1
|
Gaberino CL, Altman MC, Gill MA, Bacharier LB, Gruchalla RS, O'Connor GT, Kumar R, Khurana Hershey GK, Kattan M, Liu AH, Teach SJ, Zoratti EM, Becker PM, Togias A, Visness C, Gern JE, Busse WW, Jackson DJ. Dysregulation of airway and systemic interferon responses promotes asthma exacerbations in urban children. J Allergy Clin Immunol 2025; 155:1499-1509. [PMID: 39788435 PMCID: PMC12058425 DOI: 10.1016/j.jaci.2024.12.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Determining why some upper respiratory illnesses provoke asthma exacerbations remains an unmet need. OBJECTIVE We sought to identify transcriptome-wide gene expression changes associated with colds that progress to exacerbation. METHODS Two hundred eight urban children (6-17 years) with exacerbation-prone asthma were prospectively monitored for up to 2 cold illnesses. Exacerbation illnesses (Ex+), defined as colds leading to asthma exacerbations requiring systemic corticosteroids within 10 days, were compared to colds that resolved without exacerbation (Ex-). Peripheral blood and nasal lavage samples were collected at baseline and during colds for RNA sequencing. Interferon gene expression was compared between Ex+ and Ex- illnesses. Generalized additive modeling revealed interferon response kinetics. Multiple linear regression models compared interferon expression to clinical variables. RESULTS One hundred six participants were evaluated during 154 colds. There was greater upregulation of differentially expressed interferon genes during Ex+ illnesses compared to Ex-. Ex+ illnesses had greater average and steeper rise in interferon expression. Within 3 days of illness, interferon expression was positively associated with nasal rhinovirus quantity (nasal: adjusted R2 = 0.48, P = .015; blood: adjusted R2 = 0.22, P = .013), and interferon expression was negatively associated with percentage predicted forced expiratory volume in 1 second (nasal: β = -0.010, P = .048; blood: β = -0.008, P = .023). Participants with lower baseline interferon expression had shorter time to exacerbation, higher risk for exacerbation with viral illnesses, and greater increase in interferon expression during viral colds (nasal: β = -0.80, P < .0001; blood: β = -0.75, P < .0001). CONCLUSION Dysregulated interferon responses are important contributors to asthma exacerbation risk in children. Low baseline interferon expression followed by greater upregulation of interferon pathways in airway and blood during respiratory illnesses increased exacerbation risk. Targeting this pathway in at-risk individuals holds promise for the personalized prevention of asthma exacerbations.
Collapse
Affiliation(s)
- Courtney L Gaberino
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Matthew C Altman
- Immunology Division, Benaroya Research Institute Systems, and the Department of Medicine, University of Washington, Seattle, Wash
| | - Michelle A Gill
- Washington University in St Louis School of Medicine, St Louis, Mo
| | - Leonard B Bacharier
- Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Rebecca S Gruchalla
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Rajesh Kumar
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Ill
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Andrew H Liu
- Department of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | | | | | - Patrice M Becker
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - William W Busse
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
2
|
Gauthier M, Kale SL, Ray A. T1-T2 Interplay in the Complex Immune Landscape of Severe Asthma. Immunol Rev 2025; 330:e70011. [PMID: 39991821 PMCID: PMC11849004 DOI: 10.1111/imr.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Asthma is orchestrated by an aberrant immune response involving a complex interplay between multiple inflammatory cell types. An increase in Th2 cells in the asthmatic airway is a hallmark of asthma, and biologics blocking their effector functions have been life-changing for many severe asthma patients who poorly respond to immunosuppression by corticosteroids. However, studies in the past decade have highlighted not only other cell types that also produce Th2 cytokines boosting the Type 2/T2 phenotype but also a heightened IFN-γ response, primarily from T cells, referred to as a Type 1/T1 immune response. Data derived from studies of immune cells in the airways and mouse models of severe asthma suggest a role of IFN-γ in corticosteroid resistance, airway hyperreactivity, and also airway remodeling via effects on other cell types including mast cells, eosinophils, airway epithelial cells, and airway smooth muscle cells. The simultaneous presence of T1 and T2 immune responses is detectable in the sickest of asthma patients in whom corticosteroids suppress the T2 but not the T1 response. This article has reviewed our current understanding of the complex T1-T2 interplay in severe asthma highlighting mediators that impact both arms which may be targeted alone or in combination for disease alleviation.
Collapse
Affiliation(s)
- Marc Gauthier
- Pulmonary Allergy Critical Care and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sagar L. Kale
- Pulmonary Allergy Critical Care and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Anuradha Ray
- Pulmonary Allergy Critical Care and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Grunwell JR, Fitzpatrick AM. Asthma Phenotypes and Biomarkers. Respir Care 2025. [PMID: 40013975 DOI: 10.1089/respcare.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Asthma experienced by both adults and children is a phenotypically heterogeneous condition. Severe asthma, characterized by ongoing symptoms and airway inflammation despite high doses of inhaled and/or systemic corticosteroids, is the focus of research efforts to understand this underlying heterogeneity. Clinical phenotypes in both adult and pediatric asthma have been determined using supervised definition-driven classification and unsupervised data-driven clustering methods. Efforts to understand the underlying inflammatory patterns of severe asthma have led to the seminal discovery of type 2-high versus type 2-low phenotypes and to the development of biologics targeted at type 2-high inflammation to reduce the rates of severe asthma exacerbations. Type 2-high asthma is characterized by upregulation of T helper 2 immune pathways including interleukin (IL)-4, IL-5, and IL-13 along with eosinophilic airway inflammation, sometimes allergic sensitization, and responsiveness to treatment with corticosteroids. Type 2-low asthma is poorly responsive to corticosteroids and is not as well characterized as type 2-high asthma. Type 2-low asthma is limited by being defined as the absence of type 2-high inflammatory markers. Choosing a biologic for the treatment of severe asthma involves the evaluation of a panel of biomarkers such as blood eosinophils, total and specific immunoglobulin E/allergic sensitization, and fractional exhaled nitric oxide. In this review, we focus on the underlying pathobiology of adult and pediatric asthma, discuss the different phenotype-based treatment options for adult and pediatric type 2-high with or without allergic asthma and type 2-low asthma, and describe a clinical phenotyping approach to patients to guide out-patient therapy. Finally, we end with a discussion of whether pediatric asthma exacerbations necessitating admission to an ICU constitute their own high-risk phenotype and/or whether it is a part of other previously defined high-risk subgroups such as difficult-to-control asthma, exacerbation-prone asthma, and severe treatment-resistant asthma.
Collapse
Affiliation(s)
- Jocelyn R Grunwell
- Dr. Grunwell is affiliated with Division of Critical Care Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Anne M Fitzpatrick
- Dr. Fitzpatrick is affiliated with Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Wang H, Zhang L, Shang Y. DEPTOR attenuates asthma progression by suppressing endoplasmic reticulum stress through SOD1. Biol Direct 2024; 19:114. [PMID: 39533404 PMCID: PMC11556204 DOI: 10.1186/s13062-024-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Endoplasmic reticulum (ER) stress has been shown to play a pivotal role in the pathogenesis of asthma. DEPTOR (DEP Domain Containing MTOR Interacting Protein) is an endogenous mTOR inhibitor that participates in various physiological processes such as cell growth, apoptosis, autophagy, and ER homeostasis. However, the role of DEPTOR in the pathogenesis of asthma is still unknown. In this study, an ovalbumin (OVA)-induced mice model and IL-13 induced 16HBE cells were used to evaluate the effect of DEPTOR on asthma. A decreased DEPTOR expression was shown in the lung tissues of OVA-mice and IL-13 induced 16HBE cells. Upregulation of DEPTOR attenuated airway goblet cell hyperplasia, inhibited mucus hypersecretion, decreased the expression of mucin MUC5AC, and suppressed the level of inflammatory factors IL-4 and IL-5, which were all induced by OVA treatment. The increased protein expression of ER stress markers GRP78, CHOP, unfolded protein response (UPR) related proteins, and apoptosis markers in OVA mice were also inhibited by DEPTOR overexpression. In IL-13 induced 16HBE cells, overexpression of DEPTOR decreased IL-4, IL-5, and MUC5AC levels, preventing ER stress response and UPR process. Furthermore, from the proteomics results, we identified that SOD1 (Cu/Zn Superoxide Dismutase 1) may be the downstream factor of DEPTOR. Similar to DEPTOR, upregulation of SOD1 alleviated asthma progression. Rescue experiments showed that SOD1 inhibition abrogates the remission effect of DEPTOR on ER stress in vitro. In conclusion, these data suggested that DEPTOR attenuates asthma progression by suppressing endoplasmic reticulum stress through SOD1.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pediatric Respiratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Lei Zhang
- Department of General Surgery, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Yunxiao Shang
- Department of Pediatric Respiratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
5
|
Pasha MA, Hopp RJ, Habib N, Tang DD. Biomarkers in asthma, potential for therapeutic intervention. J Asthma 2024; 61:1376-1391. [PMID: 38805392 DOI: 10.1080/02770903.2024.2361783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Asthma is a heterogeneous disease characterized by multiple phenotypes with varying risk factors and therapeutic responses. This Commentary describes research on biomarkers for T2-"high" and T2-"low" inflammation, a hallmark of the disease. Patients with asthma who exhibit an increase in airway T2 inflammation are classified as having T2-high asthma. In this endotype, Type 2 cytokines interleukins (IL)-4, IL-5, and IL-13, plus other inflammatory mediators, lead to increased eosinophilic inflammation and elevated fractional exhaled nitric oxide (FeNO). In contrast, T2-low asthma has no clear definition. Biomarkers are considered valuable tools as they can help identify various phenotypes and endotypes, as well as treatment response to standard treatment or potential therapeutic targets, particularly for biologics. As our knowledge of phenotypes and endotypes expands, biologics are increasingly integrated into treatment strategies for severe asthma. These treatments block specific inflammatory pathways or single mediators. While single or composite biomarkers may help to identify subsets of patients who might benefit from these treatments, only a few inflammatory biomarkers have been validated for clinical application. One example is sputum eosinophilia, a particularly useful biomarker, as it may suggest corticosteroid responsiveness or reflect non-compliance to inhaled corticosteroids. As knowledge develops, a meaningful goal would be to provide individualized care to patients with asthma.
