberculosis. Conclusions: The MBL assay can enumerate the bacterial load in animal tissues in real time without the need to wait for extended periods for cultures to grow. The readout correlates well with CFUs. Importantly, we have shown that the MBL is able to measure specific populations of bacteria not cultured on solid agar. The adaptation of this assay for preclinical studies has the potential to decrease the readout time of data acquisition from animal experiments and could represent a valuable tool for tuberculosis drug discovery and development.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London NW3 2PF, UK
- UCL Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (I.H.); (T.D.M.)
- Correspondence:
| | - Carolyn M. Shoen
- Veterans Administration Medical Center, Syracuse, NY 13210, USA; (C.M.S.); (M.H.C.)
- Veterans Health Research Institute, Syracuse, NY 13210, USA
| | - Isobella Honeyborne
- UCL Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (I.H.); (T.D.M.)
| | - Simon Clark
- UK Health Security Agency, Porton Down, Salisbury SP4 OJG, UK; (S.C.); (A.W.)
| | - Ann Williams
- UK Health Security Agency, Porton Down, Salisbury SP4 OJG, UK; (S.C.); (A.W.)
| | - Galina V. Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Michael H. Cynamon
- Veterans Administration Medical Center, Syracuse, NY 13210, USA; (C.M.S.); (M.H.C.)
- Veterans Health Research Institute, Syracuse, NY 13210, USA
| | - Timothy D. McHugh
- UCL Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (I.H.); (T.D.M.)
| |
Collapse
|
36
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. Molecular surveillance of tuberculosis-causing mycobacteria in wastewater. Heliyon 2022; 8:e08910. [PMID: 35198775 PMCID: PMC8842018 DOI: 10.1016/j.heliyon.2022.e08910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/31/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
The surveillance of tuberculosis infections has largely depended on clinical diagnostics and hospitalization data. The advancement in molecular methods creates an opportunity for the adoption of alternative surveillance systems, such as wastewater-based epidemiology. This study presents the use of conventional and advanced polymerase chain reaction techniques (droplet digital PCR) to determine the occurrence and concentration of total mycobacteria and members of the Mycobacterium tuberculosis complex (MTBC) in treated and untreated wastewater. Wastewater samples were taken from three wastewater treatment plants (WWTPs) in the city of Durban, South Africa, known for a high burden of TB/MDR-TB due to HIV infections. All untreated wastewater samples contained total mycobacteria and MTBC at varying percentages per WWTP studied. Other members of the MTBC related to tuberculosis infection in animals, M. bovis and M. caprae were also detected. The highest median concentration detected in untreated wastewater was up to 4.9 (±0.2) Log10 copies/ml for total mycobacteria, 4.0 (±0.85) Log10 copies/ml for MTBC, 3.9 (±0.54) Log10 copies/ml for M. tuberculosis, 2.7 (±0.42) Log10 copies/ml for M. africanum, 4.0 (±0.29) Log10 copies/ml for M. bovis and 4.5 (±0.52) Log10 copies/ml for M. caprae. Lower concentrations were detected in the treated wastewater, with a statistically significant difference (P-value ≤ 0.05) in concentrations observed. The log reduction achieved for these bacteria in the respective WWTPs was not statistically different, indicating that the treatment configuration did not have an impact on their removal. The detection of M. africanum in wastewater from South Africa shows that it is possible that some of the TB infections in the community could be caused by this mycobacterium. This study, therefore, highlights the potential of wastewater-based epidemiology for monitoring tuberculosis infections.
