1
|
Meraz-Cruz N, Manzano-León N, Sandoval-Colin DE, García de León Méndez MDC, Quintana-Belmares R, Tapia LS, Osornio-Vargas AR, Buxton MA, O’Neill MS, Vadillo-Ortega F. Effects of PM 10 Airborne Particles from Different Regions of a Megacity on In Vitro Secretion of Cytokines by a Monocyte Line during Different Seasons. TOXICS 2024; 12:149. [PMID: 38393244 PMCID: PMC10892217 DOI: 10.3390/toxics12020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Several epidemiological studies have demonstrated that particulate matter (PM) in air pollution can be involved in the genesis or aggravation of different cardiovascular, respiratory, perinatal, and cancer diseases. This study assessed the in vitro effects of PM10 on the secretion of cytokines by a human monocytic cell line (THP-1). We compared the chemotactic, pro-inflammatory, and anti-inflammatory cytokines induced by PM10 collected for two years during three different seasons in five different Mexico City locations. MIP-1α, IP-10, MCP-1, TNF-α, and VEGF were the main secretion products after stimulation with 80 μg/mL of PM10 for 24 h. The THP-1 cells showed a differential response to PM10 obtained in the different sites of Mexico City. The PM10 from the north and the central city areas induced a higher pro-inflammatory cytokine response than those from the south. Seasonal pro-inflammatory cytokine secretion always exceeded anti-inflammatory secretion. The rainy-season-derived particles caused the lowest pro-inflammatory effects. We concluded that toxicological assessment of airborne particles provides evidence supporting their potential role in the chronic exacerbation of local or systemic inflammatory responses that may worsen the evolution of some chronic diseases.
Collapse
Affiliation(s)
- Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - Natalia Manzano-León
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Daniel Eduardo Sandoval-Colin
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - María del Carmen García de León Méndez
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - Raúl Quintana-Belmares
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Laura Sevilla Tapia
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Alvaro R. Osornio-Vargas
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Miatta A. Buxton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.A.B.); (M.S.O.)
| | - Marie S. O’Neill
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.A.B.); (M.S.O.)
- Department of Environmental Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
- Department of Environmental Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Inesta-Vaquera F, Miyashita L, Grigg J, Henderson CJ, Wolf CR. Defining the in vivo mechanism of air pollutant toxicity using murine stress response biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 888:164211. [PMID: 37196967 DOI: 10.1016/j.scitotenv.2023.164211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Air pollution can cause a wide range of serious human diseases. For the informed instigation of interventions which prevent these outcomes there is an urgent need to develop robust in vivo biomarkers which provide insights into mechanisms of toxicity and relate pollutants to specific adverse outcomes. We exemplify for a first time the application of in vivo stress response reporters in establishing mechanisms of air pollution toxicity and the application of this knowledge in epidemiological studies. We first demonstrated the utility of reporter mice to understand toxicity mechanisms of air pollutants using diesel exhaust particles compounds. We observed that nitro-PAHs induced Hmox1 and CYP1a1 reporters in a time- and dose-dependent, cell- and tissue-specific manner. Using in vivo genetic and pharmacological approaches we confirmed that the NRF2 pathway mediated this Hmox1-reporter induction stress reporter activity. We then correlated the activation of stress-reporter models (oxidative stress/inflammation, DNA damage and Ah receptor -AhR- activity) with responses in primary human nasal cells exposed to chemicals present in particulate matter (PM; PM2.5-SRM2975, PM10-SRM1648b) or fresh roadside PM10. To exemplify their use in clinical studies, Pneumococcal adhesion was assessed in exposed primary human nasal epithelial cells (HPNEpC). The combined use of HPNEpC and in vivo reporters demonstrated that London roadside PM10 particles induced pneumococcal infection in HPNEpC mediated by oxidative stress responses. The combined use of in vivo reporter models with human data thus provides a robust approach to define the relationship between air pollutant exposure and health risks. Moreover, these models can be used in epidemiological studies to hazard ranking environmental pollutants by considering the complexity of mechanisms of toxicity. These data will facilitate the relationship between toxic potential and the level of pollutant exposure in populations to be established and potentially extremely valuable tools for intervention studies for disease prevention.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK
| | | | | | - Colin J Henderson
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK
| | - C Roland Wolf
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK.
| |
Collapse
|
3
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
4
|
Ji X, Qin R, Shi C, Yang L, Yao L, Deng S, Qu G, Yin Y, Hu L, Shi J, Jiang G. Dynamic landscape of multi-elements in PM 2.5 revealed by real-time analysis. ENVIRONMENT INTERNATIONAL 2022; 170:107607. [PMID: 36332492 DOI: 10.1016/j.envint.2022.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Metal components in fine particulate matter (PM2.5) are closely associated with many adverse health outcomes. Dynamic changes of metals in PM2.5 are critical for risk assessment due to their temporal variations. Herein, an online method for real-time determination of multi-elements (As, Cd, Cs, Cu, Fe, Mg, Mn, Pb, Rb, Sn, Tl, and V) in PM2.5 was established by directly introducing air samples into inductively coupled plasma mass spectrometry (ICPMS). Meanwhile, a quantified method using metal standard aerosols (Cr, Mo, and W) and high time resolution for 3.3 min online measurement was developed and validated. The limits of detection were in the range of 0.001-6.30 ng/m3 for different metals. Subsequently, the real-time contents of multi-elements in PM2.5 for 12 h over 33 days were measured at different air qualities. Temporal variations of crustal elements like Fe, Mg are similar to PM2.5, whereas toxic elements (Pb, As and Cd) have upward trends at dusk. This denoted the association with various emission sources and different exposure concentrations of metals. In addition to the acquisition of real-time information, online analysis of multi-elements in PM2.5 is beneficial for atmospheric monitoring and provides critical insights into the different exposure risks of metals in PM2.5 at varying times.
Collapse
Affiliation(s)
- Xiaomeng Ji
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ruiliang Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Lin Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shenxi Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
5
|
Chang CY, You R, Armstrong D, Bandi A, Cheng YT, Burkhardt PM, Becerra-Dominguez L, Madison MC, Tung HY, Zeng Z, Wu Y, Song L, Phillips PE, Porter P, Knight JM, Putluri N, Yuan X, Marcano DC, McHugh EA, Tour JM, Catic A, Maneix L, Burt BM, Lee HS, Corry DB, Kheradmand F. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. SCIENCE ADVANCES 2022; 8:eabq0615. [PMID: 36383649 PMCID: PMC9668323 DOI: 10.1126/sciadv.abq0615] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Chronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A-dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non-small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ran You
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominique Armstrong
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ashwini Bandi
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Developmental Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philip M. Burkhardt
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luis Becerra-Dominguez
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C. Madison
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Ying Tung
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhimin Zeng
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yifan Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia E. Phillips
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston TX 77030, USA
| | - Paul Porter
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston TX 77030, USA
| | - John M. Knight
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Daniela C. Marcano
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - Emily A. McHugh
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - James M. Tour
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - Andre Catic
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan M. Burt
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Sung Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B. Corry
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Sidwell A, Smith SC, Roper C. A comparison of fine particulate matter (PM 2.5) in vivo exposure studies incorporating chemical analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:422-444. [PMID: 36351256 DOI: 10.1080/10937404.2022.2142345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complex, variable mixtures present in fine particulate matter (PM2.5) have been well established, and associations between chemical constituents and human health are expanding. In the past decade, there has been an increase in PM2.5 toxicology studies that include chemical analysis of samples. This investigation is a crucial component for identifying the causal constituents for observed adverse health effects following exposure to PM2.5. In this review, investigations of PM2.5 that used both in vivo models were explored and chemical analysis with a focus on respiratory, cardiovascular, central nervous system, reproductive, and developmental toxicity was examined to determine if chemical constituents were considered in the interpretation of the toxicity findings. Comparisons between model systems, PM2.5 characteristics, endpoints, and results were made. A vast majority of studies observed adverse effects in vivo following exposure to PM2.5. While limited, investigations that explored connections between chemical components and measured endpoints noted significant associations between biological measurements and a variety of PM2.5 constituents including elements, ions, and organic/elemental carbon, indicating the need for such analysis. Current limitations in available data, including relatively scarce statistical comparisons between collected toxicity and chemical datasets, are provided. Future progress in this field in combination with epidemiologic research examining chemical composition may support regulatory standards of PM2.5 to protect human health.
Collapse
Affiliation(s)
- Allie Sidwell
- Department of Biology, University of Mississippi, Mississippi, MS, USA
| | - Samuel Cole Smith
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| | - Courtney Roper
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| |
Collapse
|
7
|
Wang L, Wu G, Zhang T, Lei W, Wang X, Wang M, Zheng D, Zhao W. Characterisation and Risk Assessment of Metal Contaminants in the Dust Fall in the Vicinity of a Construction Waste Dump in Beijing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13019. [PMID: 36293595 PMCID: PMC9602486 DOI: 10.3390/ijerph192013019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In this study, a large construction waste dump in Beijing, China, was used as the study area. Nineteen effective atmospheric dust samples were collected. The mass fractions of 14 metal elements (Ca, Fe, Al, Mg, Mn, Zn, Cr, Cu, V, Pb, Ni, As, Co, and Cd) were determined for the samples using ICP-MS. The pollutants and the potential ecological risk levels of 10 different heavy metals were evaluated using the enrichment factor, geo-accumulation index, and a potential ecological risk assessment method. The results showed that the Ca, Fe, Al, and Mg contents in the dust fall were considerably high and accounted for 98.81% of the total mass of the analysed metals. Cd and Zn were the main metal contaminants in the dust fall in the vicinity of the construction waste dump, followed by Cu and Mn. The Cd, Zn, Cu, and Mn contents in the construction waste had a significant impact on atmospheric pollution within 250 m of the dump. Moreover, Cd had the largest contribution to the comprehensive ecological risk posed by the heavy metals in the dust fall and was determined to be the primary ecological risk factor in the atmospheric environment in the vicinity of the construction waste dump.
