1
|
Yao B, Liu J, Xie J, Li Z, Luo Y, Wang M. Development and Comparative Study of a Mouse Model of Airway Inflammation and Remodeling Induced by Exosomes Derived from Bone Marrow Mesenchymal Stem Cells. Bull Exp Biol Med 2024:10.1007/s10517-024-06221-w. [PMID: 39279005 DOI: 10.1007/s10517-024-06221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 09/18/2024]
Abstract
We developed a model of inflammation and airway remodeling in C57 mice provoked by exosomes derived from bone marrow mesenchymal stem cells infected by respiratory syncytial virus (RSV). The mean size of control and infected exosomes in vitro were 167.9 and 118.5 nm, respectively. After induction of modeled pathology, the severity of airway inflammation and its remodeling were analyzed by histopathological methods. In addition, the blood levels of inflammatory factors IL-10, IL-17, transforming growth factor-β (TGF-β), and TNFα were assayed; in the lung tissues, the expression levels of MMP-2, MMP-9, α-smooth muscle actin (α-SMA), and TGF-β were measured. In the developed model, the effects of RSV-induced and non-induced exosomes were compared with those of inactivated and non-inactivated RSV. Intranasal administration of RSV-induced exosomes decreased the levels of serum inflammatory factors IL-10 and IL-17 and increased the expression of serum proinflammatory cytokine TNFα. Increased levels of MMP-2, MMP-9, and α-SMA, enhanced expression of TGF-β in the lung tissue, and pathological staining of the lung tissues indicated infiltration with inflammatory cells and luminal constriction. Thus, RSV-induced exosomes can provoke airway inflammation and remodeling in mice similar to RSV, while non-induced exosomes cannot produce such alterations.
Collapse
Affiliation(s)
- B Yao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - J Liu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - J Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Z Li
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Y Luo
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - M Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Viñán Garcés AE, Cáceres E, Gómez JO, Martín-Loeches I, Reyes LF. Inflammatory response to SARS-CoV 2 and other respiratory viruses. Expert Rev Anti Infect Ther 2024; 22:725-738. [PMID: 39228288 DOI: 10.1080/14787210.2024.2400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lower respiratory tract infections (LRTI) remain a significant global cause of mortality and disability. Viruses constitute a substantial proportion of LRTI cases, with their pandemic potential posing a latent threat. After the SARS-CoV-2 pandemic, the resurgence of other respiratory viruses, including Influenza and Respiratory Syncytial Virus responsible for LRTI has been observed especially in susceptible populations. AREAS COVERED This review details the inflammatory mechanisms associated with three primary respiratory viruses: SARS-CoV-2, Influenza, and Respiratory Syncytial Virus (RSV). The focus will be on elucidating the activation of inflammatory pathways, understanding cellular contributions to inflammation, exploring the role of interferon and induced cell death in the response to these pathogens and detailing viral evasion mechanisms. Furthermore, the distinctive characteristics of each virus will be explained. EXPERT OPINION The study of viral pneumonia, notably concerning SARS-CoV-2, Influenza, and RSV, offers critical insights into infectious and inflammatory mechanisms with wide-ranging implications. Addressing current limitations, such as diagnostic accuracy and understanding host-virus interactions, requires collaborative efforts and investment in technology. Future research holds promise for uncovering novel therapeutic targets, exploring host microbiome roles, and addressing long-term sequelae. Integrating advances in molecular biology and technology will shape the evolving landscape of viral pneumonia research, potentially enhancing global public health outcomes.
Collapse
Affiliation(s)
- André Emilio Viñán Garcés
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Nziza N, Jung W, Mendu M, Chen T, Julg B, Graham B, Ramilo O, Mejias A, Alter G. Longitudinal humoral analysis in RSV-infected infants identifies pre-existing RSV strain-specific G and evolving cross-reactive F antibodies. Immunity 2024; 57:1681-1695.e4. [PMID: 38876099 DOI: 10.1016/j.immuni.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Respiratory syncytial virus (RSV) is among the most common causes of lower respiratory tract infection (LRTI) and hospitalization in infants. However, the mechanisms of immune control in infants remain incompletely understood. Antibody profiling against attachment (G) and fusion (F) proteins in children less than 2 years of age, with mild (outpatients) or severe (inpatients) RSV disease, indicated substantial age-dependent differences in RSV-specific immunity. Maternal antibodies were detectable for the first 3 months of life, followed by a long window of immune vulnerability between 3 and 6 months and a rapid evolution of FcγR-recruiting immunity after 6 months of age. Acutely ill hospitalized children exhibited lower G-specific antibodies compared with healthy controls. With disease resolution, RSV-infected infants generated broad functional RSV strain-specific G-responses and evolved cross-reactive F-responses, with minimal maternal imprinting. These data suggest an age-independent RSV G-specific functional humoral correlate of protection, and the evolution of RSV F-specific functional immunity with disease resolution.
