1
|
Vandal M, Institoris A, Reveret L, Korin B, Gunn C, Hirai S, Jiang Y, Lee S, Lee J, Bourassa P, Mishra RC, Peringod G, Arellano F, Belzil C, Tremblay C, Hashem M, Gorzo K, Elias E, Yao J, Meilandt B, Foreman O, Roose-Girma M, Shin S, Muruve D, Nicola W, Körbelin J, Dunn JF, Chen W, Park SK, Braun AP, Bennett DA, Gordon GRJ, Calon F, Shaw AS, Nguyen MD. Loss of endothelial CD2AP causes sex-dependent cerebrovascular dysfunction. Neuron 2025; 113:876-895.e11. [PMID: 39892386 DOI: 10.1016/j.neuron.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Polymorphisms in CD2-associated protein (CD2AP) predispose to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. Here, we show that loss of CD2AP in cerebral blood vessels is associated with cognitive decline in AD subjects and that genetic downregulation of CD2AP in brain vascular endothelial cells impairs memory function in male mice. Animals with reduced brain endothelial CD2AP display altered blood flow regulation at rest and during neurovascular coupling, defects in mural cell activity, and an abnormal vascular sex-dependent response to Aβ. Antagonizing endothelin-1 receptor A signaling partly rescues the vascular impairments, but only in male mice. Treatment of CD2AP mutant mice with reelin glycoprotein that mitigates the effects of CD2AP loss function via ApoER2 increases resting cerebral blood flow and even protects male mice against the noxious effect of Aβ. Thus, endothelial CD2AP plays critical roles in cerebrovascular functions and represents a novel target for sex-specific treatment in AD.
Collapse
Affiliation(s)
- Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Adam Institoris
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Louise Reveret
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Colin Gunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sotaro Hirai
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sukyoung Lee
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Jiyeon Lee
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Govind Peringod
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Faye Arellano
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Camille Belzil
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Cyntia Tremblay
- Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mada Hashem
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kelsea Gorzo
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Esteban Elias
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Bill Meilandt
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Meron Roose-Girma
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Steven Shin
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Daniel Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wilten Nicola
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jeff F Dunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wayne Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sang-Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - David A Bennett
- Rush Alzheimer's disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Grant R J Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada.
| | - Andrey S Shaw
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada.
| |
Collapse
|
2
|
Gong S, Li Y, Yan K, Shi Z, Leng J, Bao Y, Ning K. The Crosstalk Between Endothelial Cells, Smooth Muscle Cells, and Macrophages in Atherosclerosis. Int J Mol Sci 2025; 26:1457. [PMID: 40003923 PMCID: PMC11855868 DOI: 10.3390/ijms26041457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease closely tied to cellular metabolism. Recent genome-wide association study data have suggested the significant roles of endothelial cells, smooth muscle cells, and macrophages in the regression and exacerbation of AS. However, the impact of cellular crosstalk and cellular metabolic derangements on disease progression in AS is vaguely understood. In this review, we analyze the roles of the three cell types in AS. We also summarize the crosstalk between the two of them, and the associated molecules and consequences involved. In addition, we emphasize potential therapeutic targets and highlight the importance of the three-cell co-culture model and extracellular vesicles in AS-related research, providing ideas for future studies.
Collapse
Affiliation(s)
- Sihe Gong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yanni Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Kaijie Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Zhonghong Shi
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jing Leng
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China;
| | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
3
|
Weinstein N, Carlsen J, Schulz S, Stapleton T, Henriksen HH, Travnik E, Johansson PI. A Lifelike guided journey through the pathophysiology of pulmonary hypertension-from measured metabolites to the mechanism of action of drugs. Front Cardiovasc Med 2024; 11:1341145. [PMID: 38845688 PMCID: PMC11153715 DOI: 10.3389/fcvm.2024.1341145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pulmonary hypertension (PH) is a pathological condition that affects approximately 1% of the population. The prognosis for many patients is poor, even after treatment. Our knowledge about the pathophysiological mechanisms that cause or are involved in the progression of PH is incomplete. Additionally, the mechanism of action of many drugs used to treat pulmonary hypertension, including sotatercept, requires elucidation. Methods Using our graph-powered knowledge mining software Lifelike in combination with a very small patient metabolite data set, we demonstrate how we derive detailed mechanistic hypotheses on the mechanisms of PH pathophysiology and clinical drugs. Results In PH patients, the concentration of hypoxanthine, 12(S)-HETE, glutamic acid, and sphingosine 1 phosphate is significantly higher, while the concentration of L-arginine and L-histidine is lower than in healthy controls. Using the graph-based data analysis, gene ontology, and semantic association capabilities of Lifelike, led us to connect the differentially expressed metabolites with G-protein signaling and SRC. Then, we associated SRC with IL6 signaling. Subsequently, we found associations that connect SRC, and IL6 to activin and BMP signaling. Lastly, we analyzed the mechanisms of action of several existing and novel pharmacological treatments for PH. Lifelike elucidated the interplay between G-protein, IL6, activin, and BMP signaling. Those pathways regulate hallmark pathophysiological processes of PH, including vasoconstriction, endothelial barrier function, cell proliferation, and apoptosis. Discussion The results highlight the importance of SRC, ERK1, AKT, and MLC activity in PH. The molecular pathways affected by existing and novel treatments for PH also converge on these molecules. Importantly, sotatercept affects SRC, ERK1, AKT, and MLC simultaneously. The present study shows the power of mining knowledge graphs using Lifelike's diverse set of data analytics functionalities for developing knowledge-driven hypotheses on PH pathophysiological and drug mechanisms and their interactions. We believe that Lifelike and our presented approach will be valuable for future mechanistic studies of PH, other diseases, and drugs.
Collapse
Affiliation(s)
- Nathan Weinstein
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørn Carlsen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Schulz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy Stapleton
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne H. Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Evelyn Travnik
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pär Ingemar Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Immunolocalization of zinc transporters and metallothioneins reveals links to microvascular morphology and functions. Histochem Cell Biol 2022; 158:485-496. [PMID: 35849202 PMCID: PMC9630201 DOI: 10.1007/s00418-022-02138-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Zinc homeostasis is vital to immune and other organ system functions, yet over a quarter of the world’s population is zinc deficient. Abnormal zinc transport or storage protein expression has been linked to diseases, such as cancer and chronic obstructive pulmonary disorder. Although recent studies indicate a role for zinc regulation in vascular functions and diseases, detailed knowledge of the mechanisms involved remains unknown. This study aimed to assess protein expression and localization of zinc transporters of the SLC39A/ZIP family (ZIPs) and metallothioneins (MTs) in human subcutaneous microvessels and to relate them to morphological features and expression of function-related molecules in the microvasculature. Microvessels in paraffin biopsies of subcutaneous adipose tissues from 14 patients undergoing hernia reconstruction surgery were analysed for 9 ZIPs and 3 MT proteins by MQCM (multifluorescence quantitative confocal microscopy). Zinc regulation proteins detected in human microvasculature included ZIP1, ZIP2, ZIP8, ZIP10, ZIP12, ZIP14 and MT1-3, which showed differential localization among endothelial and smooth muscle cells. ZIP1, ZIP2, ZIP12 and MT3 showed significantly (p < 0.05) increased immunoreactivities, in association with increased microvascular muscularization, and upregulated ET-1, α-SMA and the active form of p38 MAPK (Thr180/Tyr182 phosphorylated, p38 MAPK-P). These findings support roles of the zinc regulation system in microvascular physiology and diseases.