Collapse
Affiliation(s)
- Hlengiwe N. Mtetwa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D. Amoah
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
37
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. The source and fate of Mycobacterium tuberculosis complex in wastewater and possible routes of transmission. BMC Public Health 2022; 22:145. [PMID: 35057793 PMCID: PMC8781043 DOI: 10.1186/s12889-022-12527-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Mycobacterium tuberculosis complex (MTBC) consists of causative agents of both human and animal tuberculosis and is responsible for over 10 million annual infections globally. Infections occur mainly through airborne transmission, however, there are possible indirect transmissions through a faecal-oral route which is poorly reported. This faecal-oral transmission could be through the occurrence of the microbe in environments such as wastewater. This manuscript, therefore, reviews the source and fate of MTBC in the wastewater environment, including the current methods in use and the possible risks of infections. RESULTS The reviewed literature indicates that about 20% of patients with pulmonary TB may have extra-pulmonary manifestations such as GITB, resulting in shedding in feaces and urine. This could potentially be the reason for the detection of MTBC in wastewater. MTBC concentrations of up to 5.5 × 105 (±3.9 × 105) copies/L of untreated wastewater have been reported. Studies have indicated that wastewater may provide these bacteria with the required nutrients for their growth and could potentially result in environmental transmission. However, 98.6 (± 2.7) %, removal during wastewater treatment, through physical-chemical decantation (primary treatment) and biofiltration (secondary treatment) has been reported. Despite these reports, several studies observed the presence of MTBC in treated wastewater via both culture-dependent and molecular techniques. CONCLUSION The detection of viable MTBC cells in either treated or untreated wastewater, highlights the potential risks of infection for wastewater workers and communities close to these wastewater treatment plants. The generation of aerosols during wastewater treatment could be the main route of transmission. Additionally, direct exposure to the wastewater containing MTBC could potentially contribute to indirect transmissions which may lead to pulmonary or extra-pulmonary infections. This calls for the implementation of risk reduction measures aimed at protecting the exposed populations.
Collapse
Affiliation(s)
- Hlengiwe N Mtetwa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
38
|
Glenn SM, Turapov O, Makarov V, Kell DB, Mukamolova GV. Dimethyl fumarate eliminates differentially culturable Mycobacterium tuberculosis in an intranasal murine model of tuberculosis. Front Cell Infect Microbiol 2022; 12:957287. [PMID: 36093181 PMCID: PMC9449328 DOI: 10.3389/fcimb.2022.957287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) claims nearly 1.5 million lives annually. Current TB treatment requires a combination of several drugs administered for at least 6 months. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can persist in infected humans and animals for decades. Moreover, during infection, Mtb produces differentially culturable bacteria (DCB) that do not grow in standard media but can be resuscitated in liquid media supplemented with sterile Mtb culture filtrates or recombinant resuscitation-promoting factors (Rpfs). Here, we demonstrate that, in an intranasal murine model of TB, Mtb DCB are detectable in the lungs after 4 weeks of infection, and their loads remain largely unchanged during a further 8 weeks. Treatment of the infected mice with dimethyl fumarate (DMF), a known drug with immunomodulatory properties, for 8 weeks eliminates Mtb DCB from the lungs and spleens. Standard TB treatment consisting of rifampicin, isoniazid, and pyrazinamide for 8 weeks reduces Mtb loads by nearly four orders of magnitude but does not eradicate DCB. Nevertheless, no DCB can be detected in the lungs and spleens after 8 weeks of treatment with DMF, rifampicin, isoniazid, and pyrazinamide. Our data suggest that addition of approved anti-inflammatory drugs to standard treatment regimens may improve TB treatment and reduce treatment duration.
