1
|
Miller JL, Leedale C, Kang D, Lilue J, Harder OE, Niewiesk S. Prostaglandin D2 delays CD8+ T-cell responses and respiratory syncytial virus clearance in geriatric cotton rats. J Virol 2025; 99:e0186324. [PMID: 39818970 PMCID: PMC11852932 DOI: 10.1128/jvi.01863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
Respiratory syncytial virus (RSV) infection is associated with increased rates of severe disease, hospitalization, and death in elderly individuals. Clearance of RSV is frequently delayed within this demographic, contributing to the more severe disease course. Geriatric cotton rats mimic this prolonged clearance kinetic and serve as a useful animal model for studying age-associated immunological deficits during RSV infection. Treatment with the cyclooxygenase (COX) inhibitor ibuprofen restores RSV clearance, indicating that inflammation contributes to impaired clearance in geriatric cotton rats. Here, we further characterize a compromised immune response in geriatric cotton rats and identify an inflammatory pathway that contributes to this deficiency. Dendritic cell (DC) activation and migration to mediastinal lymph nodes are decreased during early infection in geriatric cotton rats, resulting in delayed generation of cytotoxic T cells and virus clearance. Prostaglandin D2 (PGD2), which reduces DC migration through the elevation of D-type prostanoid 1 receptor (DP1 receptor), is elevated in the airways of infected geriatric cotton rats. Reducing PGD2 production by inhibiting COX-2 or PGD2 synthase improves RSV clearance kinetics through DC activation and RSV-specific CD8+ T-cell responses in geriatric cotton rats, whereas activation of DP1 receptor through an agonist resulted in delayed viral clearance in adult cotton rats. These results indicate that PGD2 contributes to delayed antigen presentation and CD8+ T-cell responses to RSV in geriatric cotton rats. Inhibiting PGD2 generation or signaling may be a useful mechanism of therapeutic intervention in elderly individuals.IMPORTANCEElderly adults are at increased risk of severe disease resulting from infection with respiratory syncytial virus (RSV), characterized in part by delayed clearance (removal of the virus from airways). Understanding the immunological factors that lead to this delayed clearance may allow for the development of therapies to improve disease outcomes in elderly individuals infected with RSV and other respiratory viruses. Here, we describe an inflammatory pathway in geriatric cotton rats, the preferred small animal laboratory model for RSV, that impairs the generation of an effective immune response. We show that inhibiting this inflammatory pathway in geriatric cotton rats improves immune parameters and speeds clearance of RSV. These results contribute to our understanding of delayed RSV clearance in elderly individuals with possible applications for improving immune responses to RSV in clinical settings.
Collapse
Affiliation(s)
- Jonathan L. Miller
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cameron Leedale
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Danyue Kang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Olivia E. Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
Zar HJ, Cacho F, Kootbodien T, Mejias A, Ortiz JR, Stein RT, Hartert TV. Early-life respiratory syncytial virus disease and long-term respiratory health. THE LANCET. RESPIRATORY MEDICINE 2024; 12:810-821. [PMID: 39265601 DOI: 10.1016/s2213-2600(24)00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/14/2024]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection (LRTI), hospital admission, and mortality in children worldwide. Early-life RSV LRTI has also been associated with subsequent long-term respiratory sequelae, including recurrent LRTI, recurrent wheezing, asthma, and lung function impairment, and these effects can persist into adulthood as chronic respiratory disease. New preventive measures (maternal vaccine or long-acting monoclonal antibodies) have been licensed to reduce the burden of acute RSV LRTI in infants and children at high risk through passive immunisation. Studies of these RSV prevention products show high efficacy and effectiveness, particularly for preventing severe RSV LRTI, with implementation in many high-income countries, but limited access in low-income and middle-income countries (LMICs). These interventions might also reduce the risk of additional health outcomes and long-term morbidity. This Series paper provides the evidence for the long-term effects of early-life RSV disease, discusses mechanisms of disease development, and addresses the potential full public health value of prevention of RSV illness. Further research is needed to determine whether prevention of RSV LRTI or delay of RSV illness in early life might prevent or ameliorate the development of associated long-term respiratory disease. This potential further underscores the urgency for access and availability of new interventions to prevent early-life RSV LRTI in LMICs.
Collapse
Affiliation(s)
- Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Ferdinand Cacho
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tahira Kootbodien
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Asuncion Mejias
- Department of Infectious Disease, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin R Ortiz
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Renato T Stein
- Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tina V Hartert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Ares-Gómez S, Mallah N, Pardo-Seco J, Malvar-Pintos A, Pérez-Martínez O, Otero-Barrós MT, Súarez-Gaiche N, Santiago-Pérez MI, González-Pérez JM, López-Pérez LR, Rosón B, Alvárez-Gil RM, Ces-Ozores OM, Nartallo-Penas V, Mirás-Carballal S, Rodríguez-Tenreiro C, Rivero-Calle I, Salas A, Durán-Parrondo C, Martinón-Torres F. Short- and mid-term morbidity and primary-care burden due to infant respiratory syncytial virus infection: A Spanish 6-year population-based longitudinal study. Pediatr Allergy Immunol 2024; 35:e14131. [PMID: 38700124 DOI: 10.1111/pai.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND The morbidity burden of respiratory syncytial virus (RSV) in infants extends beyond hospitalization. Defining the RSV burden before implementing prophylaxis programs is essential for evaluating any potential impact on short- to mid-term morbidity and the utilization of primary healthcare (PHC) and emergency services (ES). We established this reference data using a population-based cohort approach. METHODS Infants hospitalized for RSV from January 2016 to March 2023 were matched with non-hospitalized ones based on birthdate and sex. We defined the exposure as severe RSV hospitalization. The main study outcomes were as follows: (1) PHC and ES visits for RSV, categorized using the International Classification of Primary Care codes, (2) prescriptions for respiratory airway obstructive disease, and (3) antibacterial prescriptions. Participants were followed up from 30 days before hospitalization for severe RSV until the outcome occurrence or end of the study. Adjusted incidence rate ratios (IRRs) of the outcomes along with their 95% confidence intervals (CI) were estimated using Poisson regression models. Stratified analyses by type of PHC visit (nurse, pediatrician, or pharmacy) and follow-up period were undertaken. We defined mid-term outcomes as those taking place up to 24 months of follow-up period. RESULTS The study included 6626 children (3313 RSV-hospitalized; 3313 non-hospitalized) with a median follow-up of 53.7 months (IQR = 27.9, 69.4). After a 3-month follow-up, severe RSV was associated with a considerable increase in PHC visits for wheezing/asthma (IRR = 4.31, 95% CI: 3.84-4.84), lower respiratory infections (IRR = 4.91, 95% CI: 4.34-5.58), and bronchiolitis (IRR = 4.68, 95% CI: 2.93-7.65). Severe RSV was also associated with more PHC visits for the pediatrician (IRR = 2.00, 95% CI: 1.96-2.05), nurse (IRR = 1.89, 95% CI: 1.75-1.92), hospital emergency (IRR = 2.39, 95% CI: 2.17-2.63), primary healthcare emergency (IRR: 1.54, 95% CI: 1.31-1.82), as well as with important increase in prescriptions for obstructive airway diseases (IRR = 5.98, 95% CI: 5.43-6.60) and antibacterials (IRR = 4.02, 95% CI: 3.38-4.81). All findings remained substantial until 2 years of post-infection. CONCLUSIONS Severe RSV infection in infants significantly increases short- to mid-term respiratory morbidity leading to an escalation in healthcare utilization (PHC/ES attendance) and medication prescriptions for up to 2 years afterward. Our approach could be useful in assessing the impact and cost-effectiveness of RSV prevention programs.
Collapse
Affiliation(s)
- Sonia Ares-Gómez
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
- WHO Collaborating Centre for Vaccine Safety, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Narmeen Mallah
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
- WHO Collaborating Centre for Vaccine Safety, Santiago de Compostela, Spain
- Department of Preventive Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
- WHO Collaborating Centre for Vaccine Safety, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), 15706 Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Alberto Malvar-Pintos
- Department of Epidemiology, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Olaia Pérez-Martínez
- Department of Epidemiology, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - María-Teresa Otero-Barrós
- Department of Epidemiology, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Nuria Súarez-Gaiche
- Department of Epidemiology, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Maria-Isolina Santiago-Pérez
- Department of Epidemiology, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Juan-Manuel González-Pérez
- Subdirección de Sistemas y Tecnologías de la Información, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Luis-Ricardo López-Pérez
- Subdirección de Sistemas y Tecnologías de la Información, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Benigno Rosón
- Subdirección de Sistemas y Tecnologías de la Información, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Rosa-María Alvárez-Gil
- Deparment of Communicable Diseases, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Olga-María Ces-Ozores
- Deparment of Communicable Diseases, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Victoria Nartallo-Penas
- Deparment of Communicable Diseases, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Susana Mirás-Carballal
- Deparment of Communicable Diseases, Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Carmen Rodríguez-Tenreiro
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
- WHO Collaborating Centre for Vaccine Safety, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
- WHO Collaborating Centre for Vaccine Safety, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario and University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Antonio Salas
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), 15706 Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Carmen Durán-Parrondo
- Dirección Xeral de Saude Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, Spain
- WHO Collaborating Centre for Vaccine Safety, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario and University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
5
|
Parsons EL, Kim JS, Malloy AMW. Development of innate and adaptive immunity to RSV in young children. Cell Immunol 2024; 399-400:104824. [PMID: 38615612 DOI: 10.1016/j.cellimm.2024.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Infection of the respiratory tract with respiratory syncytial virus (RSV) is common and occurs repeatedly throughout life with most severe disease occurring at the extremes of age: in young infants and the elderly. Effective anti-viral therapeutics are not available and therefore prevention has been the primary strategy for reducing the disease burden. Our current understanding of respiratory mucosal cell biology and the immune response within the respiratory tract is inadequate to prevent infection caused by a pathogen like RSV that does not disseminate outside of this environment. Gaps in our understanding of the activation of innate and adaptive immunity in response to RSV and the role of age upon infection also limit improvements in the design of therapeutics and vaccines for young infants. However, advancements in structural biology have improved our ability to characterize antibodies against viral proteins and in 2023 the first vaccines for those over 60 years and pregnant women became available, potentially reducing the burden of disease. This review will examine our current understanding of the critical facets of anti-RSV immune responses in infants and young children as well as highlight areas where more research is needed.