Collapse
Affiliation(s)
- Nadège Nziza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maanasa Mendu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Harvard University, Cambridge, MA, USA
| | - Tina Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Barney Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Asuncion Mejias
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Gambadauro A, Galletta F, Li Pomi A, Manti S, Piedimonte G. Immune Response to Respiratory Viral Infections. Int J Mol Sci 2024; 25:6178. [PMID: 38892370 PMCID: PMC11172738 DOI: 10.3390/ijms25116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The respiratory system is constantly exposed to viral infections that are responsible for mild to severe diseases. In this narrative review, we focalized the attention on respiratory syncytial virus (RSV), influenza virus, and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infections, responsible for high morbidity and mortality in the last decades. We reviewed the human innate and adaptive immune responses in the airways following infection, focusing on a particular population: newborns and pregnant women. The recent Coronavirus disease-2019 (COVID-19) pandemic has highlighted how our interest in viral pathologies must not decrease. Furthermore, we must increase our knowledge of infection mechanisms to improve our future defense strategies.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Alessandra Li Pomi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Giovanni Piedimonte
- Office for Research and Departments of Pediatrics, Biochemistry, and Molecular Biology, Tulane University, New Orleans, LA 70112, USA;
| |
Collapse
|
5
|
Wang Z, Cuthbertson LF, Thomas C, Sallah HJ, Mosscrop LG, Li H, Talts T, Kumar K, Moffatt MF, Tregoning JS. IL-1α is required for T cell-driven weight loss after respiratory viral infection. Mucosal Immunol 2024; 17:272-287. [PMID: 38382577 PMCID: PMC11009121 DOI: 10.1016/j.mucimm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Respiratory viral infections remain a major cause of hospitalization and death worldwide. Patients with respiratory infections often lose weight. While acute weight loss is speculated to be a tolerance mechanism to limit pathogen growth, severe weight loss following infection can cause quality of life deterioration. Despite the clinical relevance of respiratory infection-induced weight loss, its mechanism is not yet completely understood. We utilized a model of CD 8+ T cell-driven weight loss during respiratory syncytial virus (RSV) infection to dissect the immune regulation of post-infection weight loss. Supporting previous data, bulk RNA sequencing indicated significant enrichment of the interleukin (IL)-1 signaling pathway after RSV infection. Despite increased viral load, infection-associated weight loss was significantly reduced after IL-1α (but not IL-1β) blockade. IL-1α depletion resulted in a reversal of the gut microbiota changes observed following RSV infection. Direct nasal instillation of IL-1α also caused weight loss. Of note, we detected IL-1α in the brain after either infection or nasal delivery. This was associated with changes in genes controlling appetite after RSV infection and corresponding changes in signaling molecules such as leptin and growth/differentiation factor 15. Together, these findings indicate a lung-brain-gut signaling axis for IL-1α in regulating weight loss after RSV infection.
Collapse
Affiliation(s)
- Ziyin Wang
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | | | - Chubicka Thomas
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Hadijatou J Sallah
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Lucy G Mosscrop
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Haoyuan Li
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Tiina Talts
- Virus Reference Department, Public Health Microbiology, United Kingdom Health Security Agency, London, UK
| | - Kartik Kumar
- National Heart and Lung Institute, Imperial College London, UK
| | | | - John S Tregoning
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK.
| |
Collapse
|
6
|
Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol 2023; 21:734-749. [PMID: 37438492 DOI: 10.1038/s41579-023-00919-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
The large global burden of respiratory syncytial virus (RSV) respiratory tract infections in young children and older adults has gained increased recognition in recent years. Recent discoveries regarding the neutralization-specific viral epitopes of the pre-fusion RSV glycoprotein have led to a shift from empirical to structure-based design of RSV therapeutics, and controlled human infection model studies have provided early-stage proof of concept for novel RSV monoclonal antibodies, vaccines and antiviral drugs. The world's first vaccines and first monoclonal antibody to prevent RSV among older adults and all infants, respectively, have recently been approved. Large-scale introduction of RSV prophylactics emphasizes the need for active surveillance to understand the global impact of these interventions over time and to timely identify viral mutants that are able to escape novel prophylactics. In this Review, we provide an overview of RSV interventions in clinical development, highlighting global disease burden, seasonality, pathogenesis, and host and viral factors related to RSV immunity.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
7
|
Drake KA, Talantov D, Tong GJ, Lin JT, Verheijden S, Katz S, Leung JM, Yuen B, Krishna V, Wu MJ, Sutherland AM, Short SA, Kheradpour P, Mumbach MR, Franz KM, Trifonov V, Lucas MV, Merson J, Kim CC. Multi-omic profiling reveals early immunological indicators for identifying COVID-19 Progressors. Clin Immunol 2023; 256:109808. [PMID: 37852344 DOI: 10.1016/j.clim.2023.109808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
We sought to better understand the immune response during the immediate post-diagnosis phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference. Blood monocyte cell subsets were also skewed, showing a comparative decrease in non-classical CD14-CD16+ and intermediate CD14+CD16+ monocytes. In lymphocytes, the CD8+ T effector memory cells displayed a gene expression signature consistent with stronger T cell activation in Progressors. These early stage observations could serve as the basis for the development of prognostic biomarkers of disease risk and interventional strategies to improve the management of severe COVID-19. BACKGROUND: Much of the literature on immune response post-SARS-CoV-2 infection has been in the acute and post-acute phases of infection. TRANSLATIONAL SIGNIFICANCE: We found differences at early time points of infection in approximately 160 participants. We compared multi-omic signatures in immune cells between individuals progressing to needing more significant medical intervention and non-progressors. We observed widespread evidence of a state of increased inflammation associated with progression, supported by a range of epigenomic, transcriptomic, and proteomic signatures. The signatures we identified support other findings at later time points and serve as the basis for prognostic biomarker development or to inform interventional strategies.