Collapse
|
8
|
Beaupied BL, Martinez H, Martenies S, McConnel CS, Pollack IB, Giardina D, Fischer EV, Jathar S, Duncan CG, Magzamen S. Cows as canaries: The effects of ambient air pollution exposure on milk production and somatic cell count in dairy cows. ENVIRONMENTAL RESEARCH 2022; 207:112197. [PMID: 34699758 DOI: 10.1016/j.envres.2021.112197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Exposure to air pollution, including criteria pollutants such as fine particulate matter (PM2.5) and ozone (O3), has been associated with morbidity and mortality in mammals. As a genetically homogenous population that is closely monitored for health, dairy cattle present a unique opportunity to assess the association between changes in air pollution and mammalian health. Milk yield decreases in the summer if temperature and humidity, measured by the Temperature Humidity Index (THI). As O3 levels increase with warmer temperatures, and summer PM2.5 may increase with wildfire smoke, dairy cows may serve as a useful sentinel species to evaluate subacute markers of inflammation and metabolic output and ambient pollution. Over two years, we assessed summertime O3 and PM2.5 concentrations from local US EPA air quality monitors into an auto-regressive mixed model of the association between THI and daily milk production data and bulk tank somatic cell count (SCC). In unadjusted models, a 10 unit increase THI was associated with 28,700 cells/mL (95% CI: 17,700, 39,690) increase in SCC. After controlling for ambient air pollutants, THI was associated with a 14,500 SCC increase (95% CI: 3,400, 25,680), a 48% decrease in effect compared to the crude model. Further, in fully adjusted models, PM2.5 was associated with a 105,500 cells/mL (95% CI: 90,030, 121,050) increase in SCC. Similar results were found for milk production. Results were amplified when high PM2.5 days (95th percentile of observed values) associated with wildfire smoke were removed from the analyses. Our results support the hypothesis that PM2.5 confounds the relationships between THI and milk yield and somatic cell count. The results of this study can be used to inform strategies for intervention to mitigate these impacts at the dairy level and potentially contribute to a model where production animals can act as air quality sentinels.
Collapse
Affiliation(s)
- Bonni L Beaupied
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Heather Martinez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sheena Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Craig S McConnel
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Ilana B Pollack
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Dylan Giardina
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Emily V Fischer
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Shantanu Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Colleen G Duncan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
9
|
A ratiometric fluorescent probe for SO2 derivatives based on a new coumarin-hemicyanine dye in living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Zhang X, Wang S, Ling L, Hou G, Leng S, Ma N, Qiu M, Li X, Guo X. The distribution and structural fingerprints of metals from particulate matters (PM) deposited in human lungs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113324. [PMID: 35193030 DOI: 10.1016/j.ecoenv.2022.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
This work investigated the distribution and chemical fingerprints of 24 metals in particulate matter (PM) deposited in nonoccupational human lungs. Metals in the pulmonary PM can be grouped by the mean concentration as > 5 × 103 μg/g (Al/Fe/Ca/Mg/Zn), 1-5 × 103 μg/g (Ti/Ba/Pb/Mn), 0.2-1 × 103 μg/g (Cu/Cr/As/V) and < 100 μg/g (Ni/Sn/Cd/Sb). Three parameters (LFL, LR, EFP) were defined to predict different metal leaching behaviors. The leaching factor (LFL) of metals was 10-60 for Pb/Sb/Cd/Co/Cu and decreased to 1-2 for Ni/Cr/Mg/Al/Fe. Metals showed a divergent extent of lung retention (LR), including high retention (LR>10, Al/Cd/Cr/Ba/Ni/Ti/Sn/V/Sb), moderate retention (2 <LR<10, Pb/Mn/Fe), minor retention (1 < LR <2, Cu/Co), and negligible retention (LR<1, Ca/Mg/Zn). V and Ti were found to be mainly from indoor PM sources and deserve a close attention in healthy individuals. C-, Al- and Ti-rich fine particles were the most common pulmonary particles imaged by spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM). These data establish a foundation for classification and further risk assessment of the metal species in pulmonary PM.
Collapse
Affiliation(s)
- Xiangyuan Zhang
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guanyu Hou
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Siwen Leng
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Na Ma
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China
| | - Xiao Li
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China
| | - Xuejun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
11
|
Anka AU, Usman AB, Kaoje AN, Kabir RM, Bala A, Kazem Arki M, Hossein-Khannazer N, Azizi G. Potential mechanisms of some selected heavy metals in the induction of inflammation and autoimmunity. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inflammation is a physiological event that protects tissues from infection and injury. Chronic inflammation causes immune cell over activation and sustained release of inflammatory cytokines and chemokines cause pathologic conditions including autoimmune diseases. Heavy metals exposure affects innate and adaptive immune systems through triggering inflammatory responses. It seems that extended inflammatory responses could accelerate heavy metal-induced autoimmunity. In the present review we discuss the exposure route and toxicity of Cadmium (Cd), Lead (Pb), Mercury (Hg), Vanadium (V) and Platinum (Pt) and their effects on inflammatory responses by innate and adaptive immune system and autoimmunity.
Collapse
Affiliation(s)
- Abubakar U Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abubakar B Usman
- Department of Immunology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abubakar N Kaoje
- Department of Health Services, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Ramadan M Kabir
- Laboratory Department, Murtala Muhammad Specialist Hospital, Kano, Nigeria
| | - Aliyu Bala
- Hematology Department, Federal Medical Center, Katsina, Nigeria
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Salgueiro SAM, Rocha AN, Mauad JRC, Silva CAM, Mussury RM. Biomonitoring of air quality in the Bodoquena microregion, Mato Grosso Do Sul: mutagenic and morphoanatomical alterations in Tradescantia pallida (rose) D.R. Hunt var. purpurea. BRAZ J BIOL 2021; 84:e250100. [PMID: 34932674 DOI: 10.1590/1519-6984.250100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to assess air quality in relation to vehicular traffic flow in cities located at different elevations in the Bodoquena microregion, state of Mato Grosso do Sul, Brazil. To do so, a micronucleus test was carried out using the TRAD-MCN bioassay on young Tradescantia buds collected from February to November 2018 in seven cities of the microregion with different traffic flow intensities. Meteorological parameters were evaluated, and vehicular traffic was counted to determine traffic flow in each city. With data from the Shuttle Radar Topography Mission (SRTM) and processing in Esri ArcGIS® software version 10.5.1, the regions was mapped based on an Elevation Model. Morphoanatomical analyses were performed according to standard methodology. Measurements were taken of thickness, length and width of tissues and structures, including the upper and lower cuticle, upper and lower epidermis, hypodermis and mesophyll. The greatest traffic flow was found in the cities of Bodoquena, Guia Lopes da Laguna, Jardim, and Porto Murtinho, with the period from 5:00 to 6:00 p.m. showing the highest traffic flow. The greatest frequency of mutagenic alterations was found in the city of Guia Lopes da Laguna, although the results did not differ significantly from Bonito, Caracol, and Jardim. Throughout the biomonitoring, the summer and autumn seasons showed the greatest micronuclei frequencies in all evaluated cities. Variations in the tissue/structure thickness was observed across cities and seasons, but with a decrease in thickness during autumn. In general, the tissues/structures were smaller for the cities of Nioaque and Porto Murtinho, while the anatomical and morphological characteristics of leaf length and thickness showed no differences among cities. We found limited correlation between micronuclei frequency and traffic flow, supporting the hypothesis that although mutagenic alterations are observed in T. pallida, in this microregion the changes are numerically lower when compared to other regions of the state. In light of the genotoxic and morphoanatomical factors assessed herein, the Bodoquena microregion appears to be well preserved in terms of air quality, presenting low micronuclei frequency and a limited reduction in tissues and leaf structures, regardless of the season.
Collapse
Affiliation(s)
- S A M Salgueiro
- Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Programa de Pós-Graduação em Biodiversidade e Meio ambiente, Dourados, MS, Brasil
| | - A N Rocha
- Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Dourados, MS, Brasil
| | - J R C Mauad
- Universidade Federal da Grande Dourados, Programa de Agronegócio, Dourados, MS, Brasil
| | - C A M Silva
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte, MG, Brasil
| | - R M Mussury
- Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Programa de Pós-Graduação em Biodiversidade e Meio ambiente, Dourados, MS, Brasil
| |
Collapse
|
13
|
Gini M, Manousakas MI, Kantarelou V, Karydas AG, Chiari M, Migliori A, Civici N, Veleva B, Šega K, Samek L, Samara C, Kertesz Z, Osan J, Eleftheriadis K. Inter-laboratory comparison of ED-XRF/PIXE analytical techniques in the elemental analysis of filter-deposited multi-elemental certified reference materials representative of ambient particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146449. [PMID: 34030335 DOI: 10.1016/j.scitotenv.2021.146449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The quantification of the elemental concentration of ambient particulate matter is a challenging task because the observed elemental loadings are not well above the detection limit for most analytical techniques. Although non-destructive nuclear techniques are widely used for the chemical characterization of ambient aerosol, only one multi-element standard reference filter material that mimics ambient aerosol composition has become recently available in the market. To ensure accuracy, reliability and comparability of instruments performance, multiple reference materials with different elemental mass loadings are necessary. In this study, an intercomparison exercise was performed to evaluate the measurement uncertainty and instruments performance using multi-element dust standard reference samples deposited on PTFE filters. The filter samples, produced by means of dust dispersion, were tested in terms of homogeneity, reproducibility and long-term stability (≈40 months). Eight laboratories participated in the exercise. The evaluation of the results reported by the participants was performed by using two sets of reference values: a) the concentrations reported by the Expert Laboratory, b) the robust average concentrations reported by all participants. Most of the reported on the certificate of analysis elements were efficiently detected in the sample loadings prepared as representative for atmospheric samples by the Expert Laboratory. The average absolute relative difference between the reported and the reference values ranged between 0.1% (Ti) and 33.7% (Cr) (CRM-2584). The participants efficiently detected most of the elements except from the elements with atomic number lower than 16 (i.e. P, Al, Mg). The average absolute percentage difference between the participants results and the assigned value as derived by the expert laboratory was 17.5 ± 18.1% (CRM-2583; Cr, Pb excluded) and 16.7 ± 16.7% (CRM-2584; Cr, P excluded). The average "relative robust standard deviation" of the results reported by all participants was 25.1% (CRM-2583) and 22.8% (CRM-2584).