Collapse
Affiliation(s)
- Sarah M Glenn
- Division of Biomedical Services, University of Leicester, Leicester, United Kingdom
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Vadim Makarov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
39
|
Saito K, Mishra S, Warrier T, Cicchetti N, Mi J, Weber E, Jiang X, Roberts J, Gouzy A, Kaplan E, Brown CD, Gold B, Nathan C. Oxidative damage and delayed replication allow viable Mycobacterium tuberculosis to go undetected. Sci Transl Med 2021; 13:eabg2612. [PMID: 34818059 DOI: 10.1126/scitranslmed.abg2612] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kohta Saito
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Thulasi Warrier
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nico Cicchetti
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jianjie Mi
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Elaina Weber
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexandre Gouzy
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ellen Kaplan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher D Brown
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
40
|
Barr DA, Omollo C, Mason M, Koch A, Wilkinson RJ, Lalloo DG, Meintjes G, Mizrahi V, Warner DF, Davies G. Flow cytometry method for absolute counting and single-cell phenotyping of mycobacteria. Sci Rep 2021; 11:18661. [PMID: 34545154 PMCID: PMC8452731 DOI: 10.1038/s41598-021-98176-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Detection and accurate quantitation of viable Mycobacterium tuberculosis is fundamental to understanding mycobacterial pathogenicity, tuberculosis (TB) disease progression and outcomes; TB transmission; drug action, efficacy and drug resistance. Despite this importance, methods for determining numbers of viable bacilli are limited in accuracy and precision owing to inherent characteristics of mycobacterial cell biology—including the tendency to clump, and “differential” culturability—and technical challenges consequent on handling an infectious pathogen under biosafe conditions. We developed an absolute counting method for mycobacteria in liquid cultures using a bench-top flow cytometer, and the low-cost fluorescent dyes Calcein-AM (CA) and SYBR-gold (SG). During exponential growth CA + cell counts are highly correlated with CFU counts and can be used as a real-time alternative to simplify the accurate standardisation of inocula for experiments. In contrast to CFU counting, this method can detect and enumerate cell aggregates in samples, which we show are a potential source of variance and bias when using established methods. We show that CFUs comprise a sub-population of intact, metabolically active mycobacterial cells in liquid cultures, with CFU-proportion varying by growth conditions. A pharmacodynamic application of the flow cytometry method, exploring kinetics of fluorescent probe defined subpopulations compared to CFU is demonstrated. Flow cytometry derived Mycobacterium bovis bacillus Calmette-Guérin (BCG) time-kill curves differ for rifampicin and kanamycin versus isoniazid and ethambutol, as do the relative dynamics of discrete morphologically-distinct subpopulations of bacilli revealed by this high-throughput single-cell technique.
Collapse
Affiliation(s)
- David A Barr
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa. .,Institute of Infection and Global Health, University of Liverpool, Liverpool, L7 3EA, UK. .,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Charles Omollo
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mandy Mason
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anastasia Koch
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, NW11AT, UK.,Department of Medicine, Imperial College, London, W12 0NN, UK
| | - David G Lalloo
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gerry Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L7 3EA, UK
| |
Collapse
|
41
|
Su H, Lin K, Tiwari D, Healy C, Trujillo C, Liu Y, Ioerger TR, Schnappinger D, Ehrt S. Genetic models of latent tuberculosis in mice reveal differential influence of adaptive immunity. J Exp Med 2021; 218:e20210332. [PMID: 34269789 PMCID: PMC8289691 DOI: 10.1084/jem.20210332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/29/2023] Open
Abstract
Studying latent Mycobacterium tuberculosis (Mtb) infection has been limited by the lack of a suitable mouse model. We discovered that transient depletion of biotin protein ligase (BPL) and thioredoxin reductase (TrxB2) results in latent infections during which Mtb cannot be detected but that relapse in a subset of mice. The immune requirements for Mtb control during latency, and the frequency of relapse, were strikingly different depending on how latency was established. TrxB2 depletion resulted in a latent infection that required adaptive immunity for control and reactivated with high frequency, whereas latent infection after BPL depletion was independent of adaptive immunity and rarely reactivated. We identified immune signatures of T cells indicative of relapse and demonstrated that BCG vaccination failed to protect mice from TB relapse. These reproducible genetic latency models allow investigation of the host immunological determinants that control the latent state and offer opportunities to evaluate therapeutic strategies in settings that mimic aspects of latency and TB relapse in humans.
Collapse
Affiliation(s)
- Hongwei Su
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Kan Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Claire Healy
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Yao Liu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
42
|
Abstract
Models of nonreplication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against nonreplicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states and to development of drugs that can overcome phenotypic resistance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multistress model of nonreplication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide, and other reactive nitrogen intermediates arising from nitrite at low pH and low concentrations of a fatty acid (butyrate) as a carbon source.