Collapse
Affiliation(s)
- Katherine A Drake
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Dimitri Talantov
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Gary J Tong
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Jack T Lin
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Samuel Katz
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Benjamin Yuen
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Vinod Krishna
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Michelle J Wu
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Sarah A Short
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Pouya Kheradpour
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Maxwell R Mumbach
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Kate M Franz
- Verily Life Sciences, South San Francisco, CA, United States of America
| | - Vladimir Trifonov
- Janssen Research & Development, LLC, San Diego, CA, United States of America
| | - Molly V Lucas
- Janssen Research & Development, LLC, NJ, United States of America
| | - James Merson
- Janssen Research & Development, LLC, San Francisco, CA, United States of America
| | - Charles C Kim
- Verily Life Sciences, South San Francisco, CA, United States of America.
| |
Collapse
|
8
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
9
|
Miles MA, Liong S, Liong F, Coward-Smith M, Trollope GS, Oseghale O, Erlich JR, Brooks RD, Logan JM, Hickey S, Wang H, Bozinovski S, O’Leary JJ, Brooks DA, Selemidis S. TLR7 promotes chronic airway disease in RSV-infected mice. Front Immunol 2023; 14:1240552. [PMID: 37795093 PMCID: PMC10545951 DOI: 10.3389/fimmu.2023.1240552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) commonly infects the upper respiratory tract (URT) of humans, manifesting with mild cold or flu-like symptoms. However, in infants and the elderly, severe disease of the lower respiratory tract (LRT) often occurs and can develop into chronic airway disease. A better understanding of how an acute RSV infection transitions to a LRT chronic inflammatory disease is critically important to improve patient care and long-term health outcomes. To model acute and chronic phases of the disease, we infected wild-type C57BL/6 and toll-like receptor 7 knockout (TLR7 KO) mice with RSV and temporally assessed nasal, airway and lung inflammation for up to 42 days post-infection. We show that TLR7 reduced viral titers in the URT during acute infection but promoted pronounced pathogenic and chronic airway inflammation and hyperreactivity in the LRT. This study defines a hitherto unappreciated molecular mechanism of lower respiratory pathogenesis to RSV, highlighting the potential of TLR7 modulation to constrain RSV pathology to the URT.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Madison Coward-Smith
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Gemma S. Trollope
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Osezua Oseghale
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jessica M. Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hao Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - John J. O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, Dublin, Ireland
| | - Doug A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. BIOLOGY 2023; 12:1223. [PMID: 37759622 PMCID: PMC10525162 DOI: 10.3390/biology12091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Viral respiratory tract infections are a significant public health concern, particularly in children. RSV is a prominent cause of lower respiratory tract infections among infants, whereas SARS-CoV-2 has caused a global pandemic with lower overall severity in children than in adults. In this review, we aimed to compare the innate and adaptive immune responses induced by RSV and SARS-CoV-2 to better understand differences in the pathogenesis of infection. Some studies have demonstrated that children present a more robust immune response against SARS-CoV-2 than adults; however, this response is dissimilar to that of RSV. Each virus has a distinctive mechanism to escape the immune response. Understanding the mechanisms underlying these differences is crucial for developing effective treatments and improving the management of pediatric respiratory infections.
Collapse
Affiliation(s)
| | | | - Ana Paula Duarte da Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; (R.P.d.S.); (B.L.T.)
| |
Collapse
|
11
|
Ramirez KA, Mond J, Papenburg J, Boivin G, Gilbert BE, Falsey AR, Bagga B, DeVincenzo JP. In-vivo and human evidence for potential efficacy of therapeutic polyclonal RSV neutralizing antibodies for palivizumab-resistant RSV infections. Virology 2023; 586:115-121. [PMID: 37542818 DOI: 10.1016/j.virol.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Monoclonal antibody (palivizumab), intravenous immune globulin (IGIV), or respiratory syncytial virus (RSV)-polyclonal-hyperimmune-globulin (RSV-IG as Respigam®, RI-001, RI-002) are used with ribavirin in RSV-infected immunocompromised patients, with debated efficacy. Palivizumab-resistance (PR) can arise during treatment of persistent infections in this population. RSV-IG may confer benefit in PR-RSV infection. METHODS RSV-IG [RI-001] was provided for an immunocompromised infant with RSV-pneumonitis refractory to ribavirin and palivizumab. RSV-neutralizing antibody, respiratory RSV load (qPCR), and F-gene-sequence-detection of PR was determined. Prophylactic RSV-IG [RI-002] or palivizumab was administered in a cotton-rat model infected with wild-type and PR-RSV. Lung RSV load and neutralizing antibody were measured. RESULTS As protective RI-001-neutralizing antibody titers waned in the infant, a subpopulation of PR-escape mutants were detected with a fatal RSV-burden in the lungs. In PR-RSV-infected cotton rats, prophylactic RI-002 reduced RSV-load in the lungs (2.45 vs 0.28 log10 PFU/g lung-tissue reduction, respectively, p < 0.05) and provided protective RSV-neutralizing antibody. CONCLUSIONS RSV-IG and ribavirin use in immunocompromised patients requires further study.
Collapse
Affiliation(s)
- Kacy A Ramirez
- LeBonheur Children's Hospital, Memphis, TN, United States; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; St Jude Children's Research Hospital, Memphis, TN, United States.
| | - James Mond
- ADMA Biologics, Boca Raton FL, United States
| | - Jesse Papenburg
- McGill University Health Centre and Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases and Centre Hospitalier Universitaire (CHU) of Quebec and Laval University, Quebec City, Quebec, Canada
| | | | - Ann R Falsey
- University of Rochester School of Medicine, Rochester, NY, United States
| | - Bindiya Bagga
- LeBonheur Children's Hospital, Memphis, TN, United States; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - John P DeVincenzo
- LeBonheur Children's Hospital, Memphis, TN, United States; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, United States.