Collapse
Affiliation(s)
- Maria Gini
- ERL, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", 15310 Athens, Greece.
| | - Manousos-Ioannis Manousakas
- ERL, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", 15310 Athens, Greece; Institute of Nuclear and Particle Physics, N.C.S.R. "Demokritos", 15310 Athens, Greece; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Vasiliki Kantarelou
- Institute of Nuclear and Particle Physics, N.C.S.R. "Demokritos", 15310 Athens, Greece
| | | | - Massimo Chiari
- National Institute of Nuclear Physics (INFN), 50019, Sesto Fiorentino, FI, Italy
| | - Alessandro Migliori
- Nuclear Science and Instrumentation Laboratory, Physics Section, International Atomic Energyy Agency, 2444 Seibersdorf, Austria
| | - Niko Civici
- Institute of Applied Nuclear Physics, University of Tirana, Tirana, Albania
| | - Blagorodka Veleva
- National Institute of Meteorology and Hydrology, 1784 Sofia, Bulgaria
| | - Krešimir Šega
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, p.p. 291, 10001 Zagreb, Croatia
| | - Lucyna Samek
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Constantini Samara
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Zsofia Kertesz
- Institute for Nuclear Research (Atomki), H-4026, Debrecen, Bem tér 18/c, Hungary
| | - Janos Osan
- Centre for Energy Research, Konkoly-Thege Miklós út 29-33, H-1121, Budapest, Hungary
| | - Konstantinos Eleftheriadis
- ERL, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", 15310 Athens, Greece
| |
Collapse
|
14
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
15
|
Zhang J, Ren D, Cao X, Wang T, Geng X, Li X, Tang J, Leng S, Wang H, Zheng Y. Ambient air pollutants and hospital visits for pneumonia: a case-crossover study in Qingdao, China. BMC Public Health 2021; 21:66. [PMID: 33413265 PMCID: PMC7791776 DOI: 10.1186/s12889-020-10065-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Background Pneumonia is one of the principal reasons for incidence and death in the world. The former research mainly concentrated on specific sources of patients. Besides, due to the heterogeneity among regions, there are inconsistencies in the outcome of these surveys. To explore the relationship between atmospheric pollution and hospital visits for pneumonia under the climate and pollution conditions in Qingdao, we carried out this study. Methods The medical records of pneumonia patients were gathered from the affiliated hospital of Qingdao University during Jan 1st, 2014, and Dec 31st,2018. Daily concentrations of PM2.5, PM10, SO2, NO2, as well as CO, were collected from the national air quality monitoring stations in Qingdao. Case-crossover study design and conditional logistic regression model were used to estimate the associations. Daily temperature, relative humidity, and atmospheric pressure were adjusted as the covariates in all models. A principal component analysis was used to solve the multicollinearity between atmospheric pollutants and investigate the relationship between various air pollutants and pneumonia occurs. Results In the single pollutant model, with interquartile range increment of the density of PM2.5, PM10, NO2 and SO2 at the lag2 days, the odds ratio of hospital visits for pneumonia patients increased by 6.4% (95%CI, 2.3–10.7%), 7.7% (95%CI, 3.2–12.4%), 6.7% (95%CI, 1.0–12.7%), and 7.2% (95%CI, 1.1–13.5%). Stratified analysis showed that pollutants were more significant in the cold period. Besides, the impact of atmospheric particulates on different ages mainly occurs in the young child (0 to 3-year-old). The odds ratio was 1.042 (95%CI, 1.012–1.072) when the principal components of atmospheric pollutants were included in the conditional logistic model. Conclusions Our study found a significant relationship between short-term uncovering to PM2.5, PM10, NO2, SO2, and hospital visits for pneumonia in Qingdao. The effect of atmospheric pollutants mainly arose in a cold period. The particulate matter might be the principal reason in inducing hospital visits for pneumonia.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Dunqiang Ren
- Department of Respiratory Medicine and Critical care, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Xue Cao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Tao Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xue Geng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xin Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Shuguang Leng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Hongmei Wang
- Department of Respiratory Medicine and Critical care, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
16
|
Ren H, Lu J, Ning J, Su X, Tong Y, Chen J, Ding Y. Exposure to fine particulate matter induces self-recovery and susceptibility of oxidative stress and inflammation in rat lungs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40262-40276. [PMID: 32661967 DOI: 10.1007/s11356-020-10029-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 induces pulmonary inflammation via oxidative stress, and this role in the lungs is widely accepted, but studies on whether oxidative stress and inflammation can self-recover and be fully restored are limited. In this study, the oxidative stress and inflammation in the lungs of rats, which were first exposed to different PM2.5 dosages (0, 0.5, 3.0, and 15.0 mg/kg body weight) and different recovery days (0, 15, and 30 days) and then were exposed to the same PM2.5 dosages (30 mg/kg b.w.) after 30 days of recovery, were investigated. Results showed that the activity of superoxide dismutase (SOD) was significantly inhibited, and the levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) significantly increased. These changes were accompanied with damage to the pathological structure of the rat lungs. After stopping PM2.5 exposure, the difference between the PM2.5 group and the control group gradually decreased with the extension of recovery time. However, when the rats were again exposed to the same dose of PM2.5, the levels of IL-6, IL-1β, TNF-α, MDA, and iNOS were significantly increased, and the activities of SOD and GSH-Px were significantly inhibited in the high-dose group. And the high-dose group was accompanied by more severe lung pathological structural damage. Results showed that PM2.5 could induce oxidative stress and inflammatory damage in the lungs of rats, and these damages gradually recovered as exposure ceased, but increased lung susceptibility in rats.
Collapse
Affiliation(s)
- Huiqing Ren
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jianjiang Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| | - Jianying Ning
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Xianghui Su
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yanbin Tong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jiadeng Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanzhou Ding
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Nascimento AP, Santos JM, Mill JG, Toledo de Almeida Albuquerque T, Reis Júnior NC, Reisen VA, Pagel ÉC. Association between the incidence of acute respiratory diseases in children and ambient concentrations of SO 2, PM 10 and chemical elements in fine particles. ENVIRONMENTAL RESEARCH 2020; 188:109619. [PMID: 32531523 DOI: 10.1016/j.envres.2020.109619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study consists of investigating the effects of the SO2, PM10, inorganic chemical elements and black carbon (BC) present in fine particulates on the acute outcomes of respiratory diseases in children up to 12 years of age living in Brazilian urban area in the southern hemisphere during the winter (2013) and summer (2013-2014) months. SO2 and PM10 concentration data were obtained from six air quality monitoring stations spatially distributed in the area. PM2.5 samples were collected at the same locations with a MiniVol sampler over a 24-h period on alternating days. The PM2.5 components were analysed using the energy dispersive X-ray fluorescence and reflectance techniques. Hospital care and admission events due to acute respiratory diseases (n = 8,987) of the coded groups JJ00-JJ99 of the International Code of Diseases (ICD-10) were obtained from three hospitals (one public and two private hospitals). To quantify the association of acute respiratory disease events with pollutant concentrations, a generalized additive model (GAM) with a Poisson distribution was applied. The results showed a greater risk of acute respiratory events due to exposure to SO2 with a relative risk of 1.28 (95% CI: 1.22-1.34) and to PM10 with a risk of 1.14 (95% CI: 1.09-1.20) on the day of exposure (lag 0). The chemical constituents present in the fine particles with the highest risk for acute respiratory diseases were Si with a risk of 1.22 (95% CI: 1.15-1.29), S with a risk of 1.09 (95% CI: 1.06-1.12), Ti with a risk of 1.09 (95% CI: 1.01-1.17), BC with a risk of 1.07 (95% CI: 1.03-1.11), Se with a risk of 1.03 (95% CI: 0.96-1.10) and Ni with a risk of 1.03 (95% CI: 0.96-1.10).
Collapse
Affiliation(s)
- Antonio Paula Nascimento
- Department of Industrial Technology, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil
| | - Jane Meri Santos
- Department of Environmental Engineering, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil.
| | - José Geraldo Mill
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil
| | - Taciana Toledo de Almeida Albuquerque
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Bloco 3, Belo Horizonte, MG, 31270-901, Brazil
| | - Neyval Costa Reis Júnior
- Department of Environmental Engineering, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil
| | - Valdério Anselmo Reisen
- Department of Statistics, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória, ES, 29.060-910, Brazil
| | - Érica Coelho Pagel
- Department of Architecture and City, Universidade Vila Velha, Av Comissario Jose Dantas De Mello, 21, Boa Vista II, Vila Velha, ES, 29102-920, Brazil
| |
Collapse
|
18
|
A novel energy-efficient kapok filter paper with high DHC for solid-oil mixed aerosol: Performance and loading behavior evolution mechanism. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Curbani F, de Oliveira Busato F, Marcarini do Nascimento M, Olivieri DN, Tadokoro CE. Inhale, exhale: Why particulate matter exposure in animal models are so acute? Data and facts behind the history. Data Brief 2019; 25:104237. [PMID: 31367664 PMCID: PMC6646918 DOI: 10.1016/j.dib.2019.104237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
We present a dataset obtained by extracting information from an extensive literature search of toxicological experiments using mice and rat animal models to study the effects of exposure to airborne particulate matter (PM). Our dataset covers results reported from 75 research articles considering paper published in 2017 and seminal papers from previous years. The compiled data and normalization were processed with an equation based on a PM dosimetry model. This equation allows the comparison of different toxicological experiments using instillation and inhalation as PM exposure protocols with respect to inhalation rates, concentrations and PM exposure doses of the toxicological experiments performed by different protocols using instillation and inhalation PM as exposure methods. This data complements the discussions and interpretations presented in the research article “Inhale, exhale: why particulate matter exposure in animal models are so acute?” Curbani et al., 2019.
Collapse
Affiliation(s)
- Flávio Curbani
- Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.,Departamento de Tecnologia Industrial, Centro Tecnológico, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, CEP 29060-970, Vitória, ES, Brazil
| | - Fernanda de Oliveira Busato
- Laboratory of Immunobiology, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | - Maynara Marcarini do Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | | | - Carlos Eduardo Tadokoro
- Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| |
Collapse
|
20
|
Rocha ADN, Candido LS, Pereira JG, Silva CAM, da Silva SV, Mussury RM. Evaluation of vehicular pollution using the TRAD-MCN mutagenic bioassay with Tradescantia pallida (Commelinaceae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:440-447. [PMID: 29754093 DOI: 10.1016/j.envpol.2018.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Biomonitoring is one of the tools used to assess the mutagenic potential of the atmosphere. In this study, the mutagenicity of Tradescantia pallida, a species of plant largely present in urban environments, was investigated. The objectives of this study was to estimate the mutagenic potential of vehicular flow through the TRAD-MCN bioassay in cities located at different altitudes in the southwest mesoregion of Mato Grosso do Sul, Brazil, to infer possible abiotic agents that may contribute to the effects of atmospheric pollutants, and finally to map the cities with greater risks to the health of the local population. To achieve these objectives, the Tradescantia-micronucleus test was performed on young buds of T. pallida collected between August 2015 and August 2016 in nine cities of Mato Grosso do Sul. These buds were exposed to traffic flows of various intensities. The data collected consisted of measurements of meteorological parameters and vehicular traffic counts for each city. The variables considered were: mean ambient temperature; micronuclei frequency; vehicular flow; altitude; relative humidity; pluviosity. The application of the Trad-MCN bioassay, with the consideration of environmental variables and altitudes, and the use of the Kernel interpolation technique, allowed us to map the areas with significant pollution risks to the population. The highest frequency of exposure to mutagens occurred in the cities with the highest vehicular traffic intensity. The average ambient temperature failed to show a linear association with the frequency of the micronuclei in the samples analyzed (r = 0.11ns). A positive correlation was observed between micronuclei frequency and vehicular flow, (r = 0.67; p ≤ 0.001%) and between micronuclei frequency and altitude (r = 0.24; p ≤ 0.05). A negative correlation was found between relative humidity and micronuclei frequency (r = -0.19; p ≤ 0.05%). Thus, higher micronuclei frequency tended to be present in locations with low relative humidity and high altitudes and vehicular flow.