Collapse
Affiliation(s)
- M Asghar Pasha
- Department of Medicine, Division of Allergy and Immunology, Albany Medical College, Albany, NY, USA
| | - Russell J Hopp
- Department of Pediatrics, University of NE Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Nazia Habib
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Tian M, Li F, Pei H, Liu X, Nie H. The role of the cGAS-STING pathway in chronic pulmonary inflammatory diseases. Front Med (Lausanne) 2024; 11:1436091. [PMID: 39540037 PMCID: PMC11557406 DOI: 10.3389/fmed.2024.1436091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
The innate immune system plays a vital role in the inflammatory process, serving as a crucial mechanism for the body to respond to infection, cellular stress, and tissue damage. The cGAS-STING signaling pathway is pivotal in the onset and progression of various autoimmune diseases and chronic inflammation. By recognizing cytoplasmic DNA, this pathway initiates and regulates inflammation and antiviral responses within the innate immune system. Consequently, the regulation of the cGAS-STING pathway has become a prominent area of interest in the treatment of many diseases. Chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis, are characterized by persistent or recurrent lung inflammation and tissue damage, leading to diminished respiratory function. This paper explores the mechanism of action of the cGAS-STING signaling pathway in these diseases, examines the development of STING inhibitors and nanomaterial applications, and discusses the potential clinical application prospects of targeting the cGAS-STING pathway in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fengyuan Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, China
| |
Collapse
|
7
|
Lucas JH, Wang Q, Pang C, Rahman I. Developmental perfluorooctane sulfonic acid exposure exacerbates house dust mite induced allergic responses in adult mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173768. [PMID: 38844226 PMCID: PMC11260234 DOI: 10.1016/j.scitotenv.2024.173768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a long-chain per- and polyfluoroalkyl substance (PFAS), a persistent organic pollutant, which has been used in aqueous film-forming foams. Emerging epidemiological evidence indicates a significant body burden of PFOS is observed in the lungs. Furthermore, developmental PFOS exposure dysregulates lung development and exacerbates eosinophilic inflammation, which are critical risk factors for asthma. However, it is unknown whether PFOS exerts sex-dependent effects on house dust mite (HDM) induced asthmatic progression and allergic inflammation. In this study, timed pregnant Balb/cJ dams were dosed orally via PFOS (1.0 mg/kg/d) spiked or vehicle control mealworms from gestational day (GD) 0.5 to postnatal day (PND) 21. Subsequently, HDM (30 μg/day) was administered starting at PND 77-82 for 10 days, and the mice were sacrificed 48 h after their final treatment. The serum and lung PFOS concentrations were 3.391 ± 0.189 μg/mL and 3.567 ± 0.1676 μg/g in the offspring, respectively. Male mice exposed to PFOS + HDM showed higher total cell counts in bronchoalveolar lavage fluid (BALF), macrophage counts, and eosinophil counts compared to mice exposed to HDM alone. Female mice exposed to PFOS + HDM had increased BALF eosinophil percentage, mucous production, alternatively activated (M2) macrophage polarization, and M2-associated gene expression compared to female mice exposed to HDM alone. PFOS exposure had no significant effect on HDM-induced IL-4, IL-5, or IL-13, but RANTES was further elevated in female mice. Overall, our data suggest that developmental PFOS exposure increased the risk of exacerbated eosinophilic inflammation and M2 polarization, which were more severe in female mice, suggesting sex-dependent developmental effects of PFOS on allergic airway responses.
Collapse
Affiliation(s)
- Joseph H Lucas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Cortney Pang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Jackson ND, Dyjack N, Goleva E, Bin L, Montgomery MT, Rios C, Everman JL, Taylor P, Bronchick C, Richers BN, Leung DY, Seibold MA. Atopic Dermatitis Complicated by Recurrent Eczema Herpeticum Is Characterized by Multiple, Concurrent Epidermal Inflammatory Endotypes. JID INNOVATIONS 2024; 4:100279. [PMID: 39006317 PMCID: PMC11239700 DOI: 10.1016/j.xjidi.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 07/16/2024] Open
Abstract
A subgroup of patients with atopic dermatitis (AD) suffers from recurrent, disseminated herpes simplex virus skin infection, termed eczema herpeticum. To determine the transcriptional mechanisms of the skin and immune system pathobiology that underlie development of AD with eczema herpeticum (ADEH), we performed RNA-sequencing analysis of nonlesional skin (epidermis, dermis) from AD patients with and without a history of ADEH (ADEH+, n = 15; ADEH-, n = 13) along with healthy controls (n = 15). We also performed RNA sequencing on participants' plasmacytoid dendritic cells infected in vitro with herpes simplex virus 1. ADEH+ patients exhibited dysregulated gene expression, limited in the dermis (14 differentially expressed genes) and more widespread in the epidermis (129 differentially expressed genes). ADEH+-upregulated epidermal differentially expressed genes were enriched in type 2 cytokine (IL4R , CCL22, CRLF2, IL7R), interferon (CXCL10, ICAM1, IFI44, IRF7), and IL-36γ (IL36G) inflammatory gene pathways. All ADEH+ participants exhibited type 2 cytokine and inteferon endotypes, and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH- participants. ADEH+ skin also had dysregulated epidermal differentiation complex gene expression of the late-cornified envelope, S100A, and small proline-rich gene families, which are involved in skin barrier function and antimicrobial activities. Plasmacytoid dendritic cell transcriptional responses to herpes simplex virus 1 infection were unaltered by ADEH status. The study concluded that the pathobiology underlying ADEH+ risk is associated with a unique, multifaceted epidermal inflammation that accompanies dysregulation of epidermal differentiation complex genes. These findings will help direct future studies that define how these inflammatory patterns may drive risk of eczema herpeticum in AD.
Collapse
Affiliation(s)
- Nathan D. Jackson
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Nathan Dyjack
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Michael T. Montgomery
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Cydney Rios
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Jamie L. Everman
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | | | - Donald Y.M. Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Max A. Seibold
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
11
|
Liu T, Liu S, Rui X, Cao Y, Hecker J, Guo F, Zhang Y, Gong L, Zhou Y, Yu Y, Krishnamoorthyni N, Bates S, Chun S, Boyer N, Xu S, Park JA, Perrella MA, Levy BD, Weiss ST, Mou H, Raby BA, Zhou X. Gasdermin B, an asthma-susceptibility gene, promotes MAVS-TBK1 signalling and airway inflammation. Eur Respir J 2024; 63:2301232. [PMID: 38514093 PMCID: PMC11063620 DOI: 10.1183/13993003.01232-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/31/2023] [Indexed: 03/23/2024]
Abstract
RATIONALE Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Xianliang Rui
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Ye Cao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lu Gong
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yihan Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuzhen Yu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nandini Krishnamoorthyni
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel Bates
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sung Chun
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- These authors jointly conceptualised and supervised this work
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors jointly conceptualised and supervised this work
| |
Collapse
|
12
|
Huang H, Qiao Y, Chu L, Ye C, Lin L, Liao H, Meng X, Zou F, Zhao H, Zou M, Cai S, Dong H. Up-regulation of HSP90α in HDM-induced asthma causes pyroptosis of airway epithelial cells by activating the cGAS-STING-ER stress pathway. Int Immunopharmacol 2024; 131:111917. [PMID: 38527402 DOI: 10.1016/j.intimp.2024.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Heat Shock protein 90 α (HSP90α), an main subtype of chaperone protein HSP90, involves important biological functions such as DNA damage repair, protein modification, innate immunity. However, the potential role of HSP90α in asthma occurrence and development is still unclear. This study aimed to elucidate the underlying mechanism of HSP90α in asthma by focusing on the cGAS-STING-Endoplasmic Reticulum stress pathway in inflammatory airway epithelial cell death (i.e., pyroptosis; inflammatory cell death). To accomplish that, we modeled allergen exposure in C57/6BL mice and bronchial epithelial cells with house dust mite. Protein technologies and immunofluorescence utilized to study the expression of HSP90α, activation of cGAS-STING pathway and pyroptosis. The effect of inhibitors on HDM-exposed mice detected by histological techniques and examination of bronchoalveolar lavage fluid. Results showed that HSP90α promotes asthma inflammation via pyroptosis and activation of the cGAS-STING-ER stress pathway. Treatment with the HSP90 inhibitor tanespimycin (17-AAG) significantly relieved airway inflammation and abrogated the effect of HSP90α on pyroptosis and cGAS-STING-ER stress in vitro and in vivo models of HDM. Further data indicated that up-regulation of HSP90α stabilized STING through interaction, which increased localization of STING on the ER. Activation of STING triggered ER stress and leaded to pyroptosis-related airway inflammation. The finding showed the potential role of pyroptosis caused by dysregulation of HSP90α on airway epithelial cells in allergic inflammation, suggested that targeting HSP90α in airway epithelial cells might prove to be a potential additional treatment strategy for asthma.