| |
Collapse
|
12
|
Long X, Xie J, Ren L, Yu G, Liu E, Deng Y, Long X. IL-17A plays a critical role in RSV infection in children and mice. Virol J 2023; 20:30. [PMID: 36793128 PMCID: PMC9930016 DOI: 10.1186/s12985-023-01990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND IL-17A is a pleiotropic cytokine and intimately associated with asthma, but its role in respiratory syncytial virus (RSV) infection is conflicting in the literature. METHODS Children hospitalized in the respiratory department with RSV infection during RSV pandemic season of 2018-2020 were included. Nasopharyngeal aspirates were collected for pathogen and cytokines determination. In the murine model, RSV intranasal administrations were performed in wild-type and IL-17A-/- mice. Leukocytes and cytokines in bronchoalveolar lavage fluid (BALF), lung histopathology, and airway hyperresponsiveness (AHR) were measured. RORγt mRNA and IL-23R mRNA were semi-quantified by qPCR. RESULTS IL-17A increased significantly in RSV-infected children and was positively associated with pneumonia severity. In the murine model, IL-17A significantly increased in BALF of mice with RSV infection. Airway inflammation, lung tissue damage and AHR were significantly alleviated in wild-type mice following IL-17A neutralization and in the IL-17A-/- mice. IL-17A decreased by removing CD4+ T cells but increased by depleting CD8+ T cells. IL-6, IL-21, RORγt mRNA and IL-23R mRNA dramatically increased in parallel with the rise of IL-17A. CONCLUSIONS IL-17A contributes to the airway dysfunctions induced by RSV in children and murine. CD3+CD4+T cells are its major cellular sources and the IL-6/IL-21-IL-23R-RORγt signaling pathway might participate in its regulation.
Collapse
Affiliation(s)
- Xin Long
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, People's Republic of China
| | - Jun Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, People's Republic of China
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, People's Republic of China
| | - Guangyuan Yu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, People's Republic of China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China. .,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, People's Republic of China.
| | - Xiaoru Long
- Department of Infection, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China. .,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
13
|
Churiso G, Husen G, Bulbula D, Abebe L. Immunity Cell Responses to RSV and the Role of Antiviral Inhibitors: A Systematic Review. Infect Drug Resist 2022; 15:7413-7430. [PMID: 36540102 PMCID: PMC9759992 DOI: 10.2147/idr.s387479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Antigen-presenting cells recognize respiratory syncytial virus antigens, and produce cytokines and chemokines that act on immune cells. Dendritic cells play the main role in inflammatory cytokine responses. Similarly, alveolar macrophages produce IFN-β, IFN-α, TNF-α, IL-6, CXCL10, and CCL3, while alternatively activated macrophages differentiate at the late phase, and require IL-13 or IL-4 cytokines. Furthermore, activated NKT cells secrete IL-13 and IL-4 that cause lung epithelial, endothelial and fibroblasts to secrete eotaxin that enhances the recruitment of eosinophil to the lung. CD8+ and CD4+T cells infection by the virus decreases the IFN-γ and IL-2 production. Despite this, both are involved in terminating virus replication. CD8+T cells produce a larger amount of IFN-γ than CD4+T cells, and CD8+T cells activated under type 2 conditions produce IL-4, down regulating CD8 expression, granzyme and IFN-γ production. Antiviral inhibitors inhibit biological functions of viral proteins. Some of them directly target the virus replication machinery and are effective at later stages of infection; while others inhibit F protein dependent fusion and syncytium formation. TMC353121 reduces inflammatory cytokines, TNF-α, IL-6, and IL-1β and chemokines, KC, IP-10, MCP and MIP1-α. EDP-938 inhibits viral nucleoprotein (N), while GRP-156784 blocks the activity of respiratory syncytial virus ribonucleic acid (RNA) polymerase. PC786 inhibits non-structural protein 1 (NS-1) gene, RANTES transcripts, virus-induced CCL5, IL-6, and mucin increase. In general, it is an immune reaction that is blamed for the disease severity and pathogenesis in respiratory syncytial virus infection. Anti-viral inhibitors not only inhibit viral entry and replication, but also may reduce inflammatory cytokines and chemokines. Many respiratory syncytial virus inhibitors are proposed; however, only palivizumab and ribavirin are approved for prophylaxis and treatment, respectively. Hence, this review is focused on immunity cell responses to respiratory syncytial virus and the role of antiviral inhibitors.
Collapse
Affiliation(s)
- Gemechu Churiso
- Department of Medical Laboratory Sciences, Dilla University, Dilla, Ethiopia,Correspondence: Gemechu Churiso, Email
| | - Gose Husen
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Denebo Bulbula
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Lulu Abebe
- Department of Psychiatry, Dilla University, Dilla, Ethiopia
| |
Collapse
|
14
|
Matera L, Nenna R, Frassanito A, Petrarca L, Mancino E, Rizzo V, Di Mattia G, Paolo La Regina D, Pierangeli A, Midulla F. Low lymphocyte count: A clinical severity marker in infants with bronchiolitis. Pediatr Pulmonol 2022; 57:1770-1775. [PMID: 35411598 DOI: 10.1002/ppul.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Bronchiolitis is the most frequent cause of hospitalization in infants younger than 1 year of age. We sought to evaluate the correlation between lymphocyte count and clinical manifestation in infants hospitalized with bronchiolitis. MATERIALS AND METHODS We performed a retrospective cohort study evaluating 1297 children hospitalized for bronchiolitis from 2004 to 2019. A nasal washing was tested for 14 respiratory viruses by PCR. A clinical severity score, ranging 0-8, was assigned at hospital admission. History and clinical course were recorded for each infant. Patients were divided in 3 groups according to lymphocyte count tertiles. Parents of enrolled patients have been phoned annually over 5 years to evaluate respiratory sequelae. RESULTS A total of 433 children had 2914.2 ± 745.5/mm3 lymphocytes (Group 1), 432 had 4897.6 ± 561.5/mm3 lymphocytes (Group 2) and 432 had 7884 ± 1903.3/mm3 lymphocytes (Group 3). Group 1 patients were more frequently infected by RSV and presented with fever, a worse clinical severity score. They more frequently needed oxygen supplementation, underwent a prolonged hospitalization needed to be admitted to pediatric intensive care unit. Finally, they had more frequently a family history of eczema, wheezing and asthma. We found no differences between lymphocytes count and respiratory sequelae (at least two episodes of wheezing per year). CONCLUSIONS Infants with low lymphocyte count are more likely to have a worse clinical course of bronchiolitis.