Collapse
Affiliation(s)
- Aline do Nascimento Rocha
- Laboratory of Botanical Application, PostGraduate Program in General Biology/Bioprospecting, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil.
| | - Liliam Silvia Candido
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil.
| | - Joelson Gonçalves Pereira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil.
| | - Caio Augusto Mussury Silva
- Federal University of Minas Gerais, Faculty of Medicine. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil.
| | - Sandra Verza da Silva
- Department of Vegetal Production, Phytosanitary Defense, Faculty of Agronomic Sciences, São Paulo State University, Street José Barbosa de Barros, 18610-307, Botucatu, São Paulo, Brazil.
| | - Rosilda Mara Mussury
- Laboratory of Botanical Application, PostGraduate Program in General Biology/Bioprospecting, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil; Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil.
| |
Collapse
|
21
|
Chernyshev V, Zakharenko A, Ugay S, Hien T, Hai L, Kholodov A, Burykina T, Stratidakis A, Mezhuev YO, Tsatsakis A, Golokhvast K. Morphologic and chemical composition of particulate matter in motorcycle engine exhaust. Toxicol Rep 2018; 5:224-230. [PMID: 29854593 PMCID: PMC5977370 DOI: 10.1016/j.toxrep.2018.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 01/28/2023] Open
Abstract
Despite the fact that environmental pollution due to motorcycle exhaust gases reports a great increase, motorcycle production exhibits a great increase through the last years. Countries of Asia and Africa are reported to be the major regions where two-wheeled vehicles are a major transportation mode, with tens of millions of units sold per year. Motorcycle exhaust particles are considered to be the major contributor to environmental pollution due to their airborne dispersion, containing great amount of polycyclic aromatic hydrocarbons (PAHs). This study aims at reporting an objective analysis of the main sources of the ambient air pollution as also particle size distribution and chemical composition analysis of particulate matter originated from the exhausts of two-wheeled vehicles used in the territory of Vladivostok, Russia. Various types of two-wheeled vehicles were examined (motorcycles, ATVs, scooters and wet bikes) using different types of engine and fuel system. Experimental results showed that there was no clear relation to the particle size distribution with the engine displacement of motorcycle and the number of strokes and the fuel system. Instead, there were reported two clear assumptions. The first one is that regarding to the motorcycle brand, a few samples did not exhibit a great percentage of PM10 fraction. The second one is that more modern vehicles, that have a harmful gas afterburning system, are usually the source of an increased percentage of PM10 emitted particles. At last, it should be mentioned that the laser particle size analysis method is capable of determining the particle sizes after their agglomeration whereas the optical morphometry method allows to determine the real particle size of emissions. In conclusion, it can be pointed out that the agglomeration of particles can lead to the reduction in the toxicity of particles emissions originated from two wheeled-vehicles.
Collapse
Affiliation(s)
- V.V. Chernyshev
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690950, Russian Federation
| | - A.M. Zakharenko
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690950, Russian Federation
| | - S.M. Ugay
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690950, Russian Federation
| | - T.T. Hien
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690950, Russian Federation
| | - L.H. Hai
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690950, Russian Federation
| | - A.S. Kholodov
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690950, Russian Federation
| | - T.I. Burykina
- Department of Analytical Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991, Moscow, Russian Federation
| | - A.K. Stratidakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Ya. O. Mezhuev
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, Moscow, 125047, Russian Federation
| | - A.M. Tsatsakis
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690950, Russian Federation
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - K.S. Golokhvast
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690950, Russian Federation
- Pacific Geographical Institute FEB RAS, Vladivostok, Russian Federation
| |
Collapse
|
22
|
Poirier AE, Grundy A, Khandwala F, Friedenreich CM, Brenner DR. Cancer incidence attributable to air pollution in Alberta in 2012. CMAJ Open 2017; 5:E524-E528. [PMID: 28659352 PMCID: PMC5498315 DOI: 10.9778/cmajo.20160040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The International Agency for Research on Cancer has classified outdoor air pollution (fine particulate matter [PM2.5]) as a Group 1 lung carcinogen in humans. We aimed to estimate the proportion of lung cancer cases attributable to PM2.5 exposure in Alberta in 2012. METHODS Annual average concentrations of PM2.5 in 2011 for 22 communities across Alberta were extracted from the Clean Air Strategic Alliance Data Warehouse and were population-weighted across the province. Using 7.5 µg/m3 and 3.18 µg/m3 as the annual average theoretical minimum risk concentrations of PM2.5, we estimated the proportion of the population above this cut-off to determine the population attributable risk of lung cancer due to PM2.5 exposure. RESULTS The mean population-weighted concentration of PM2.5 for Alberta in 2011 was 10.03 µg/m3. We estimated relative risks of 1.02 and 1.06 for theoretical minimum risk PM2.5 concentration thresholds of 7.5 µg/m3 and 3.18 µg/m3, respectively. About 1.87%-5.69% of incident lung cancer cases in Alberta were estimated to be attributable to PM2.5 exposure. INTERPRETATION Our estimate of attributable burden is low compared to that reported in studies in other areas of the world owing to the relatively low levels of PM2.5 recorded in Alberta. Reducing PM2.5 emissions in Alberta should continue to be a priority to help decrease the burden of lung cancer in the population.
Collapse
Affiliation(s)
- Abbey E Poirier
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Poirier, Grundy, Khandwala, Friedenreich, Brenner), CancerControl Alberta, Alberta Health Services; Department of Oncology (Friedenreich, Brenner) and Department of Community Health Sciences (Friedenreich, Brenner), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Anne Grundy
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Poirier, Grundy, Khandwala, Friedenreich, Brenner), CancerControl Alberta, Alberta Health Services; Department of Oncology (Friedenreich, Brenner) and Department of Community Health Sciences (Friedenreich, Brenner), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Farah Khandwala
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Poirier, Grundy, Khandwala, Friedenreich, Brenner), CancerControl Alberta, Alberta Health Services; Department of Oncology (Friedenreich, Brenner) and Department of Community Health Sciences (Friedenreich, Brenner), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Christine M Friedenreich
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Poirier, Grundy, Khandwala, Friedenreich, Brenner), CancerControl Alberta, Alberta Health Services; Department of Oncology (Friedenreich, Brenner) and Department of Community Health Sciences (Friedenreich, Brenner), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Darren R Brenner
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Poirier, Grundy, Khandwala, Friedenreich, Brenner), CancerControl Alberta, Alberta Health Services; Department of Oncology (Friedenreich, Brenner) and Department of Community Health Sciences (Friedenreich, Brenner), Cumming School of Medicine, University of Calgary, Calgary, Alta
| |
Collapse
|
23
|
Paglia G, Miedico O, Tarallo M, Lovino AR, Astarita G, Chiaravalle AE, Corso G. Evaluation of Seasonal Variability of Toxic and Essential Elements in Urine Analyzed by Inductively Coupled Plasma Mass Spectrometry. EXPOSURE AND HEALTH 2017; 9:79-88. [DOI: 10.1007/s12403-016-0222-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
24
|
Chu H, Shang J, Jin M, Chen Y, Pan Y, Li Y, Tao X, Cheng Z, Meng Q, Li Q, Jia G, Zhu T, Hao W, Wei X. Comparison of lung damage in mice exposed to black carbon particles and 1,4-naphthoquinone coated black carbon particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:572-581. [PMID: 28034545 DOI: 10.1016/j.scitotenv.2016.11.214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Black carbon (BC) is a key component of atmospheric particles and has a significant effect on human health. BC can provide reactive sites and surfaces thus absorb quinones which were primarily generated from fossil fuel combustion and/or atmospheric photochemical conversions of PAHs. Oxidation could change the characteristics of BC and increase its toxicity. The comparison of lung damage in mice exposed to BC and 1,4-NQ-coated BC (1,4NQ-BC) particles is investigated in this study. Mice which were intratracheally instilled with particles have a higher expression of IL-1β, IL-6 and IL-33 in bronchoalveolar lavage fluid (BALF). Also, the IL-6, IL-33 mRNA expression in the lung tissue of mice instilled with 1,4NQ-BC were higher than that of mice instilled with BC. The pathology results showed that the lung tissue of mice instilled with 1,4NQ-BC particles have much more inflammatory cells infiltration than that of mice treated with BC. It is believed that the MAPK and PI3K-AKT pathway might be involved in the 1,4NQ-BC particles caused lung damage. Results indicated that 1,4NQ-BC particles in the atmosphere may cause more damage to health.
Collapse
Affiliation(s)
- Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Ming Jin
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yueyue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yao Pan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yuan Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xi Tao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhiyuan Cheng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qian Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; POTEN Environment Group Co., Ltd., Beijing 100082, PR China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
25
|
Weggeberg H, Føreland S, Buhagen M, Hilt B, Flaten TP. Multi-element analysis of airborne particulate matter from different work tasks during subsea tunnel rehabilitation work. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2016; 13:725-740. [PMID: 27078031 DOI: 10.1080/15459624.2016.1177645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tunnel rehabilitation work involves exposure to various air contaminants, including airborne particulate matter (APM). Little is known on the contents of different chemical components of APM generated during tunnel work. The objective of the present study was to characterize exposure to APM and various elements for different job categories in different size fractions of APM during a subsea tunnel rehabilitation project carried out in Western Norway. Personal as well as stationary samples of inhalable, thoracic and respirable dust were collected from workers divided into 11 different job categories based on work operations performed, and air concentrations of a range of elements were determined using high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Overall, APM concentrations were low, but with some measurements exceeding the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for inhalable particles, and considerable proportions of respirable and especially inhalable APM exceeding 10% of the TLVs. For most elements, air concentrations measured were quite low, in the ng/m(3) range, except for the major crustal elements Si, Fe, Al, and Mg, which were found to be in the µg/m(3) range. Asphalt millers overall had the highest exposure levels for APM and most measured elements; for instance, mean concentrations of V, Rb, and Mn were 380, 210, and 2000 ng/m(3) in inhalable and 33, 44, and 310 ng/m(3) in respirable APM. Mounting PVC membrane seemed to generate elevated levels of Cr, Zn, Sn, Pb, Sb, As, Mn, Fe, and Ni, whereas typical bedrock elements were elevated during drilling activities compared to the low exposed categories lead car drivers, foremen/surveyors, drivers of heavy-duty vehicles, and electricians. Overall, stationary samples contained lower amounts of dust and elemental constituents compared to personal samples. Elemental air concentrations were highly variable with occasional elevated values for APM and certain elements, particularly Cr and Zn.