Collapse
|
43
|
Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis. J Clin Med 2021; 10:jcm10153249. [PMID: 34362035 PMCID: PMC8348819 DOI: 10.3390/jcm10153249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/12/2023] Open
Abstract
An estimated 15–20% of patients who are treated for pulmonary tuberculosis (TB) are culture-negative at the time of diagnosis. Recent work has focused on the existence of differentially detectable Mycobacterium tuberculosis (Mtb) bacilli that do not grow under routine solid culture conditions without the addition of supplementary stimuli. We identified a cohort of TB patients in Lima, Peru, in whom acid-fast bacilli could be detected by sputum smear microscopy, but from whom Mtb could not be grown in standard solid culture media. When we attempted to re-grow Mtb from the frozen sputum samples of these patients, we found that 10 out of 15 could be grown in a glycerol-poor/lipid-rich medium. These fell into the following two groups: a subset that could be regrown in glycerol after “lipid-resuscitation”, and a group that displayed a heritable glycerol-sensitive phenotype that were unable to grow in the presence of this carbon source. Notably, all of the glycerol-sensitive strains were found to be multidrug resistant. Although whole-genome sequencing of the lipid-resuscitated strains identified 20 unique mutations compared to closely related strains, no single genetic lesion could be associated with this phenotype. In summary, we found that lipid-based media effectively fostered the growth of Mtb from a series of sputum smear-positive samples that were not culturable in glycerol-based Lowenstein–Jensen or 7H9 media, which is consistent with Mtb’s known preference for non-glycolytic sources during infection. Analysis of the recovered strains demonstrated that both genetic and non-genetic mechanisms contribute to the observed differential capturability, and suggested that this phenotype may be associated with drug resistance.
Collapse
|
44
|
Characterization of Differentially Detectable Mycobacterium tuberculosis in the Sputum of Subjects with Drug-Sensitive or Drug-Resistant Tuberculosis before and after Two Months of Therapy. Antimicrob Agents Chemother 2021; 65:e0060821. [PMID: 34060896 PMCID: PMC8284451 DOI: 10.1128/aac.00608-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Standard methods for enumerating Mycobacterium tuberculosis in patient sputum can miss large populations of viable M. tuberculosis cells that are unable to grow either on solid medium or in liquid medium unless the medium has been extensively diluted. Because these bacteria can be detected in liquid medium after limiting dilution, they have been termed differentially culturable or differentially detectable M. tuberculosis (DD-Mtb). Treatment with isoniazid (H), rifampin (R), pyrazinamide (Z), and ethambutol (E) (HRZE) for 1 to 2 weeks has been shown to increase the representation of DD-Mtb in the sputum of drug-sensitive (DS) tuberculosis (TB) patients. However, little is known about DD-Mtb after longer periods of treatment with HRZE or in patients with drug-resistant (DR) TB who receive second-line therapies. Here, we measured the proportion of DD-Mtb cells in the sputum of 47 subjects, 29 with DS TB and 18 with DR TB, before initiation of treatment and at 2 weeks and 2 months thereafter. Prior to treatment, DD-Mtb cells represented the majority of M. tuberculosis cells in the sputum of 21% of subjects with DS TB, and this proportion rose to 65% after 2 weeks of treatment with first-line drugs. In subjects with DR TB, DD-Mtb cells were found in the sputum of 29% of subjects prior to treatment initiation, and this proportion remained steady at 31% after 2 weeks of treatment with second-line drugs. By 2 months, DD-Mtb cells were detected in the sputum of only 2/15 (13.3%) subjects with DS TB and in 0/15 of subjects with DR TB. One of the DS subjects whose sputum was positive for DD-Mtb at month 2 later experienced treatment failure.
Collapse
|
45
|
Mishra R, Yadav V, Guha M, Singh A. Heterogeneous Host-Pathogen Encounters Coordinate Antibiotic Resilience in Mycobacterium tuberculosis. Trends Microbiol 2021; 29:606-620. [PMID: 33309526 PMCID: PMC7611257 DOI: 10.1016/j.tim.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Successful treatment of tuberculosis (TB) depends on the eradication of its causative agent Mycobacterium tuberculosis (Mtb) in the host. However, the emergence of phenotypically drug-resistant Mtb in the host environment tempers the ability of antibiotics to cure disease. Host immunity produces diverse microenvironmental niches that are exploited by Mtb to mobilize adaptation programs. Such differential interactions amplify pre-existing heterogeneity in the host-pathogen milieu to influence disease pathology and therapy outcome. Therefore, comprehending the intricacies of phenotypic heterogeneity can be an empirical step forward in potentiating drug action. With this goal, we review the interconnectedness of the lesional, cellular, and bacterial heterogeneity underlying phenotypic drug resistance. Based on this information, we anticipate the development of new therapeutic strategies targeting host-pathogen heterogeneity to cure TB.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Vikas Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Madhura Guha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India.