Collapse
Affiliation(s)
- Luigi Matera
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Raffaella Nenna
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Frassanito
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Laura Petrarca
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Enrica Mancino
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Rizzo
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Greta Di Mattia
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Paolo La Regina
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Fabio Midulla
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Hirai T, Yoshioka Y. Considerations of CD8+ T Cells for Optimized Vaccine Strategies Against Respiratory Viruses. Front Immunol 2022; 13:918611. [PMID: 35774782 PMCID: PMC9237416 DOI: 10.3389/fimmu.2022.918611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The primary goal of vaccines that protect against respiratory viruses appears to be the induction of neutralizing antibodies for a long period. Although this goal need not be changed, recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have drawn strong attention to another arm of acquired immunity, CD8+ T cells, which are also called killer T cells. Recent evidence accumulated during the coronavirus disease 2019 (COVID-19) pandemic has revealed that even variants of SARS-CoV-2 that escaped from neutralizing-antibodies that were induced by either infection or vaccination could not escape from CD8+ T cell-mediated immunity. In addition, although traditional vaccine platforms, such as inactivated virus and subunit vaccines, are less efficient in inducing CD8+ T cells, newly introduced platforms for SARS-CoV-2, namely, mRNA and adenoviral vector vaccines, can induce strong CD8+ T cell-mediated immunity in addition to inducing neutralizing antibodies. However, CD8+ T cells function locally and need to be at the site of infection to control it. To fully utilize the protective performance of CD8+ T cells, it would be insufficient to induce only memory cells circulating in blood, using injectable vaccines; mucosal immunization could be required to set up CD8+ T cells for the optimal protection. CD8+ T cells might also contribute to the pathology of the infection, change their function with age and respond differently to booster vaccines in comparison with antibodies. Herein, we overview cutting-edge ideas on CD8+ T cell-mediated immunity that can enable the rational design of vaccines for respiratory viruses.
Collapse
Affiliation(s)
- Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- *Correspondence: Toshiro Hirai,
| | - Yasuo Yoshioka
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| |
Collapse
|
16
|
Barnes MVC, Openshaw PJM, Thwaites RS. Mucosal Immune Responses to Respiratory Syncytial Virus. Cells 2022; 11:cells11071153. [PMID: 35406717 PMCID: PMC8997753 DOI: 10.3390/cells11071153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Despite over half a century of research, respiratory syncytial virus (RSV)-induced bronchiolitis remains a major cause of hospitalisation in infancy, while vaccines and specific therapies still await development. Our understanding of mucosal immune responses to RSV continues to evolve, but recent studies again highlight the role of Type-2 immune responses in RSV disease and hint at the possibility that it dampens Type-1 antiviral immunity. Other immunoregulatory pathways implicated in RSV disease highlight the importance of focussing on localised mucosal responses in the respiratory mucosa, as befits a virus that is essentially confined to the ciliated respiratory epithelium. In this review, we discuss studies of mucosal immune cell infiltration and production of inflammatory mediators in RSV bronchiolitis and relate these studies to observations from peripheral blood. We also discuss the advantages and limitations of studying the nasal mucosa in a disease that is most severe in the lower airway. A fresh focus on studies of RSV pathogenesis in the airway mucosa is set to revolutionise our understanding of this common and important infection.
Collapse
|
17
|
Chirkova T, Rosas-Salazar C, Gebretsadik T, Jadhao SJ, Chappell JD, Peebles RS, Dupont WD, Newcomb DC, Berdnikovs S, Gergen PJ, Hartert TV, Anderson LJ. Effect of Infant RSV Infection on Memory T Cell Responses at Age 2-3 Years. Front Immunol 2022; 13:826666. [PMID: 35371035 PMCID: PMC8967987 DOI: 10.3389/fimmu.2022.826666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background It is unknown whether RSV infection in infancy alters subsequent RSV immune responses. Methods In a nested cohort of healthy, term children, peripheral blood mononuclear cells (PBMCs) were collected at ages 2-3 years to examine RSV memory T cell responses among children previously RSV infected during infancy (first year of life) compared to those RSV-uninfected during infancy. The presence vs. absence of infant RSV infection was determined through a combination of RSV molecular and serologic testing. Memory responses were measured in RSV stimulated PBMCs. Results Compared to children not infected with RSV during the first year of life, children infected with RSV during infancy had lower memory T cell responses at ages 2-3 years to in vitro stimulation with RSV for most tested type-1 and type-17 markers for a number of memory T cell subsets. Conclusions RSV infection in infancy has long-term effects on memory T cell responses. This is the first study to show the potential for RSV infection in infancy to have long-term effects on the immune memory irrespective of the severity of the infection. Our results suggest a possible mechanism through which infant RSV infection may result in greater risk of subsequent childhood respiratory viral morbidity, findings also relevant to vaccine development.
Collapse
Affiliation(s)
- Tatiana Chirkova
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Christian Rosas-Salazar
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Samadhan J. Jadhao
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - R. Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - William D. Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dawn C. Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sergejs Berdnikovs
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Peter J. Gergen
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Tina V. Hartert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
18
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
19
|
Vu LD, Phan ATQ, Hijano DR, Siefker DT, Tillman H, Cormier SA. IL-1β Promotes Expansion of IL-33+ Lung Epithelial Stem Cells Following RSV Infection During Infancy. Am J Respir Cell Mol Biol 2021; 66:312-322. [PMID: 34861136 DOI: 10.1165/rcmb.2021-0313oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV)-induced immunopathogenesis and disease severity in neonatal mice and human infants have been related to elevated pulmonary IL-33. Thus, targeting IL-33 has been suggested as a potential therapy for respiratory viral infections. Yet, the regulatory mechanisms on IL-33 during early life remain unclear. Here, using a neonatal mouse model of RSV, we demonstrate that IL-1β positively regulates but is not required for RSV-induced expression of pulmonary IL-33 in neonatal mice early after the initial infection. Exogenous IL-1β upregulates RSV-induced IL-33 expression by promoting the proliferation of IL-33pos lung epithelial stem/progenitor cells (EpiSPC). These cells are exclusively detected in RSV-infected neonatal rather than adult mice, partially explaining the IL-1β-independent IL-33 expression in RSV-infected adult mice. Furthermore, IL-1β aggravates IL-33 mediated Th2 biased immunopathogenesis upon reinfection. Collectively, our study demonstrates that IL-1β exacerbates IL-33 mediated RSV immunopathogenesis by promoting the proliferation of IL-33pos EpiSPC in early life.