Collapse
Affiliation(s)
- Hanne Weggeberg
- a Department of Chemistry , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Solveig Føreland
- b Department of Occupational Medicine , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway
- c Department of Geology and Mineral Resources Engineering , NTNU , Trondheim , Norway
| | - Morten Buhagen
- b Department of Occupational Medicine , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway
- d Department of Public Health and General Practice , NTNU , Trondheim , Norway
| | - Bjørn Hilt
- b Department of Occupational Medicine , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway
- d Department of Public Health and General Practice , NTNU , Trondheim , Norway
| | - Trond Peder Flaten
- a Department of Chemistry , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| |
Collapse
|
26
|
Keeler GJ, Morishita M, Wagner JG, Harkema JR. Characterization of Urban Atmospheres during Inhalation Exposure Studies in Detroit and Grand Rapids, Michigan. Toxicol Pathol 2016; 35:15-22. [PMID: 17325968 DOI: 10.1080/01926230601132022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An inhalation exposure study for particulate matter (PM) investigates links between exposure and observed changes in respiratory function by evaluating the interactions of chemical and physical properties of the PM with physiological mechanisms. Laboratory studies are useful in this regard, but provide limited information because of the difficulty in reproducing real atmospheric PM compositions and processes. To better understand the types of particles to which people are actually exposed in their daily lives, and the human health risks for source-specific PM, a real world assessment of the source-to-receptor pathways for ambient PM is vital. This was accomplished using a unique mobile air research laboratory (AirCARE1) which enables inhalation exposure studies in real-world settings. The overall goal of this study was to determine the effects of concentrated air particulates (CAPs) from 2 different urban atmospheres in Michigan on the lungs of ovalbumin-sensitized rats concurrently challenged with the allergen. Our work demonstrated that short-term (8 hours) exposure to ambient fine particulate matter (aerodynamic diameter ≤ 2.5 μm; PM2.5) concentrated from 2 different urban atmospheres in Michigan induced distinct allergic responses in the lungs of rats. This paper presents detailed characterization of CAPs and their sources in an effort to define possible associations between the observed health effects and source-specific ambient PM2.5.
Collapse
Affiliation(s)
- Gerald J Keeler
- Air Quality Laboratory, The University of Michigan, Ann Arbor, Michigan 48109-2029, USA.
| | | | | | | |
Collapse
|
27
|
Norouzi S, Khademi H, Cano AF, Acosta JA. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 173:55-64. [PMID: 26974238 DOI: 10.1016/j.jenvman.2016.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 05/22/2023]
Abstract
Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding the suitability of the biomagnetic approach as a relatively rapid and inexpensive method for identifying highly polluted urban areas with selected heavy metals, especially those subjected to anthropogenic and other traffic related sources.
Collapse
Affiliation(s)
- Samira Norouzi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Khademi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Angel Faz Cano
- Agrarian Science and Technology Department, Technical University of Cartagena, Paseo Alfonso XIII, 48.30203, Cartagena, Murcia, Spain
| | - Jose A Acosta
- Agrarian Science and Technology Department, Technical University of Cartagena, Paseo Alfonso XIII, 48.30203, Cartagena, Murcia, Spain
| |
Collapse
|
28
|
Seriani R, de Souza CEC, Krempel PG, Frias DP, Matsuda M, Correia AT, Ferreira MZJ, Alencar AM, Negri EM, Saldiva PHN, Mauad T, Macchione M. Human bronchial epithelial cells exposed in vitro to diesel exhaust particles exhibit alterations in cell rheology and cytotoxicity associated with decrease in antioxidant defenses and imbalance in pro- and anti-apoptotic gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9862-9870. [PMID: 26856867 DOI: 10.1007/s11356-016-6228-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Diesel exhaust particles (DEPs) from diesel engines produce adverse alterations in cells of the airways by activating intracellular signaling pathways and apoptotic gene overexpression, and also by influencing metabolism and cytoskeleton changes. This study used human bronchial epithelium cells (BEAS-2B) in culture and evaluates their exposure to DEPs (15ug/mL for 1 and 2 h) in order to determine changes to cell rheology (viscoelasticity) and gene expression of the enzymes involved in oxidative stress, apoptosis, and cytotoxicity. BEAS-2B cells exposed to DEPs were found to have a significant loss in stiffness, membrane stability, and mitochondrial activity. The genes involved in apoptosis [B cell lymphoma 2 (BCL-2 and caspase-3)] presented inversely proportional expressions (p = 0.05, p = 0.01, respectively), low expression of the genes involved in antioxidant responses [SOD1 (superoxide dismutase 1); SOD2 (superoxide dismutase 2), and GPx (glutathione peroxidase) (p = 0.01)], along with an increase in cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) (p = 0.01). These results suggest that alterations in cell rheology and cytotoxicity could be associated with oxidative stress and imbalance between pro- and anti-apoptotic genes.
Collapse
Affiliation(s)
- Robson Seriani
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil.
- FAM - Faculdades das Américas, Rua Augusta, 1508, 3°andar, São Paulo, SP, 01304-001, Brazil.
| | - Claudia Emanuele Carvalho de Souza
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, University of São Paulo, Rua do Matão - travessa 14, Cidade Universitária, 05508900, São Paulo, SP, Brazil
| | - Paloma Gava Krempel
- Laboratory for Investigations in Ophthalmology (LIM-33), University of São Paulo Medical School São Paulo, Dr. Arnaldo 455, 5°andar, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Daniela Perroni Frias
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Monique Matsuda
- Laboratory for Investigations in Ophthalmology (LIM-33), University of São Paulo Medical School São Paulo, Dr. Arnaldo 455, 5°andar, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Aristides Tadeu Correia
- Heart Institute (InCor), Department of Cardiopulmonology, University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira Cesar, 05403-000, Sao Paulo, SP, Brazil
| | - Márcia Zotti Justo Ferreira
- Laboratory of Microrheology and Molecular Physiology, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R Número 187, Cidade Universitária, 05508-090, Sao Paulo, SP, Brazil
| | - Adriano Mesquita Alencar
- Laboratory of Microrheology and Molecular Physiology, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R Número 187, Cidade Universitária, 05508-090, Sao Paulo, SP, Brazil
| | - Elnara Marcia Negri
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Thais Mauad
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Mariangela Macchione
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| |
Collapse
|
29
|
Henry FS, Tsuda A. Onset of alveolar recirculation in the developing lungs and its consequence on nanoparticle deposition in the pulmonary acinus. J Appl Physiol (1985) 2016; 120:38-54. [PMID: 26494453 PMCID: PMC4698443 DOI: 10.1152/japplphysiol.01161.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 10/08/2015] [Indexed: 01/17/2023] Open
Abstract
The structure of the gas exchange region of the human lung (the pulmonary acinus) undergoes profound change in the first few years of life. In this paper, we investigate numerically how the change in alveolar shape with time affects the rate of nanoparticle deposition deep in the lung during postnatal development. As human infant data is unavailable, we use a rat model of lung development. The process of postnatal lung development in the rat is remarkably similar to that of the human, and the structure of the rat acinus is indistinguishable from that of the human acinus. The current numerical predictions support our group's recent in vivo findings, which were also obtained by using growing rat lung models, that nanoparticle deposition in infants is strongly affected by the change in the structure of the pulmonary acinus. In humans, this major structural change occurs over the first 2 yr of life. Our current predictions would suggest that human infants at the age of ∼ 2 yr might be most at risk to the harmful effects of air pollution. Our results also suggest that dose estimates for inhalation therapies using nanoparticles, based on fully developed adult lungs with simple body weight scaling, are likely to overestimate deposition by up to 55% for newborns and underestimate deposition by up to 17% for 2-yr-old infants.
Collapse
Affiliation(s)
- Frank S Henry
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and Deptartment of Mechanical Engineering, Manhattan College, Riverdale, New York
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| |
Collapse
|
30
|
Potential Sources of Trace Metals and Ionic Species in PM2.5 in Guadalajara, Mexico: A Case Study during Dry Season. ATMOSPHERE 2015. [DOI: 10.3390/atmos6121834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Samara C, Kouras A, Kaidoglou K, Emmanouil-Nikoloussi EN, Simou C, Bousnaki M, Kelessis A. Ultrastructural alterations in the mouse lung caused by real-life ambient PM10 at urban traffic sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:327-336. [PMID: 26081735 DOI: 10.1016/j.scitotenv.2015.05.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/19/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
Current levels of ambient air particulate matter (PM) are associated with mortality and morbidity in urban populations worldwide. Nevertheless, current knowledge does not allow precise quantification or definitive ranking of the health effects of individual PM components and indeed, associations may be the result of multiple components acting on different physiological mechanisms. In this paper, healthy Balb/c mice were exposed to ambient PM10 at a traffic site of a large city (Thessaloniki, northern Greece), in parallel to control mice that were exposed to filtered air. Structural damages were examined in ultrafine sections of lung tissues by Transmission Electronic Microscopy (TEM). Ambient PM10 samples were also collected during the exposure experiment and characterized with respect to chemical composition and oxidative potential. Severe ultrastructural alterations in the lung tissue after a 10-week exposure of mice at PM10 levels often exceeding the daily limit of Directive 2008/50/EC were revealed mainly implying PM-induced oxidative stress. The DTT-based redox activity of PM10 was found within the range of values reported for traffic sites being correlated with traffic-related constituents. Although linkage of the observed lung damage with specific chemical components or sources need further elucidation, the magnitude of biological responses highlight the necessity for national and local strategies for mitigation of particle emissions from combustion sources.