| |
Collapse
|
46
|
Ealand C, Peters J, Jacobs O, Sewcharran A, Ghoor A, Golub J, Brahmbhatt H, Martinson N, Dangor Z, Lala SG, Kana B. Detection of Mycobacterium tuberculosis Complex Bacilli and Nucleic Acids From Tongue Swabs in Young, Hospitalized Children. Front Cell Infect Microbiol 2021; 11:696379. [PMID: 34195103 PMCID: PMC8238041 DOI: 10.3389/fcimb.2021.696379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 01/24/2023] Open
Abstract
Diagnosis of tuberculosis in pediatric patients remains challenging due to inherent difficulties associated with obtaining respiratory samples for molecular and culture-based testing. To address this, recent studies have highlighted the utility of tongue swabs to detect Mycobacterium tuberculosis genomic DNA in the oral epithelia of tuberculosis infected adults. It is unknown whether tongue swabs have similar utility for diagnosis of childhood tuberculosis and if the presence of DNA in these swabs was associated with whole bacilli. We therefore sought to conduct a preliminary assessment of the utility of tongue swabs to detect tubercle bacilli and their associated genetic material in young children. For this, we recruited hospitalized children with clinically diagnosed tuberculosis (n = 26) or lower respiratory tract infection (LRTI, n = 9). These categories were blinded for downstream laboratory tests, which included PCR, spoligotyping, smear microscopy, and culture. Mtb genomic DNA was detected by PCR only in clinically diagnosed TB cases [11/26 (31.4%)] and not in cases with LRTI. Of these, 5/11 [45.5%] were associated with a spoligotype. Spoligotyping also detected an additional six specimens that were negative by PCR. Using smear microscopy, 19/26 [73.1%] and 4/9 [44.4] were Mtb positive in the tuberculosis or LRTI categories respectively. We noted positive results on all three tests in 5/26 [19.2%] in the tuberculosis category and 0/9 in the LRTI category. All specimens were culture negative. Collectively, these preliminary data present a compelling case for broader testing of tongue swabs to diagnose tuberculosis in children where obtaining standard sputum specimens is not easy.
Collapse
Affiliation(s)
- Christopher Ealand
- Department of Science and Innovation/National Research Foundation (DSI/NRF) Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Julian Peters
- Department of Science and Innovation/National Research Foundation (DSI/NRF) Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Olivia Jacobs
- Department of Science and Innovation/National Research Foundation (DSI/NRF) Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Astika Sewcharran
- Department of Science and Innovation/National Research Foundation (DSI/NRF) Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Azra Ghoor
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jonathan Golub
- Center for TB Research, Johns Hopkins University, Baltimore, MD, United States
| | - Heena Brahmbhatt
- United States Agency for International Development (USAID), South Africa, Pretoria, South Africa.,Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- Center for TB Research, Johns Hopkins University, Baltimore, MD, United States.,Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- Paediatric Education and Research Ladder, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sanjay G Lala
- Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Paediatric Education and Research Ladder, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bavesh Kana
- Department of Science and Innovation/National Research Foundation (DSI/NRF) Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
47
|
McIvor A, Gordhan BG, Waja Z, Otwombe K, Martinson NA, Kana BD. Supplementation of sputum cultures with culture filtrate to detect tuberculosis in a cross-sectional study of HIV-infected individuals. Tuberculosis (Edinb) 2021; 129:102103. [PMID: 34144375 DOI: 10.1016/j.tube.2021.102103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
While some healthcare systems have shifted to molecular diagnostics, culture still remains the gold standard for tuberculosis diagnosis, but it is limited by its long duration to a positive result. Methods to reduce time to culture positivity (TTP) are urgently required. We determined if growth factor supplementation in the mycobacterial growth indicator tube (MGIT) culture system reduces TTP. MGITs were supplemented with fresh culture filtrate (CF) as a source of growth stimulatory molecules from axenic Mycobacterium tuberculosis culture. Different volumes of CF and media components were tested. The performance of these modified MGITs was assessed with sputum from HIV-TB co-infected individuals. Reducing the volume of MGIT cultures and removal of detergent from cultures grown to generate CF had a marginal but significant benefit on reducing TTP. In a subset of specimens, CF inhibited growth. Following optimization of methods, a reduced TTP occurred in specimens with low bacillary load as measured by GeneXpert, smear microscopy and colony forming units. Three specimens that were negative under standard conditions flagged positive following CF supplementation. Our data provide preliminary evidence that addition of CF to MGIT cultures can enhance detection of M. tuberculosis in HIV-TB co-infected patients with low sputum bacillary loads.