Collapse
|
5
|
Abstract
The development of pulmonary hypertension (PH) is common and has adverse prognostic implications in patients with heart failure due to left heart disease (LHD), and thus far, there are no known treatments specifically for PH-LHD, also known as group 2 PH. Diagnostic thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and, therefore, present a challenge for basic and translational scientists actively investigating PH-LHD in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, although pulmonary vascular remodeling is thought to result from (1) increased wall stress due to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk factors. To ultimately be able to modify disease, either by prevention or treatment, a better understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications (including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here, we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential biological mechanisms underlying this disorder, and pressing questions yet to be answered about the pathobiology of PH-LHD.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiology, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (J.H.H.)
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.)
| |
Collapse
|
6
|
Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020; 27:1248-1262. [PMID: 32865029 PMCID: PMC7470050 DOI: 10.1080/10717544.2020.1809559] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy suppresses and destroys tumors by re-activating and sustaining the tumor-immune process, and thus improving the immune response of the body to the tumor. Immunotherapeutic strategies are showing promising results in pre-clinical and clinical trials, however, tumor microenvironment (TME) is extremely immunosuppressive. Thus, their translation from labs to clinics still faces issues. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. The combination of nanotechnology with immunotherapy potentiates the effectiveness of immunotherapy by increasing delivery and retention, and by reducing immunomodulation toxicity. This review aims to highlight the barriers offered by TME for hindering the efficiency of immunotherapy for cancer treatment. Next, we highlight various nano-carriers based strategies for modulating those barriers for achieving better therapeutic efficacy of cancer immunotherapy with higher safety. This review will add to the body of scientific knowledge and will be a good reference material for academia and industries.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wei Zhang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhen Wang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Ozen G, Benyahia C, Amgoud Y, Patel J, Abdelazeem H, Bouhadoun A, Yung S, Li F, Mahieddine Y, Silverstein AM, Castier Y, Cazes A, Longrois D, Clapp LH, Norel X. Interaction between PGI2 and ET-1 pathways in vascular smooth muscle from Group-III pulmonary hypertension patients. Prostaglandins Other Lipid Mediat 2020; 146:106388. [DOI: 10.1016/j.prostaglandins.2019.106388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
|
8
|
Loss of secretin results in systemic and pulmonary hypertension with cardiopulmonary pathologies in mice. Sci Rep 2019; 9:14211. [PMID: 31578376 PMCID: PMC6775067 DOI: 10.1038/s41598-019-50634-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
More than 1 billion people globally are suffering from hypertension, which is a long-term incurable medical condition that can further lead to dangerous complications and death if left untreated. In earlier studies, the brain-gut peptide secretin (SCT) was found to be able to control blood pressure by its cardiovascular and pulmonary effects. For example, serum SCT in patients with congestive heart failure was one-third of the normal level. These observations strongly suggest that SCT has a causal role in blood pressure control, and in this report, we used constitutive SCT knockout (SCT−/−) mice and control C57BL/6N mice to investigate differences in the morphology, function, underlying mechanisms and response to SCT treatment. We found that SCT−/− mice suffer from systemic and pulmonary hypertension with increased fibrosis in the lungs and heart. Small airway remodelling and pulmonary inflammation were also found in SCT−/− mice. Serum NO and VEGF levels were reduced and plasma aldosterone levels were increased in SCT−/− mice. Elevated cardiac aldosterone and decreased VEGF in the lungs were observed in the SCT−/− mice. More interestingly, SCT replacement in SCT−/− mice could prevent the development of heart and lung pathologies compared to the untreated group. Taken together, we comprehensively demonstrated the critical role of SCT in the cardiovascular and pulmonary systems and provide new insight into the potential role of SCT in the pathological development of cardiopulmonary and cardiovascular diseases.
Collapse
|
9
|
Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 2017; 219:728-756. [PMID: 27381367 DOI: 10.1111/apha.12749] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) serves to optimize ventilation-perfusion matching in focal hypoxia and thereby enhances pulmonary gas exchange. During global hypoxia, however, HPV induces general pulmonary vasoconstriction, which may lead to pulmonary hypertension (PH), impaired exercise capacity, right-heart failure and pulmonary oedema at high altitude. In chronic hypoxia, generalized HPV together with hypoxic pulmonary arterial remodelling, contribute to the development of PH. The present article reviews the principal pathways in the in vivo modulation of HPV, hypoxic pulmonary arterial remodelling and PH with primary focus on the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways. In summary, endothelin-1 and thromboxane A2 may enhance, whereas nitric oxide and prostacyclin may moderate, HPV as well as hypoxic pulmonary arterial remodelling and PH. The production of prostacyclin seems to be coupled primarily to cyclooxygenase-1 in acute hypoxia, but to cyclooxygenase-2 in chronic hypoxia. The potential role of adenine nucleotides in modulating HPV is unclear, but warrants further study. Additional modulators of the pulmonary vascular responses to hypoxia may include angiotensin II, histamine, serotonin/5-hydroxytryptamine, leukotrienes and epoxyeicosatrienoic acids. Drugs targeting these pathways may reduce acute and/or chronic hypoxic PH. Endothelin receptor antagonists and phosphodiesterase-5 inhibitors may additionally improve exercise capacity in hypoxia. Importantly, the modulation of the pulmonary vascular responses to hypoxia varies between species and individuals, with hypoxic duration and age. The review also define how drugs targeting the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways may improve pulmonary haemodynamics, but also impair pulmonary gas exchange by interference with HPV in chronic lung diseases.
Collapse
Affiliation(s)
- D. Kylhammar
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| | - G. Rådegran
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| |
Collapse
|
10
|
Huetsch JC, Suresh K, Bernier M, Shimoda LA. Update on novel targets and potential treatment avenues in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L811-L831. [PMID: 27591245 PMCID: PMC5130539 DOI: 10.1152/ajplung.00302.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition marked by a combination of constriction and remodeling within the pulmonary vasculature. It remains a disease without a cure, as current treatments were developed with a focus on vasodilatory properties but do not reverse the remodeling component. Numerous recent advances have been made in the understanding of cellular processes that drive pathologic remodeling in each layer of the vessel wall as well as the accompanying maladaptive changes in the right ventricle. In particular, the past few years have yielded much improved insight into the pathways that contribute to altered metabolism, mitochondrial function, and reactive oxygen species signaling and how these pathways promote the proproliferative, promigratory, and antiapoptotic phenotype of the vasculature during PH. Additionally, there have been significant advances in numerous other pathways linked to PH pathogenesis, such as sex hormones and perivascular inflammation. Novel insights into cellular pathology have suggested new avenues for the development of both biomarkers and therapies that will hopefully bring us closer to the elusive goal: a therapy leading to reversal of disease.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Meghan Bernier
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
11
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
12
|
Kim CH, Jae SY, Johnson BD. Pulmonary Hypertension and Cardiopulmonary Exercise in Heart Failure. ACTA ACUST UNITED AC 2015; 1:143-51. [PMID: 26389080 PMCID: PMC4315347 DOI: 10.1159/000360964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In heart failure (HF), pulmonary hypertension (PH) is initially associated with a rise in the left ventricular filling pressure. PH is defined by pulmonary hemodynamic measurements including pulmonary capillary wedge pressure, mean pulmonary arterial pressure and pulmonary vascular resistance. Eventually, PH in HF may become more of a reactive process. Although the mechanism of the reactive PH development is not clearly understood, vascular dysfunction induced by remodeling, vasoactive substances and genetic variation appear to contribute significantly to this form of PH. Noninvasive cardiopulmonary exercise testing has been extensively utilized to assess disease severity in HF patients. It provides integrated information that is dependent on cardiopulmonary hemodynamics, lung mechanics, breathing pattern and strategy. In this review, we will discuss the mechanisms of PH development in HF and how noninvasive gas exchange measures obtained with submaximal exercise are influenced by PH in this population.