Collapse
Affiliation(s)
| | - Jisung S Kim
- Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation, Bethesda, MD, USA
| | | |
Collapse
|
6
|
Papadopoulos NG, Apostolidou E, Miligkos M, Xepapadaki P. Bacteria and viruses and their role in the preschool wheeze to asthma transition. Pediatr Allergy Immunol 2024; 35:e14098. [PMID: 38445451 DOI: 10.1111/pai.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Wheezing is the cardinal symptom of asthma; its presence early in life, mostly caused by viral infections, is a major risk factor for the establishment of persistent or recurrent disease. Early-life wheezing and asthma exacerbations are triggered by common respiratory viruses, mainly rhinoviruses (RV), and to a lesser extent, respiratory syncytial virus, parainfluenza, human metapneumovirus, coronaviruses, adenoviruses, influenza, and bocavirus. The excess presence of bacteria, several of which are part of the microbiome, has also been identified in association with wheezing and acute asthma exacerbations, including haemophilus influenza, streptococcus pneumoniae, moraxella catarrhalis, mycoplasma pneumoniae, and chlamydophila pneumonia. While it is not clear when asthma starts, its characteristics develop over time. Airway remodeling already appears between the ages of 1 and 3 years of age even prior to the presence of atopic inflammation or an asthma diagnosis. The role of genetic defect or variations hampering the airway epithelium in response to environmental stimuli and severe disease morbidity are now considered as major determinants for early structural changes. Repeated viral infections can induce and perpetuate airway hyperresponsiveness. Allergic sensitization, that often precedes infection-induced wheezing, shifts inflammation toward type-2, while common respiratory infections themselves promote type-2 inflammation. Nevertheless, most children who wheeze with viral infections during infancy and during preschool years do not develop persistent asthma. Multiple factors, including illness severity, viral etiology, allergic sensitization, and the exposome, are associated with disease persistence. Here, we summarize current knowledge and developments in infection epidemiology of asthma in children, describing the known impact of each individual agent and mechanisms of transition from recurrent wheeze to asthma.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | | | - Michael Miligkos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Xing Y, Leung ASY, Wong GWK. From preschool wheezing to asthma: Environmental determinants. Pediatr Allergy Immunol 2023; 34:e14049. [PMID: 38010001 DOI: 10.1111/pai.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Wheezing is common among preschool children, representing a group of highly heterogeneous conditions with varying natural history. Several phenotypes of wheezing have been proposed to facilitate the identification of young children who are at risk of subsequent development of asthma. Epidemiological and immunological studies across different populations have revealed the key role of environmental factors in influencing the progression from preschool wheezing to childhood asthma. Significant risk factors include severe respiratory infections, allergic sensitization, and exposure to tobacco smoke. In contrast, a farming/rural environment has been linked to asthma protection in both human and animal studies. Early and intense exposures to microorganisms and microbial metabolites have been demonstrated to alter host immune responses to allergens and viruses, thereby driving the trajectory away from wheezing illness and asthma. Ongoing clinical trials of candidate microbes and microbial products have shown promise in shaping the immune function to reduce episodes of viral-induced wheezing. Moreover, restoring immune training may be especially important for young children who had reduced microbial exposure due to pandemic restrictions. A comprehensive understanding of the role of modifiable environmental factors will pave the way for developing targeted prevention strategies for preschool wheezing and asthma.
Collapse
Affiliation(s)
- Yuhan Xing
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Agnes Sze-Yin Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
8
|
Muñoz-Quiles C, López-Lacort M, Díez-Domingo J, Orrico-Sánchez A. Bronchiolitis, Regardless of Its Etiology and Severity, Is Associated With Increased Risk of Asthma: A Population-Based Study. J Infect Dis 2023; 228:840-850. [PMID: 37015894 PMCID: PMC10547461 DOI: 10.1093/infdis/jiad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 04/06/2023] Open
Abstract
An association exists between severe respiratory syncytial virus (RSV)-bronchiolitis and a subsequent increased risk of recurrent wheezing (RW) and asthma. However, a causal relationship remains unproven. Using a retrospective population-based cohort study (339 814 children), bronchiolitis during the first 2 years of life (regardless of etiology and severity) was associated with at least a 3-fold increased risk of RW/asthma at 2-4 years and an increased prevalence of asthma at ≥5 years of age. The risk was similar in children with mild bronchiolitis as in those with hospitalized RSV-bronchiolitis and was higher in children with hospitalized non-RSV-bronchiolitis. The rate of RW/asthma was higher when bronchiolitis occurred after the first 6 months of life. Our results seem to support the hypothesis of a shared predisposition to bronchiolitis (irrespective of etiology) and RW/asthma. However, 60% of hospitalized bronchiolitis cases in our setting are due to RSV, which should be paramount in decision-making on imminent RSV prevention strategies.
Collapse
Affiliation(s)
- Cintia Muñoz-Quiles
- Vaccines Research Unit, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO–Public Health
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III
| | - Mónica López-Lacort
- Vaccines Research Unit, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO–Public Health
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III
| | - Javier Díez-Domingo
- Vaccines Research Unit, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO–Public Health
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III
- Universidad Católica de Valencia San Vicente Mártir, València, Spain
| | - Alejandro Orrico-Sánchez
- Vaccines Research Unit, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO–Public Health
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III
- Universidad Católica de Valencia San Vicente Mártir, València, Spain
| |
Collapse
|
9
|
Tesari Crnković H, Bendelja K, Drkulec V, Gjergja Juraški R, Turkalj M. Respiratory Syncytial Virus-Specific Antibodies and Atopic Diseases in Children: A 10-Year Follow-Up. Pathogens 2023; 12:546. [PMID: 37111432 PMCID: PMC10142345 DOI: 10.3390/pathogens12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) stimulates the production of specific immunoglobulin (Ig) E and IgG4 antibodies as a hallmark of the Th2 immune response. In this paper, we evaluated the occurrence of atopic diseases in 10-year-old children who were positive for RSV-specific IgG antibodies during infancy. METHODS The prospective follow-up of 72 children included a physical examination, an International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire and the determination of RSV-specific antibodies and total and allergen-specific IgE. RESULTS Children with asthma had their first wheezing episode at a younger age (χ2 8.097, df = 1, p = 0.004). RSV-specific IgG4 levels at year one were positively correlated with atopic dermatitis (AD) (tau_b = 0.211, p = 0.049) and current AD (tau_b = 0.269, p = 0.012); and RSV-specific IgE levels were positively correlated with allergic rhinitis (AR) (tau_b = 0.290, p = 0.012) and current AR (tau_b = 0.260, p = 0.025). Positive RSV-specific IgE at the age of one increased the chances of asthma occurrence by 5.94 (OR = 5.94, 95% CI = 1.05-33.64; p = 0.044) and the chances of AR by more than 15 times (OR = 15.03, 95% CI = 2.08-108.72; p = 0.007). A positive family history of atopy increased the chances of asthma occurrence by 5.49 times (OR = 5.49, 95% CI = 1.01-30.07; p = 0.049), and a longer duration of exclusive breastfeeding lowered that chance (OR = 0.63, 95% CI = 0.45-0.89; p = 0.008). Prenatal smoking increased the chances of AR occurrence by 7.63 times (OR = 7.63, 95% CI = 1.59-36.53; p = 0.011). CONCLUSION RSV-specific IgE and RSV-specific IgG4 antibodies could be risk markers for the development of atopic diseases in children.
Collapse
Affiliation(s)
- Helena Tesari Crnković
- Department of Paediatrics, General County Hospital Požega, Osječka 107, 34000 Požega, Croatia
- Faculty of Medicine, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefeller Street 10, 10000 Zagreb, Croatia
| | - Vlado Drkulec
- Department of Paediatrics, General County Hospital Požega, Osječka 107, 34000 Požega, Croatia
| | - Romana Gjergja Juraški
- Faculty of Medicine, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Neuropaediatric Department, Srebrnjak Children’s Hospital, Srebrnjak 100, 10000 Zagreb, Croatia
| | - Mirjana Turkalj
- Faculty of Medicine, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Department of Pulmonology and Allergology, Srebrnjak Children’s Hospital, Srebrnjak 100, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Clinical characteristics and differential cytokine expression in hospitalized Taiwanese children with respiratory syncytial virus and rhinovirus bronchiolitis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:282-291. [PMID: 36137923 DOI: 10.1016/j.jmii.2022.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Viral bronchiolitis presents a heterogeneous spectrum. In this study, we investigated the clinical characteristics and the cytokines/chemokines profiles among respiratory syncytial virus (RSV), rhinovirus (RV), and their dual infection in Taiwanese children with viral bronchiolitis. METHOD This study was conducted between October 2014 and June 2017. Viral etiology was identified using a Luminex respiratory virus panel and blood cytokines were evaluated using a MILLIPLEX MAP Human Cytokine/Chemokine Panel. Cytokine/Chemokine expressions were compared by clinical severity, steroid treatment, and viral entities. RESULTS A total of 184 patients were evaluated; at least one respiratory virus was identified in 163 (88.6%) patients. RSV and RV were the two leading viral etiologies, with 25.5% and 17.3%, respectively. RV bronchiolitis has a comparable severity to RSV but is more common in children of an older age with a history of recurrent wheezing and blood eosinophilia. Decreased tumor necrosis factor-alpha (TNF-α) and interferon gamma (INF-γ) levels were correlated with clinical severity. Patients infected with RV exhibited higher levels of Interleukin (IL)-22, IL-23, IL-25, IL-31, and IL-33 (p < 0.05), whereas those with RSV had higher levels of TNF-α, INF-γ, and IL-10 (p < 0.05). Systemic steroid treatment was associated with higher expressions of IL-4, IL-8, IL-13, and MIP-1α levels (p < 0.05). Cluster analysis revealed a high correlation of IL-33 and IL-31(R2 = 0.9731, p < 0.0001). CONCLUSION Different viral infections elicited the characteristic clinical presentation and immune profiles in bronchiolitis. Our findings also highlight the role of the IL-33/IL-31 axis in the immunopathogenesis of bronchiolitis.