Collapse
Affiliation(s)
- Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece.
| | - Athanasios Kouras
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Katerina Kaidoglou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Elpida-Niki Emmanouil-Nikoloussi
- Laboratory of Histology-Embryology and Anthropology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Chrysanthi Simou
- Laboratory of Histology-Embryology and Anthropology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Maria Bousnaki
- Laboratory of Histology-Embryology and Anthropology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thesaloniki, Greece
| | - Apostolos Kelessis
- Environmental Department, Municipality of Thessaloniki, Kleanthous 18, 54 642 Thessaloniki, Greece
| |
Collapse
|
32
|
Manjanatha MG, Shelton SD, Haber L, Gollapudi B, MacGregor JA, Rajendran N, Moore MM. Evaluation of cII mutations in lung of male Big Blue mice exposed by inhalation to vanadium pentoxide for up to 8 weeks. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 789-790:46-52. [DOI: 10.1016/j.mrgentox.2015.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
33
|
Cuevas AK, Niu J, Zhong M, Liberda EN, Ghio A, Qu Q, Chen LC. Metal rich particulate matter impairs acetylcholine-mediated vasorelaxation of microvessels in mice. Part Fibre Toxicol 2015; 12:14. [PMID: 26041432 PMCID: PMC4456050 DOI: 10.1186/s12989-014-0077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background Exposure to PM2.5 (particulate matter <2.5 μm) has been associated with changes in endothelial function. PM2.5 was collected from two Chinese cities, Jinchang (JC) and Zhangye (ZH), both with similar PM2.5 concentrations. However, JC had levels of nickel (Ni), selenium (Se), copper (Cu), and arsenic (As) that were 76, 25, 17, and 7 fold higher than that measured in ZH, respectively. We used this unique PM sample to delineate the chemical components that drive pulmonary and systemic effects and explore the mechanism(s) by which vascular dysfunction is caused. Methods Male FVB/N mice received oropharyngeal aspiration of water or PM2.5 from JC, ZH or ZH spiked with one of the following elements at the same concentrations found in the JC PM (Ni = 4.76; As = 2.36; Se = 0.24; Cu = 2.43 μg/mg) followed by evaluation of markers of pulmonary and systemic inflammation. Mesenteric arteries were isolated for gene expression or functional response to various agonists (Phenylephrine, Acetylcholine, and Sodium Nitroprusside) and inhibitors (L-NAME, Apocynin, and VAS2870) ex vivo. Results Protein and total cell counts from lung lavage revealed significant pulmonary inflammation from ZH (p < 0.01) and JC and ZH + NiSO4 (p < 0.001) as compared to control and a significant decrease in mesenteric artery relaxation (p < 0.001) and this decrease is blunted in the presence of NADPH oxidase inhibitors. Significant increases in gene expression (TNF-α, IL-6, Nos3; p < 0.01; NOX4; p < 0.05) were observed in JC and ZH + NiSO4, as well as significantly higher concentrations of VEGF and IL-10 (p < 0.01, p < 0.001; respectively). Conclusions Our results indicate that the specific toxicity observed in PM from JC is likely due to the nickel component in the PM. Further, since VAS2870 was the most successful inhibitor to return vessels to baseline relaxation values, NADPH Oxidase is implicated as the primary source of PM-induced O2•-.
Collapse
Affiliation(s)
- Azita K Cuevas
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| | - Jingping Niu
- Lanzhou University School of Public Health, Lanzhou, China.
| | - Mianhua Zhong
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| | - Eric N Liberda
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| | - Andrew Ghio
- Human Studies Division, NHEERL, USEPA, Research Triangle Park, Chapel Hill, NC, USA.
| | - Qingshan Qu
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| | - Lung Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| |
Collapse
|
34
|
Delfosse VC, Tasat DR, Gioffré AK. In vivo short-term exposure to residual oil fly ash impairs pulmonary innate immune response against environmental mycobacterium infection. ENVIRONMENTAL TOXICOLOGY 2015; 30:589-596. [PMID: 25915594 DOI: 10.1002/tox.21936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 06/04/2023]
Abstract
Epidemiological studies have shown that pollution derived from industrial and vehicular transportation induces adverse health effects causing broad ambient respiratory diseases. Therefore, air pollution should be taken into account when microbial diseases are evaluated. Environmental mycobacteria (EM) are opportunist pathogens that can affect a variety of immune compromised patients, which impacts significantly on human morbidity and mortality. The aim of this study was to evaluate the effect of residual oil fly ash (ROFA) pre-exposure on the pulmonary response after challenge with opportunistic mycobacteria by means of an acute short-term in vivo experimental animal model. We exposed BALB/c mice to ROFA and observed a significant reduction on bacterial clearance at 24 h post infection. To study the basis of this impaired response four groups of animals were instilled with (a) saline solution (Control), (b) ROFA (1 mg kg(-1) BW), (c) ROFA and EM-infected (Mycobacterium phlei, 8 × 10(6) CFU), and (d) EM-infected. Animals were sacrificed 24 h postinfection and biomarkers of lung injury and proinflammatory madiators were examined in the bronchoalveolar lavage. Our results indicate that ROFA was able to produce an acute pulmonary injury characterized by an increase in bronchoalveolar polymorphonuclear (PMN) cells influx and a rise in O2 (-) generation. Exposure to ROFA before M. phlei infection reduced total cell number and caused a significant decline in PMN cells recruitment (p < 0.05), O2 (-) generation, TNFα (p < 0.001), and IL-6 (p < 0.001) levels. Hence, our results suggest that, in this animal model, the acute short-term pre-exposure to ROFA reduces early lung response to EM infection.
Collapse
Affiliation(s)
- Verónica C Delfosse
- School of Science and Technology, National University of General San Martín, Center of Studies in Health and Environment, Martín de Irigoyen 3100, San Martín, 1653, Buenos Aires, Argentina; Biotechnology Institute, CICVyA-INTA, N. Repetto y de Los Reseros s/n, B1712 WAA, Hurlingham, Buenos Aires, Argentina
| | | | | |
Collapse
|
35
|
Rogula-Kozłowska W, Majewski G, Czechowski PO. The size distribution and origin of elements bound to ambient particles: a case study of a Polish urban area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:240. [PMID: 25861901 PMCID: PMC4412378 DOI: 10.1007/s10661-015-4450-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/18/2015] [Indexed: 05/05/2023]
Abstract
Ambient particulate matter (PM) was sampled in Zabrze (southern Poland) in the heating period of 2009. It was investigated for distribution of its mass and of the masses of its 18 component elements (S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb) among 13 PM size fractions. In the paper, the distribution modality of and the correlations between the ambient concentrations of these elements are discussed and interpreted in terms of the source apportionment of PM emissions. By weight, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb were 10% of coarse and 9% of ultrafine particles. The collective mass of these elements was no more than 3.5 % of the mass of the particles with the aerodynamic diameter D p between 0.4 and 1.0 μm (PM₀.₄₋₁), whose ambient mass concentration was the highest. The PM mass size distribution for the sampling period is bimodal; it has the accumulation and coarse modes. The coarse particles were probably of the mineral/soil origin (characteristic elements: Ca, Fe, Sr, and Ba), being re-suspended polluted soil or road dust (characteristic elements: Ca, Fe, Sr, Ba, S, K, Cr, Cu, Zn, Br, Sb, Pb). The maxima of the density functions (modes) of the concentration distributions with respect to particle size of PM-bound S, Cl, K, Cu, Zn, Ge, Br, Cd, Sb, and Pb within the D p interval from 0.108 to 1.6 μm (accumulation PM particles) indicate the emissions from furnaces and road traffic. The distributions of PM-bound As, Mn, Ba, and Sr concentrations have their modes within D p ≤ 0.108 μm (nucleation PM particles), indicating the emissions from high-temperature processes (industrial sources or car engines). In this work, principal component analysis (PCA) is applied separately to each of the 13 fraction-related sets of the concentrations of the 18 PM-bound elements, and further, the fractions are grouped by their origin using cluster analysis (CA) applied to the 13 fraction-related first principal components (PC1). Four distinct groups of the PM fractions are identified: (PM₁.₆₋₂.₅, PM₂.₅₋₄.₄,), (PM₀.₀₃₋₀.₀₆, PM₀.₁₀₈₋₀.₁₇), (PM₀.₀₆₋₀.₁₀₈, PM₀.₁₇₋₀.₂₆, PM₀.₂₆₋₀.₄, PM₀.₄₋₀.₆₅, PM₀.₆₅₋₁, PM₁₋₁.₆), and (PM₄.₄₋₆.₈, PM₆.₈₋₁₀, PM>₁₀). The PM sources attributed to these groups by using PCA followed by CA are roughly the same as the sources from the apportionment done by analyzing the modality of the mass size distributions.
Collapse
Affiliation(s)
- Wioletta Rogula-Kozłowska
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowska-Curie St., 41-819, Zabrze, Poland,
| | | | | |
Collapse
|
36
|
Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells. ACTA ACUST UNITED AC 2015; 67:323-9. [PMID: 25769681 DOI: 10.1016/j.etp.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022]
Abstract
This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.
Collapse
|
37
|
van Berlo D, Hullmann M, Schins RPF. Toxicology of ambient particulate matter. ACTA ACUST UNITED AC 2015; 101:165-217. [PMID: 22945570 DOI: 10.1007/978-3-7643-8340-4_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that inhalation exposure to particulate matter (PM) can lead to or exacerbate various diseases, which are not limited to the lung but extend to the cardiovascular system and possibly other organs and tissues. Epidemiological studies have provided strong evidence for associations with chronic obstructive pulmonary disease (COPD), asthma, bronchitis and cardiovascular disease, while the evidence for a link with lung cancer is less strong. Novel research has provided first hints that exposure to PM might lead to diabetes and central nervous system (CNS) pathology. In the current review, an overview is presented of the toxicological basis for adverse health effects that have been linked to PM inhalation. Oxidative stress and inflammation are discussed as central processes driving adverse effects; in addition, profibrotic and allergic processes are implicated in PM-related diseases. Effects of PM on key cell types considered as regulators of inflammatory, fibrotic and allergic mechanisms are described.
Collapse
Affiliation(s)
- Damiën van Berlo
- Particle Research, Institut für Umweltmedizinische Forschung (IUF), Heinrich-Heine University Düsseldorf, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
38
|
Seriani R, Junqueira MS, Toledo AC, Corrêa AT, Silva LFF, Martins MA, Saldiva PHN, Mauad T, Macchione M. Organic and inorganic fractions of diesel exhaust particles produce changes in mucin profile of mouse trachea explants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:215-225. [PMID: 25674825 DOI: 10.1080/15287394.2014.947456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diesel exhaust particles (DEP) contain organic and inorganic elements that produce damage to the respiratory epithelium. The aim of this study was to determine the mucus profile of tracheal explants exposed to either crude diesel exhaust particles (DEP) or DEP treated with nitric acid (DEP/NA), with hexane (DEP/HEX), or with methanol (DEP/MET) at concentrations of 50 and 100 μg/ml for 30 and 60 min. Tracheal explants were subjected to morphometric analyses to study acidic (AB+), neutral (PAS+), and mixed (AB+/PAS+) mucus production and vacuolization (V). Incubation with 50 μg/ml crude DEP resulted in a rise in acid mucus production, an increase in vacuolization at 30 min, and reduction in neutral mucus at 30 and 60 min. Tracheas exposed to DEP/MET at 50 μg/ml for 30 or 60 min resulted in a significant decrease in neutral mucus production and an elevation in acid mucus production. DEP/HEX increased vacuolization at both 50 and 100 μg/ml at 30 and 60 min of exposure. Treatment with 50 μg/ml for 30 or 60 min significantly elevated mixed mucus levels. These results suggest that DEP appear to be more toxic when administered in combination with HEX or MET. DEP/MET modified the mucus profile of the epithelium, while DEP/HEX altered mucus extrusion, and these responses might be due to bioavailability of individual elements in DEP fractions.