Collapse
Affiliation(s)
- Chul-Ho Kim
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minn., USA
| | - Sae Young Jae
- The Health and Integrative Physiology Laboratory, University of Seoul, Seoul, Korea
| | - Bruce D Johnson
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minn., USA
| |
Collapse
|
13
|
Yao C, Yu J, Taylor L, Polgar P, McComb ME, Costello CE. Protein Expression by Human Pulmonary Artery Smooth Muscle Cells Containing a BMPR2 Mutation and the Action of ET-1 as Determined by Proteomic Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 378:347-359. [PMID: 25866469 PMCID: PMC4387548 DOI: 10.1016/j.ijms.2014.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and remodeling. Increase in the population of vascular smooth muscle cells is among the key events contributing to the remodeling. Endothelin-1 (ET-1), a potent vasoconstrictor, is linked to the etiology and progression of PAH. Here we analyze changes in protein expressions in response to ET-1 in pulmonary arterial smooth muscle cells (PASMC) from a healthy Control (non-PAH) and a PAH subject presenting a bone morphogenetic protein type II receptor (BMPR2) mutation with exon 1-8 deletion. Protein expressions were analyzed by proteomic mass spectrometry using label-free quantitation and the correlations were subjected to Ingenuity™ Pathway Analysis. The results point to eIF2/mTOR/p70S6K, RhoA/actin cytoskeleton/integrin and protein unbiquitination as canonical pathways whose protein expressions increase with the development of PAH. These pathways have an intimal function in the PAH-related physiology of smooth muscle proliferation, apoptosis, contraction and cellular stress. Exposure of the cells to ET-1 further increases protein expression within these pathways. Thus our results show changes in signaling pathways as a consequence of PAH and the effect of ET-1 interference on Control and PAH-affected cells.
Collapse
Affiliation(s)
- Chunxiang Yao
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 USA
| | - Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Linda Taylor
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Peter Polgar
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Mark E. McComb
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 USA
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| |
Collapse
|
14
|
Kim CH, Fuglestad MA, Richert MLC, Shen WK, Johnson BD. Influence of lung volume, fluid and capillary recruitment during positional changes and exercise on thoracic impedance in heart failure. Respir Physiol Neurobiol 2014; 202:75-81. [PMID: 25128641 DOI: 10.1016/j.resp.2014.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/21/2014] [Accepted: 08/07/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED It is unclear how dynamic changes in pulmonary-capillary blood volume (Vc), alveolar lung volume (derived from end-inspiratory lung volume, EILV) and interstitial fluid (ratio of alveolar capillary membrane conductance and pulmonary capillary blood volume, Dm/Vc) influence lung impedance (Z(T)). The purpose of this study was to investigate if positional change and exercise result in increased EILV, Vc and/or lung interstitial fluid, and if Z(T) tracks these variables. METHODS 12 heart failure (HF) patients underwent measurements (Z(T), EILV, Vc/Dm) at rest in the upright and supine positions, during exercise and into recovery. Inspiratory capacity was obtained to provide consistent measures of EILV while assessing Z(T). RESULTS Z(T) increased with lung volume during slow vital capacity maneuvers (p<0.05). Positional change (upright→supine) resulted in an increased Z(T) (p<0.01), while Vc increased and EILV and Dm/Vc decreased (p<0.05). Moreover, during exercise Vc and EILV increased and Dm/Vc decreased (p<0.05), whereas, Z(T) did not change significantly (p>0.05). CONCLUSION Impedance appears sensitive to changes in lung volume and body position which appear to generally overwhelm small acute changes in lung fluid when assed dynamically at rest or during exercise.
Collapse
Affiliation(s)
- Chul-Ho Kim
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States.
| | - Matthew A Fuglestad
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | | | - Win K Shen
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Bruce D Johnson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
16
|
Seidelmann SB, Lighthouse JK, Greif DM. Development and pathologies of the arterial wall. Cell Mol Life Sci 2014; 71:1977-99. [PMID: 24071897 PMCID: PMC11113178 DOI: 10.1007/s00018-013-1478-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/13/2023]
Abstract
Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/metabolism
- Animals
- Arteries/growth & development
- Arteries/metabolism
- Arteries/pathology
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cell Differentiation
- Cell Lineage/genetics
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression Regulation, Developmental
- Humans
- Morphogenesis/genetics
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
Collapse
Affiliation(s)
- Sara B. Seidelmann
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| | - Janet K. Lighthouse
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| | - Daniel M. Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| |
Collapse
|
17
|
Son YK, Hong DH, Choi TH, Choi SW, Shin DH, Kim SJ, Jung ID, Park YM, Jung WK, Kim DJ, Choi IW, Park WS. The inhibitory effect of BIM (I) on L-type Ca²⁺ channels in rat ventricular cells. Biochem Biophys Res Commun 2012; 423:110-5. [PMID: 22634012 DOI: 10.1016/j.bbrc.2012.05.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 02/04/2023]
Abstract
We investigated the effect of a specific protein kinase C (PKC) inhibitor, bisindolylmaleimide I [BIM (I)], on L-type Ca(2+) channels in rat ventricular myocytes. BIM (I) alone inhibited the L-type Ca(2+) current in a concentration-dependent manner, with a K(d) value of 3.31 ± 0.25 μM, and a Hill coefficient of 2.34 ± 0.23. Inhibition was immediate after applying BIM (I) in the bath solution and then it partially washed out. The steady-state activation curve was not altered by applying 3μ M BIM (I), but the steady-state inactivation curve shifted to a more negative potential with a change in the slope factor. Other PKC inhibitors, PKC-IP and chelerythrine, showed no significant effects either on the L-type Ca(2+) current or on the inhibitory effect of BIM (I) on the L-type Ca(2+) current. The results suggest that the inhibitory effect of BIM (I) on the L-type Ca(2+) current is independent of the PKC pathway. Thus, our results should be considered in studies using BIM (I) to inhibit PKC activity and ion channel modulation.