Collapse
Affiliation(s)
- Luan D Vu
- Louisiana State University College of Science, 124525, Biological Sciences, Baton Rouge, Louisiana, United States
| | - Anh T Q Phan
- Louisiana State University College of Science, 124525, Biological Sciences, Baton Rouge, Louisiana, United States
| | - Diego R Hijano
- St Jude Children's Research Hospital, 5417, Department of Infectious Diseases,, Memphis, Tennessee, United States
| | - David T Siefker
- Louisiana State University, 5779, Department of Biological Sciences, Baton Rouge, Louisiana, United States
| | - Heather Tillman
- St Jude Children's Research Hospital, 5417, Department of Infectious Diseases,, Memphis, Tennessee, United States
| | - Stephania A Cormier
- Louisiana State University and A&M College, 5779, Biological Sciences, Baton Rouge, Louisiana, United States;
| |
Collapse
|
20
|
de Freitas DDN, Marinho Franceschina C, Muller D, Hilario GT, Gassen RB, Fazolo T, de Lima Kaminski V, Bogo Chies JA, Maito F, Antunes KH, Zanin RF, Rodrigues LC, Duarte de Souza AP. RvD1 treatment during primary infection modulates memory response increasing viral load during respiratory viral reinfection. Immunobiology 2021; 226:152151. [PMID: 34742024 DOI: 10.1016/j.imbio.2021.152151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
Resolvin D1 (RvD1), which is biosynthesized from essential long-chain fatty acids, is involved in anti-inflammatory activity and modulation of T cell response. Memory CD8+ T cells are important for controlling tumor growth and viral infections. Exacerbated inflammation has been described as impairing memory CD8+ T cell differentiation. This study aimed to verify the effects of RvD1 on memory CD8+ T cells in vitro and in vivo in a respiratory virus infection model. Peripheral blood mononuclear cells were treated at different time points with RvD1 and stimulated with anti-CD3/anti-CD28 antibodies. Pre-treatment with RvD1 increases the expansion of memory CD8+ T cells. The IL-12 level, a cytokine described to control memory CD8+ T cells, was reduced with RvD1 pre-treatment. When the mTOR axis was inhibited, the IL-12 levels were restored. In a respiratory virus infection model, Balb/c mice were treated with RvD1 before infection or after 7 days after infection. RvD1 treatment after infection increased the frequency of memory CD8+ T cells in the lung expressing II4, II10, and Ifng. During reinfection, RvD1-treated and RSV-infected mice present a high viral load in the lung and lower antibody response in the serum. Our results show that RvD1 modulates the expansion and phenotype of memory CD8+ T cells but contributed to a non-protective response after RSV reinfection.
Collapse
Affiliation(s)
- Deise do Nascimento de Freitas
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Caroline Marinho Franceschina
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Douglas Muller
- Federal University of Health Sciences of Porto Alegre (UFSCPA), Porto Alegre, RS, Brazil
| | - Gabriel T Hilario
- Federal University of Health Sciences of Porto Alegre (UFSCPA), Porto Alegre, RS, Brazil
| | - Rodrigo B Gassen
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiago Fazolo
- Federal University of Health Sciences of Porto Alegre (UFSCPA), Porto Alegre, RS, Brazil
| | - Valéria de Lima Kaminski
- Applied Immunology Laboratory, Postgraduate Program in Biotechnology, Institute of Science and Technology - ICT, Federal University of São Paulo - UNIFESP, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunogenetics and Immunobiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fábio Maito
- Laboratory of Histology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Infant Center, School of Medicine PUCRS, Porto Alegre, RS, Brazil
| | - Rafael F Zanin
- Department of Health and Human Development, La Salle University, Canoas, RS, Brazil
| | - Luiz Carlos Rodrigues
- Federal University of Health Sciences of Porto Alegre (UFSCPA), Porto Alegre, RS, Brazil
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Infant Center, School of Medicine PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Interleukin-17 activates JAK2/STAT3, PI3K/Akt and nuclear factor-κB signaling pathway to promote the tumorigenesis of cervical cancer. Exp Ther Med 2021; 22:1291. [PMID: 34630646 PMCID: PMC8461522 DOI: 10.3892/etm.2021.10726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-17 has been regarded as a significant factor in inflammation. In addition, IL-17 is known to be involved in the progression of cancers; however, the function of IL-17 in cervical cancer remains unclear. In the present study, cell viability was detected by Cell Counting Kit-8 assay. Quantitative PCR and western blotting were performed to detect gene and protein expression levels, respectively, in cancer cells or tissues. Ki-67 staining was used to evaluate cell proliferation. Wound-healing assay was used to detect cell migration. Moreover, Transwell assay was performed to investigate the invasion of cervical cancer cells. The results revealed that IL-17 significantly promoted the proliferation of cervical cancer cells. Additionally, IL-17 notably enhanced the migration and invasion of cervical cancer cells in vitro. IL-17 promoted the progression of cervical cancer via the activation of JAK2/STAT3 and PI3K/Akt/NF-κB signaling. In conclusion, IL-17 was a key regulator during the progression of cervical cancer through the JAK2/STAT3 and PI3K/Akt/nuclear factor-κB signaling pathway, which may serve as a novel target for the treatment of cervical cancer.