Collapse
|
11
|
Bosco A. Emerging role for interferons in respiratory viral infections and childhood asthma. Front Immunol 2023; 14:1109001. [PMID: 36895568 PMCID: PMC9989033 DOI: 10.3389/fimmu.2023.1109001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) and Rhinovirus (RV) infections are major triggers of severe lower respiratory illnesses (sLRI) in infants and children and are strongly associated with the subsequent development of asthma. Decades of research has focused on the role of type I interferons in antiviral immunity and ensuing airway diseases, however, recent findings have highlighted several novel aspects of the interferon response that merit further investigation. In this perspective, we discuss emerging roles of type I interferons in the pathogenesis of sLRI in children. We propose that variations in interferon response patterns exist as discrete endotypes, which operate locally in the airways and systemically through a lung-blood-bone marrow axis. We discuss new insights into the role of interferons in immune training, bacterial lysate immunotherapy, and allergen-specific immunotherapy. Interferons play complex and diverse roles in the pathogenesis of sLRI and later asthma, providing new directions for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
12
|
Chu KB, Quan FS. Respiratory Viruses and Virus-like Particle Vaccine Development: How Far Have We Advanced? Viruses 2023; 15:v15020392. [PMID: 36851606 PMCID: PMC9965150 DOI: 10.3390/v15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With technological advancements enabling globalization, the intercontinental transmission of pathogens has become much easier. Respiratory viruses are one such group of pathogens that require constant monitoring since their outbreak leads to massive public health crises, as exemplified by the influenza virus, respiratory syncytial virus (RSV), and the recent coronavirus disease 2019 (COVID-19) outbreak caused by the SARS-CoV-2. To prevent the transmission of these highly contagious viruses, developing prophylactic tools, such as vaccines, is of considerable interest to the scientific community. Virus-like particles (VLPs) are highly sought after as vaccine platforms for their safety and immunogenicity profiles. Although several VLP-based vaccines against hepatitis B and human papillomavirus have been approved for clinical use by the United States Food and Drug Administration, VLP vaccines against the three aforementioned respiratory viruses are lacking. Here, we summarize the most recent progress in pre-clinical and clinical VLP vaccine development. We also outline various strategies that contributed to improving the efficacy of vaccines against each virus and briefly discuss the stability aspect of VLPs that makes it a highly desired vaccine platform.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
13
|
Peebles AB, Peebles RS. Dysbiosis of the respiratory tract mucosa-how microbial imbalances lead to asthma. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:1. [PMID: 36760263 PMCID: PMC9906216 DOI: 10.21037/atm-22-6009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Andrew B. Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- United States Department of Veterans Affairs, Nashville, TN, USA
| |
Collapse
|
14
|
Li N, Shi T, Zhang M, He Y, Feng J, Mei Z, Su X, Jie Z. PLZF promotes the development of asthma tolerance via affecting memory phenotypes of immune cells. Int Immunopharmacol 2023; 114:109559. [PMID: 36525795 DOI: 10.1016/j.intimp.2022.109559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Clarifying the pathogenesis of asthma and/or identifying the specific pathway underlying oral asthma tolerance (OT) would be of great significance. In our previous study, promyelocytic leukemia zinc finger (PLZF), which reportedly regulates memory phenotypes, was found to promote ovalbumin (OVA)-induced OT. Therefore, this study aimed to explore the regulatory effects of PLZF on memory phenotypes in asthma and OT mouse models. We found that Zbtb16 (encoding PLZF) and PLZF+ cells were highly increased in OT lungs compared with asthmatic lungs. PLZF was co-expressed with GATA3, and IL-4+PLZF+ cells were significantly lower in OT lungs than in asthmatic lungs. Notably, memory cells were decreased in OT mice, and these mice had PLZF+ cells that expressed lower levels of CD44 than those of asthmatic mice. When Zbtb16 was overexpressed in splenic lymphocytes, the number of CD44+ cells decreased. There were increased memory cells in splenic lymphocytes after treatment with the supernatant of OVA-treated airway epithelial cells; however, this was reversed by Zbtb16 overexpression. Early respiratory syncytial virus infection increased memory cells and reduced PLZF+ cells in the OT mice. Collectively, these results indicate that PLZF may reduce the proportion of memory cells, thereby, promoting the establishment of OT.
Collapse
Affiliation(s)
- Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhoufang Mei
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Rosas-Salazar C, Shilts MH, Tang ZZ, Hong Q, Turi KN, Snyder BM, Wiggins DA, Lynch CE, Gebretsadik T, Peebles RS, Anderson LJ, Das SR, Hartert TV. Exclusive breast-feeding, the early-life microbiome and immune response, and common childhood respiratory illnesses. J Allergy Clin Immunol 2022; 150:612-621. [PMID: 35283139 PMCID: PMC9463089 DOI: 10.1016/j.jaci.2022.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The impact of breast-feeding on certain childhood respiratory illnesses remains controversial. OBJECTIVE We sought to examine the effect of exclusive breast-feeding on the early-life upper respiratory tract (URT) and gut microbiome, the URT immune response in infancy, and the risk of common pediatric respiratory diseases. METHODS We analyzed data from a birth cohort of healthy infants with prospective ascertainment of breast-feeding patterns and common pediatric pulmonary and atopic outcomes. In a subset of infants, we also characterized the URT and gut microbiome using 16S ribosomal RNA sequencing and measured 9 URT cytokines using magnetic bead-based assays. RESULTS Of the 1949 infants enrolled, 1495 (76.71%) had 4-year data. In adjusted analyses, exclusive breast-feeding (1) had an inverse dose-response on the ⍺-diversity of the early-life URT and gut microbiome, (2) was positively associated with the URT levels of IFN-α, IFN-γ, and IL-17A in infancy, and (3) had a protective dose-response on the development of a lower respiratory tract infection in infancy, 4-year current asthma, and 4-year ever allergic rhinitis (odds ratio [95% CI] for each 4 weeks of exclusive breast-feeding, 0.95 [0.91-0.99], 0.95 [0.90-0.99], and 0.95 [0.92-0.99], respectively). In exploratory analyses, we also found that the protective association of exclusive breast-feeding on 4-year current asthma was mediated through its impact on the gut microbiome (P = .03). CONCLUSIONS Our results support a protective causal role of exclusive breast-feeding in the risk of developing a lower respiratory tract infection in infancy and asthma and allergic rhinitis in childhood. They also shed light on potential mechanisms of these associations, including the effect of exclusive breast-feeding on the gut microbiome.
Collapse
Affiliation(s)
| | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Qilin Hong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Kedir N Turi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Brittney M Snyder
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Derek A Wiggins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Christian E Lynch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tenn
| | - R Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Larry J Anderson
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn.
| | - Tina V Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
16
|
Simões EAF. Respiratory Syncytial Virus Disease in Young Children and Older Adults in Europe: A Burden and Economic Perspective. J Infect Dis 2022; 226:S1-S9. [PMID: 35822854 DOI: 10.1093/infdis/jiac252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Eric A F Simões
- Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA, and Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| |
Collapse
|
17
|
Raita Y, Pérez-Losada M, Freishtat RJ, Hahn A, Castro-Nallar E, Ramos-Tapia I, Stearrett N, Bochkov YA, Gern JE, Mansbach JM, Zhu Z, Camargo CA, Hasegawa K. Nasopharyngeal metatranscriptome profiles of infants with bronchiolitis and risk of childhood asthma: a multicentre prospective study. Eur Respir J 2022; 60:2102293. [PMID: 34916264 PMCID: PMC9206513 DOI: 10.1183/13993003.02293-2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Bronchiolitis is not only the leading cause of hospitalisation in US infants but also a major risk factor for asthma development. Growing evidence supports clinical heterogeneity within bronchiolitis. Our objectives were to identify metatranscriptome profiles of infant bronchiolitis, and to examine their relationship with the host transcriptome and subsequent asthma development. METHODS As part of a multicentre prospective cohort study of infants (age <1 year) hospitalised for bronchiolitis, we integrated virus and nasopharyngeal metatranscriptome (species-level taxonomy and function) data measured at hospitalisation. We applied network-based clustering approaches to identify metatranscriptome profiles. We then examined their association with the host transcriptome at hospitalisation and risk for developing asthma. RESULTS We identified five metatranscriptome profiles of bronchiolitis (n=244): profile A: virusRSVmicrobiomecommensals; profile B: virusRSV/RV-Amicrobiome H.influenzae ; profile C: virusRSVmicrobiome S.pneumoniae ; profile D: virusRSVmicrobiome M.nonliquefaciens ; and profile E: virusRSV/RV-Cmicrobiome M.catarrhalis . Compared with profile A, profile B infants were characterised by a high proportion of eczema, Haemophilus influenzae abundance and enriched virulence related to antibiotic resistance. These profile B infants also had upregulated T-helper 17 and downregulated type I interferon pathways (false discovery rate (FDR) <0.005), and significantly higher risk for developing asthma (17.9% versus 38.9%; adjusted OR 2.81, 95% CI 1.11-7.26). Likewise, profile C infants were characterised by a high proportion of parental asthma, Streptococcus pneumoniae dominance, and enriched glycerolipid and glycerophospholipid metabolism of the microbiome. These profile C infants had an upregulated RAGE signalling pathway (FDR <0.005) and higher risk of asthma (17.9% versus 35.6%; adjusted OR 2.49, 95% CI 1.10-5.87). CONCLUSIONS Metatranscriptome and clustering analysis identified biologically distinct metatranscriptome profiles that have differential risks of asthma.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcos Pérez-Losada
- Dept of Biostatistics and Bioinformatics and Computational Biology Institute, The George Washington University, Washington, DC, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Dept of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
- Dept of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Eduardo Castro-Nallar
- Centro de Bioinformática y Biología Integrativa, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Ramos-Tapia
- Centro de Bioinformática y Biología Integrativa, Universidad Andres Bello, Santiago, Chile
| | - Nathaniel Stearrett
- Computational Biology Institute, The George Washington University, Washington, DC, USA
| | - Yury A Bochkov
- Dept of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James E Gern
- Dept of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Dept of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jonathan M Mansbach
- Dept of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaozhong Zhu
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Yuan XH, Pang LL, Yang J, Jin Y. Comparison of immune response to human rhinovirus C and respiratory syncytial virus in highly differentiated human airway epithelial cells. Virol J 2022; 19:81. [PMID: 35570279 PMCID: PMC9107719 DOI: 10.1186/s12985-022-01805-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Human rhinovirus C (HRV-C) accounts for a large proportion of HRV-related illnesses, but the immune response to HRV-C infection has not been elucidated. Our objective was to assess the effect of HRV-C on cytokine secretion in human bronchial epithelial (HBE) cells grown at air–liquid interface (ALI) and compare it with that of respiratory syncytial virus (RSV).
Methods
HBE cells were differentiated at ALI culture and the full-length cDNA clones of HRV-C651 and HRV-C15, clinical isolates of HRV-C79 and HRV-C101, and two RSV isolates were inoculated in the HBE cells. The effect of HRV-C on cytokine secretion was assessed and compared with that of RSV.
Results
HRV-Cs infect and propagate in fully differentiated HBE cells and significantly increase the secretion of IFN-λ1, CCL5, IP10, IL-6, IL-8, and MCP-1. The virus loads positively correlated with the levels of the cytokines. HRV-C induced lower secretion of CCL5 (P = 0.048), IL-6 (P = 0.016), MCP-1 (P = 0.008), and IL-8 (P = 0.032), and similar secretion of IP10 (P = 0.214) and IFN-λ1 (P = 0.214) when compared with RSV.