Collapse
Affiliation(s)
- Youn Kyoung Son
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med 2012; 52:1970-86. [PMID: 22401856 PMCID: PMC3856647 DOI: 10.1016/j.freeradbiomed.2012.02.041] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/23/2012] [Accepted: 02/25/2012] [Indexed: 02/07/2023]
Abstract
Pulmonary vascular disease can be defined as either a disease affecting the pulmonary capillaries and pulmonary arterioles, termed pulmonary arterial hypertension, or a disease affecting the left ventricle, called pulmonary venous hypertension. Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary circulation characterized by endothelial dysfunction, as well as intimal and smooth muscle proliferation. Progressive increases in pulmonary vascular resistance and pressure impair the performance of the right ventricle, resulting in declining cardiac output, reduced exercise capacity, right-heart failure, and ultimately death. While the primary and heritable forms of the disease are thought to affect over 5000 patients in the United States, the disease can occur secondary to congenital heart disease, most advanced lung diseases, and many systemic diseases. Multiple studies implicate oxidative stress in the development of PAH. Further, this oxidative stress has been shown to be associated with alterations in reactive oxygen species (ROS), reactive nitrogen species (RNS), and nitric oxide (NO) signaling pathways, whereby bioavailable NO is decreased and ROS and RNS production are increased. Many canonical ROS and NO signaling pathways are simultaneously disrupted in PAH, with increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and xanthine oxidoreductase, uncoupling of endothelial NO synthase (eNOS), and reduction in mitochondrial number, as well as impaired mitochondrial function. Upstream dysregulation of ROS/NO redox homeostasis impairs vascular tone and contributes to the pathological activation of antiapoptotic and mitogenic pathways, leading to cell proliferation and obliteration of the vasculature. This paper will review the available data regarding the role of oxidative and nitrosative stress and endothelial dysfunction in the pathophysiology of pulmonary hypertension, and provide a description of targeted therapies for this disease.
Collapse
Affiliation(s)
- Diana M. Tabima
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Sheila Frizzell
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Mark T. Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| |
Collapse
|
19
|
Tan X, Chai J, Bi SC, Li JJ, Li WW, Zhou JY. Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension. Vet J 2012; 193:420-5. [PMID: 22377328 DOI: 10.1016/j.tvjl.2012.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/11/2012] [Accepted: 01/18/2012] [Indexed: 11/15/2022]
Abstract
Medial hypertrophy of pulmonary arterioles during pulmonary arterial hypertension (PAH) in humans is associated with enhanced proliferation of smooth muscle cells (SMCs). Elevated matrix metalloproteinase (MMP)-2 has been found in pulmonary artery SMCs (PA-SMCs) in humans with idiopathic PAH, leading to the hypothesis that MMP-2 contributes to the proliferation and migration of vascular SMCs in the pathogenesis of PAH. Rapidly growing meat-type (broiler) chickens provide a model of spontaneous PAH. The present study was conducted to determine whether MMP-2 is involved in the medial hypertrophy of pulmonary arterioles in this model. Cultured PA-SMCs from normal birds were used to evaluate the effect of MMPs on cell proliferation. Gelatin zymography showed that endothelin (ET)-1-induced proliferation of PA-SMCs was concomitant with increased pro- and active MMP-2 production. Reverse transcription PCR demonstrated upregulation of MMP-2 mRNA. However, PA-SMC proliferation was inhibited by the MMP inhibitors doxycycline and cis-9-octadecenoyl-N-hydroxylamide. In vivo experiments revealed a significant increase of MMP-2 expression in hypertrophied pulmonary arterioles of PAH broiler chickens, which was positively correlated with wall thickness and medial hypertrophy. MMP-2 may contribute to medial hypertrophy in pulmonary arterioles during PAH in broiler chickens by enhancing the proliferation of vascular SMCs.
Collapse
Affiliation(s)
- Xun Tan
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
20
|
Son YK, Hong DH, Kim DJ, Firth AL, Park WS. Direct effect of protein kinase C inhibitors on cardiovascular ion channels. BMB Rep 2011; 44:559-65. [DOI: 10.5483/bmbrep.2011.44.9.559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Lim KA, Kim KC, Cho MS, Lee BE, Kim HS, Hong YM. Gene expression of endothelin-1 and endothelin receptor a on monocrotaline-induced pulmonary hypertension in rats after bosentan treatment. Korean Circ J 2010; 40:459-64. [PMID: 20967148 PMCID: PMC2957645 DOI: 10.4070/kcj.2010.40.9.459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 03/09/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Endothelin (ET)-1, a potent endothelium-derived vasoconstrictor peptide, has a potential pathophysiologic role in pulmonary hypertension. Bosentan, a dual ET receptor (ET(A)/ET(B)) antagonist, is efficacious in treatment of pulmonary hypertension. The objectives of this study were to investigate the expression of ET-1 and ET receptor A (ERA) genes and to evaluate the effect of bosentan in monocrotaline (MCT)-induced pulmonary hypertension. MATERIALS AND METHODS Four-week-old male Sprague-Dawley rats were treated as follows: control (n=36), subcutaneous (sc) injection of saline; MCT (n=36), sc injection of MCT (60 mg/kg); and bosentan (n=36), sc injection of MCT (60 mg/kg) plus 25 mg/kg/day bosentan orally. RESULTS Serum ET-1 concentrations in the MCT group were higher than the control group on day 28 and 42. Quantitative analysis of peripheral pulmonary arteries revealed that the increase in medial wall thickness after MCT injection was significantly attenuated in the bosentan group on day 28 and 42. In addition, the increase in the number of intra-acinar muscular arteries after MCT injection was reduced by bosentan on day 14, 28 and 42. The levels of ET-1 and ERA gene expression were significantly increased in the MCT group compared with control group on day 5, and bosentan decreased the expression of ET-1 on day 5. CONCLUSION ET-1 contributes to the progression of cardiopulmonary pathology in rats with MCT-induced pulmonary hypertension. Administration of bosentan reduced ET-1 gene expression in MCT-induced pulmonary hypertension in rats.
Collapse
Affiliation(s)
- Kyoung Ah Lim
- Department of Pediatrics, College of Medicine, CHA University, Pocheon, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Deng H, Hershenson MB, Lei J, Anyanwu AC, Pinsky DJ, Bentley JK. Pulmonary artery smooth muscle hypertrophy: roles of glycogen synthase kinase-3beta and p70 ribosomal S6 kinase. Am J Physiol Lung Cell Mol Physiol 2010; 298:L793-803. [PMID: 20190034 DOI: 10.1152/ajplung.00108.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Increased medial arterial thickness is a structural change in pulmonary arterial hypertension (PAH). The role of smooth muscle hypertrophy in this process has not been well studied. Bone morphogenetic proteins (BMPs), transforming growth factor (TGF)-beta1, serotonin (or 5-hydroxytryptamine; 5-HT), and endothelin (ET)-1 have been implicated in PAH pathogenesis. We examined the effect of these mediators on human pulmonary artery smooth muscle cell size, contractile protein expression, and contractile function, as well on the roles of glycogen synthase kinase (GSK)-3beta and p70 ribosomal S6 kinase (p70S6K), two proteins involved in translational control, in this process. Unlike epidermal growth factor, BMP-4, TGF-beta1, 5-HT, and ET-1 each increased smooth muscle cell size, contractile protein expression, fractional cell shortening, and GSK-3beta phosphorylation. GSK-3beta inhibition by lithium or SB-216763 increased cell size, protein synthesis, and contractile protein expression. Expression of a non-phosphorylatable GSK-3beta mutant blocked BMP-4-, TGF-beta1-, 5-HT-, and ET-1-induced cell size enlargement, suggesting that GSK-3beta phosphorylation is required and sufficient for cellular hypertrophy. However, BMP-4, TGF-beta1, 5-HT, and ET-1 stimulation was accompanied by an increase in serum response factor transcriptional activation but not eIF2 phosphorylation, suggesting that GSK-3beta-mediated hypertrophy occurs via transcriptional, not translational, control. Finally, BMP-4, TGF-beta1, 5-HT, and ET-1 treatment induced phosphorylation of p70S6K and ribosomal protein S6, and siRNAs against p70S6K and S6 blocked the hypertrophic response. We conclude that mediators implicated in the pathogenesis of PAH induce pulmonary arterial smooth muscle hypertrophy. Identification of the signaling pathways regulating vascular smooth muscle hypertrophy may define new therapeutic targets for PAH.