Collapse
Affiliation(s)
- Amanda McIvor
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, South Africa
| | - Bhavna Gowan Gordhan
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Neil A Martinson
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, South Africa; Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa; John Hopkins University, Centre for Tuberculosis Research, Baltimore, MD, USA
| | - Bavesh Davandra Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, South Africa; CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| |
Collapse
|
48
|
Machowski EE, Letutu M, Lebina L, Waja Z, Msandiwa R, Milovanovic M, Gordhan BG, Otwombe K, Friedrich SO, Chaisson R, Diacon AH, Kana B, Martinson N. Comparing rates of mycobacterial clearance in sputum smear-negative and smear-positive adults living with HIV. BMC Infect Dis 2021; 21:466. [PMID: 34022850 PMCID: PMC8141145 DOI: 10.1186/s12879-021-06133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background Pulmonary tuberculosis (TB) in people living with HIV (PLH) frequently presents as sputum smear-negative. However, clinical trials of TB in adults often use smear-positive individuals to ensure measurable bacterial responses following initiation of treatment, thereby excluding HIV-infected patients from trials. Methods In this prospective case cohort study, 118 HIV-seropositive TB patients were assessed prior to initiation of standard four-drug TB therapy and at several time points through 35 days. Sputum bacillary load, as a marker of treatment response, was determined serially by: smear microscopy, Xpert MTB/RIF, liquid culture, and colony counts on agar medium. Results By all four measures, patients who were baseline smear-positive had higher bacterial loads than those presenting as smear-negative, until day 35. However, most smear-negative PLH had significant bacillary load at enrolment and their mycobacteria were cleared more rapidly than smear-positive patients. Smear-negative patients’ decline in bacillary load, determined by colony counts, was linear to day 7 suggesting measurable bactericidal activity. Moreover, the decrease in bacterial counts was comparable to smear-positive individuals. Increasing cycle threshold values (Ct) on the Xpert assay in smear-positive patients to day 14 implied decreasing bacterial load. Conclusion Our data suggest that smear-negative PLH can be included in clinical trials of novel treatment regimens as they contain sufficient viable bacteria, but allowances for late exclusions would have to be made in sample size estimations. We also show that increases in Ct in smear-positive patients to day 14 reflect treatment responses and the Xpert MTB/RIF assay could be used as biomarker for early treatment response. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06133-4.
Collapse
Affiliation(s)
- Edith E Machowski
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research (CBTBR), University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa.
| | - Matebogo Letutu
- Perinatal HIV Research Unit (PHRU), SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Limakatso Lebina
- Perinatal HIV Research Unit (PHRU), SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit (PHRU), SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Reginah Msandiwa
- Perinatal HIV Research Unit (PHRU), SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Minja Milovanovic
- Perinatal HIV Research Unit (PHRU), SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bhavna G Gordhan
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research (CBTBR), University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal HIV Research Unit (PHRU), SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sven O Friedrich
- TASK Applied Science, Bellville, Cape Town, South Africa and Pulmonology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | - Andreas H Diacon
- TASK Applied Science, Bellville, Cape Town, South Africa and Pulmonology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bavesh Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research (CBTBR), University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research (CBTBR), University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa.,Perinatal HIV Research Unit (PHRU), SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Gordhan BG, Peters JS, McIvor A, Machowski EE, Ealand C, Waja Z, Martinson N, Kana BD. Detection of differentially culturable tubercle bacteria in sputum using mycobacterial culture filtrates. Sci Rep 2021; 11:6493. [PMID: 33753820 PMCID: PMC7985135 DOI: 10.1038/s41598-021-86054-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Rapid detection of tuberculosis (TB) infection is paramount to curb further transmission. The gold standard for this remains mycobacterial culture, however emerging evidence confirms the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens. These bacteria do