Conclusion
HBE ALI culture system supported HRV-C infection and propagation and HRV-C induced relatively weaker cytokine expression than RSV.
Collapse
|
19
|
Barnes MVC, Openshaw PJM, Thwaites RS. Mucosal Immune Responses to Respiratory Syncytial Virus. Cells 2022; 11:cells11071153. [PMID: 35406717 PMCID: PMC8997753 DOI: 10.3390/cells11071153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Despite over half a century of research, respiratory syncytial virus (RSV)-induced bronchiolitis remains a major cause of hospitalisation in infancy, while vaccines and specific therapies still await development. Our understanding of mucosal immune responses to RSV continues to evolve, but recent studies again highlight the role of Type-2 immune responses in RSV disease and hint at the possibility that it dampens Type-1 antiviral immunity. Other immunoregulatory pathways implicated in RSV disease highlight the importance of focussing on localised mucosal responses in the respiratory mucosa, as befits a virus that is essentially confined to the ciliated respiratory epithelium. In this review, we discuss studies of mucosal immune cell infiltration and production of inflammatory mediators in RSV bronchiolitis and relate these studies to observations from peripheral blood. We also discuss the advantages and limitations of studying the nasal mucosa in a disease that is most severe in the lower airway. A fresh focus on studies of RSV pathogenesis in the airway mucosa is set to revolutionise our understanding of this common and important infection.
Collapse
|
20
|
Rosas-Salazar C, Tang ZZ, Shilts MH, Turi KN, Hong Q, Wiggins DA, Lynch CE, Gebretsadik T, Chappell JD, Peebles RS, Anderson LJ, Das SR, Hartert TV. Upper respiratory tract bacterial-immune interactions during respiratory syncytial virus infection in infancy. J Allergy Clin Immunol 2022; 149:966-976. [PMID: 34534566 PMCID: PMC9036861 DOI: 10.1016/j.jaci.2021.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The risk factors determining short- and long-term morbidity following acute respiratory infection (ARI) due to respiratory syncytial virus (RSV) in infancy remain poorly understood. OBJECTIVES Our aim was to examine the associations of the upper respiratory tract (URT) microbiome during RSV ARI in infancy with the acute local immune response and short- and long-term clinical outcomes. METHODS We characterized the URT microbiome by 16S ribosomal RNA sequencing and assessed the acute local immune response by measuring 53 immune mediators with high-throughput immunoassays in 357 RSV-infected infants. Our short- and long-term clinical outcomes included several markers of disease severity and the number of wheezing episodes in the fourth year of life, respectively. RESULTS We found several specific URT bacterial-immune mediator associations. In addition, the Shannon ⍺-diversity index of the URT microbiome was associated with a higher respiratory severity score (β =.50 [95% CI = 0.13-0.86]), greater odds of a lower ARI (odds ratio = 1.63 [95% CI = 1.10-2.43]), and higher number of wheezing episodes in the fourth year of life (β = 0.89 [95% CI = 0.37-1.40]). The Jaccard β-diversity index of the URT microbiome differed by level of care required (P = .04). Furthermore, we found an interaction between the Shannon ⍺-diversity index of the URT microbiome and the first principal component of the acute local immune response on the respiratory severity score (P = .048). CONCLUSIONS The URT microbiome during RSV ARI in infancy is associated with the acute local immune response, disease severity, and number of wheezing episodes in the fourth year of life. Our results also suggest complex URT bacterial-immune interactions that can affect the severity of the RSV ARI.
Collapse
Affiliation(s)
- Christian Rosas-Salazar
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Meghan H. Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kedir N. Turi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Qilin Hong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Derek A Wiggins
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Christian E. Lynch
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - James D. Chappell
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Larry J. Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN,Corresponding Authors: Suman R. Das, PhD, Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, Phone: (615) 322-0322, Fax: (615) 343-6160, ; Tina V. Hartert, MD, MPH, Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 450, Nashville, TN 37232, Phone: (615) 936-3597, Fax: (615) 936-1269,
| | - Tina V. Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,Corresponding Authors: Suman R. Das, PhD, Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, Phone: (615) 322-0322, Fax: (615) 343-6160, ; Tina V. Hartert, MD, MPH, Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 450, Nashville, TN 37232, Phone: (615) 936-3597, Fax: (615) 936-1269,
| |
Collapse
|
21
|
Zhu Z, Camargo CA, Raita Y, Fujiogi M, Liang L, Rhee EP, Woodruff PG, Hasegawa K. Metabolome subtyping of severe bronchiolitis in infancy and risk of childhood asthma. J Allergy Clin Immunol 2022; 149:102-112. [PMID: 34119532 PMCID: PMC8660920 DOI: 10.1016/j.jaci.2021.05.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Infants with bronchiolitis are at increased risk for developing asthma. Growing evidence suggests bronchiolitis is a heterogeneous condition. OBJECTIVES We sought to identify biologically distinct subgroups based on the metabolome signatures (metabotypes) in infants with severe bronchiolitis and to examine the longitudinal relationships of metabotypes with asthma development. METHODS In a multicenter prospective cohort study of infants (age, <12 months) hospitalized for bronchiolitis, the nasopharyngeal airway metabolome was profiled at hospitalization. Using a clustering approach, this study identified mutually exclusive metabotypes. This study also examined their longitudinal association with the risk of developing asthma by 5 years of age. RESULTS Of 918 infants hospitalized for bronchiolitis (median age, 3 months), this study identified 5 distinct metabotypes-characterized by their nasopharyngeal metabolome profile: A, glycerophosphocholine-high; B, amino acid-high, polyunsaturated fatty acid-low; C, amino acid-high, glycerophospholipid-low; D, glycerophospholipid-high; and E, mixed. Compared with infants with metabotype A (who clinically resembled "classic" bronchiolitis), infants with metabotype B had a significantly higher risk for developing asthma (23% vs 41%; adjusted odds ratio, 2.22; 95% CI, 1.07-4.69). The pathway analysis showed that metabotype B had enriched amino acid (eg, methionine, histidine, glutathione) and α-linolenic/linoleic acid metabolism pathways (false discovery rate, <5 × 10-14 for all). Finally, the transcriptome analysis revealed that infants with metabotype B had upregulated IFN-α and IL-6/JAK/STAT3 pathways and downregulated fatty acid metabolism pathways (false discovery rate, <0.05 for both). CONCLUSIONS In this multicenter prospective cohort study of infants with severe bronchiolitis, the clustering analysis of metabolome data identified biologically distinct metabotypes, including a metabotype characterized by high inflammatory amino acids and low polyunsaturated fatty acids that is at significantly increased risk for developing asthma.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Michimasa Fujiogi
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Mass; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Mass
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, Calif
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
22
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
23
|
Cielo CM, Tapia IE. More than just a wheeze: bronchiolitis and obstructive sleep apnea in children. Sleep 2021; 44:6370221. [PMID: 34522966 DOI: 10.1093/sleep/zsab227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christopher M Cielo
- Division of Pulmonary & Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ignacio E Tapia
- Division of Pulmonary & Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Sanya RE, Nalwoga A, Grencis RK, Elliott AM, Webb EL, Andia Biraro I. Profiles of inflammatory markers and their association with cardiometabolic parameters in rural and urban Uganda. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16651.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Inflammation may be one of the pathways explaining differences in cardiometabolic risk between urban and rural residents. We investigated associations of inflammatory markers with rural versus urban residence, and with selected cardiometabolic parameters previously observed to differ between rural and urban residents: homeostatic model assessment of insulin resistance (HOMA-IR), fasting blood glucose (FBG), blood pressure (BP) and body mass index (BMI). Methods: From two community surveys conducted in Uganda, 313 healthy individuals aged ≥ 10 years were selected by age- and sex-stratified random sampling (rural Lake Victoria island communities, 212; urban Entebbe municipality, 101). Fluorescence intensities of plasma cytokines and chemokines were measured using a bead-based multiplex immunoassay. We used linear regression to examine associations between the analytes and rural-urban residence and principal component analysis (PCA) to further investigate patterns in the relationships. Correlations between analytes and metabolic parameters were assessed using Pearson’s correlation coefficient. Results: The urban setting had higher mean levels of IL-5 (3.27 vs 3.14, adjusted mean difference [95% confidence interval] 0.12[0.01,0.23] p=0.04), IFN-⍺ (26.80 vs 20.52, 6.30[2.18,10.41] p=0.003), EGF (5.67 vs 5.07, 0.60[0.32,0.98] p<0.00001), VEGF (3.68 vs 3.28, 0.40[0.25,0.56] p<0.00001), CD40 Ligand (4.82 vs 4.51, 0.31[0.12, 0.50] p=0.001) and Serpin-E1 (9.57 vs 9.46, 0.11[0.05,0.17] p<0.00001), but lower levels of GMCSF (2.94 vs 3.05, -0.10[-0.19,-0.02] p=0.02), CCL2 (2.82 vs 3.10, -0.45[-0.70,-0.21] p<0.00001) and CXCL10 (5.48 vs 5.96, -0.49[-0.71,-0.27] p<0.00001), compared to the rural setting. In PCA, the urban setting had lower representation of some classical inflammatory mediators but higher representation of various chemoattractants and vasoactive peptides. HOMA-IR, FBG, BP and BMI were positively correlated with several principal components characterised by pro-inflammatory analytes. Conclusions: In developing countries, immunological profiles differ between rural and urban environments. Differential expression of certain pro-inflammatory mediators may have important health consequences including contributing to increased cardiometabolic risk observed in the urban environment.
Collapse
|
25
|
Rajagopala SV, Bakhoum NG, Pakala SB, Shilts MH, Rosas-Salazar C, Mai A, Boone HH, McHenry R, Yooseph S, Halasa N, Das SR. Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples. CELL REPORTS METHODS 2021; 1:100091. [PMID: 34790908 PMCID: PMC8594859 DOI: 10.1016/j.crmeth.2021.100091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low biomass samples. Using nasal swab samples, we capture RNA virome with sufficient sequencing depth required to assemble complete genomes. We find a surprisingly high frequency of respiratory syncytial virus (RSV) and coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-detections in children with symptomatic RSV. In addition, we have identified commensal and pathogenic bacteria and fungi at the species level. Functional analysis revealed that H. influenzae was highly active in symptomatic RSV subjects. The host nasal transcriptome reveled upregulation of the innate immune system, anti-viral response and inflammasome pathway, and downregulation of fatty acid pathways in children with symptomatic RSV. Overall, we demonstrate that our method is broadly applicable to infer the transcriptome landscape of an infected system, surveil respiratory infections, and to sequence RNA viruses directly from clinical samples.