Collapse
Affiliation(s)
- Huan Deng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109-5688, USA
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Schroll S, Arzt M, Sebah D, Stoelcker B, Luchner A, Budweiser S, Blumberg FC, Pfeifer M. Effects of selective and unselective endothelin‐receptor antagonists on prostacyclin synthase gene expression in experimental pulmonary hypertension. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 68:270-6. [DOI: 10.1080/00365510701673375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Ghofrani HA, Barst RJ, Benza RL, Champion HC, Fagan KA, Grimminger F, Humbert M, Simonneau G, Stewart DJ, Ventura C, Rubin LJ. Future perspectives for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54:S108-S117. [PMID: 19555854 PMCID: PMC4883573 DOI: 10.1016/j.jacc.2009.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/16/2009] [Indexed: 02/02/2023]
Abstract
Over the past 2 decades, pulmonary arterial hypertension has evolved from a uniformly fatal condition to a chronic, manageable disease in many cases, the result of unparalleled development of new therapies and advances in early diagnosis. However, none of the currently available therapies is curative, so the search for new treatment strategies continues. With a deeper understanding of the genetics and the molecular mechanisms of pulmonary vascular disorders, we are now at the threshold of entering a new therapeutic era. Our working group addressed what can be expected in the near future. The topics span the understanding of genetic variations, novel antiproliferative treatments, the role of stem cells, the right ventricle as a therapeutic target, and strategies and challenges for the translation of novel experimental findings into clinical practice.
Collapse
Affiliation(s)
- Hossein A Ghofrani
- University of Giessen Lung Center, University Hospital Giessen and Marburg GmbH, Giessen, Germany; Medical Clinic IV and V, University Hospital Giessen and Marburg GmbH, Giessen, Germany.
| | | | - Raymond L Benza
- Drexel University College of Medicine, Section of Heart Failure, Transplantation, and Pulmonary Hypertension Program, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Hunter C Champion
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland
| | - Karen A Fagan
- Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, Alabama
| | - Friedrich Grimminger
- University of Giessen Lung Center, University Hospital Giessen and Marburg GmbH, Giessen, Germany; Medical Clinic IV and V, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Marc Humbert
- Université Paris-Sud, Service de Pneumologie, Hôpital Antoine-Béclère, Clamart, France
| | - Gérald Simonneau
- Université Paris-Sud, Service de Pneumologie, Hôpital Antoine-Béclère, Clamart, France
| | | | - Carlo Ventura
- University of Bologna, Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Institute of Cardiology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Lewis J Rubin
- University of California, San Diego, Medical Center, La Jolla, California
| |
Collapse
|
27
|
Davie NJ, Schermuly RT, Weissmann N, Grimminger F, Ghofrani HA. The science of endothelin-1 and endothelin receptor antagonists in the management of pulmonary arterial hypertension: current understanding and future studies. Eur J Clin Invest 2009; 39 Suppl 2:38-49. [PMID: 19335746 DOI: 10.1111/j.1365-2362.2009.02120.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pathological vascular remodelling is a key contributor to the symptomatology of pulmonary arterial hypertension (PAH), and reversing this process may offer the best hope for improving this debilitating condition. The vascular remodelling process is believed to be due to endothelial cell dysfunction and to involve altered production of endothelial cell-derived vasoactive mediators. The observation that circulating plasma levels of the vasoactive peptide endothelin (ET)-1 are raised in patients with PAH, and that ET-1 production is increased in the pulmonary tissue of affected individuals, makes it a particularly interesting target for a therapeutic intervention in PAH. Clinical trials with ET receptor antagonists (ETRAs) show that they provide symptomatic benefit in patients with PAH, thereby proving the clinical relevance of the ET system as a therapeutic target. In this paper, we review the role of ET-1 together with the available data on the roles of the specific ET receptors and ETRAs in PAH. In particular, we discuss the possible role of ET receptor selectivity in the vascular remodelling process in PAH and whether selective ET(A) or nonselective ET(A)/ET(B) blockade offers the greatest potential to improve symptoms and alter the clinical course of the disease.
Collapse
|
28
|
Scriabine A, Rabin DU. New Developments in the Therapy of Pulmonary Fibrosis. ADVANCES IN PHARMACOLOGY 2009; 57:419-64. [DOI: 10.1016/s1054-3589(08)57011-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Le Brocq M, Leslie SJ, Milliken P, Megson IL. Endothelial dysfunction: from molecular mechanisms to measurement, clinical implications, and therapeutic opportunities. Antioxid Redox Signal 2008; 10:1631-74. [PMID: 18598143 DOI: 10.1089/ars.2007.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction has been implicated as a key factor in the development of a wide range of cardiovascular diseases, but its definition and mechanisms vary greatly between different disease processes. This review combines evidence from cell-culture experiments, in vitro and in vivo animal models, and clinical studies to identify the variety of mechanisms involved in endothelial dysfunction in its broadest sense. Several prominent disease states, including hypertension, heart failure, and atherosclerosis, are used to illustrate the different manifestations of endothelial dysfunction and to establish its clinical implications in the context of the range of mechanisms involved in its development. The size of the literature relating to this subject precludes a comprehensive survey; this review aims to cover the key elements of endothelial dysfunction in cardiovascular disease and to highlight the importance of the process across many different conditions.