Collapse
Affiliation(s)
- Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cuiping Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
14
|
Liu T, Hecker J, Liu S, Rui X, Boyer N, Wang J, Yu Y, Zhang Y, Mou H, Gomez-Escobar LG, Choi AM, Raby BA, Weiss ST, Zhou X. The Asthma Risk Gene, GSDMB, Promotes Mitochondrial DNA-induced ISGs Expression. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10005. [PMID: 38737375 PMCID: PMC11086750 DOI: 10.35534/jrbtm.2024.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Released mitochondrial DNA (mtDNA) in cells activates cGAS-STING pathway, which induces expression of interferon-stimulated genes (ISGs) and thereby promotes inflammation, as frequently seen in asthmatic airways. However, whether the genetic determinant, Gasdermin B (GSDMB), the most replicated asthma risk gene, regulates this pathway remains unknown. We set out to determine whether and how GSDMB regulates mtDNA-activated cGAS-STING pathway and subsequent ISGs induction in human airway epithelial cells. Using qPCR, ELISA, native polyacrylamide gel electrophoresis, co-immunoprecipitation and immunofluorescence assays, we evaluated the regulation of GSDMB on cGAS-STING pathway in both BEAS-2B cells and primary normal human bronchial epithelial cells (nHBEs). mtDNA was extracted in plasma samples from human asthmatics and the correlation between mtDNA levels and eosinophil counts was analyzed. GSDMB is significantly associated with RANTES expression in asthmatic nasal epithelial brushing samples from the Genes-environments and Admixture in Latino Americans (GALA) II study. Over-expression of GSDMB promotes DNA-induced IFN and ISGs expression in bronchial epithelial BEAS-2B cells and nHBEs. Conversely, knockout of GSDMB led to weakened induction of interferon (IFNs) and ISGs in BEAS-2B cells. Mechanistically, GSDMB interacts with the C-terminus of STING, promoting the translocation of STING to Golgi, leading to the phosphorylation of IRF3 and induction of IFNs and ISGs. mtDNA copy number in serum from asthmatics was significantly correlated with blood eosinophil counts especially in male subjects. GSDMB promotes the activation of mtDNA and poly (dA:dT)-induced activation of cGAS-STING pathway in airway epithelial cells, leading to enhanced induction of ISGs.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xianliang Rui
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Wang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yuzhen Yu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Augustine M.K. Choi
- Weil Cornell Medical School, Joan and Sanford I. Weill Department of Medicine, New York, NY 10065, USA
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Quoc QL, Choi Y, Hur GY, Park HS. New targets for type 2-low asthma. Korean J Intern Med 2024; 39:215-227. [PMID: 38317271 PMCID: PMC10918384 DOI: 10.3904/kjim.2023.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 02/07/2024] Open
Abstract
Asthma is characterized by airway obstruction and inflammation, and presents significant diagnostic and treatment challenges. The concept of endotypes has improved understanding of the mechanisms of asthma and has stimulated the development of effective treatment strategies. Sputum profiles may be used to classify asthma into two major inflammatory types: type 2-high (T2H) and type 2-low (T2L) asthma. T2H, characterized by elevated type 2 inflammation, has been extensively studied and several effective biologic treatments have been developed. However, managing T2L is more difficult due to the lack of reliable biomarkers for accurate diagnosis and classification. Additionally, conventional anti-inflammatory therapy does not completely control the symptoms of T2L; therefore, further research is needed to identify effective biologic treatments. This review provides new insights into the clinical characteristics and underlying mechanisms of severe T2L and investigates potential therapeutic approaches to control the disease.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon,
Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon,
Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang,
Korea
| | - Gyu-Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon,
Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon,
Korea
| |
Collapse
|
16
|
Watanabe S, Suzukawa M, Tashimo H, Ohshima N, Asari I, Takada K, Imoto S, Nagase T, Ohta K. Low Serum IL-18 Levels May Predict the Effectiveness of Dupilumab in Severe Asthma. Intern Med 2024; 63:179-187. [PMID: 37225484 PMCID: PMC10864083 DOI: 10.2169/internalmedicine.1808-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/26/2023] Open
Abstract
Objective Dupilumab, a monoclonal antibody specific for the human interleukin (IL)-4 receptor α, is used to treat severe asthma, especially in patients with elevated blood eosinophil counts and fractional exhaled nitric oxide (FeNO). The therapeutic response to dupilumab is highly variable. In this study, we explored new serum biomarkers to accurately predict the effect of dupilumab and examine the effect of dupilumab based on changes in the clinical parameters and cytokine levels. Methods Seventeen patients with severe asthma treated with dupilumab were enrolled. Responders, defined as those with a >0.5-point decrease in the Asthma Control Questionnaire (ACQ) score after 6 months of treatment, were included. Results There were 10 responders and 7 non-responders. Serum type 2 cytokines were equivalent between responders and non-responders; the baseline serum IL-18 level was significantly lower in responders than in non-responders (responders, 194.9±51.0 pg/mL; non-responders, 323.4±122.7 pg/mL, p=0.013). The cut-off value of IL-18 at 230.5 pg/mL could be used to distinguish non-responders from responders (sensitivity 71.4, specificity 80.0, p=0.032). Conclusion A low baseline serum IL-18 level may be a useful predictor of an unfavorable response to dupilumab in terms of the ACQ-6.
Collapse
Affiliation(s)
- Shizuka Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
- Department of Respiratory Medicine, The University of Tokyo, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
- Asthma, Allergy and Rheumatology Center, National Hospital Organization Tokyo National Hospital, Japan
| | - Hiroyuki Tashimo
- Asthma, Allergy and Rheumatology Center, National Hospital Organization Tokyo National Hospital, Japan
| | - Nobuharu Ohshima
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Japan
| | - Isao Asari
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
- Department of Geriatric Medicine, The University of Tokyo, Japan
| | - Sahoko Imoto
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
- Department of Respiratory Medicine, The University of Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo, Japan
| | - Ken Ohta
- Department of Respiratory Medicine, The University of Tokyo, Japan
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Japan
| |
Collapse
|
17
|
Qin Z, Chen Y, Wang Y, Xu Y, Liu T, Mu Q, Huang C. Immunometabolism in the pathogenesis of asthma. Immunology 2024; 171:1-17. [PMID: 37652466 DOI: 10.1111/imm.13688] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterised by chronic airway inflammation. A variety of immune cells such as eosinophils, mast cells, T lymphocytes, neutrophils and airway epithelial cells are involved in the airway inflammation and airway hyperresponsiveness in asthma pathogenesis, resulting in extensive and variable reversible expiratory airflow limitation. However, the precise molecular mechanisms underlying the allergic immune responses, particularly immunometabolism, remains unclear. Studies have detected enhanced oxidative stress, and abnormal metabolic progresses of glycolysis, fatty acid and amino acid in various immune cells, inducing dysregulation of innate and adaptive immune responses in asthma pathogenesis. Immunometabolism mechanisms contain multiple signalling pathways, providing novel therapy targets for asthma. This review summarises the current knowledge on immunometabolism reprogramming in asthma pathogenesis, as well as potential therapy strategies.
Collapse
Affiliation(s)
- Ziwen Qin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yujuan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yue Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yeyang Xu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tingting Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Mu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
18
|
Altman MC, Segnitz RM, Larson D, Jayavelu ND, Smith MT, Patel S, Scadding GW, Qin T, Sanda S, Steveling E, Eifan AO, Penagos M, Jacobson MR, Parkin RV, Shamji MH, Togias A, Durham SR. Nasal and blood transcriptomic pathways underpinning the clinical response to grass pollen immunotherapy. J Allergy Clin Immunol 2023; 152:1247-1260. [PMID: 37460024 PMCID: PMC10788383 DOI: 10.1016/j.jaci.2023.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Allergen immunotherapy (AIT) is a well-established disease-modifying therapy for allergic rhinitis, yet the fundamental mechanisms underlying its clinical effect remain inadequately understood. Gauging Response in Allergic Rhinitis to Sublingual and Subcutaneous Immunotherapy was a randomized, double-blind, placebo-controlled trial of individuals allergic to timothy grass who received 2 years of placebo (n = 30), subcutaneous immunotherapy (SCIT) (n = 27), or sublingual immunotherapy (SLIT) (n = 27) and were then followed for 1 additional year. OBJECTIVE We used yearly biospecimens from the Gauging Response in Allergic Rhinitis to Sublingual and Subcutaneous Immunotherapy study to identify molecular mechanisms of response. METHODS We used longitudinal transcriptomic profiling of nasal brush and PBMC samples after allergen provocation to uncover airway and systemic expression pathways mediating responsiveness to AIT. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01335139, EudraCT Number: 2010-023536-16. RESULTS SCIT and SLIT demonstrated similar changes in gene module expression over time. In nasal samples, alterations included downregulation of pathways of mucus hypersecretion, leukocyte migration/activation, and endoplasmic reticulum stress (log2 fold changes -0.133 to -0.640, false discovery rates [FDRs] <0.05). We observed upregulation of modules related to epithelial development, junction formation, and lipid metabolism (log2 fold changes 0.104 to 0.393, FDRs <0.05). In PBMCs, modules related to cellular stress response and type 2 cytokine signaling were reduced by immunotherapy (log2 fold changes -0.611 to -0.828, FDRs <0.05). Expression of these modules was also significantly associated with both Total Nasal Symptom Score and peak nasal inspiratory flow, indicating important links between treatment, module expression, and allergen response. CONCLUSIONS Our results identify specific molecular responses of the nasal airway impacting barrier function, leukocyte migration activation, and mucus secretion that are affected by both SCIT and SLIT, offering potential targets to guide novel strategies for AIT.
Collapse
Affiliation(s)
- Matthew C Altman
- Systems Immunology Division, Benaroya Research Institute, Seattle; Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle.
| | - R Max Segnitz
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle
| | | | | | - Malisa T Smith
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle
| | - Sana Patel
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle
| | - Guy W Scadding
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | | | - Srinath Sanda
- Madison Clinic for Pediatric Diabetes, University of California San Francisco, San Francisco
| | - Esther Steveling
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Aarif O Eifan
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Martin Penagos
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Mikila R Jacobson
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Rebecca V Parkin
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Alkis Togias
- The National Institute of Allergy and Infectious Disease, Bethesda
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| |
Collapse
|
19
|
Riihimäki M, Fegraeus K, Nordlund J, Waern I, Wernersson S, Akula S, Hellman L, Raine A. Single-cell transcriptomics delineates the immune cell landscape in equine lower airways and reveals upregulation of FKBP5 in horses with asthma. Sci Rep 2023; 13:16261. [PMID: 37758813 PMCID: PMC10533524 DOI: 10.1038/s41598-023-43368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Equine asthma (EA) is a heterogenous, complex disease, with a significant negative impact on horse welfare and performance. EA and human asthma share fundamental similarities, making EA a useful model for studying the disease. One relevant sample type for investigating chronic lung inflammation is bronchoalveolar lavage fluid (BALF), which provides a snapshot of the immune cells present in the alveolar space. To investigate the immune cell landscape of the respiratory tract in horses with mild-to-moderate equine asthma (mEA) and healthy controls, single-cell RNA sequencing was conducted on equine BALF cells. We characterized the major immune cell populations present in equine BALF, as well as subtypes thereof. Interestingly, the most significantly upregulated gene discovered in cases of mEA was FKBP5, a chaperone protein involved in regulating the activity of the glucocorticoid receptor.