Collapse
Affiliation(s)
- Seesandra V. Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole G. Bakhoum
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman B. Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meghan H. Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christian Rosas-Salazar
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Annie Mai
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Helen H. Boone
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rendie McHenry
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Natasha Halasa
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
26
|
Zhang YM. Orosomucoid-like protein 3, rhinovirus and asthma. World J Crit Care Med 2021; 10:170-182. [PMID: 34616654 PMCID: PMC8462028 DOI: 10.5492/wjccm.v10.i5.170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
The genetic variants of orosomucoid-like protein 3 (ORMDL3) gene are associated with highly significant increases in the number of human rhinovirus (HRV)-induced wheezing episodes in children. Recent investigations have been focused on the mechanisms of ORMDL3 in rhinovirus infection for asthma and asthma exacerbations. ORMDL3 not only regulates major human rhinovirus receptor intercellular adhesion molecule 1 expression, but also plays pivotal roles in viral infection through metabolisms of ceramide and sphingosine-1-phosphate, endoplasmic reticulum (ER) stress, ER-Golgi interface and glycolysis. Research on the roles of ORMDL3 in HRV infection will lead us to identify new biomarkers and novel therapeutic targets in childhood asthma and viral induced asthma exacerbations.
Collapse
Affiliation(s)
- You-Ming Zhang
- Section of Genomic and Environmental Medicine, National Heart and Lung Institute, Molecular Genetics Group, Division of Respiratory Sciences, Imperial College London, London SW3 6LY, United Kingdom
| |
Collapse
|
27
|
Nieto A, Mazón A, Nieto M, Calderón R, Calaforra S, Selva B, Uixera S, Palao MJ, Brandi P, Conejero L, Saz-Leal P, Fernández-Pérez C, Sancho D, Subiza JL, Casanovas M. Bacterial Mucosal Immunotherapy with MV130 Prevents Recurrent Wheezing in Children: A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am J Respir Crit Care Med 2021; 204:462-472. [PMID: 33705665 PMCID: PMC8480240 DOI: 10.1164/rccm.202003-0520oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Rationale: Recurrent wheezing in children represents a severe public health concern. Wheezing attacks (WA), mainly associated with viral infections, lack effective preventive therapies. Objectives: To evaluate the efficacy and safety of mucosal sublingual immunotherapy based on whole inactivated bacteria (MV130) in preventing WA in children. Methods: A Phase 3 randomized, double-blind, placebo-controlled, parallel-group trial including a cohort of 120 children <3 years old with ⩾3 WA during the previous year was conducted. Children with a positive skin test to common aeroallergens in the area where the clinical trial was performed were excluded from the trial. Subjects received MV130 or placebo daily for 6 months. The primary endpoint was the number of WA within 1 year after the first dose comparing MV130 and placebo. Measurements and Main Results: There was a significant lower number of WA in MV130 versus the placebo group, 3.0 (interquartile range [IQR], 2.0-4.0) versus 5.0 (IQR, 3.0-7.0) (P < 0.001). As secondary outcomes, a decrease in the duration of WA and a reduction in symptoms and medication scores in the MV130 versus placebo group were found. No adverse events were reported related to the active treatment. Conclusions: Mucosal bacterial immunotherapy with MV130 shows safety and clinical efficacy against recurrent WA in children.Clinical trial registered with www.clinicaltrials.gov (NCT01734811).
Collapse
Affiliation(s)
- Antonio Nieto
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | - Angel Mazón
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | - María Nieto
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | | | - Susana Calaforra
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | - Blanca Selva
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | - Sonia Uixera
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | | | - Paola Brandi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - Cristina Fernández-Pérez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|
28
|
Raita Y, Camargo CA, Liang L, Hasegawa K. Big Data, Data Science, and Causal Inference: A Primer for Clinicians. Front Med (Lausanne) 2021; 8:678047. [PMID: 34295910 PMCID: PMC8290071 DOI: 10.3389/fmed.2021.678047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Clinicians handle a growing amount of clinical, biometric, and biomarker data. In this “big data” era, there is an emerging faith that the answer to all clinical and scientific questions reside in “big data” and that data will transform medicine into precision medicine. However, data by themselves are useless. It is the algorithms encoding causal reasoning and domain (e.g., clinical and biological) knowledge that prove transformative. The recent introduction of (health) data science presents an opportunity to re-think this data-centric view. For example, while precision medicine seeks to provide the right prevention and treatment strategy to the right patients at the right time, its realization cannot be achieved by algorithms that operate exclusively in data-driven prediction modes, as do most machine learning algorithms. Better understanding of data science and its tasks is vital to interpret findings and translate new discoveries into clinical practice. In this review, we first discuss the principles and major tasks of data science by organizing it into three defining tasks: (1) association and prediction, (2) intervention, and (3) counterfactual causal inference. Second, we review commonly-used data science tools with examples in the medical literature. Lastly, we outline current challenges and future directions in the fields of medicine, elaborating on how data science can enhance clinical effectiveness and inform medical practice. As machine learning algorithms become ubiquitous tools to handle quantitatively “big data,” their integration with causal reasoning and domain knowledge is instrumental to qualitatively transform medicine, which will, in turn, improve health outcomes of patients.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Department of Emergency Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Carlos A Camargo
- Department of Emergency Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Liming Liang
- Department of Emergency Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
29
|
Raita Y, Pérez-Losada M, Freishtat RJ, Harmon B, Mansbach JM, Piedra PA, Zhu Z, Camargo CA, Hasegawa K. Integrated omics endotyping of infants with respiratory syncytial virus bronchiolitis and risk of childhood asthma. Nat Commun 2021; 12:3601. [PMID: 34127671 PMCID: PMC8203688 DOI: 10.1038/s41467-021-23859-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) bronchiolitis is not only the leading cause of hospitalization in U.S. infants, but also a major risk factor for asthma development. While emerging evidence suggests clinical heterogeneity within RSV bronchiolitis, little is known about its biologically-distinct endotypes. Here, we integrated clinical, virus, airway microbiome (species-level), transcriptome, and metabolome data of 221 infants hospitalized with RSV bronchiolitis in a multicentre prospective cohort study. We identified four biologically- and clinically-meaningful endotypes: A) clinicalclassicmicrobiomeM. nonliquefaciensinflammationIFN-intermediate, B) clinicalatopicmicrobiomeS. pneumoniae/M. catarrhalisinflammationIFN-high, C) clinicalseveremicrobiomemixedinflammationIFN-low, and D) clinicalnon-atopicmicrobiomeM.catarrhalisinflammationIL-6. Particularly, compared with endotype A infants, endotype B infants-who are characterized by a high proportion of IgE sensitization and rhinovirus coinfection, S. pneumoniae/M. catarrhalis codominance, and high IFN-α and -γ response-had a significantly higher risk for developing asthma (9% vs. 38%; OR, 6.00: 95%CI, 2.08-21.9; P = 0.002). Our findings provide an evidence base for the early identification of high-risk children during a critical period of airway development.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro A Piedra
- Departments of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Felt SA, Sun Y, Jozwik A, Paras A, Habibi MS, Nickle D, Anderson L, Achouri E, Feemster KA, Cárdenas AM, Turi KN, Chang M, Hartert TV, Sengupta S, Chiu C, López CB. Detection of respiratory syncytial virus defective genomes in nasal secretions is associated with distinct clinical outcomes. Nat Microbiol 2021; 6:672-681. [PMID: 33795879 PMCID: PMC9098209 DOI: 10.1038/s41564-021-00882-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023]
Abstract
Respiratory syncytial virus (RSV) causes respiratory illness in children, immunosuppressed individuals and the elderly. However, the viral factors influencing the clinical outcome of RSV infections remain poorly defined. Defective viral genomes (DVGs) can suppress virus replication by competing for viral proteins and by stimulating antiviral immunity. We studied the association between detection of DVGs of the copy-back type and disease severity in three RSV A-confirmed cohorts. In hospitalized children, detection of DVGs in respiratory samples at or around the time of admission associated strongly with more severe disease, higher viral load and a stronger pro-inflammatory response. Interestingly, in experimentally infected adults, the presence of DVGs in respiratory secretions differentially associated with RSV disease severity depending on when DVGs were detected. Detection of DVGs early after infection associated with low viral loads and mild disease, whereas detection of DVGs late after infection, especially if DVGs were present for prolonged periods, associated with high viral loads and severe disease. Taken together, we demonstrate that the kinetics of DVG accumulation and duration could predict clinical outcome of RSV A infection in humans, and thus could be used as a prognostic tool to identify patients at risk of worse clinical disease.
Collapse
Affiliation(s)
- Sébastien A. Felt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Present address: Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA.,These authors contributed equally: Sébastien A. Felt, Yan Sun
| | - Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Present address: Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.,These authors contributed equally: Sébastien A. Felt, Yan Sun
| | - Agnieszka Jozwik
- Department of Infectious Disease, Imperial College London, London, UK
| | - Allan Paras
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | - Larry Anderson
- Pediatric Infectious Disease, Emory University, Atlanta, GA, USA
| | - Emna Achouri
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Kristen A. Feemster
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana María Cárdenas
- Infectious Disease Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Present address: Becton, Dickinson and Company, Sparks, MD, USA
| | - Kedir N. Turi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Tina V. Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaon Sengupta
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Carolina B. López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Present address: Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
31
|
Sun T, Yu H, Fu J. Respiratory Tract Microecology and Bronchopulmonary Dysplasia in Preterm Infants. Front Pediatr 2021; 9:762545. [PMID: 34966701 PMCID: PMC8711720 DOI: 10.3389/fped.2021.762545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe respiratory complication in preterm infants. Although the etiology and pathogenesis of BPD are complex and remain to be clarified, recent studies have reported a certain correlation between the microecological environment of the respiratory tract and BPD. Changes in respiratory tract microecology, such as abnormal microbial diversity and altered evolutional patterns, are observed prior to the development of BPD in premature infants. Therefore, research on the colonization and evolution of neonatal respiratory tract microecology and its relationship with BPD is expected to provide new ideas for its prevention and treatment. In this paper, we review microecological changes in the respiratory tract and the mechanisms by which they can lead to BPD in preterm infants.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Zhou Y, Tong L, Li M, Wang Y, Li L, Yang D, Zhang Y, Chen Z. Recurrent Wheezing and Asthma After Respiratory Syncytial Virus Bronchiolitis. Front Pediatr 2021; 9:649003. [PMID: 34150683 PMCID: PMC8211724 DOI: 10.3389/fped.2021.649003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Respiratory syncytial virus (RSV) is the most common pathogen of acute bronchiolitis in children, which sometimes triggers the development of recurrent wheezing and increases the risk of childhood asthma. Methods: We enrolled 425 children who were diagnosed with RSV-infected bronchiolitis at the department of pulmonology, Children's Hospital Zhejiang University School of Medicine in 2011. Long-term follow-up was performed to explore the consequence of bronchiolitis on subsequent recurrent wheezing and asthma. Results: Of 425 patients, 266 cases completed the entire follow-up, the mean age of onset was 4.9 (3.3) months, and the male-to-female ratio was 2.5. The mean birth weight of all patients was 3.22 (0.63) kg, and the number of patients who had a history of cesarean section was 148. According to the outcome of follow-up, 36 were in the recurrent wheezing (RW) group, 65 were in the asthma (AS) group, and the remaining 165 were in the completely recovered (CR) group. The age of onset was older and the birth weights were higher in the AS group than those in the CR group (P < 0.05). And the higher proportion of cesarean sections was higher in the RW group than that in the CR group (P < 0.05). Furthermore, we found a remarkable increasing of serum IgE in the AS groups than that in the CR group (P < 0.01). Multiple logistic regression analysis showed that the cesarean section was the risk factor for the development of recurrent wheezing and the higher birth weight was the risk factor for the development of asthma. Conclusion: RSV bronchiolitis might increase the incidence of recurrent wheezing and asthma. Allergic constitution was an important prerequisite for the occurrence of asthma, and related risk factor such as cesarean section can only increase recurrent wheezing to a certain extent within a certain period of time. And we also find higher birth weight and older onset age for those who develop asthma, which should be verified in the future.