Collapse
Affiliation(s)
- Michelle Le Brocq
- Health Faculty, UHI Millennium Institute, Inverness, University of Edinburgh, Edinburgh, Scotland
| | | | | | | |
Collapse
|
30
|
Rondelet B, Kerbaul F, Vivian GF, Hubloue I, Huez S, Fesler P, Remmelink M, Brimiouille S, Salmon I, Naeije R. Sitaxsentan for the prevention of experimental shunt-induced pulmonary hypertension. Pediatr Res 2007; 61:284-8. [PMID: 17314684 DOI: 10.1203/pdr.0b013e318030d169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously reported on the partial prevention of experimental shunt-induced pulmonary arterial hypertension (PAH) by the nonselective endothelin (ET) ET-A/ET-B receptor antagonist bosentan. As the respective roles of the ET-A and ET-B receptor signaling in the pathobiology of the disease remain undefined, we investigated the effects of selective ET-A receptor blockade by sitaxsentan in the same early stage PAH model. Twenty-one 3-wk-old piglets were randomized to placebo or sitaxsentan therapy (1.5 mg/kg/d), after anastomosis of the left subclavian artery to the pulmonary arterial trunk or after a sham operation. Three months later, the animals underwent a hemodynamic evaluation, followed by pulmonary tissue sampling for morphometry and real-time-quantitative-PCR for ET-1, angiopoietin-1, and bone morphogenetic receptor (BMPR) signaling molecules. Three months of left to right shunting induced an increase in pulmonary vascular resistance (PVR) and medial thickness, an overexpression of ET-1, ET-B receptor, and angiopoietin-1, and a decreased expression of BMPR-2 and BMPR-1A. Pretreatment with sitaxsentan prevented shunt-induced increase in PVR and decreased medial thickness by 64%. Sitaxsentan therapy completely prevented the decreased expression of BMPR-2 and limited the overexpression of ET-1, ET-B and angiopoietin-1, and the decreased expression of BMPR-1A. In conclusion, selective ET-A receptor blockade partially prevents shunt-induced PAH.
Collapse
Affiliation(s)
- Benoit Rondelet
- Laboratory of Physiology, Department of Cardiac Surgery, Hôpital Erasme, Université Libre de B-1070 Bruxelles, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jankov RP, Kantores C, Belcastro R, Yi M, Tanswell AK. Endothelin-1 inhibits apoptosis of pulmonary arterial smooth muscle in the neonatal rat. Pediatr Res 2006; 60:245-51. [PMID: 16857764 DOI: 10.1203/01.pdr.0000233056.37254.0b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vascular wall remodeling in pulmonary hypertension is contributed to by an aberration in the normal balance between proliferation and apoptosis of smooth muscle. We observed that endothelin (ET)-1 is a critical mediator of vascular remodeling in neonatal rats chronically exposed to 60% O(2), but has no direct proliferative effects on cultured neonatal rat pulmonary artery smooth muscle cells (PASMCs). These findings led us to hypothesize that ET-1 may modulate remodeling by inhibiting apoptosis of smooth muscle. ET-1 (0.1 microM) was found to significantly attenuate both Paclitaxel- and serum deprivation-induced PASMC apoptosis, likely through stimulation of the ET(A) receptor (ET(A)R). ET-1 also prevented Paclitaxel-induced up-regulation of pro-apoptotic Bax and cleaved (activated) caspase-3. In rat pups exposed from birth to 60% O(2) for 7 d, arterial wall expression of Bax was decreased and expression of both ET(A)R and anti-apoptotic Bcl-xL were increased. Furthermore, increased numbers of TUNEL-positive cells were evident in the walls of pulmonary arteries from 60% O(2)-exposed animals treated with a combined ET receptor antagonist, SB217242, relative to air-exposed and vehicle-treated groups. Together, these findings suggest that ET-1 mediates remodeling of neonatal rat pulmonary arteries by inhibiting smooth muscle apoptosis.
Collapse
Affiliation(s)
- Robert P Jankov
- Clinical Integrative Biology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | | | |
Collapse
|
32
|
Rossi GP, Pitter G. Genetic variation in the endothelin system: do polymorphisms affect the therapeutic strategies? Ann N Y Acad Sci 2006; 1069:34-50. [PMID: 16855133 DOI: 10.1196/annals.1351.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Endothelin-1 (ET-1) exerts multiple biological effects, including vasoconstriction and the stimulation of cell proliferation in tissues both within and outside of the cardiovascular system. ET-1 is synthesized by ET-converting enzymes (ECE), chymases (CMAs), and non-ECE metalloproteases through a process regulated in an autocrine fashion in vascular and nonvascular cells. ET-1 acts through the activation of G(i)protein-coupled receptors. ET(A) receptors mediate vasoconstriction and cell proliferation, whereas ET(B) receptors are important for aldosterone secretion, endothelial cell (EC) migration, the release of nitric oxide (NO) and prostacyclin, the clearance of ET-1, and the inhibition of ECE-1. ET is activated in scleroderma, hypertension, atherosclerosis, restenosis, heart failure, idiopathic cardiomyopathy, and renal failure. Tissue concentrations more reliably reflect the activation of the ET system because of the predominantly abluminal secretion of the peptide. Experimental studies and clinical trials have demonstrated that ET-1 plays a major role in normal cardiovascular homeostasis and in the functional and structural changes observed in arterial and pulmonary hypertension, glomerulosclerosis, atherosclerosis, and heart failure. Accordingly, ET antagonists are promising new agents in the treatment of cardiovascular diseases. Single nucleotide polymorphisms (SNPs) of the genes of preproET-1, ECE-1, CMA, ET(A) and ET(B) receptors have been identified and can be important for their functional regulation. However, for most of them the association with disease conditions and the evidence for a functional role remain controversial. Thus, even though ET antagonists are being used for the treatment of pulmonary hypertension, there is no convincing evidence for a role of SNPs in affecting the therapeutic strategies.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Department of Clinical and Experimental Medicine, Clinica Medica 4, University of Padova, Padova, Italy.
| | | |
Collapse
|
33
|
Motte S, McEntee K, Naeije R. Endothelin receptor antagonists. Pharmacol Ther 2006; 110:386-414. [PMID: 16219361 DOI: 10.1016/j.pharmthera.2005.08.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/23/2005] [Indexed: 01/08/2023]
Abstract
Endothelin receptor antagonists (ERAs) have been developed to block the effects of endothelin-1 (ET-1) in a variety of cardiovascular conditions. ET-1 is a powerful vasoconstrictor with mitogenic or co-mitogenic properties, which acts through the stimulation of 2 subtypes of receptors [endothelin receptor subtype A (ETA) and endothelin receptor subtype B (ETB) receptors]. Endogenous ET-1 is involved in a variety of conditions including systemic and pulmonary hypertension (PH), congestive heart failure (CHF), vascular remodeling (restenosis, atherosclerosis), renal failure, cancer, and cerebrovascular disease. The first dual ETA/ETB receptor blocker, bosentan, has already been approved by the Food and Drug Administration for the treatment of pulmonary arterial hypertension (PAH). Trials of endothelin receptor antagonists in heart failure have been completed with mixed results so far. Studies are ongoing on the effects of selective ETA antagonists or dual ETA/ETB antagonists in lung fibrosis, cancer, and subarachnoid hemorrhage. While non-peptidic ET-1 receptor antagonists suitable for oral intake with excellent bioavailability have become available, proven efficacy is limited to pulmonary hypertension, but it is possible that these agents might find a place in the treatment of several cardiovascular and non-cardiovascular diseases in the coming future.