Collapse
Affiliation(s)
- Miia Riihimäki
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kim Fegraeus
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Jackson ND, Dyjack N, Goleva E, Bin L, Montgomery MT, Rios C, Everman JL, Taylor P, Bronchick C, Richers BN, Leung DY, Seibold MA. Atopic dermatitis complicated by recurrent eczema herpeticum is characterized by multiple, concurrent epidermal inflammatory endotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530316. [PMID: 36909594 PMCID: PMC10002633 DOI: 10.1101/2023.02.27.530316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND A subgroup of atopic dermatitis (AD) patients suffer from recurrent, disseminated herpes simplex virus (HSV) skin infections, termed eczema herpeticum (EH), which can be life-threatening and contribute to AD morbidity. The pathobiology underlying ADEH is unknown. OBJECTIVE To determine transcriptional mechanisms of skin and immune system pathobiology that underlie ADEH disease. METHODS We performed whole transcriptome RNA-sequencing of non-lesional skin samples (epidermis, dermis) of AD patients with (ADEH + , n=15) and without (ADEH - , n=13) recurrent EH history, and healthy controls (HC, n=15). We also performed RNA-sequencing on plasmacytoid dendritic cells (pDCs) collected from these participants and infected in vitro with HSV-1. Differential expression, gene set enrichment, and endotyping analyses were performed. RESULTS ADEH + disease was characterized by dysregulation in skin gene expression, which was limited in dermis (differentially expressed genes [DEGs]=14) and widespread in epidermis (DEGs=129). ADEH + -upregulated epidermal DEGs were enriched in type 2 cytokine (T2) ( IL4R, CCL22, CRLF2, IL7R ), interferon ( CXCL10, ICAM1, IFI44 , and IRF7) , and IL-36γ ( IL36G ) inflammatory pathway genes. At a person-level, all ADEH + participants exhibited T2 and interferon endotypes and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH - participants. ADEH + patient skin also exhibited dysregulation in epidermal differentiation complex (EDC) genes within the LCE, S100 , and SPRR families, which are involved in skin barrier function, inflammation, and antimicrobial activities. pDC transcriptional responses to HSV-1 infection were not altered by ADEH status. CONCLUSIONS ADEH + pathobiology is characterized by a unique, multi-faceted epidermal inflammation that accompanies dysregulation in the expression of EDC genes. Key Messages AD patients with a history of recurrent EH exhibit molecular skin pathobiology that is similar in form, but more severe in degree, than in AD patients without this complication. Non-lesional skin of ADEH + patients concurrently exhibits excessive type 2 cytokine, interferon, and IL-36γ-driven epidermal inflammation. Expression of these inflammatory skin endotypes among ADEH + patients is associated with dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity. Capsule Summary AD patients with a history of recurrent disseminated HSV-1 skin infections form a unique molecular skin endotype group that concurrently exhibits type 2 cytokine, interferon, and IL-36γ-driven skin inflammation, accompanied by dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity.
Collapse
|
21
|
Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78:940-956. [PMID: 36727912 DOI: 10.1111/all.15666] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Asthma is a complex and heterogeneous chronic inflammatory disease of the airways. Alongside environmental factors, asthma susceptibility is strongly influenced by genetics. Given its high prevalence and our incomplete understanding of the mechanisms underlying disease susceptibility, asthma is frequently studied in genome-wide association studies (GWAS), which have identified thousands of genetic variants associated with asthma development. Virtually all these genetic variants reside in non-coding genomic regions, which has obscured the functional impact of asthma-associated variants and their translation into disease-relevant mechanisms. Recent advances in genomics technology and epigenetics now offer methods to link genetic variants to gene regulatory elements embedded within non-coding regions, which have started to unravel the molecular mechanisms underlying the complex (epi)genetics of asthma. Here, we provide an integrated overview of (epi)genetic variants associated with asthma, focusing on efforts to link these disease associations to biological insight into asthma pathophysiology using state-of-the-art genomics methodology. Finally, we provide a perspective as to how decoding the genetic and epigenetic basis of asthma has the potential to transform clinical management of asthma and to predict the risk of asthma development.
Collapse
Affiliation(s)
- Bernard S Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Koh KD, Bonser LR, Eckalbar WL, Yizhar-Barnea O, Shen J, Zeng X, Hargett KL, Sun DI, Zlock LT, Finkbeiner WE, Ahituv N, Erle DJ. Genomic characterization and therapeutic utilization of IL-13-responsive sequences in asthma. CELL GENOMICS 2023; 3:100229. [PMID: 36777184 PMCID: PMC9903679 DOI: 10.1016/j.xgen.2022.100229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.
Collapse
Affiliation(s)
- Kyung Duk Koh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luke R. Bonser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter L. Eckalbar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ofer Yizhar-Barnea
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiangshan Shen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kirsten L. Hargett
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dingyuan I. Sun
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorna T. Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter E. Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David J. Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Brasier AR. Innate Immunity, Epithelial Plasticity, and Remodeling in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:265-285. [PMID: 37464126 DOI: 10.1007/978-3-031-32259-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Innate immune responses (IIR) of the epithelium play a critical role in the initiation and progression of asthma. The core of the IIR is an intracellular signaling pathway activated by pattern recognition receptors (PRRs) to limit the spread of infectious organisms. This chapter will focus on the epithelium as the major innate sentinel cell and its role in acute exacerbations (AEs). Although the pathways of how the IIR activates the NFκB transcription factor, triggering cytokine secretion, dendritic cell activation, and Th2 polarization are well-described, recent exciting work has developed mechanistic insights into how chronic activation of the IIR is linked to mucosal adaptive responses. These adaptations include changes in cell state, now called epithelial-mesenchymal plasticity (EMP). EMP is a coordinated, genomic response to airway injury disrupting epithelial barrier function, expanding the basal lamina, and producing airway remodeling. EMP is driven by activation of the unfolded protein response (UPR), a transcriptional response producing metabolic shunting of glucose through the hexosamine biosynthetic pathway (HBP) to protein N-glycosylation. NFκB signaling and UPR activation pathways potentiate each other in remodeling the basement membrane. Understanding of injury-repair process of epithelium provides new therapeutic targets for precision approaches to the treatment of asthma exacerbations and their sequelae.
Collapse
Affiliation(s)
- Allan R Brasier
- Department of Medicine and Institute for Clinical and Translational Research (ICTR), School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
24
|
Cao Y, Wu Y, Lin L, Yang L, Peng X, Chen L. Identifying key genes and functionally enriched pathways in Th2-high asthma by weighted gene co-expression network analysis. BMC Med Genomics 2022; 15:110. [PMID: 35550122 PMCID: PMC9097074 DOI: 10.1186/s12920-022-01241-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/14/2022] [Indexed: 12/05/2022] Open
Abstract
Background Asthma is a chronic lung disease characterized by reversible inflammation of the airways. The imbalance of Th1/Th2 cells plays a significant role in the mechanisms of asthma. The aim of this study was to identify asthma-related key genes and functionally enriched pathways in a Th2-high group by using weighted gene coexpression network analysis (WGCNA).
Methods The gene expression profiles of GSE4302, which included 42 asthma patients and 28 controls, were selected from the Gene Expression Omnibus (GEO). A gene network was constructed, and genes were classified into different modules using WGCNA. Gene ontology (GO) was performed to further explore the potential function of the genes in the most related module. In addition, the expression profile and diagnostic capacity (ROC curve) of hub genes of interest were verified by dataset GSE67472. Results In dataset GSE4302, subjects with asthma were divided into Th2-high and Th2-low groups according to the expression of the SERPINB2, POSTN and CLCA1 genes. A weighted gene coexpression network was constructed, and genes were classified into 7 modules. Among them, the red module was most closely associated with Th2-high asthma, which contained 60 genes. These genes were significantly enriched in different biological processes and molecular functions. A total of 8 hub genes (TPSB2, CPA3, ITLN1, CST1, SERPINB10, CEACAM5, CHD26 and P2RY14) were identified, and the expression levels of these genes (except TPSB2) were confirmed in dataset GSE67472. ROC curve analysis validated that the expression of these 8 genes exhibited excellent diagnostic efficiency for Th2-high asthma and Th2-low asthma. Conclusions The study provides a novel perspective on Th2-high asthma by WGCNA, and the hub genes and potential pathways involved may be beneficial for the diagnosis and management of Th2-high asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01241-9.
Collapse
Affiliation(s)
- Yao Cao
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Yi Wu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Li Lin
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Lin Yang
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Xin Peng
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China
| | - Lina Chen
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China. .,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, People's Republic of China.
| |
Collapse
|
25
|
Carr TF, Peters MC. Novel potential treatable traits in asthma: Where is the research taking us? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:27-36. [PMID: 37780590 PMCID: PMC10509971 DOI: 10.1016/j.jacig.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 10/03/2023]
Abstract
Asthma is a complex, heterogeneous disease in which the underlying mechanisms are not fully understood. Patients are often grouped into phenotypes (based on clinical, biologic, and physiologic characteristics) and endotypes (based on distinct genetic or molecular mechanisms). Recently, patients with asthma have been broadly split into 2 phenotypes based on their levels of type 2 inflammation: type 2 and non-type 2 asthma. However, this approach is likely oversimplified, and our understanding of the non-type 2 mechanisms in asthma remains extremely limited. A better understanding of asthma phenotypes and endotypes may assist in development of drugs for new therapeutic targets in asthma. One approach is to identify "treatable traits," which are specific patient characteristics related to phenotypes and endotypes that can be targeted by therapies. This review will focus on emerging treatable traits in asthma and aim to describe novel patient subgroups and endotypes that may represent the next step in the search for new therapeutic approaches.
Collapse
Affiliation(s)
- Tara F. Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, Calif
| |
Collapse
|
26
|
Xu Z, Forno E, Acosta-Pérez E, Han YY, Rosser F, Manni ML, Canino G, Chen W, Celedón JC. Differential gene expression in nasal airway epithelium from overweight or obese youth with asthma. Pediatr Allergy Immunol 2022; 33:e13776. [PMID: 35470932 PMCID: PMC9047012 DOI: 10.1111/pai.13776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND The mechanisms underlying the known link between overweight/obesity and childhood asthma are unclear. We aimed to identify differentially expressed genes and pathways associated with obesity-related asthma through a transcriptomic analysis of nasal airway epithelium. METHODS We compared the whole transcriptome in nasal airway epithelium of youth with overweight or obesity and asthma with that of youth of normal weight and asthma, using RNA sequencing data from a cohort of 235 Puerto Ricans aged 9-20 years (EVA-PR) and an independent cohort of 66 children aged 6-16 years in Pittsburgh (VDKA). Differential expression analysis adjusting for age, sex, sequencing plate number, and sample sorting protocol, and the first five principal components were performed independently in each cohort. Results from the two cohorts were combined in a transcriptome-wide meta-analysis. Gene enrichment and network analyses were performed on top genes. RESULTS In the meta-analysis, 29 genes were associated with obesity-related asthma at an FDR-adjusted p <.05, including pro-inflammatory genes known to be differentially expressed in adipose tissue of obese subjects (e.g., CXCL11, CXCL10, and CXCL9) and several novel genes. Functional enrichment analyses showed that pathways for interferon signaling, and innate and adaptive immune responses were down-regulated in overweight/obese youth with asthma, while pathways related to ciliary structure or function were up-regulated. Upstream regulatory analysis predicted significant inhibition of the IRF7 pathway. Network analyses identified "hub" genes like GBP5 and SOCS1. CONCLUSION Our transcriptome-wide analysis of nasal airway epithelium identified biologically plausible genes and pathways for obesity-related asthma in youth.