Collapse
Affiliation(s)
- Yunlian Zhou
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lin Tong
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Mengyao Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yingshuo Wang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lanxin Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dehua Yang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
33
|
Evaluation of the upper airway microbiome and immune response with nasal epithelial lining fluid absorption and nasal washes. Sci Rep 2020; 10:20618. [PMID: 33244064 PMCID: PMC7692476 DOI: 10.1038/s41598-020-77289-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
Despite being commonly used to collect upper airway epithelial lining fluid, nasal washes are poorly reproducible, not suitable for serial sampling, and limited by a dilution effect. In contrast, nasal filters lack these limitations and are an attractive alternative. To examine whether nasal filters are superior to nasal washes as a sampling method for the characterization of the upper airway microbiome and immune response, we collected paired nasal filters and washes from a group of 40 healthy children and adults. To characterize the upper airway microbiome, we used 16S ribosomal RNA and shotgun metagenomic sequencing. To characterize the immune response, we measured total protein using a BCA assay and 53 immune mediators using multiplex magnetic bead-based assays. We conducted statistical analyses to compare common microbial ecology indices and immune-mediator median fluorescence intensities (MFIs) between sample types. In general, nasal filters were more likely to pass quality control in both children and adults. There were no significant differences in microbiome community richness, α-diversity, or structure between pediatric samples types; however, these were all highly dissimilar between adult sample types. In addition, there were significant differences in the abundance of amplicon sequence variants between sample types in children and adults. In adults, total proteins were significantly higher in nasal filters than nasal washes; consequently, the immune-mediator MFIs were not well detected in nasal washes. Based on better quality control sequencing metrics and higher immunoassay sensitivity, our results suggest that nasal filters are a superior sampling method to characterize the upper airway microbiome and immune response in both children and adults.
Collapse
|
34
|
Raita Y, Camargo CA, Bochkov YA, Celedón JC, Gern JE, Mansbach JM, Rhee EP, Freishtat RJ, Hasegawa K. Integrated-omics endotyping of infants with rhinovirus bronchiolitis and risk of childhood asthma. J Allergy Clin Immunol 2020; 147:2108-2117. [PMID: 33197460 DOI: 10.1016/j.jaci.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Young children with rhinovirus (RV) infection-particularly bronchiolitis-are at high risk for developing childhood asthma. Emerging evidence suggests clinical heterogeneity within RV bronchiolitis. However, little is known about these biologically distinct subgroups (endotypes) and their relations with asthma risk. OBJECTIVE We aimed to identify RV bronchiolitis endotypes and examine their longitudinal relations with asthma risk. METHODS As part of a multicenter prospective cohort study of infants (age <12 months) hospitalized for bronchiolitis, we integrated clinical, RV species (RV-A, RV-B, and RV-C), nasopharyngeal microbiome (16S rRNA gene sequencing), cytokine, and metabolome (liquid chromatography tandem mass spectrometry) data collected at hospitalization. We then applied network and clustering approaches to identify bronchiolitis endotypes. We also examined their longitudinal association with risks of developing recurrent wheeze by age 3 years and asthma by age 5 years. RESULTS Of 122 infants hospitalized for RV bronchiolitis (median age, 4 months), we identified 4 distinct endotypes-mainly characterized by RV species, microbiome, and type 2 cytokine (T2) response: endotype A, virusRV-CmicrobiomemixedT2low; endotype B, virusRV-AmicrobiomeHaemophilusT2low; endotype C, virusRSV/RVmicrobiomeStreptococcusT2low; and endotype D, virusRV-CmicrobiomeMoraxellaT2high. Compared with endotype A infants, endotype D infants had a significantly higher rate of recurrent wheeze (33% vs 64%; hazard ratio, 2.23; 95% CI, 1.00-4.96; P = .049) and a higher risk for developing asthma (28% vs 59%; odds ratio, 3.74: 95% CI, 1.21-12.6; P = .03). CONCLUSIONS Integrated-omics analysis identified biologically meaningful RV bronchiolitis endotypes in infants, such as one characterized by RV-C infection, Moraxella-dominant microbiota, and high T2 cytokine response, at higher risk for developing recurrent wheeze and asthma. This study should facilitate further research toward validating our inferences.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Robert J Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
35
|
Usemann J, Alves MP, Ritz N, Latzin P, Müller L. Age-dependent response of the human nasal epithelium to rhinovirus infection. Eur Respir J 2020; 56:13993003.00877-2020. [PMID: 32430434 DOI: 10.1183/13993003.00877-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/12/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Jakob Usemann
- Paediatric Respiratory Medicine, Dept of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Respiratory Medicine, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marco P Alves
- Institute of Virology and Immunology, Bern, Switzerland.,Dept of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicole Ritz
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Philipp Latzin
- Paediatric Respiratory Medicine, Dept of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Children's Hospital Basel (UKBB), Basel, Switzerland.,These authors contributed equally to this project
| | - Loretta Müller
- Paediatric Respiratory Medicine, Dept of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Children's Hospital Basel (UKBB), Basel, Switzerland.,These authors contributed equally to this project
| |
Collapse
|
36
|
Nino G, Rodríguez-Martínez CE, Castro-Rodriguez JA. The use of β 2-adrenoreceptor agonists in viral bronchiolitis: scientific rationale beyond evidence-based guidelines. ERJ Open Res 2020; 6:00135-2020. [PMID: 33083437 PMCID: PMC7553108 DOI: 10.1183/23120541.00135-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite scientific evidence proving that inhaled β2-adrenergic receptor (β2-AR) agonists can reverse bronchoconstriction in all ages, current guidelines advocate against the use of β2-AR bronchodilators in infants with viral bronchiolitis because clinical trials have not demonstrated an overall clinical benefit. However, there are many different types of viral bronchiolitis, with variations occurring at an individual and viral level. To discard a potentially helpful treatment from all children regardless of their clinical features may be unwarranted. Unfortunately, the clinical criteria to identify the infants that may benefit from bronchodilators from those who do not are not clear. Thus, we summarised the current understanding of the individual factors that may help clinicians determine the highest probability of response to β2-AR bronchodilators during viral bronchiolitis, based on the individual immunobiology, viral pathogen, host factors and clinical presentation. There are several factors that may help clinicians determine the highest probability of response to β2-AR bronchodilators during viral bronchiolitis, based on the individual immunobiology, viral pathogen, host factors and clinical presentationhttps://bit.ly/30CoHcH
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Center for Genetic Research, Children's National Medical Center, George Washington University, Washington, DC, USA
| | - Carlos E Rodríguez-Martínez
- Dept of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia.,Dept of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A Castro-Rodriguez
- Dept of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
37
|
Nasopharyngeal Haemophilus and local immune response during infant respiratory syncytial virus infection. J Allergy Clin Immunol 2020; 147:1097-1101.e6. [PMID: 32628963 PMCID: PMC7333620 DOI: 10.1016/j.jaci.2020.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022]
|
38
|
Ruan X, Du P, Zhao K, Huang J, Xia H, Dai D, Huang S, Cui X, Liu L, Zhang J. Mechanism of Dayuanyin in the treatment of coronavirus disease 2019 based on network pharmacology and molecular docking. Chin Med 2020; 15:62. [PMID: 32536965 PMCID: PMC7289712 DOI: 10.1186/s13020-020-00346-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background At present, coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2, is spreading all over the world, with disastrous consequences for people of all countries. The traditional Chinese medicine prescription Dayuanyin (DYY), a classic prescription for the treatment of plague, has shown significant effects in the treatment of COVID-19. However, its specific mechanism of action has not yet been clarified. This study aims to explore the mechanism of action of DYY in the treatment of COVID-19 with the hope of providing a theoretical basis for its clinical application. Methods First, the TCMSP database was searched to screen the active ingredients and corresponding target genes of the DYY prescription and to further identify the core compounds in the active ingredient. Simultaneously, the Genecards database was searched to identify targets related to COVID-19. Then, the STRING database was applied to analyse protein–protein interaction, and Cytoscape software was used to draw a network diagram. The R language and DAVID database were used to analyse GO biological processes and KEGG pathway enrichment. Second, AutoDock Vina and other software were used for molecular docking of core targets and core compounds. Finally, before and after application of DYY, the core target gene IL6 of COVID-19 patients was detected by ELISA to validate the clinical effects. Results First, 174 compounds, 7053 target genes of DYY and 251 genes related to COVID-19 were selected, among which there were 45 target genes of DYY associated with treatment of COVID-19. This study demonstrated that the use of DYY in the treatment of COVID-19 involved a variety of biological processes, and DYY acted on key targets such as IL6, ILIB, and CCL2 through signaling pathways such as the IL-17 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and cytokine–cytokine receptor interaction. DYY might play a vital role in treating COVID-19 by suppressing the inflammatory storm and regulating immune function. Second, the molecular docking results showed that there was a certain affinity between the core compounds (kaempferol, quercetin, 7-Methoxy-2-methyl isoflavone, naringenin, formononetin) and core target genes (IL6, IL1B, CCL2). Finally, clinical studies showed that the level of IL6 was elevated in COVID-19 patients, and DYY can reduce its levels. Conclusions DYY may treat COVID-19 through multiple targets, multiple channels, and multiple pathways and is worthy of clinical application and promotion.