Collapse
Affiliation(s)
- Robson Seriani
- a Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine , University of São Paulo , São Paulo , SP. Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gray DL, Wallace LA, Brinkman MC, Buehler SS, La Londe C. Respiratory and cardiovascular effects of metals in ambient particulate matter: a critical review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 234:135-203. [PMID: 25385514 DOI: 10.1007/978-3-319-10638-0_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this review, we critically evaluated the epidemiological and toxicological evidence for the role of specific transition metals (As. Cr. Cu. Fe. Mn. Ni. Sc. Ti. V and Zn) in causing or contributing to the respiratory and cardiovascular health effects associated with ambient PM. Although the epidemiologic studies arc suggestive. and both the in vivo and in vitro laboratory studies document the toxicity of specific metals (Fe. Ni. V and Zn). the overall weight of evidence does not convincingly implicate metals as major contributors to health effects. None of the epidemiology studies that we reviewed conclusively implicated specific transition metals as having caused the respiratory and cardiovascular effects associated with ambient levels of PM. However, the studies reviewed tended to be internal ly consistent in identifying some metals (Fe, Ni, V and Zn) more frequently than others (As, Cu, Mn and Sc) as having positive associations wi th health effects. The major problem wi th which the epidemiological studies were faced was classifying and quantifying exposure. Community and population exposures to metals or other components of ambient PM were inferred from centrally- located samplers that may not accurately represent individual level exposures. Only a few authors reported findings that did not support the stated premise of the study; indeed, statistic ally significant associations are not necessarily biologically significant. It is likely that ·'negative studies" are under-represented in the published literature, making it a challenge to achieve a balanced evaluation of the role of metals in causing health effects associated with ambient PM. Both the in vivo and in vitro study results demonstrated that individual metals (Cu. Fe. Ni. V and Zn) and extracts of metals from ambient PM sources can produce acute inflammatory responses. However. the doses administered to laboratory animals were many orders of magnitude greater than what humans experience from breathing ambient air. The studies that used intratracheal instillation have the advantage of delivering a known dose to a specific anatomical location. but arc not analogous to an inhaled dose that is distributed over the surface area of the respiratory tract. Studies. in which laboratory animals or human volunteers inhaled CAPs best represent exposures to the general human population. The in vivo and in vitro studies reviewed provide indications that the probable mechanisms involved in the respiratory and cardiac effects from high metal exposures include: an inflammatory response mediated by formation of ROS, upregulation of genes coding for inflammatory cytokines, altered expression of genes involved in cell signaling pathways and maintenance of metals homeostasis.The fact that doses of metals many orders of magnitude greater than those existing in ambient air were required to produce measurable adverse effects in animals makes it doubtful that metals play any major role in respiratory and cardiovascular effects produced from human exposure to ambient PM. We suggest that future research priorities should focus on testing at more environmentally relevant exposure levels and that any new toxicological studies be written to include dosages in units that can be easily compared to human exposure levels.
Collapse
Affiliation(s)
- Deborah L Gray
- Stantec Consulting Services, Inc., 1500 Lake Shore Drive, Suite 100, Columbus, OH, 43204, USA,
| | | | | | | | | |
Collapse
|
40
|
Lei YM, Zu YF, Wang J, Bai S, Shi YF, Shi R, Duan J, Cui D, Chen J, Xiang Y, Dong J. Interleukin-1β-mediated suppression of microRNA-101 and upregulation of enhancer of zeste homolog 2 is involved in particle-induced lung cancer. Med Oncol 2014; 32:387. [PMID: 25428391 DOI: 10.1007/s12032-014-0387-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
Abstract
Lung cancer may be a result of complex factors. Small mineral particle is the well-known inducer of lung cancer. Previous study revealed the high morbidity of lung cancer in Xuan Wei in China, and the main cause of lung cancer is the use of smoky coal there. And it is generally accepted that chronic inflammation induced by small mineral particle may be a cause of lung cancer. But the relationship between chronic lung inflammation and lung cancer is largely unknown. In the present study, we found that silica particle was able to induce the secretion of interleukin-1β from a Xuan Wei lung cancer cell line, XWLC-05. At the same time, microRNA-101 (mir-101) was found to be downregulated by the treatment of silica particle. Interestingly, the interleukin 1 receptor antagonist and interleukin-1β antibody can reduce silica particle-induced downregulation of mir-101. Twenty-four Xuan Wei lung tumor tissues were collected to detect the expression level of mir-101 and enhancer of zeste homolog 2 (EZH2), which is the potential target of mir-101. The results showed that mir-101 was down-regulated and EZH2 were upregulated. Subsequently, the roles of mir-101 and EZH2 in tumor growth and progression in vitro were tested. Overexpression of mir-101 mimics was able to suppress the expression of EZH2 in XWLC-05 cells. And this resulted in the inhibited tumor cell growth and attenuated cell migration. The results in the present study showed that particle can induce the secretion of interleukin-1β. Interleukin-1β subsequently induces the downregulation of mir-101, which may result in the upregulated level of EZH2, and occurrence of lung cancer. We for the first time proposed the role interleukin-1β-mir-101-EZH2 axes in the particle-induced lung cancer. Further study may be needed to decipher the detailed mechanism involved.
Collapse
Affiliation(s)
- You-Ming Lei
- Department of Vip Surgery Ward and Department of Biotherapy, The First Affiliated Hospital of Kunming Medical University of Medical Science, Kunming, 650032, Yunnan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alves C, Calvo AI, Marques L, Castro A, Nunes T, Coz E, Fraile R. Particulate matter in the indoor and outdoor air of a gymnasium and a fronton. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12390-402. [PMID: 24938814 DOI: 10.1007/s11356-014-3168-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/05/2014] [Indexed: 05/24/2023]
Abstract
An indoor/outdoor monitoring programme of PM10 was carried out in two sports venues (a fronton and a gymnasium). Levels always below 50 μg m(-3) were obtained in the fronton and outdoor air. Due to the climbing chalk and the constant process of resuspension, concentrations above 150 μg m(-3) were registered in the gymnasium. The chalk dust contributed to CO3 (2-) concentrations of 32 ± 9.4 μg m(-3) in this sports facility, which represented, on average, 18 % of the PM10 mass. Here, the carbonate levels were 128 times higher than those registered outdoors. Much lower concentrations, around 1 μg m(-3), were measured in the fronton. The chalk dust is also responsible for the high Mg(2+) concentrations in the gym (4.7 ± 0.89 μg m(-3)), unfolding a PM10 mass fraction of 2.7 %. Total carbon accounted for almost 30 % of PM10 in both indoor spaces. Aerosol size distributions were bimodal and revealed a clear dependence on physical activities and characteristics of the sports facilities. The use of climbing chalk in the gymnasium contributed significantly to the coarse mode. The average geometric mean diameter, geometric standard deviation and total number of coarse particles were 0.77 μm, 2.79 cm(-3) and 28 cm(-3), respectively.
Collapse
Affiliation(s)
- Célia Alves
- Centre for Environment and Marine Studies, Department of Environment, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | |
Collapse
|
42
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
43
|
Carvalho GMC, Nagato LKDS, Fagundes SDS, Dos Santos FB, Calheiros AS, Malm O, Bozza PT, Saldiva PHN, Faffe DS, Rocco PRM, Zin WA. Time course of pulmonary burden in mice exposed to residual oil fly ash. Front Physiol 2014; 5:366. [PMID: 25309454 PMCID: PMC4174882 DOI: 10.3389/fphys.2014.00366] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/07/2014] [Indexed: 01/15/2023] Open
Abstract
Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g) were randomly divided into 7 groups and intranasally instilled with either 10 μL of sterile saline solution (0.9% NaCl, CTRL) or ROFA (0.2 μg in 10 μL of saline solution). Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs), and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared spontaneously.
Collapse
Affiliation(s)
| | - Lilian Katiê da Silva Nagato
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Sheila da Silva Fagundes
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Flávia Brandão Dos Santos
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Andrea Surrage Calheiros
- Laboratory of Immunopharmacology, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Olaf Malm
- Laboratory of Radioisotopes, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Patricia Torres Bozza
- Laboratory of Immunopharmacology, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Paulo Hilário N Saldiva
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, Universidade de São Paulo São Paulo, Brazil
| | - Débora Souza Faffe
- Laboratory of Macromolecular Metabolism Firmino Torres de Castro, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Manousakas M, Papaefthymiou H, Eleftheriadis K, Katsanou K. Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:694-700. [PMID: 24992462 DOI: 10.1016/j.scitotenv.2014.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/20/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
The elemental composition of water-soluble and acid-soluble fractions of PM2.5 samples from two different Greek cities (Patras and Megalopolis) was investigated. Patras and Megalopolis represent different environments. Specifically, Patras is an urban environment with proximity to a large port, while Megalopolis is a small city located close to lignite power plants. Both cities can serve as a representative example of European cities with similar characteristics. The concentration of 14 elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Fe, Sr, Ti, V and Zn) was determined in each fraction by ICP-MS. Microwave assisted digestion was used to digest the samples using a mixture of HNO3 and HF. For the determination of the water soluble fraction, water was chosen as the simplest and most universal extraction solvent. For the validation of the extraction procedure, the recoveries were tested on two certified reference materials (NIST SRM 1648 Urban Particulate Matter and NIST 1649a Urban Dust). Results showed that Zn has the highest total concentration (273 and 186 ng/m(3)) and Co the lowest (0.48 and 0.23 ng/m(3)) for Patras and Megalopolis samples, respectively. Nickel with 65% for Patras and As with 49% for Megalopolis displayed the highest solubility, whereas Fe (10%) and Ti (2%) the lowest ones, respectively.