Collapse
Affiliation(s)
- Zhongli Xu
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Franziska Rosser
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle L Manni
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Bonser LR, Eckalbar WL, Rodriguez L, Shen J, Koh KD, Ghias K, Zlock LT, Christenson S, Woodruff PG, Finkbeiner WE, Erle DJ. The Type 2 Asthma Mediator IL-13 Inhibits Severe Acute Respiratory Syndrome Coronavirus 2 Infection of Bronchial Epithelium. Am J Respir Cell Mol Biol 2022; 66:391-401. [PMID: 34982656 PMCID: PMC8990122 DOI: 10.1165/rcmb.2021-0364oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Asthma is associated with chronic changes in the airway epithelium, a key target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many epithelial changes, including goblet cell metaplasia, are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. We found that IL-13 stimulation of differentiated human bronchial epithelial cells (HBECs) cultured at air-liquid interface reduced viral RNA recovered from SARS-CoV-2-infected cells and decreased double-stranded RNA, a marker of viral replication, to below the limit of detection in our assay. An intact mucus gel reduced SARS-CoV-2 infection of unstimulated cells, but neither a mucus gel nor SPDEF, which is required for goblet cell metaplasia, were required for the antiviral effects of IL-13. Bulk RNA sequencing revealed that IL-13 regulated 41 of 332 (12%) mRNAs encoding SARS-CoV-2-associated proteins that were detected in HBECs (>1.5-fold change; false discovery rate < 0.05). Although both IL-13 and IFN-α each inhibit SARS-CoV-2 infection, their transcriptional effects differed markedly. Single-cell RNA sequencing revealed cell type-specific differences in SARS-CoV-2-associated gene expression and IL-13 responses. Many IL-13-induced gene expression changes were seen in airway epithelium from individuals with type 2 asthma and chronic obstructive pulmonary disease. IL-13 effects on airway epithelial cells may protect individuals with type 2 asthma from COVID-19 and could lead to identification of novel strategies for reducing SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Walter L. Eckalbar
- Lung Biology Center, and,Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine,,UCSF CoLabs
| | | | | | | | | | | | - Stephanie Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine,,Cardiovascular Research Institute,,ImmunoX Initiative, and
| | | | - David J. Erle
- Lung Biology Center, and,UCSF CoLabs,,Cardiovascular Research Institute,,ImmunoX Initiative, and,Institute for Human Genetics, University of California, San Francisco, California
| |
Collapse
|
28
|
黄 浩, 乔 妤, 黄 奕, 董 航. [HSP90α exacerbates house dust mite-induced asthmatic airway inflammation by upregulating endoplasmic reticulum stress in bronchial epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:347-353. [PMID: 35426797 PMCID: PMC9010984 DOI: 10.12122/j.issn.1673-4254.2022.03.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the role of heat shock protein 90α (HSP90α) and endoplasmic reticulum (ER) stress pathway in allergic airway inflammation induced by house dust mite (HDM) in bronchial epithelial cells. METHODS A HDM- induced asthmatic cell model was established in human bronchial epithelial (HBE) cells by exposure to a concentration gradient (200, 400 and 800 U/mL) of HDM for 24 h. To test the effect of siHSP90α and HSP90 inhibitor 17-AAG on HDM-induced asthmatic inflammation, HBE cells were transfected with siHSP90α (50 nmol, 12 h) or pretreated with 17-AAG (900 nmol, 6 h) prior to HDM exposure (800 U/mL) for 24 h, and the changes in the expression of HSP90α and ER stress markers were assessed. We also tested the effect of nasal drip of 17-AAG, HDM, or their combination on airway inflammation and ER stress in C57BL/6 mice. RESULTS In HBE cells, HDM exposure significantly up-regulated the expression of HSP90α protein (P=0.011) and ER stress markers XBP-1 (P=0.044), ATF-6α (P=0.030) and GRP-78 (P=0.027). Knocking down HSP90α and treatment with 17-AAG both significantly inhibited HDM-induced upregulation of XBP-1 (P=0.008). In C57BL/6 mice, treatment with 17-AAG obviously improved HDM-induced airway inflammation and significantly reduced the number of inflammatory cells in the airway (P=0.014) and lowered the levels of IL-4 (P=0.030) and IL-5 (P=0.035) in alveolar lavage fluid. Immunohistochemical staining showed that the expressions of XBP-1 and GRP-78 in airway epithelial cells decreased significantly after the treatment of 17-AAG. CONCLUSIONS HSP90α promotes HDM-induced airway allergic inflammation possibly by upregulating ER stress pathway in bronchial epithelial cells.
Collapse
Affiliation(s)
- 浩华 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 妤婕 乔
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 奕 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 航明 董
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Chen G, Chen D, Feng Y, Wu W, Gao J, Chang C, Chen S, Zhen G. Identification of Key Signaling Pathways and Genes in Eosinophilic Asthma and Neutrophilic Asthma by Weighted Gene Co-Expression Network Analysis. Front Mol Biosci 2022; 9:805570. [PMID: 35187081 PMCID: PMC8847715 DOI: 10.3389/fmolb.2022.805570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Asthma is a heterogeneous disease with different subtypes including eosinophilic asthma (EA) and neutrophilic asthma (NA). However, the mechanisms underlying the difference between the two subtypes are not fully understood.Methods: Microarray datasets (GSE45111 and GSE137268) were acquired from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in induced sputum between EA (n = 24) and NA (n = 15) were identified by “Limma” package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and Gene set enrichment analysis (GSEA) were used to explore potential signaling pathways. Weighted gene co-expression network analysis (WGCNA) were performed to identify the key genes that were strongly associated with EA and NA.Results: A total of 282 DEGs were identified in induced sputum of NA patients compared with EA patients. In GO and KEGG pathway analyses, DEGs were enriched in positive regulation of cytokine production, and cytokine-cytokine receptor interaction. The results of GSEA showed that ribosome, Parkinson’s disease, and oxidative phosphorylation were positively correlated with EA while toll-like receptor signaling pathway, primary immunodeficiency, and NOD-like receptor signaling pathway were positively correlated with NA. Using WGCNA analysis, we identified a set of genes significantly associated NA including IRFG, IRF1, STAT1, IFIH1, IFIT3, GBP1, GBP5, IFIT2, CXCL9, and CXCL11.Conclusion: We identified potential signaling pathways and key genes involved in the pathogenesis of the asthma subsets, especially in neutrophilic asthma.
Collapse
Affiliation(s)
- Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dian Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
- *Correspondence: Guohua Zhen,
| |
Collapse
|
30
|
Badi YE, Pavel AB, Pavlidis S, Riley JH, Bates S, Kermani NZ, Knowles R, Kolmert J, Wheelock CE, Worsley S, Uddin M, Alving K, Bakke PS, Behndig A, Caruso M, Chanez P, Fleming LJ, Fowler SJ, Frey U, Howarth P, Horváth I, Krug N, Maitland-van der Zee AH, Montuschi P, Roberts G, Sanak M, Shaw DE, Singer F, Sterk PJ, Djukanovic R, Dahlen SE, Guo YK, Chung KF, Guttman-Yassky E, Adcock IM. Mapping atopic dermatitis and anti-IL-22 response signatures to type 2-low severe neutrophilic asthma. J Allergy Clin Immunol 2022; 149:89-101. [PMID: 33891981 DOI: 10.1016/j.jaci.2021.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. OBJECTIVE We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti-IL-22 (fezakinumab [FZ]) is enriched in severe asthma. METHODS An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. RESULTS The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. CONCLUSIONS The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.
Collapse
Affiliation(s)
- Yusef Eamon Badi
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom; Data Science Institute, Imperial College London, London, United Kingdom
| | - Ana B Pavel
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biomedical Engineering, The University of Mississippi, Oxford, Miss
| | - Stelios Pavlidis
- Data Science Institute, Imperial College London, London, United Kingdom
| | - John H Riley
- GSK Respiratory Therapeutic Area Unit, Stevenage, United Kingdom
| | - Stewart Bates
- GSK Respiratory Therapeutic Area Unit, Stevenage, United Kingdom
| | | | | | - Johan Kolmert
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sally Worsley
- GSK Value Evidence and Outcomes, Brentford, United Kingdom
| | - Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden
| | - Kjell Alving
- Department of Women's and Children's Health: Paediatric Research, Uppsala University, Uppsala, Sweden
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Aix-Marseille Universite, Assistance Publique des Hopitaux de Marseille, Clinic des Bronches, Allergies et Sommeil, Marseille, France
| | - Louise J Fleming
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Howarth
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Ildikó Horváth
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | | | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Agostino Gemelli University Hospital Foundation, Rome, Italy
| | - Graham Roberts
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dominick E Shaw
- University of Nottingham, NIHR Biomedical Research Centre, Nottingham, United Kingdom
| | - Florian Singer
- Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ratko Djukanovic
- Clinical and Experimental Sciences and Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom
| | - Sven-Eric Dahlen
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yi-Ke Guo
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ian M Adcock
- National Heart and Lung Institute, the Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom.
| |
Collapse
|
31
|
Bao T, Liu J, Leng J, Cai L. The cGAS-STING pathway: more than fighting against viruses and cancer. Cell Biosci 2021; 11:209. [PMID: 34906241 PMCID: PMC8670263 DOI: 10.1186/s13578-021-00724-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the classic Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, downstream signals can control the production of type I interferon and nuclear factor kappa-light-chain-enhancer of activated B cells to promote the activation of pro-inflammatory molecules, which are mainly induced during antiviral responses. However, with progress in this area of research, studies focused on autoimmune diseases and chronic inflammatory conditions that may be relevant to cGAS-STING pathways have been conducted. This review mainly highlights the functions of the cGAS-STING pathway in chronic inflammatory diseases. Importantly, the cGAS-STING pathway has a major impact on lipid metabolism. Different research groups have confirmed that the cGAS-STING pathway plays an important role in the chronic inflammatory status in various organs. However, this pathway has not been studied in depth in diabetes and diabetes-related complications. Current research on the cGAS-STING pathway has shown that the targeted therapy of diseases that may be caused by inflammation via the cGAS-STING pathway has promising outcomes.