not grow under standard culture conditions and require the presence of culture filtrate (CF), from axenic cultures of Mycobacterium tuberculosis (Mtb), to emerge. It has been hypothesized that molecules such as resuscitation promoting factors (Rpfs), fatty acids and cyclic-AMP (cAMP) present in CF are responsible for the growth stimulatory activity. Herein, we tested the ability of CF from the non-pathogenic bacterium Mycobacterium smegmatis (Msm) to stimulate the growth of DCTB, as this organism provides a more tractable source of CF. We also interrogated the role of Mtb Rpfs in stimulation of DCTB by creating recombinant strains of Msm that express Mtb rpf genes in various combinations. CF derived from this panel of strains was tested on sputum from individuals with drug susceptible TB prior to treatment. CF from wild type Msm did not enable detection of DCTB in a manner akin to Mtb CF preparations and whilst the addition of RpfABMtb and RpfABCDEMtb to an Msm mutant devoid of its native rpfs did improve detection of DCTB compared to the no CF control, it was not statistically different to the empty vector control. To further investigate the role of Rpfs, we compared the growth stimulatory activity of CF from Mtb, with and without Rpfs and found these to be equivalent. Next, we tested chemically diverse fatty acids and cAMP for growth stimulation and whilst some selective stimulatory effect was observed, this was not significantly higher than the media control and not comparable to CF. Together, these data indicate that the growth stimulatory effect observed with Mtb CF is most likely the result of a combination of factors. Future work aimed at identifying the nature of these growth stimulatory molecules may facilitate improvement of culture-based diagnostics for TB.
Collapse
Affiliation(s)
- Bhavna G Gordhan
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Julian S Peters
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Amanda McIvor
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Edith E Machowski
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Christopher Ealand
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa.,Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Bavesh D Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa.
| |
Collapse
|
50
|
Most-Probable-Number-Based Minimum Duration of Killing Assay for Determining the Spectrum of Rifampicin Susceptibility in Clinical Mycobacterium tuberculosis Isolates. Antimicrob Agents Chemother 2021; 65:AAC.01439-20. [PMID: 33257450 PMCID: PMC8092508 DOI: 10.1128/aac.01439-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Accurate antibiotic susceptibility testing is essential for successful tuberculosis treatment. Recent studies have highlighted the limitations of MIC-based phenotypic susceptibility methods in detecting other aspects of antibiotic susceptibilities in bacteria. Duration and peak of antibiotic exposure, at or above the MIC required for killing the bacterial population, has emerged as another important factor for determining antibiotic susceptibility. This is broadly defined as antibiotic tolerance. Accurate antibiotic susceptibility testing is essential for successful tuberculosis treatment. Recent studies have highlighted the limitations of MIC-based phenotypic susceptibility methods in detecting other aspects of antibiotic susceptibilities in bacteria. Duration and peak of antibiotic exposure, at or above the MIC required for killing the bacterial population, has emerged as another important factor for determining antibiotic susceptibility. This is broadly defined as antibiotic tolerance. Antibiotic tolerance can further facilitate the emergence of antibiotic resistance. Currently, there are limited methods to quantify antibiotic tolerance among clinical M. tuberculosis isolates. In this study, we develop a most-probable-number (MPN)-based minimum duration of killing (MDK) assay to quantify the spectrum of M. tuberculosis rifampicin susceptibility within subpopulations based on the duration of rifampicin exposure required for killing the bacterial population. MDK90–99 and MDK99.99 were defined as the minimum duration of antibiotic exposure at or above the MIC required for killing 90 to 99% and 99.99% of the initial (pretreatment) bacterial population, respectively. Results from the rifampicin MDK assay applied to 28 laboratory and clinical M. tuberculosis isolates showed that there is variation in rifampicin susceptibility among isolates. The rifampicin MDK99/99.99 time for isolates varied from less than 2 to 10 days. MDK was correlated with larger subpopulations of M. tuberculosis from clinical isolates that were rifampicin tolerant. Our study demonstrates the utility of MDK assays to measure the variation in antibiotic tolerance among clinical M. tuberculosis isolates and further expands clinically important aspects of antibiotic susceptibility testing.
Collapse
|