Collapse
Affiliation(s)
- M Manousakas
- Department of Chemistry, University of Patras, 265 00 Rio-Patras, Greece
| | - H Papaefthymiou
- Department of Chemistry, University of Patras, 265 00 Rio-Patras, Greece.
| | - K Eleftheriadis
- Institute of Nuclear and Radiological Sciences, Energy Technology and Safety, Environmental Radioactivity Laboratory, N.C.S.R. "Demokritos", 15310 Ag. Paraskevi, Athens, Greece
| | - K Katsanou
- Laboratory of Hydrogeology, Department of Geology, University of Patras, 26500 Rio-Patras, Greece
| |
Collapse
|
45
|
de Brito JM, Macchione M, Yoshizaki K, Toledo-Arruda AC, Saraiva-Romanholo BM, Andrade MDF, Mauad T, Rivero DHRF, Saldiva PHN. Acute cardiopulmonary effects induced by the inhalation of concentrated ambient particles during seasonal variation in the city of São Paulo. J Appl Physiol (1985) 2014; 117:492-9. [DOI: 10.1152/japplphysiol.00156.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ambient particles may undergo modifications to their chemical composition as a consequence of climatic variability. The determination of whether these changes modify the toxicity of the particles is important for the understanding of the health effects associated with particle exposure. The objectives were to determine whether low levels of particles promote cardiopulmonary effects, and to assess if the observed alterations are influenced by season. Mice were exposed to 200 μg/m3 concentrated ambient particles (CAPs) and filtered air (FA) in cold/dry and warm/humid periods. Lung hyperresponsiveness, heart rate, heart rate variability, and blood pressure were evaluated 30 min after each exposure. After 24 h, blood and tissue samples were collected. During both periods (warm/humid and cold/dry), CAPs induced alterations in red blood cells and lung inflammation. During the cold/dry period, CAPs reduced the mean corpuscular volume levels and increased erythrocytes, hemoglobin, mean corpuscular hemoglobin concentration, and red cell distribution width coefficient variation levels compared with the FA group. Similarly, CAPs during the warm/humid period decreased mean corpuscular volume levels and increased erythrocytes, hemoglobin, hematocrit, and red cell distribution width coefficient variation levels compared with the FA group. CAPs during the cold/dry period increased the influx of neutrophils in the alveolar parenchyma. Short-term exposure to low concentrations of CAPs elicited modest but significant pulmonary inflammation and, to a lesser extent, changes in blood parameters. In addition, our data support the concept that changes in climate conditions slightly modify particle toxicity because equivalent doses of CAPs in the cold/dry period produced a more exacerbated response.
Collapse
Affiliation(s)
- Jôse Mára de Brito
- Department of Pathology, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariângela Macchione
- Department of Pathology, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Kelly Yoshizaki
- Department of Pathology, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alessandra Choqueta Toledo-Arruda
- Department of Medicine, Laboratory of Experimental Therapeutics, School of Medicine, University of São Paulo, São Paulo, Brazil and City of São Paulo University, São Paulo, Brazil; and
| | - Beatriz Mangueira Saraiva-Romanholo
- Department of Medicine, Laboratory of Experimental Therapeutics, School of Medicine, University of São Paulo, São Paulo, Brazil and City of São Paulo University, São Paulo, Brazil; and
| | - Maria de Fátima Andrade
- Institute of Astronomy, Geophysics, and Atmospheric Sciences, University of São Paulo, São Paulo, Brazil
| | - Thaís Mauad
- Department of Pathology, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Habre R, Moshier E, Castro W, Nath A, Grunin A, Rohr A, Godbold J, Schachter N, Kattan M, Coull B, Koutrakis P. The effects of PM2.5 and its components from indoor and outdoor sources on cough and wheeze symptoms in asthmatic children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:380-387. [PMID: 24714073 DOI: 10.1038/jes.2014.21] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Particulate matter with aerodynamic diameter <2.5 μm (PM2.5) is associated with asthma exacerbation. In the Children's Air Pollution Asthma Study, we investigated the longitudinal association of PM2.5 and its components from indoor and outdoor sources with cough and wheeze symptoms in 36 asthmatic children. The sulfur tracer method was used to estimate infiltration factors. Mixed proportional odds models for an ordinal response were used to relate daily cough and wheeze scores to PM2.5 exposures. The odds ratio associated with being above a given symptom score for a SD increase in PM2.5 from indoor sources (PMIS) was 1.24 (95% confidence interval: 0.92-1.68) for cough and 1.63 (1.11-2.39) for wheeze. Ozone was associated with wheeze (1.82, 1.19-2.80), and cough was associated with indoor PM2.5 components from outdoor sources (denoted with subscript "OS") bromine (BrOS: 1.32, 1.05-1.67), chlorine (ClOS: 1.27, 1.02-1.59) and pyrolyzed organic carbon (OPOS: 1.49, 1.12-1.99). The highest effects were seen in the winter for cough with sulfur (SOS: 2.28, 1.01-5.16) and wheeze with organic carbon fraction 2 (OC2OS: 7.46, 1.19-46.60). Our results indicate that exposure to components originating from outdoor sources of photochemistry, diesel and fuel oil combustion is associated with symptom's exacerbation, especially in the winter. PM2.5 mass of indoor origin was more strongly associated with wheeze than with cough.
Collapse
Affiliation(s)
- Rima Habre
- 1] Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA [2] Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Erin Moshier
- Department of Community Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - William Castro
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Amit Nath
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Avi Grunin
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, USA
| | - Annette Rohr
- Electric Power Research Institute, Palo Alto, California, USA
| | - James Godbold
- Department of Community Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Neil Schachter
- 1] Department of Community Medicine, Mount Sinai School of Medicine, New York, New York, USA [2] Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Meyer Kattan
- College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Brent Coull
- 1] Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA [2] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Hasheminassab S, Pakbin P, Delfino RJ, Schauer JJ, Sioutas C. Diurnal and seasonal trends in the apparent density of ambient fine and coarse particles in Los Angeles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 187:1-9. [PMID: 24413160 PMCID: PMC3943950 DOI: 10.1016/j.envpol.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 05/15/2023]
Abstract
Diurnal and seasonal variations in the apparent density of ambient fine and coarse particulate matter (PM2.5 and CPM [PM2.5-10], respectively) were investigated in a location near downtown Los Angeles. The apparent densities, determined by particle mass-to-volume ratios, showed strong diurnal and seasonal variations, with higher values during the warm phase (June to August 2013) compared to cold phase (November 2012 to February 2013). PM2.5 apparent density showed minima during the morning and afternoon rush hours of the cold phase (1.20g cm(-3)), mainly due to the increased contribution of traffic-emitted soot particles, and highest values were found during the midday in the warm phase (2.38g cm(-3)). The lowest CPM apparent density was observed during the morning rush hours of the cold phase (1.41g cm(-3)), while highest in early afternoon during the warm phase (2.91g cm(-3)), most likely due to the increased wind-induced resuspension of road dust.
Collapse
Affiliation(s)
- Sina Hasheminassab
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Payam Pakbin
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Ralph J Delfino
- University of California, Department of Epidemiology, School of Medicine, 224 Irvine Hall, Irvine, CA 92697, USA
| | - James J Schauer
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
48
|
Konstantopoulou SS, Behrakis PK, Lazaris AC, Nicolopoulou-Stamati P. Indoor air quality in a bar/restaurant before and after the smoking ban in Athens, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:136-143. [PMID: 24463032 DOI: 10.1016/j.scitotenv.2013.11.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/31/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
In this study we compared indoor air pollutant concentrations in a bar/restaurant in Greece before and after the enactment of a smoking ban legislation of 2008. This was done to investigate whether the separation of the venue into smoking and non-smoking areas will have an impact on workers and customers from secondhand smoke (SHS) exposure (null hypothesis). The study was completed within an 8-month period beginning in March 2010 and ending on November 2010. We compared the average of the measured PM0.1 concentrations in the smoking zones between the pre-ban and post-ban periods. Overall reduction in the number of particles was 18% between pre-ban and post-ban periods. The mean of the 36 total CO2 measurements for the pre- and the post-ban period was 611ppm. We calculated the ventilation rates per occupant (Vo in l/s/occ) and found it to be higher in the post-ban period (19.4l/s/occ), thus complying with the ASHARAE standard for Vo of 15l/s/occ at maximum occupancy, than in the pre-ban period (10.7l/s/occ). The mean of the 36 total CO measurements for the pre-ban period was 2 ppm. CO measurements in the post-ban period were less than the detection limit of 1 ppm. Emissions of nitrogen dioxide and formaldehyde weren't detected in any of the zones. It was observed there was about 50% distribution of pollutants from the smoking zones to the smoke-free zones. The smoking ban effect on the occupancy levels was initially reduced by 16%, but based on other similar studies this transition period will be followed by an increase in the occupancy. Passive smoking and associated risks were significantly reduced but not totally eliminated, indicating the need for stronger enforcement or complete partition between smoking and non-smoking areas.
Collapse
Affiliation(s)
- Sophia S Konstantopoulou
- Center for Applied Research, Centre of Health and Hygiene, Industrial Hygiene Laboratory of the Hellenic Institute for Occupational Health and Safety (ELINYAE), Greece.
| | | | | | | |
Collapse
|
49
|
Lemos M, Mohallen SV, Macchione M, Dolhnikoff M, Assunção JV, Godleski JJ, Saldiva PHN. Chronic exposure to urban air pollution induces structural alterations in murine pulmonary and coronary arteries. Inhal Toxicol 2014; 18:247-53. [PMID: 22397321 DOI: 10.1080/08958370500444247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Epidemiological studies have shown that air pollution increases cardiovascular morbidity and mortality. Objective markers of cardiovascular risk have also been associated with increases in ambient pollution. This study was designed to assess whether prolonged exposure to ambient levels of air pollution may induce structural alterations of pulmonary and cardiac vessels. Mice were chronically exposed to ambient levels of air pollution in downtown São Paulo, Brazil. The animals were maintained in exposure chambers, 24 h/day, 7 days/wk, during 4 mo. One group was exposed to ambient air, and the control group was exposed to filtered air. Morphometric measurements of the ratio between the lumen and wall (L/W) areas were performed on transverse sections of renal, pulmonary, and coronary arteries. As expected, lumen/wall ratios increased with arterial caliber (p < .001). A significant decrease of L/W with exposure to air pollution was detected in pulmonary (p = .03) and coronary (p = .021) arteries, whereas no effects of air pollution were observed in renal vessels. Our results indicate that animals chronically exposed to ambient air pollution develop a significant thickening of the arterial wall in the coronary and pulmonary circulation.
Collapse
Affiliation(s)
- Miriam Lemos
- Department of Pathology, School of Medicine, University of São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Lippmann M. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit Rev Toxicol 2014; 44:299-347. [PMID: 24494826 DOI: 10.3109/10408444.2013.861796] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.
Collapse
Affiliation(s)
- Morton Lippmann
- Department of Environmental Medicine, New York University School of Medicine , Tuxedo, NY , USA
| |
Collapse
|