Collapse
Affiliation(s)
- Terigen Bao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Departments of Pharmacology and Toxicology, The University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
32
|
Jiang H, Ding D, He Y, Li X, Xu Y, Liu X. Xbp1s-Ddit3 promotes MCT-induced pulmonary hypertension. Clin Sci (Lond) 2021; 135:2467-2481. [PMID: 34676402 PMCID: PMC8564003 DOI: 10.1042/cs20210612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling. Exploring new therapy target is urgent. The purpose of the present study is to investigate whether and how spliced x-box binding protein 1 (xbp1s), a key component of endoplasmic reticulum stress (ERS), contributes to the pathogenesis of PH. Forty male SD rats were randomly assigned to four groups: Control, Monocrotaline (MCT), MCT+AAV-CTL (control), and MCT+AAV-xbp1s. The xbp1s protein levels were found to be elevated in lung tissues of the MCT group. Intratracheal injection of adeno-associated virus serotype 1 carrying xbp1s shRNA (AAV-xbp1s) to knock down the expression of xbp1s effectively ameliorated the MCT-induced elevation of right ventricular systolic pressure (RVSP), total pulmonary resistance (TPR), right ventricular hypertrophy and medial wall thickness of muscularized distal pulmonary arterioles. The abnormally increased positive staining rates of proliferating cell nuclear antigen (PCNA) and Ki67 and decreased positive staining rates of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) in pulmonary arterioles were also reversed in the MCT+AAV-xbp1s group. For mechanistic exploration, bioinformatics prediction of the protein network was performed on the STRING database, and further verification was performed by qRT-PCR, Western blots and co-immunoprecipitation (Co-IP). DNA damage-inducible transcript 3 (Ddit3) was identified as a downstream protein that interacted with xbp1s. Overexpression of Ddit3 restored the decreased proliferation, migration and cell viability caused by silencing of xbp1s. The protein level of Ddit3 was also highly consistent with xbp1s in the animal model. Taken together, our study demonstrated that xbp1s-Ddit3 may be a potential target to interfere with vascular remodeling in PH.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arterial Pressure
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats, Sprague-Dawley
- Signal Transduction
- Transcription Factor CHOP/genetics
- Transcription Factor CHOP/metabolism
- Vascular Remodeling
- Ventricular Dysfunction, Right/chemically induced
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- Rats
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Dandan Ding
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
33
|
Camiolo MJ, Zhou X, Wei Q, Trejo Bittar HE, Kaminski N, Ray A, Wenzel SE. Machine learning implicates the IL-18 signaling axis in severe asthma. JCI Insight 2021; 6:e149945. [PMID: 34591794 PMCID: PMC8663569 DOI: 10.1172/jci.insight.149945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Asthma is a common disease with profoundly variable natural history and patient morbidity. Heterogeneity has long been appreciated, and much work has focused on identifying subgroups of patients with similar pathobiological underpinnings. Previous studies of the Severe Asthma Research Program (SARP) cohort linked gene expression changes to specific clinical and physiologic characteristics. While invaluable for hypothesis generation, these data include extensive candidate gene lists that complicate target identification and validation. In this analysis, we performed unsupervised clustering of the SARP cohort using bronchial epithelial cell gene expression data, identifying a transcriptional signature for participants suffering exacerbation-prone asthma with impaired lung function. Clinically, participants in this asthma cluster exhibited a mixed inflammatory process and bore transcriptional hallmarks of NF-κB and activator protein 1 (AP-1) activation, despite high corticosteroid exposure. Using supervised machine learning, we found a set of 31 genes that classified patients with high accuracy and could reconstitute clinical and transcriptional hallmarks of our patient clustering in an external cohort. Of these genes, IL18R1 (IL-18 Receptor 1) negatively associated with lung function and was highly expressed in the most severe patient cluster. We validated IL18R1 protein expression in lung tissue and identified downstream NF-κB and AP-1 activity, supporting IL-18 signaling in severe asthma pathogenesis and highlighting this approach for gene and pathway discovery.
Collapse
Affiliation(s)
- Matthew J. Camiolo
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiuxia Zhou
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qi Wei
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E. Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Douglas TC, Hannila SS. Working from within: how secretory leukocyte protease inhibitor regulates the expression of pro-inflammatory genes. Biochem Cell Biol 2021; 100:1-8. [PMID: 34555292 DOI: 10.1139/bcb-2021-0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is a small but powerful member of the serine protease inhibitor family, which includes proteins such as elafin and α1-antitrypsin. These proteins all have similar structures and antiprotease abilities, but SLPI has been found to have an additional role as an anti-inflammatory factor. It can inhibit the production of pro-inflammatory cytokines in cells stimulated with lipopolysaccharide, prevent neutrophil infiltration in murine models of lung and liver injury, and regulate the activity of the transcription factor NF-κB. In this review, we will revisit SLPI's unique biochemistry, and then explore how its anti-inflammatory functions can be linked to more recent findings showing that SLPI can localize to the nuclei of cells, bind DNA, and act as a regulator of gene expression.
Collapse
Affiliation(s)
- Tinsley Claire Douglas
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Sari S Hannila
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
35
|
Pathinayake PS, Waters DW, Nichol KS, Brown AC, Reid AT, Hsu ACY, Horvat JC, Wood LG, Baines KJ, Simpson JL, Gibson PG, Hansbro PM, Wark PAB. Endoplasmic reticulum-unfolded protein response signalling is altered in severe eosinophilic and neutrophilic asthma. Thorax 2021; 77:443-451. [PMID: 34510013 DOI: 10.1136/thoraxjnl-2020-215979] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/06/2021] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The significance of endoplasmic reticulum (ER) stress in asthma is unclear. Here, we demonstrate that ER stress and the unfolded protein response (UPR) are related to disease severity and inflammatory phenotype. METHODS Induced sputum (n=47), bronchial lavage (n=23) and endobronchial biopsies (n=40) were collected from participants with asthma with varying disease severity, inflammatory phenotypes and from healthy controls. Markers for ER stress and UPR were assessed. These markers were also assessed in established eosinophilic and neutrophilic murine models of asthma. RESULTS Our results demonstrate increased ER stress and UPR pathways in asthma and these are related to clinical severity and inflammatory phenotypes. Genes associated with ER protein chaperone (BiP, CANX, CALR), ER-associated protein degradation (EDEM1, DERL1) and ER stress-induced apoptosis (DDIT3, PPP1R15A) were dysregulated in participants with asthma and are associated with impaired lung function (forced expiratory volume in 1 s) and active eosinophilic and neutrophilic inflammation. ER stress genes also displayed a significant correlation with classic Th2 (interleukin-4, IL-4/13) genes, Th17 (IL-17F/CXCL1) genes, proinflammatory (IL-1b, tumour necrosis factor α, IL-8) genes and inflammasome activation (NLRP3) in sputum from asthmatic participants. Mice with allergic airway disease (AAD) and severe steroid insensitive AAD also showed increased ER stress signalling in their lungs. CONCLUSION Heightened ER stress is associated with severe eosinophilic and neutrophilic inflammation in asthma and may play a crucial role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Prabuddha S Pathinayake
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - David W Waters
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Kristy S Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Andrew T Reid
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia.,NHMRC Centre for Clinical Research Excellence in Severe Asthma, New Lambton Heights, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia .,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia.,NHMRC Centre for Clinical Research Excellence in Severe Asthma, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
36
|
Zhang J, Zhong W, Liu Y, Chen W, Lu Y, Zeng Z, Qiao Y, Huang H, Wan X, Li W, Meng X, Zou F, Cai S, Dong H. Extracellular HSP90α Interacts With ER Stress to Promote Fibroblasts Activation Through PI3K/AKT Pathway in Pulmonary Fibrosis. Front Pharmacol 2021; 12:708462. [PMID: 34497513 PMCID: PMC8420756 DOI: 10.3389/fphar.2021.708462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Pulmonary fibrosis is characterized by alveolar epithelial cell injury, lung fibroblast proliferation, differentiation, and extracellular matrix (ECM) deposition. Our previous study indicated that extracellular HSP90α (eHSP90α) promotes pulmonary fibrosis by activating the MAPK signaling pathway. Thus, treatment with 1G6-D7 (a selective HSP90α monoclonal antibody) to antagonize eHSP90α could effectively ameliorate fibrosis. This study aimed to elucidate the mechanism underlying the effects of eHSP90α in pulmonary fibrosis by focusing on its link with endoplasmic reticulum (ER) stress. Our results showed that eHSP90α promoted lung fibroblast differentiation by activating ER stress. Treatment with the ER stress inhibitor tauroursodeoxycholate (TUDCA) or glucose-regulated protein 78 kDa (GRP78) depletion significantly abrogated the effect of eHSP90α on ER stress and fibroblast activation. In addition, eHSP90α induced ER stress in fibroblasts via the phosphoinositide-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which could be blocked by the PI3K/AKT inhibitor LY294002, and blockade of eHSP90α by 1G6-D7 markedly inhibited ER stress in the model, indicating preventive and therapeutic applications. Intriguingly, we observed that TUDCA effectively reduced the secretion of eHSP90α in vitro and in vivo. In conclusion, this study shows that the interaction between eHSP90α and ER stress plays a crucial role in pulmonary fibrosis, indicating a positive feedback in lung fibroblasts. Targeting eHSP90α and alleviating fibroblast ER stress may be promising therapeutic approaches for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshan Zhong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Lu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaojin Zeng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Dermatology and The Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Centre, Los Angeles, CA, United States
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Ghilardi N, Pappu R, Arron JR, Chan AC. 30 Years of Biotherapeutics Development-What Have We Learned? Annu Rev Immunol 2021; 38:249-287. [PMID: 32340579 DOI: 10.1146/annurev-immunol-101619-031510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the birth of biotechnology, hundreds of biotherapeutics have been developed and approved by the US Food and Drug Administration (FDA) for human use. These novel medicines not only bring significant benefit to patients but also represent precision tools to interrogate human disease biology. Accordingly, much has been learned from the successes and failures of hundreds of high-quality clinical trials. In this review, we discuss general and broadly applicable themes that have emerged from this collective experience. We base our discussion on insights gained from exploring some of the most important target classes, including interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), IL-6, IL-12/23, IL-17, IL-4/13, IL-5, immunoglobulin E (IgE), integrins and B cells. We also describe current challenges and speculate about how emerging technological capabilities may enable the discovery and development of the next generation of biotherapeutics.
Collapse
Affiliation(s)
- Nico Ghilardi
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Rajita Pappu
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Joseph R Arron
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Andrew C Chan
- Research-Biology, Genentech, South San Francisco, California 94080, USA;
| |
Collapse
|
38
|
Murphy RC, Pavord ID, Alam R, Altman MC. Management Strategies to Reduce Exacerbations in non-T2 Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2588-2597. [PMID: 34246435 DOI: 10.1016/j.jaip.2021.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
There have been considerable advances in our understanding of asthmatic airway inflammation, resulting in a paradigm shift of classifying individuals on the basis of either the presence or the absence of type 2 (T2) inflammatory markers. Several novel monoclonal antibody therapies targeting T2 cytokines have demonstrated significant clinical effects including reductions in acute exacerbations and improvements in asthma-related quality of life and lung function for individuals with T2-high asthma. However, there have been fewer advancements in developing therapies for those without evidence of T2 airway inflammation (so-called non-T2 asthma). Here, we review the heterogeneity of molecular mechanisms responsible for initiation and regulation of non-T2 inflammation and discuss both current and potential future therapeutic options for individuals with non-T2 asthma.