Collapse
Affiliation(s)
- Sophie Motte
- Laboratory of Physiology (CP-604), Free University Brussels, Erasmus Campus, Lennik Road 808, B-1070 Brussels, Edmonton, Canada
| | | | | |
Collapse
|
34
|
Sakao S, Taraseviciene-Stewart L, Wood K, Cool CD, Voelkel NF. Apoptosis of pulmonary microvascular endothelial cells stimulates vascular smooth muscle cell growth. Am J Physiol Lung Cell Mol Physiol 2006; 291:L362-8. [PMID: 16617095 DOI: 10.1152/ajplung.00111.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have previously hypothesized that the development of severe angioproliferative pulmonary hypertension is associated with not only initial endothelial cell (EC) apoptosis followed by the emergence of apoptosis-resistant proliferating EC but also with proliferation of vascular smooth muscle cells (VSMC). We have demonstrated that EC death results in the selection of an apoptosis-resistant, proliferating, and phenotypically altered EC phenotype. We postulate here that the initial apoptosis of EC induces the release of mediators that cause VSMC proliferation. We cultured EC in an artificial capillary CellMax system designed to simulate the highly efficient functions of the human capillary system. We induced apoptosis of microvascular EC using shear stress and the combined VEGF receptor (VEGFR-1 and -2) inhibitor SU-5416. Flow cytometry for the proliferation marker bromodeoxyuridine showed that serum-free medium conditioned by apoptosed EC induced proliferation of VSMC, whereas serum-free medium conditioned by nonapoptosed EC did not. We also show that medium conditioned by apoptosed EC is characterized by increased concentrations of transforming growth factor (TGF)-beta1 and VEGF compared with medium conditioned by nonapoptosed EC and that TGF-beta1 blockade prevented the proliferation of cultured VSMC. In conclusion, EC death induced by high shear stress and VEGFR blockade leads to the production of factors, in particular TGF-beta1, that activate VSMC proliferation.
Collapse
Affiliation(s)
- Seiichiro Sakao
- Pulmonary Hypertension Center, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | | | | | |
Collapse
|
35
|
Kavanagh M, Seaborn T, Crochetière J, Fournier L, Battistini B, Piedboeuf B, Major D. Modulating effect of a selective endothelin A receptor antagonist on pulmonary endothelin system protein expression in experimental diaphragmatic hernia. J Pediatr Surg 2005; 40:1382-9. [PMID: 16150337 DOI: 10.1016/j.jpedsurg.2005.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND/PURPOSE Previously, we reported that perinatal administration of atrasentan, a selective endothelin A receptor (ETA) antagonist, provided a beneficial effect on the cardiopulmonary profile under short-term conditions in newborn lambs with surgically induced congenital diaphragmatic hernia (CDH). We hypothesized that changes in the hemodynamic profile that we observed at birth in treated animals could be influenced by pulmonary modulation of the endothelin (ET) system. METHODS The effect of atrasentan on protein expression levels of ETs and ET receptors (ETA and ETB receptor) was investigated by immunohistochemistry in lung tissues of untreated control (n = 3), treated control (n = 6), untreated CDH (n = 6), and treated CDH newborn lambs (n = 8). RESULTS Right lung tissue of treated control lambs showed significantly higher ETA protein expression levels in both vascular adventitia and airway epithelia when compared with that of untreated control lambs (P < .05). In contrast, protein expression levels of ETA and ETB receptor were significantly lower in the vascular smooth muscle cells among other tissue subcompartments of the right lung of treated CDH newborn lambs vs CDH lambs (P < .02 and P = .005, respectively). CONCLUSIONS We speculate that rapid pulmonary modulation of ET system protein expression levels by atrasentan results from an indirect effect possibly dependent on ventilation and/or perfusion. In CDH groups, this could contribute to the beneficial effect of the treatment.
Collapse
Affiliation(s)
- Mélanie Kavanagh
- Pediatrics Research Unit, CHUL Research Center, CHUQ, Laval University, Sainte-Foy, QC, G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Cloutier M, Seaborn T, Piedboeuf B, Bratu I, Flageole H, Laberge JM. Effect of temporary tracheal occlusion on the endothelin system in experimental cases of diaphragmatic hernia. Exp Lung Res 2005; 31:391-404. [PMID: 16025920 DOI: 10.1080/019021490927079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Previously, the authors have shown that tracheal occlusion (TO) partially reverses the onset of congenital diaphragmatic hernia (CDH)-induced pulmonary hypertension (PH) and abnormal pulmonary vascular development whereas release of the occlusion (TR) abolishes these clinical benefits. As a consequence of their mitogenic and vasoactive properties, the authors hypothesize that the expression of endothelin (ET)-1 and ET receptor (ETA) genes is increased in lungs of CDH lambs, and that this increase is abolished partially in CDH + TO but not in CDH + TO + TR. A surgical left-sided CDH was created in fetal lambs at 80 days of gestation (gd), followed by TO at 108 gd, and by TR at 129 gd. Four groups were compared: CDH, CDH + TO, CDH + TO + TR, and nonoperated controls (C). Assessment of mRNA expression by Northern blot showed significantly lower ET-1 and ETA levels in the CDH group than in the CDH + TO +/- TR groups (P < .05). Endothelin protein expression levels were lower in CDH +/- TO +/- TR groups when compared with controls for airways and vessels (P < .05) with the exception of endothelial cells. In contrast, ETA protein expression levels were higher in CDH +/- TO +/- TR groups compared with controls for airways and blood vessels smooth muscles (P < .05). These results suggest that involvement of the endothelin system in the pulmonary hypertension associated with CDH is limited. However, the endothelin system appears to be modulated during development.
Collapse
MESH Headings
- Animals
- Balloon Occlusion/adverse effects
- Balloon Occlusion/methods
- Blotting, Northern
- Disease Models, Animal
- Endothelin-1/biosynthesis
- Endothelin-1/genetics
- Fetal Diseases/physiopathology
- Fetal Diseases/therapy
- Gene Expression Regulation, Developmental
- Gestational Age
- Hernia, Diaphragmatic/complications
- Hernia, Diaphragmatic/metabolism
- Hernias, Diaphragmatic, Congenital
- Immunoenzyme Techniques
- Lung/abnormalities
- Lung/blood supply
- Lung/metabolism
- RNA, Messenger/metabolism
- Receptor, Endothelin A/biosynthesis
- Receptor, Endothelin A/genetics
- Sheep
- Trachea
Collapse
Affiliation(s)
- Marc Cloutier
- Pediatrics, Centre Hospitalier Universitaire de Québec, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Wilkins PA, Boston R, Palmer JE, Armstead WM. Endothelin-1 Concentrations in Clone Calves, Their Surrogate Dams, and Fetal Fluids at Birth: Association with Oxygen Treatment. J Vet Intern Med 2005. [DOI: 10.1111/j.1939-1676.2005.tb02733.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Yuyama H, Fujimori A, Sanagi M, Koakutsu A, Noguchi Y, Sudoh K, Sasamata M, Miyata K. A novel and selective endothelin ETA receptor antagonistYM598 prevents the development of chronic hypoxia-induced pulmonary hypertension in rats. Vascul Pharmacol 2005; 43:40-6. [PMID: 15975532 DOI: 10.1016/j.vph.2005.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 11/22/2004] [Accepted: 03/16/2005] [Indexed: 02/03/2023]
Abstract
The preventive effects of the novel and selective endothelin ET(A) receptor antagonist YM598 on the development of pulmonary hypertension (PH) were investigated in chronic hypoxia-induced PH rats. Oral administration of YM598 at a dose of 1 mg/kg was started on the first day of chronic hypoxia exposure for 2 and 3 weeks to investigate the effects of this compound on hemodynamic and arterial blood gas variables, respectively. Cardiopulmonary organ weights were measured at the end of the 2-week administration period. Chronic hypoxia for 2 weeks induced a marked increase in pulmonary arterial pressure, right ventricular hypertrophy, and pulmonary and systemic congestion, and a decrease in right cardiac diastolic function. Repeated oral administration of YM598 significantly suppressed the increase in pulmonary arterial pressure, right ventricular hypertrophy, and pulmonary and systemic congestion. YM598 also improved the hypoxemia which was induced by 3 weeks of exposure to hypoxia. These results suggest that repeated oral administration of YM598 to rats with chronic hypoxia effectively prevented the development of PH. Oral administration of YM598 also improved hypoxemia in this model. These data strongly suggest that YM598 will be clinically useful in the treatment of patients with either primary or secondary pulmonary hypertension.