Collapse
|
22
|
McGinley J, Thwaites R, Brebner W, Greenan-Barrett L, Aerssens J, Öner D, Bont L, Wildenbeest J, Martinón-Torres F, Nair H, Pollard AJ, Openshaw P, Drysdale S. A Systematic Review and Meta-analysis of Animal Studies Investigating the Relationship Between Serum Antibody, T Lymphocytes, and Respiratory Syncytial Virus Disease. J Infect Dis 2021; 226:S117-S129. [PMID: 34522970 DOI: 10.1093/infdis/jiab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infections occur in human populations around the globe, causing disease of variable severity, disproportionately affecting infants and older adults (>65 years of age). Immune responses can be protective but also contribute to disease. Experimental studies in animals enable detailed investigation of immune responses, provide insights into clinical questions, and accelerate the development of passive and active vaccination. We aimed to review the role of antibody and T-cell responses in relation to RSV disease severity in animals. METHODS Systematic review and meta-analysis of animal studies examining the association between T-cell responses/phenotype or antibody titers and severity of RSV disease. The PubMed, Zoological Record, and Embase databases were screened from January 1980 to May 2018 to identify animal studies of RSV infection that assessed serum antibody titer or T lymphocytes with disease severity as an outcome. Sixty-three studies were included in the final review. RESULTS RSV-specific antibody appears to protect from disease in mice, but such an effect was less evident in bovine RSV. Strong T-cell, Th1, Th2, Th17, CD4/CD8 responses, and weak Treg responses accompany severe disease in mice. CONCLUSIONS Murine studies suggest that measures of T-lymphocyte activity (particularly CD4 and CD8 T cells) may be predictive biomarkers of severity. Further inquiry is merited to validate these results and assess relevance as biomarkers for human disease.
Collapse
Affiliation(s)
- Joseph McGinley
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Will Brebner
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Jeroen Aerssens
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Deniz Öner
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Harish Nair
- University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Simon Drysdale
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom.,Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, United Kingdom.,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | | |
Collapse
|
23
|
Walker KH, Krishnamoorthy N, Brüggemann TR, Shay AE, Serhan CN, Levy BD. Protectins PCTR1 and PD1 Reduce Viral Load and Lung Inflammation During Respiratory Syncytial Virus Infection in Mice. Front Immunol 2021; 12:704427. [PMID: 34489955 PMCID: PMC8417406 DOI: 10.3389/fimmu.2021.704427] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Viral pneumonias are a major cause of morbidity and mortality, owing in part to dysregulated excessive lung inflammation, and therapies to modulate host responses to viral lung injury are urgently needed. Protectin conjugates in tissue regeneration 1 (PCTR1) and protectin D1 (PD1) are specialized pro-resolving mediators (SPMs) whose roles in viral pneumonia are of interest. In a mouse model of Respiratory Syncytial Virus (RSV) pneumonia, intranasal PCTR1 and PD1 each decreased RSV genomic viral load in lung tissue when given after RSV infection. Concurrent with enhanced viral clearance, PCTR1 administration post-infection, decreased eosinophils, neutrophils, and NK cells, including NKG2D+ activated NK cells, in the lung. Intranasal PD1 administration post-infection decreased lung eosinophils and Il-13 expression. PCTR1 increased lung expression of cathelicidin anti-microbial peptide and decreased interferon-gamma production by lung CD4+ T cells. PCTR1 and PD1 each increased interferon-lambda expression in human bronchial epithelial cells in vitro and attenuated RSV-induced suppression of interferon-lambda in mouse lung in vivo. Liquid chromatography coupled with tandem mass spectrometry of RSV-infected and untreated mouse lungs demonstrated endogenous PCTR1 and PD1 that decreased early in the time course while cysteinyl-leukotrienes (cys-LTs) increased during early infection. As RSV infection resolved, PCTR1 and PD1 increased and cys-LTs decreased to pre-infection levels. Together, these results indicate that PCTR1 and PD1 are each regulated during RSV pneumonia, with overlapping and distinct mechanisms for PCTR1 and PD1 during the resolution of viral infection and its associated inflammation.
Collapse
Affiliation(s)
- Katherine H. Walker
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Thayse R. Brüggemann
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashley E. Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Khemani RG, Lee JT, Wu D, Schenck EJ, Hayes MM, Kritek PA, Mutlu GM, Gershengorn HB, Coudroy R. Update in Critical Care 2020. Am J Respir Crit Care Med 2021; 203:1088-1098. [PMID: 33734938 DOI: 10.1164/rccm.202102-0336up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Robinder G Khemani
- Pediatric ICU, Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jessica T Lee
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Wu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Edward J Schenck
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York.,NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Margaret M Hayes
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Patricia A Kritek
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Washington Seattle, Washington
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Hayley B Gershengorn
- Division of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, Florida.,Division of Critical Care Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rémi Coudroy
- Institut National de la Santé et de la Recherche Médicale, Poitiers, France; and.,Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| |
Collapse
|
26
|
Brügger M, Démoulins T, Barut GT, Zumkehr B, Oliveira Esteves BI, Mehinagic K, Haas Q, Schögler A, Rameix-Welti MA, Eléouët JF, Moehrlen U, Marti TM, Schmid RA, Summerfield A, Posthaus H, Ruggli N, Hall SRR, Alves MP. Pulmonary mesenchymal stem cells are engaged in distinct steps of host response to respiratory syncytial virus infection. PLoS Pathog 2021; 17:e1009789. [PMID: 34320038 PMCID: PMC8351988 DOI: 10.1371/journal.ppat.1009789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/09/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.