Collapse
Affiliation(s)
- Ryan C Murphy
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Wash.
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health and University of Colorado, Denver, Colo
| | - Matthew C Altman
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Wash; Division of Allergy and Immunology, University of Washington, Seattle, Wash
| |
Collapse
|
39
|
Ditz B, Sarma A, Kerstjens HA, Liesker JJ, Bathoorn E, Vonk JM, Bernal V, Horvatovich P, Guryev V, Caldera S, Langelier C, Faiz A, Christenson SA, van den Berge M. The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils. ERJ Open Res 2021; 7:00097-2021. [PMID: 34235210 PMCID: PMC8255541 DOI: 10.1183/23120541.00097-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Continuing inhaled corticosteroid (ICS) use does not benefit all patients with COPD, yet it is difficult to determine which patients may safely sustain ICS withdrawal. Although eosinophil levels can facilitate this decision, better biomarkers could improve personalised treatment decisions. METHODS We performed transcriptional profiling of sputum to explore the molecular biology and compared the predictive value of an unbiased gene signature versus sputum eosinophils for exacerbations after ICS withdrawal in COPD patients. RNA-sequencing data of induced sputum samples from 43 COPD patients were associated with the time to exacerbation after ICS withdrawal. Expression profiles of differentially expressed genes were summarised to create gene signatures. In addition, we built a Bayesian network model to determine coregulatory networks related to the onset of COPD exacerbations after ICS withdrawal. RESULTS In multivariate analyses, we identified a gene signature (LGALS12, ALOX15, CLC, IL1RL1, CD24, EMR4P) associated with the time to first exacerbation after ICS withdrawal. The addition of this gene signature to a multiple Cox regression model explained more variance of time to exacerbations compared to a model using sputum eosinophils. The gene signature correlated with sputum eosinophil as well as macrophage cell counts. The Bayesian network model identified three coregulatory gene networks as well as sex to be related to an early versus late/nonexacerbation phenotype. CONCLUSION We identified a sputum gene expression signature that exhibited a higher predictive value for predicting COPD exacerbations after ICS withdrawal than sputum eosinophilia. Future studies should investigate the utility of this signature, which might enhance personalised ICS treatment in COPD patients.
Collapse
Affiliation(s)
- Benedikt Ditz
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Aartik Sarma
- University of California, San Francisco, CA, USA
| | - Huib A.M. Kerstjens
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Jeroen J.W. Liesker
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Erik Bathoorn
- Dept of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M. Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Dept of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Victor Bernal
- Dept of Analytical Biochemistry, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Peter Horvatovich
- Dept of Analytical Biochemistry, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Saharai Caldera
- Division of Infectious Diseases, Dept of Medicine, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Chaz Langelier
- Division of Infectious Diseases, Dept of Medicine, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alen Faiz
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, Sydney, Australia
- These authors contributed equally
| | | | - Maarten van den Berge
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- These authors contributed equally
| |
Collapse
|
40
|
Santos RVC, Cunha EGC, de Mello GSV, Rizzo JÂ, de Oliveira JF, do Carmo Alves de Lima M, da Rocha Pitta I, da Rocha Pitta MG, de Melo Rêgo MJB. New Oxazolidines Inhibit the Secretion of IFN-γ and IL-17 by PBMCS from Moderate to Severe Asthmatic Patients. Med Chem 2021; 17:289-297. [PMID: 32914717 DOI: 10.2174/1573406416666200910151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies. OBJECTIVE The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma. METHODS The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed. RESULTS We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma. CONCLUSION The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.
Collapse
Affiliation(s)
- Renata Virgínia Cavalcanti Santos
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eudes Gustavo Constantino Cunha
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gabriela Souto Vieira de Mello
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - José Ângelo Rizzo
- Servico de Pneumologia, Hospital das Clinicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jamerson Ferreira de Oliveira
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ivan da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
41
|
Fitzpatrick AM, Chipps BE, Holguin F, Woodruff PG. T2-"Low" Asthma: Overview and Management Strategies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:452-463. [PMID: 32037109 DOI: 10.1016/j.jaip.2019.11.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Although the term "asthma" has been applied to all patients with airway lability and variable chest symptoms for centuries, phenotypes of asthma with distinct clinical and molecular features that may warrant different treatment approaches are well recognized. Patients with type 2 (T2)-"high" asthma are characterized by upregulation of T2 immune pathways (ie, IL-4 and IL-13 gene sets) and eosinophilic airway inflammation, whereas these features are absent in patients with T2-"low" asthma and may contribute to poor responsiveness to corticosteroid treatment. This review details definitions and clinical features of T2-"low" asthma, potential mechanisms and metabolic aspects, pediatric considerations, and potential treatment approaches. Priority research questions for T2-"low" asthma are also discussed.
Collapse
Affiliation(s)
| | - Bradley E Chipps
- Capital Allergy and Respiratory Disease Center, Sacramento, Calif
| | - Fernando Holguin
- University of Colorado, Pulmonary Sciences and Critical Care Medicine, Denver, Colo
| | - Prescott G Woodruff
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and the Cardiovascular Research Institute, University of California, San Francisco, Calif
| |
Collapse
|
42
|
Chen A, Diaz-Soto MP, Sanmamed MF, Adams T, Schupp JC, Gupta A, Britto C, Sauler M, Yan X, Liu Q, Nino G, Cruz CSD, Chupp GL, Gomez JL. Single-cell characterization of a model of poly I:C-stimulated peripheral blood mononuclear cells in severe asthma. Respir Res 2021; 22:122. [PMID: 33902571 PMCID: PMC8074196 DOI: 10.1186/s12931-021-01709-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background Asthma has been associated with impaired interferon response. Multiple cell types have been implicated in such response impairment and may be responsible for asthma immunopathology. However, existing models to study the immune response in asthma are limited by bulk profiling of cells. Our objective was to Characterize a model of peripheral blood mononuclear cells (PBMCs) of patients with severe asthma (SA) and its response to the TLR3 agonist Poly I:C using two single-cell methods. Methods Two complementary single-cell methods, DropSeq for single-cell RNA sequencing (scRNA-Seq) and mass cytometry (CyTOF), were used to profile PBMCs of SA patients and healthy controls (HC). Poly I:C-stimulated and unstimulated cells were analyzed in this study. Results PBMCs (n = 9414) from five SA (n = 6099) and three HC (n = 3315) were profiled using scRNA-Seq. Six main cell subsets, namely CD4 + T cells, CD8 + T cells, natural killer (NK) cells, B cells, dendritic cells (DCs), and monocytes, were identified. CD4 + T cells were the main cell type in SA and demonstrated a pro-inflammatory profile characterized by increased JAK1 expression. Following Poly I:C stimulation, PBMCs from SA had a robust induction of interferon pathways compared with HC. CyTOF profiling of Poly I:C stimulated and unstimulated PBMCs (n = 160,000) from the same individuals (SA = 5; HC = 3) demonstrated higher CD8 + and CD8 + effector T cells in SA at baseline, followed by a decrease of CD8 + effector T cells after poly I:C stimulation. Conclusions Single-cell profiling of an in vitro model using PBMCs in patients with SA identified activation of pro-inflammatory pathways at baseline and strong response to Poly I:C, as well as quantitative changes in CD8 + effector cells. Thus, transcriptomic and cell quantitative changes are associated with immune cell heterogeneity in this model to evaluate interferon responses in severe asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01709-9.
Collapse
Affiliation(s)
- Ailu Chen
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Maria P Diaz-Soto
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Miguel F Sanmamed
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Taylor Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Amolika Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Clemente Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Qing Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Department of Pediatrics, George Washington University, Washington, DC, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Geoffrey L Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street (S419 TAC), New Haven, CT, 06520-8057, USA.
| |
Collapse
|
43
|
Kasela S, Ortega VE, Martorella M, Garudadri S, Nguyen J, Ampleford E, Pasanen A, Nerella S, Buschur KL, Barjaktarevic IZ, Barr RG, Bleecker ER, Bowler RP, Comellas AP, Cooper CB, Couper DJ, Criner GJ, Curtis JL, Han MK, Hansel NN, Hoffman EA, Kaner RJ, Krishnan JA, Martinez FJ, McDonald MLN, Meyers DA, Paine R, Peters SP, Castro M, Denlinger LC, Erzurum SC, Fahy JV, Israel E, Jarjour NN, Levy BD, Li X, Moore WC, Wenzel SE, Zein J, Langelier C, Woodruff PG, Lappalainen T, Christenson SA. Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium. Genome Med 2021; 13:66. [PMID: 33883027 PMCID: PMC8059115 DOI: 10.1186/s13073-021-00866-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The large airway epithelial barrier provides one of the first lines of defense against respiratory viruses, including SARS-CoV-2 that causes COVID-19. Substantial inter-individual variability in individual disease courses is hypothesized to be partially mediated by the differential regulation of the genes that interact with the SARS-CoV-2 virus or are involved in the subsequent host response. Here, we comprehensively investigated non-genetic and genetic factors influencing COVID-19-relevant bronchial epithelial gene expression. METHODS We analyzed RNA-sequencing data from bronchial epithelial brushings obtained from uninfected individuals. We related ACE2 gene expression to host and environmental factors in the SPIROMICS cohort of smokers with and without chronic obstructive pulmonary disease (COPD) and replicated these associations in two asthma cohorts, SARP and MAST. To identify airway biology beyond ACE2 binding that may contribute to increased susceptibility, we used gene set enrichment analyses to determine if gene expression changes indicative of a suppressed airway immune response observed early in SARS-CoV-2 infection are also observed in association with host factors. To identify host genetic variants affecting COVID-19 susceptibility in SPIROMICS, we performed expression quantitative trait (eQTL) mapping and investigated the phenotypic associations of the eQTL variants. RESULTS We found that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that are known risk factors of COVID-19 severity, while an association with interferon-related inflammation was driven by the truncated, non-binding ACE2 isoform. We discovered that expression patterns of a suppressed airway immune response to early SARS-CoV-2 infection, compared to other viruses, are similar to patterns associated with obesity, hypertension, and cardiovascular disease, which may thus contribute to a COVID-19-susceptible airway environment. eQTL mapping identified regulatory variants for genes implicated in COVID-19, some of which had pheWAS evidence for their potential role in respiratory infections. CONCLUSIONS These data provide evidence that clinically relevant variation in the expression of COVID-19-related genes is associated with host factors, environmental exposures, and likely host genetic variation.