Collapse
Affiliation(s)
- Xiaofeng Ruan
- College of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430070 China.,Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Peng Du
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Xiangyang, 441021 Hubei China
| | - Kang Zhao
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Jucun Huang
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Hongmei Xia
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Dan Dai
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Shu Huang
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Xiang Cui
- Department of Liver Medicine, AnKang Hospital of Traditional Chinese Medicine, Ankang, 72500 Shaanxi China
| | - Liming Liu
- College of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430070 China.,Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Jianjun Zhang
- College of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430070 China.,Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| |
Collapse
|
39
|
Groves HE, Shields MD. Respiratory Syncytial Virus and Asthma Inception: Cause and Effect, or Shared Susceptibility? J Infect Dis 2020; 220:547-549. [PMID: 30517654 DOI: 10.1093/infdis/jiy672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Helen E Groves
- Wellcome Wolfson Centre for Experimental Medicine, Queens University.,Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| | - Michael D Shields
- Wellcome Wolfson Centre for Experimental Medicine, Queens University.,Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| |
Collapse
|
40
|
Arroyo M, Salka K, Perez GF, Rodríguez-Martínez CE, Castro-Rodriguez JA, Gutierrez MJ, Nino G. Phenotypical Sub-setting of the First Episode of Severe Viral Respiratory Infection Based on Clinical Assessment and Underlying Airway Disease: A Pilot Study. Front Pediatr 2020; 8:121. [PMID: 32300576 PMCID: PMC7142213 DOI: 10.3389/fped.2020.00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction: Viral bronchiolitis is a term often used to group all infants with the first episode of severe viral respiratory infection. However, this term encompasses a collection of different clinical and biological processes. We hypothesized that the first episode of severe viral respiratory infection in infants can be subset into clinical phenotypes with distinct outcomes and underlying airway disease patterns. Methods: We included children (≤2 years old) hospitalized for the first time due to PCR-confirmed viral respiratory infection. All cases were categorized based on primary manifestations (wheezing, sub-costal retractions and hypoxemia) into mild, hypoxemia or wheezing phenotypes. We characterized these phenotypes using lung-X-rays, respiratory outcomes and nasal protein levels of antiviral and type 2 cytokines (IFNγ, IL-10, IL-4, IL-13, IL-1β, and TNFα). Results: A total of 50 young children comprising viral respiratory infection cases (n = 41) and uninfected controls (n = 9) were included. We found that 22% of viral respiratory infection cases were classified as mild (n = 9), 39% as hypoxemia phenotype (n = 16) and 39% as wheezing phenotype (n = 16). Individuals in the hypoxemia phenotype had more lung opacities, higher probability of PICU admission and prolonged hospitalizations. Subjects in the wheezing phenotype had higher probability of recurrent sick visits. Nasal cytokine profiles showed that individuals with recurrent sick visits in the wheezing phenotype had increased nasal airway levels of type 2 cytokines (IL-13/IL-4). Conclusion: Clinically-based classification of the first episode of severe viral respiratory infection into mild, hypoxemia or wheezing phenotypes provides critical information about respiratory outcomes, lung disease patterns and underlying airway immunobiology.
Collapse
Affiliation(s)
- Maria Arroyo
- Division of Pediatric Pulmonary and Sleep Medicine. Center for Genetic Research, Children's National Medical Center, George Washington University, Washington, DC, United States
| | - Kyle Salka
- Division of Pediatric Pulmonary and Sleep Medicine. Center for Genetic Research, Children's National Medical Center, George Washington University, Washington, DC, United States
| | - Geovanny F. Perez
- Division of Pediatric Pulmonary and Sleep Medicine. Center for Genetic Research, Children's National Medical Center, George Washington University, Washington, DC, United States
| | - Carlos E. Rodríguez-Martínez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
- Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A. Castro-Rodriguez
- Division of Pediatrics, Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Maria J. Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, MD, United States
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine. Center for Genetic Research, Children's National Medical Center, George Washington University, Washington, DC, United States
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Allergic diseases are prototypic examples for gene × environment-wide interactions. This review considers the current evidence for genetic and epigenetic mechanisms in allergic diseases and highlights barriers and facilitators for the implementation of these novel tools both for research and clinical practice. RECENT FINDINGS The value of whole-genome sequencing studies and the use of polygenic risk score analysis in homogeneous well characterized populations are currently being tested. Epigenetic mechanisms are known to play a crucial role in the pathogenesis of allergic disorders, especially through mediating the effects of the environmental factors, well recognized risk modifiers. There is emerging evidence for the immune-modulatory role of probiotics through epigenetic changes. Direct or indirect targeting of epigenetic mechanisms affect expression of the genes favouring the development of allergic diseases and can improve tissue biology. The ability to specifically edit the epigenome, especially using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, holds the promise of enhancing understanding of how epigenetic modifications function and enabling manipulation of cell phenotype for research or therapeutic purposes. SUMMARY Additional research in the role of genetic and epigenetic mechanisms in relation to allergic diseases' endotypes is needed. An international project characterizing the human epigenome in relation to allergic diseases is warranted.
Collapse
|
42
|
Driscoll AJ, Arshad SH, Bont L, Brunwasser SM, Cherian T, Englund JA, Fell DB, Hammitt LL, Hartert TV, Innis BL, Karron RA, Langley GE, Mulholland EK, Munywoki PK, Nair H, Ortiz JR, Savitz DA, Scheltema NM, Simões EAF, Smith PG, Were F, Zar HJ, Feikin DR. Does respiratory syncytial virus lower respiratory illness in early life cause recurrent wheeze of early childhood and asthma? Critical review of the evidence and guidance for future studies from a World Health Organization-sponsored meeting. Vaccine 2020; 38:2435-2448. [PMID: 31974017 PMCID: PMC7049900 DOI: 10.1016/j.vaccine.2020.01.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/20/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection (LRTI) and hospitalization in infants and children globally. Many observational studies have found an association between RSV LRTI in early life and subsequent respiratory morbidity, including recurrent wheeze of early childhood (RWEC) and asthma. Conversely, two randomized placebo-controlled trials of efficacious anti-RSV monoclonal antibodies (mAbs) in heterogenous infant populations found no difference in physician-diagnosed RWEC or asthma by treatment group. If a causal association exists and RSV vaccines and mAbs can prevent a substantial fraction of RWEC/asthma, the full public health value of these interventions would markedly increase. The primary alternative interpretation of the observational data is that RSV LRTI in early life is a marker of an underlying predisposition for the development of RWEC and asthma. If this is the case, RSV vaccines and mAbs would not necessarily be expected to impact these outcomes. To evaluate whether the available evidence supports a causal association between RSV LRTI and RWEC/asthma and to provide guidance for future studies, the World Health Organization convened a meeting of subject matter experts on February 12-13, 2019 in Geneva, Switzerland. After discussing relevant background information and reviewing the current epidemiologic evidence, the group determined that: (i) the evidence is inconclusive in establishing a causal association between RSV LRTI and RWEC/asthma, (ii) the evidence does not establish that RSV mAbs (and, by extension, future vaccines) will have a substantial effect on these outcomes and (iii) regardless of the association with long-term childhood respiratory morbidity, severe acute RSV disease in young children poses a substantial public health burden and should continue to be the primary consideration for policy-setting bodies deliberating on RSV vaccine and mAb recommendations. Nonetheless, the group recognized the public health importance of resolving this question and suggested good practice guidelines for future studies.
Collapse
Affiliation(s)
- Amanda J Driscoll
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St, Suite 480, Baltimore, MD, USA
| | - S Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Louis Bont
- The ReSViNET Foundation, Zeist, the Netherlands; Department of Pediatric Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, Utrecht, the Netherlands; Department of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, Utrecht, the Netherlands
| | - Steven M Brunwasser
- Center for Asthma Research, Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University School of Medicine, 2525 West End Ave, Suite 450, Nashville, TN 37203, USA
| | - Thomas Cherian
- MM Global Health Consulting, Chemin Maurice Ravel 11C, 1290 Versoix, Switzerland
| | - Janet A Englund
- Seattle Children's Hospital, 4800 Sand Point Way NE Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Deshayne B Fell
- School of Epidemiology and Public Health, University of Ottawa, Children's Hospital of Eastern Ontario (CHEO) Research Institute, 401 Smyth Road, CPCR, Room L-1154, Ottawa, Ontario K1H 8L1, Canada
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Tina V Hartert
- Center for Asthma Research, Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University School of Medicine, 2525 West End Ave, Suite 450, Nashville, TN 37203, USA
| | - Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW, Suite 1000, WA, DC 20001, USA
| | - Ruth A Karron
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Suite 217, Baltimore, MD 21205, USA
| | - Gayle E Langley
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - E Kim Mulholland
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Flemington Rd, Parkville, VIC 3052, Australia; Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| | - Patrick K Munywoki
- Division of Global Health Protection, US Centers for Disease Control and Prevention, PO Box 606-00621, Nairobi, Kenya
| | - Harish Nair
- The ReSViNET Foundation, Zeist, the Netherlands; Centre for Global Health Research, Usher Institute, University of Edinburgh, Medical School, Teviot Place, Edinburgh EH8 9AG, Scotland, United Kingdom
| | - Justin R Ortiz
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St, Suite 480, Baltimore, MD, USA
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02903, USA
| | - Nienke M Scheltema
- Department of Pediatric Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, Utrecht, the Netherlands
| | - Eric A F Simões
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado School of Medicine, and Children's Hospital Colorado 13123 E. 16th Ave, B065, Aurora, CO 80045, USA; Department of Epidemiology, Center for Global Health Colorado School of Public Health, 13001 E 17th Pl B119, Aurora, CO 80045, USA
| | - Peter G Smith
- Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| | - Fred Were
- Department of Pediatrics and Child Health, University of Nairobi, P.O. Box 30197, GPO, Nairobi, Kenya
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa; SA-Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, 5th Floor ICH Building, Klipfontein Road, Cape Town, South Africa
| | - Daniel R Feikin
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, 20 Avenue Appia, Geneva, Switzerland
| |
Collapse
|
43
|
Kitcharoensakkul M, Bacharier LB, Yin-Declue H, Boomer JS, Sajol G, Leung MK, Wilson B, Schechtman KB, Atkinson JP, Green JM, Castro M. Impaired tumor necrosis factor-α secretion by CD4 T cells during respiratory syncytial virus bronchiolitis associated with recurrent wheeze. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:30-39. [PMID: 31901157 PMCID: PMC7016853 DOI: 10.1002/iid3.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/06/2019] [Accepted: 12/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Infants with severe respiratory syncytial virus (RSV) bronchiolitis have an increased risk of recurrent wheezing and asthma. We aimed to evaluate the relationships between regulatory T cell (Treg) percentage and cytokine production of in vitro-stimulated CD4+ T cells during acute bronchiolitis and the development of recurrent wheezing in the first 3 years of life. METHODS We obtained peripheral blood from 166 infants hospitalized with their first episode of RSV-confirmed bronchiolitis. Granzyme B (GZB) expression, and interleukin-10, interferon-γ, tumor necrosis factor-α (TNF-α), IL-4, and IL-5 production by in vitro anti-CD3/CD28- and anti-CD3/CD46-activated CD4+ T cells, and percentage of peripheral Treg (CD4+CD25hi Foxp3hi ) cells were measured by flow cytometry. Wheezing was assessed every 6 months. Recurrent wheezing was defined as three or more episodes following the initial RSV bronchiolitis. RESULTS Sixty-seven percent (n = 111) of children had wheezing after their initial RSV infection, with 30% having recurrent wheezing. The percentage of peripheral Treg (CD4+CD25hi Foxp3hi ) cells was not significantly different between the wheezing groups. Decreased TNF-α production from anti-CD3/CD28- and anti-CD3/CD46- activated CD4+ T cells was observed in the recurrent wheezers, compared with nonwheezers (p = .048 and .03, respectively). There were no significant differences in the GZB+ CD4+ T cells and production of other inflammatory cytokines between these groups. CONCLUSIONS We demonstrated lower TNF-α production by in vitro stimulated CD4+ T cells during severe RSV bronchiolitis in children that subsequently developed recurrent wheezing, compared with children with no subsequent wheeze. These findings support the role of CD4+ T cell immunity in the development of subsequent wheezing in these children.