Collapse
Affiliation(s)
- Melanie Brügger
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Thomas Démoulins
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G. Tuba Barut
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Beatrice Zumkehr
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Blandina I. Oliveira Esteves
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kemal Mehinagic
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Aline Schögler
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay, INSERM, Université de Versailles St. Quentin, UMR 1173 (2I), Versailles, France
| | | | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Thomas M. Marti
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A. Schmid
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Horst Posthaus
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sean R. R. Hall
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Marco P. Alves
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
The specific features of the developing T cell compartment of the neonatal lung are a determinant of respiratory syncytial virus immunopathogenesis. PLoS Pathog 2021; 17:e1009529. [PMID: 33909707 PMCID: PMC8109812 DOI: 10.1371/journal.ppat.1009529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/10/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
The human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, possibly due to the properties of the immature neonatal pulmonary immune system. Using the newborn lamb, a classical model of human lung development and a translational model of RSV infection, we aimed to explore the role of cell-mediated immunity in RSV disease during early life. Remarkably, in healthy conditions, the developing T cell compartment of the neonatal lung showed major differences to that seen in the mature adult lung. The most striking observation being a high baseline frequency of bronchoalveolar IL-4-producing CD4+ and CD8+ T cells, which declined progressively over developmental age. RSV infection exacerbated this pro-type 2 environment in the bronchoalveolar space, rather than inducing a type 2 response per se. Moreover, regulatory T cell suppressive functions occurred very early to dampen this pro-type 2 environment, rather than shutting them down afterwards, while γδ T cells dropped and failed to produce IL-17. Importantly, RSV disease severity was related to the magnitude of those unconventional bronchoalveolar T cell responses. These findings provide novel insights in the mechanisms of RSV immunopathogenesis in early life, and constitute a major step for the understanding of RSV disease severity.
Collapse
|
28
|
Transient Neutropenia in Immunocompetent Infants with Respiratory Syncytial Virus Infection. Viruses 2021; 13:v13020301. [PMID: 33671944 PMCID: PMC7919003 DOI: 10.3390/v13020301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022] Open
Abstract
The incidence of neutropenia and the association between neutropenia and severity of respiratory symptoms among infants with respiratory syncytial virus (RSV) infections remain to be elucidated. This single-center, retrospective study included immunocompetent infants (<10 months old) with laboratory-confirmed RSV infection admitted to our center between January 2012 and December 2019. Incidence of neutropenia (<1.0 × 109/L) within 10 days of onset and risk factors associated with subsequent neutropenia were evaluated. Among the 292 infants with RSV infection, including 232 (79%) with mild infection, neutropenia was observed in 31 (11%), with severe neutropenia (<0.5 × 109/L) in 3 (1.0%). No neutropenic infants developed serious infection or hematological disorder. Infants without neutropenia showed age <3 months at onset in 34%, C-reactive protein level <1.0 mg/L in 27%, and nasopharyngeal microbiota composition with any of Moraxella catarrhalis, Streptococcus pneumoniae, or Haemophilus influenzae in 63%. In comparison, infants with neutropenia showed age <3 months at onset in 74% (relative risk [RR] 2.15; 95% confidence interval [CI] 1.65-2.81), C-reactive protein level <1.0 mg/L in 55% (RR 2.02; 95% CI 1.38-2.94), and microbiota including Moraxella catarrhalis, Streptococcus pneumoniae, or Haemophilus influenzae in 15% (RR 0.24; 95% CI 0.10-0.61). Multiple logistic regression analyses showed that younger age at onset and absence of that nasopharyngeal microbiota profile were associated with development of neutropenia. In conclusion, age and airway microbiota are considered as risk factors for the development of transient neutropenia among infants with RSV infection. However, the neutropenia seems not to develop serious infection or hematological disorder.
Collapse
|
29
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Zhao H, Gao Y, Chen Q, Li J, Ren M, Zhao X, Yue W. RAD51AP1 promotes progression of ovarian cancer via TGF-β/Smad signalling pathway. J Cell Mol Med 2020; 25:1927-1938. [PMID: 33314567 PMCID: PMC7882964 DOI: 10.1111/jcmm.15877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of female deaths. However, the molecular pathogenesis of OC has still remained elusive. This study aimed to explore the potential genes associated with the progression of OC. In the current study, 3 data sets of OC were downloaded from the GEO database to identify hub gene. Somatic mutation data obtained from TCGA were used to analyse the mutation. Immune cells were used to estimate effect of the hub gene to the tumour microenvironment. RNA‐seq and clinical data of OC patients retrieved from TCGA were used to investigate the diagnostic and prognostic values of hub gene. A series of in vitro assays were performed to indicate the function of hub gene and its possible mechanisms in OC. As a result, RAD51AP1 was found as a hub gene, which expression higher was mainly associated with poor survival in OC patients. Up‐regulation of RAD51AP1 was closely associated with mutations. RAD51AP1 up‐regulation accompanied by accumulated Th2 cells, but reduced CD4 + T cells and CD8 + T cells. Nomogram demonstrated RAD51AP1 increased the accuracy of the model. Down‐regulation of RAD51AP1 suppressed proliferation, migration and invasion capabilities of OC cells in vitro. Additionally, scatter plots showed that RAD51AP1 was positively correlated with genes in TGF‐β/Smad pathway. The above‐mentioned results were validated by RT‐qPCR and Western blotting. In conclusion, up‐regulation of RAD51AP1 was closely associated with mutations in OC. RAD51AP1 might represent an indicator for predicting OS of OC patients. Besides, RAD51AP1 might accelerate progression of OC by TGF‐β/Smad signalling pathway.
Collapse
Affiliation(s)
- Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Qi Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Meng Ren
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| |
Collapse
|