Collapse
Affiliation(s)
- Silva Kasela
- New York Genome Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Victor E Ortega
- Department of Internal Medicine, Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Molly Martorella
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Suresh Garudadri
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jenna Nguyen
- Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Ampleford
- Department of Internal Medicine, Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anu Pasanen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Srilaxmi Nerella
- Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kristina L Buschur
- New York Genome Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Russell P Bowler
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David J Couper
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Eric A Hoffman
- Division of Physiologic Imaging, Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Robert J Kaner
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Merry-Lynn N McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen P Peters
- Department of Internal Medicine, Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Loren C Denlinger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Serpil C Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John V Fahy
- Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xingnan Li
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Wendy C Moore
- Department of Internal Medicine, Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles Langelier
- Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Wenzel SE. Severe Adult Asthmas: Integrating Clinical Features, Biology, and Therapeutics to Improve Outcomes. Am J Respir Crit Care Med 2021; 203:809-821. [PMID: 33326352 PMCID: PMC8017568 DOI: 10.1164/rccm.202009-3631ci] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Evaluation and effective management of asthma, and in particular severe asthma, remains at the core of pulmonary practice. Over the last 20-30 years, there has been increasing appreciation that "severe asthma" encompasses multiple different subgroups or phenotypes, each with differing presentations. Using clinical phenotyping, in combination with rapidly advancing molecular tools and targeted monoclonal antibodies (human knockouts), the understanding of these phenotypes, and our ability to treat them, have greatly advanced. Type-2 (T2)-high and -low severe asthmas are now easily identified. Fractional exhaled nitric oxide and blood eosinophil counts can be routinely employed in clinical settings to identify these phenotypes and predict responses to specific therapies, meeting the initial goals of precision medicine. Integration of molecular signals, biomarkers, and clinical responses to targeted therapies has enabled identification of critical molecular pathways and, in certain phenotypes, advanced them to near-endotype status. Despite these advances, little guidance is available to determine which class of biologic is appropriate for a given patient, and current "breakthrough" therapies remain expensive and even inaccessible to many patients. Many of the most severe asthmas, with and without T2-biomarker elevations, remain poorly understood and treated. Nevertheless, conceptual understanding of "the severe asthmas" has evolved dramatically in a mere 25 years, leading to dramatic improvements in the lives of many.
Collapse
Affiliation(s)
- Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh Asthma and Environmental Lung Health Institute at UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Interferon characterization associates with asthma and is a potential biomarker of predictive diagnosis. Biosci Rep 2021; 41:228038. [PMID: 33682888 PMCID: PMC7982770 DOI: 10.1042/bsr20204210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Interferon (IFN) plays a role in immune and inflammation responses. However, the effect of IFN in asthma is still not fully clear. The present study was conducted to better understand the role of IFN signatures in asthma. Blood samples from case–control studies (study 1: 348 asthmas and 39 normal controls and validation study 2: 411 asthmas and 87 normal controls) were enrolled. The single-sample gene set enrichment analysis (ssGSEA) method was used to quantify the levels of 74 IFN signatures. Gene Ontology analysis and pathway function analysis were performed for functional analysis and a protein–protein interaction (PPI) network was constructed. The area under the curve (AUC) value was used to evaluate the diagnostic ability. In our work, IFN-γ response-DN, negative regulation of IFN-γ secretion, IFNG pathway, negative regulation of response to IFN-γ, and type 1 IFN biosynthetic process showed higher levels in asthma. Functional analysis demonstrated that pathway and biological process involved in IFN signaling pathway, regulation of type 1 IFN production and response to IFN-γ. Hub IFN-related genes were identified, and their combination as biomarker exhibited a good diagnostic capacity for asthma (AUC = 0.832). These findings offered more insight into the underlying mechanism of how IFN signatures affected asthma. The use of the easy-to-apply IFN-related genes might serve as a promising blood-based biomarker for early diagnosis of asthma.
Collapse
|
46
|
Bonser LR, Eckalbar WL, Rodriguez L, Shen J, Koh KD, Zlock LT, Christenson S, Woodruff PG, Finkbeiner WE, Erle DJ. The type 2 asthma mediator IL-13 inhibits SARS-CoV-2 infection of bronchial epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.25.432762. [PMID: 33655249 PMCID: PMC7924269 DOI: 10.1101/2021.02.25.432762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RATIONALE Asthma is associated with chronic changes in the airway epithelium, a key target of SARS-CoV-2. Many epithelial changes are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. OBJECTIVES We sought to discover how IL-13 and other cytokines affect expression of genes encoding SARS-CoV-2-associated host proteins in human bronchial epithelial cells (HBECs) and determine whether IL-13 stimulation alters susceptibility to SARS-CoV-2 infection. METHODS We used bulk and single cell RNA-seq to identify cytokine-induced changes in SARS-CoV-2-associated gene expression in HBECs. We related these to gene expression changes in airway epithelium from individuals with mild-moderate asthma and chronic obstructive pulmonary disease (COPD). We analyzed effects of IL-13 on SARS-CoV-2 infection of HBECs. MEASUREMENTS AND MAIN RESULTS Transcripts encoding 332 of 342 (97%) SARS-CoV-2-associated proteins were detected in HBECs (≥1 RPM in 50% samples). 41 (12%) of these mRNAs were regulated by IL-13 (>1.5-fold change, FDR < 0.05). Many IL-13-regulated SARS-CoV-2-associated genes were also altered in type 2 high asthma and COPD. IL-13 pretreatment reduced viral RNA recovered from SARS-CoV-2 infected cells and decreased dsRNA, a marker of viral replication, to below the limit of detection in our assay. Mucus also inhibited viral infection. CONCLUSIONS IL-13 markedly reduces susceptibility of HBECs to SARS-CoV-2 infection through mechanisms that likely differ from those activated by type I interferons. Our findings may help explain reports of relatively low prevalence of asthma in patients diagnosed with COVID-19 and could lead to new strategies for reducing SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Luke R. Bonser
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
| | - Walter L. Eckalbar
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
- UCSF CoLabs; University of California, San Francisco
| | | | - Jiangshan Shen
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
| | - Kyung Duk Koh
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
| | - Lorna T. Zlock
- Department of Pathology; University of California, San Francisco
| | - Stephanie Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
- Cardiovascular Research Institute; University of California, San Francisco
- ImmunoX Initiative; University of California, San Francisco
| | | | - David J. Erle
- Lung Biology Center, Critical Care, Allergy and Sleep Medicine, Department of Medicine; University of California, San Francisco
- UCSF CoLabs; University of California, San Francisco
- Cardiovascular Research Institute; University of California, San Francisco
- ImmunoX Initiative; University of California, San Francisco
| |
Collapse
|
47
|
Bruno SR, Anathy V. Lung epithelial endoplasmic reticulum and mitochondrial 3D ultrastructure: a new frontier in lung diseases. Histochem Cell Biol 2021; 155:291-300. [PMID: 33598824 PMCID: PMC7889473 DOI: 10.1007/s00418-020-01950-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
It has long been appreciated that the endoplasmic reticulum (ER) and mitochondria, organelles important for regular cell function and survival, also play key roles in pathogenesis of various lung diseases, including asthma, fibrosis, and infections. Alterations in processes regulated within these organelles, including but not limited to protein folding in the ER and oxidative phosphorylation in the mitochondria, are important in disease pathogenesis. In recent years it has also become increasingly apparent that organelle structure dictates function. It is now clear that organelles must maintain precise organization and localization for proper function. Newer microscopy capabilities have allowed the scientific community to reveal, via 3D imaging, that the structure of these organelles and their interactions with each other are a main component of regulating function and, therefore, effects on the disease state. In this review, we will examine how 3D imaging through techniques could allow advancements in knowledge of how the ER and mitochondria function and the roles they may play in lung epithelia in progression of lung disease.
Collapse
Affiliation(s)
- Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA.
| |
Collapse
|
48
|
The role of genomic profiling in identifying molecular phenotypes in obstructive lung diseases. Curr Opin Pulm Med 2021; 26:84-89. [PMID: 31714272 DOI: 10.1097/mcp.0000000000000646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The biology underlying asthma and chronic obstructive pulmonary disease (COPD) is heterogeneous. Targeting therapies to patient subgroups, or 'molecular phenotypes', based on their underlying biology is emerging as an efficacious treatment strategy. This review summarizes the role of airway sample gene expression profiling in understanding molecular phenotypes in obstructive lung disease. RECENT FINDINGS Recent gene expression studies have reinforced the importance of Type two (T2) inflammation in asthma and COPD subgroups. Studies in asthma also suggest that the molecular phenotype with enhanced T2 inflammation is itself heterogeneous with a subgroup that has steroid-refractory inflammation. Other inflammatory pathways are also emerging as implicated in asthma and COPD molecular phenotypes, including Type one and Type 17 adaptive immune responses and proinflammatory cytokines, such as interleukin-6. SUMMARY Genomic profiling studies are advancing our understanding of the complex biology contributing to asthma and COPD molecular phenotypes. Recent studies suggest that asthma and COPD subgroups may benefit from different treatment strategies than those currently in practice.
Collapse
|
49
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Kermani NZ, Song WJ, Badi Y, Versi A, Guo Y, Sun K, Bhavsar P, Howarth P, Dahlen SE, Sterk PJ, Djukanovic R, Adcock IM, Chung KF. Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma. Respir Res 2021; 22:10. [PMID: 33413387 PMCID: PMC7788167 DOI: 10.1186/s12931-020-01605-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. METHODS We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. RESULTS ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. CONCLUSION Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma.
Collapse
Affiliation(s)
- Nazanin Zounemat Kermani
- Data Science Institute, Imperial College London, London, UK.,National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Woo-Jung Song
- National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK.,Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yusef Badi
- Data Science Institute, Imperial College London, London, UK.,National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Ali Versi
- Data Science Institute, Imperial College London, London, UK.,National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Yike Guo
- Data Science Institute, Imperial College London, London, UK
| | - Kai Sun
- Data Science Institute, Imperial College London, London, UK
| | - Pank Bhavsar
- National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Peter Howarth
- Faculty of Medicine, Southampton University, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - Sven-Erik Dahlen
- Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Peter J Sterk
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ratko Djukanovic
- Faculty of Medicine, Southampton University, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - Ian M Adcock
- Data Science Institute, Imperial College London, London, UK.,National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Kian Fan Chung
- Data Science Institute, Imperial College London, London, UK. .,National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK.
| | | |
Collapse
|