Collapse
Affiliation(s)
- Maleewan Kitcharoensakkul
- The Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Leonard B Bacharier
- The Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Huiqing Yin-Declue
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan S Boomer
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Geneline Sajol
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Marilyn K Leung
- The Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brad Wilson
- The Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth B Schechtman
- The Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - John P Atkinson
- The Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - Mario Castro
- The Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
44
|
Larenas-Linnemann D, Romero-Tapia SJ, Virgen C, Mallol J, Baeza Bacab MA, García-Marcos L. Risk factors for wheezing in primary health care settings in the tropics. Ann Allergy Asthma Immunol 2019; 124:179-184.e1. [PMID: 31734332 DOI: 10.1016/j.anai.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The International Study of Wheezing in Infants (EISL) is a cross-sectional, population-based study, based on ISAAC (http://www.isaac.auckland.ac.nz). It uses a validated questionnaire on early wheezing and risk/protective factors. OBJECTIVE To apply the EISL questionnaire regarding wheezing events in 0- to 12-month-old infants with or without atopic background searching for risk factors in the tropics. METHODS The population was toddlers coming in for a checkup or 12-months' vaccination in primary health care clinics of a tropical city. Apart from child factors (eg, daycare attendance), we evaluated home factors (eg, air conditioning, bathroom, carpet, >6 persons, pollution) and mothers' factors (eg, education level, employment, cellphone). Data analysis was descriptive and case-control, with as cases atopic (AW) or non-atopic (NAW) wheezing children vs healthy controls. Wheezing-associated factors were evaluated using multivariate analysis, adjusted for the relation of AW/NAW with factors that were significant in prior univariate analysis. RESULTS The study included 999 toddlers. Any wheeze: 31.3%, recurrent wheeze (≥3 episodes): 12.1%. Major risk factors for AW (OR; 95%CI) included smoking (11.39; 2.36-54.99), common cold before 3 months of life (3.72; 2.59-5.36), mold (3.48; 2.28-5.30), kitchen indoors (2.40; 1.27-4.54), and pets (1.69; 1.09-2.62); breastfeeding was almost protective. For NAW, common cold and pets were risk factors, but cesarean section (0.44; 0.23-0.82), more than 1 sibling (0.33; 0.18-0.61), and breastfeeding for longer than 3 months (0.50; 0.28-0.91) were protective. CONCLUSION Wheezing is a health care burden. We found potential new risk factors for AW, some possibly unique for tropical climates. We suggest testing several hypotheses: could early AW be reduced in the tropics by attacking mold growth? Enhancing cooking place ventilation? Keeping pets outside? Or by postponing daycare attendance until after 4 months of age and avoiding (passive) smoking during pregnancy?
Collapse
Affiliation(s)
| | | | - Cesar Virgen
- Pediatric Private practice, Villahermosa, Mexico
| | - Javier Mallol
- Department of Pediatric Respiratory Medicine, Faculty of Medical Sciences, Hospital CRS El Pino, University of Santiago de Chile (USACH)
| | | | - Luis García-Marcos
- Research unit, Department of Paediatrics at the "Virgen de la Arrixaca" University Children's Hospital, El Palmar, Spain
| |
Collapse
|
45
|
Ramilo O, Mejias A. Respiratory Syncytial Virus-induced Acute Disease Severity and Long-Term Wheezing. Uncovering the Unexpected. Am J Respir Crit Care Med 2019; 198:984-986. [PMID: 29847146 DOI: 10.1164/rccm.201805-0908ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Octavio Ramilo
- 1 Division of Pediatric Infectious Diseases.,2 Center for Vaccines and Immunity Nationwide Children's Hospital Columbus, Ohio and.,3 The Ohio State University Columbus, Ohio
| | - Asuncion Mejias
- 1 Division of Pediatric Infectious Diseases.,2 Center for Vaccines and Immunity Nationwide Children's Hospital Columbus, Ohio and.,3 The Ohio State University Columbus, Ohio
| |
Collapse
|
46
|
Differential interferon gene expression in bronchiolitis caused by respiratory syncytial virus-A genotype ON1. Med Microbiol Immunol 2019; 209:23-28. [DOI: 10.1007/s00430-019-00633-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
47
|
Acute Severe Asthma in Adolescent and Adult Patients: Current Perspectives on Assessment and Management. J Clin Med 2019; 8:jcm8091283. [PMID: 31443563 PMCID: PMC6780340 DOI: 10.3390/jcm8091283] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease that is associated with variable expiratory flow, variable respiratory symptoms, and exacerbations which sometimes require hospitalization or may be fatal. It is not only patients with severe and poorly controlled asthma that are at risk for an acute severe exacerbation, but this has also been observed in patients with otherwise mild or moderate asthma. This review discusses current aspects on the pathogenesis and pathophysiology of acute severe asthma exacerbations and provides the current perspectives on the management of acute severe asthma attacks in the emergency department and the intensive care unit.
Collapse
|
48
|
Impact of Rhinovirus Infections in Children. Viruses 2019; 11:v11060521. [PMID: 31195744 PMCID: PMC6632063 DOI: 10.3390/v11060521] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Rhinovirus (RV) is an RNA virus that causes more than 50% of upper respiratory tract infections in humans worldwide. Together with Respiratory Syncytial Virus, RV is one of the leading causes of viral bronchiolitis in infants and the most common virus associated with wheezing in children aged between one and two years. Because of its tremendous genetic diversity (>150 serotypes), the recurrence of RV infections each year is quite typical. Furthermore, because of its broad clinical spectrum, the clinical variability as well as the pathogenesis of RV infection are nowadays the subjects of an in-depth examination and have been the subject of several studies in the literature. In fact, the virus is responsible for direct cell cytotoxicity in only a small way, and it is now clearer than ever that it may act indirectly by triggering the release of active mediators by structural and inflammatory airway cells, causing the onset and/or the acute exacerbation of asthmatic events in predisposed children. In the present review, we aim to summarize the RV infection's epidemiology, pathogenetic hypotheses, and available treatment options as well as its correlation with respiratory morbidity and mortality in the pediatric population.
Collapse
|
49
|
Ramilo O, Rodriguez-Fernandez R, Mejias A. Respiratory Syncytial Virus, Rhinoviruses, and Recurrent Wheezing: Unraveling the Riddle Opens New Opportunities for Targeted Interventions. JAMA Pediatr 2019; 173:520-521. [PMID: 30933241 DOI: 10.1001/jamapediatrics.2019.0370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,The Ohio State University, Columbus
| | - Rosa Rodriguez-Fernandez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,The Ohio State University, Columbus
| |
Collapse
|
50
|
Heinonen S, Rodriguez-Fernandez R, Diaz A, Oliva Rodriguez-Pastor S, Ramilo O, Mejias A. Infant Immune Response to Respiratory Viral Infections. Immunol Allergy Clin North Am 2019; 39:361-376. [PMID: 31284926 DOI: 10.1016/j.iac.2019.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Of all respiratory viruses that affect infants, respiratory syncytial virus (RSV) and rhinovirus (RV) represent the leading pathogens causing acute disease (bronchiolitis) and are associated with the development of recurrent wheezing and asthma. The immune system in infants is still developing, and several factors contribute to their increased susceptibility to viral infections. These factors include differences in pathogen detection, weaker interferon responses, lack of immunologic memory toward the invading pathogen, and T-cell responses that are balanced to promote tolerance and restrain inflammation. These aspects are reviewed here with a focus on RSV and RV infections.
Collapse
Affiliation(s)
- Santtu Heinonen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, PO Box 347, Helsinki 00029 HUS, Finland
| | - Rosa Rodriguez-Fernandez
- Department of Pediatrics, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Hospital Materno-Infantil Gregorio Marañón, Madrid 28009, Spain; Section of General Pediatrics, Hospital Gregorio Marañón, Madrid, Spain
| | - Alejandro Diaz
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, The Ohio State Collage of Medicine, 700 Children's Drive, Columbus, OH 43205, USA; Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State Collage of Medicine, 700 Children's Drive, Columbus, OH 43205, USA
| | - Silvia Oliva Rodriguez-Pastor
- Division of Pediatric Emergency Medicine and Critical Care, Hospital Regional Universitario de Malaga, Malaga 29001, Spain; Department of Pharmacology and Pediatrics, Malaga Medical Shool, Malaga University (UMA), Malaga, Spain
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, The Ohio State Collage of Medicine, 700 Children's Drive, Columbus, OH 43205, USA; Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State Collage of Medicine, 700 Children's Drive, Columbus, OH 43205, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, The Ohio State Collage of Medicine, 700 Children's Drive, Columbus, OH 43205, USA; Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State Collage of Medicine, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pharmacology and Pediatrics, Malaga Medical Shool, Malaga University (UMA), Malaga, Spain.
| |
Collapse
|