Collapse
Affiliation(s)
- Hironori Yuyama
- Applied Pharmacology Research, Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Park WS, Ko EA, Han J, Kim N, Earm YE. Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells. J Cardiovasc Pharmacol 2005; 45:99-108. [PMID: 15654257 DOI: 10.1097/01.fjc.0000150442.49051.f7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the effects of the vasoconstrictor endothelin-1 (ET-1) on the whole-cell ATP-sensitive K+ (KATP) currents of smooth muscle cells that were isolated enzymatically from rabbit coronary artery (CASMCs) and pulmonary artery (PASMCs). The size of the KATP current did not differ significantly between CASMCs and PASMCs. ET-1 reduced the KATP current in a concentration-dependent manner, and this inhibition was greater in PASMCs than in CASMCs (half-inhibition values of 12.20 nM and 1.98 nM in CASMCs and PASMCs, respectively). However, the level of inhibition induced by other vasoconstrictors (angiotensin II, norepinephrine, and serotonin) were not significantly different between CASMCs and PASMCs. Pretreatment with the protein kinase C (PKC) inhibitors staurosporine (100 nM) and GF 109203X (1 microM) prevented ET-1-induced inhibition of the KATP current in both arterial smooth muscle cell preparations. The PKC activators phorbol-12,13-dibutyrate (PDBu) and 1-olelyl-2-acetyl-sn-glycerol (OAG) reduced the KATP current in dose-dependent manner. Although the numbers of ET receptors were not significantly different between the 2 arterial smooth muscle cell preparations, the effects of PDBu and OAG were greater on PASMCs. ET-1-induced inhibition of the KATP current was unaffected by the PKA inhibitor Rp-cAMPs (100 microM) and PKA inhibitory peptide (5 microM).
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology and National Research Laboratory for Cellular Signaling, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
40
|
Maguire JJ, Davenport AP. The therapeutic potential of PD156707 and related butenolide endothelin antagonists. Expert Opin Investig Drugs 2005; 8:71-8. [PMID: 15992060 DOI: 10.1517/13543784.8.1.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plasma concentrations of the peptide endothelin (ET) are elevated in several cardiovascular diseases. Animal studies suggest that activation of ET receptors may contribute to the increase in vascular resistance and remodelling of cardiovascular tissues that are characteristic of these pathologies. Antagonists of these receptors may therefore have important clinical potential. PD156707 (Parke-Davis) is one of a series of novel, orally-active butenolide endothelin antagonists and is highly selective for the ETA receptor. In man, this subtype mediates the profound vasoconstrictor effects of the ET peptides, and blockade of the ETA receptor may therefore produce beneficial vasodilatation. The advantage of selective ETA receptor antagonism is that it leaves unaffected vascular ETB receptors, which mediate vasorelaxation, and non-vascular ETB receptors, particularly in the lung and kidneys, which act to clear ET from the plasma. PD156707 exhibits subnanomolar affinity and greater than 1000-fold selectivity for human ETA receptors and potently inhibits ET-1-mediated vasoconstriction in human isolated blood vessels. In rats, PD156707 has good oral bioavailability (41%) and a relatively short terminal t1/2 of approximately 1 h. Structural analogues of PD156707 that have comparable selectivity and potency for the ETA receptor are reported to have even better oral bioavailability and longer plasma t1/2 values. Preclinical studies with PD156707 indicate efficacy in animal models of congestive heart failure (CHF), pulmonary hypertension (PH) and cerebral ischaemia. We await data from clinical trials to confirm the therapeutic potential of the ETA-selective butenolide antagonists in man.
Collapse
Affiliation(s)
- J J Maguire
- Clinical Pharmacology Unit, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, Box 110, Cambridge, CB2 2QQ, UK.
| | | |
Collapse
|
41
|
de Lagausie P, de Buys-Roessingh A, Ferkdadji L, Saada J, Aisenfisz S, Martinez-Vinson C, Fund X, Cayuela JM, Peuchmaur M, Mercier JC, Berrebi D. Endothelin receptor expression in human lungs of newborns with congenital diaphragmatic hernia. J Pathol 2005; 205:112-8. [PMID: 15546126 DOI: 10.1002/path.1677] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a major cause of refractory respiratory failure in the neonatal period and is characterized by persistent pulmonary hypertension of the newborn (PPHN) and pulmonary hypoplasia. Endothelin-1 (ET-1) dysregulation may play a significant role in the pathophysiology of PPHN and ET-1 acts through binding to type A (ETA) and type B (ETB) receptors. Therefore, ETA and ETB receptor protein expression was studied using immunohistochemistry in 10 lung specimens obtained from newborns with CDH, and 4 normal lung specimens, in order to explore whether dysregulation of ETA and ETB expression contributes to PPHN. ETA and ETB mRNAs were then quantified using real-time RT-PCR in laser-microdissected pulmonary resistive arteries. In the lungs of newborns with CDH, immunohistochemistry of both ETA and ETB receptors demonstrated over-expression in the thickened media of pulmonary arteries. Using laser microdissection and real-time RT-PCR, higher levels of ETA and ETB mRNA were found in CDH pulmonary arteries than in controls: this increase was more pronounced for ETA mRNA. This study provides the first demonstration of ET-1 receptor dysregulation in association with structural alteration of pulmonary arteries in newborns with CDH and PPHN. This dysregulation preferentially affects the ETA receptor. These results suggest that dysregulation of ET-1 receptors may contribute to PPHN associated with CDH.
Collapse
MESH Headings
- Body Weight
- Female
- Gene Expression
- Hernia, Diaphragmatic/complications
- Hernia, Diaphragmatic/metabolism
- Hernia, Diaphragmatic/pathology
- Hernias, Diaphragmatic, Congenital
- Humans
- Infant, Newborn
- Lung/metabolism
- Lung/pathology
- Male
- Microdissection/methods
- Organ Size
- Persistent Fetal Circulation Syndrome/etiology
- Persistent Fetal Circulation Syndrome/metabolism
- Persistent Fetal Circulation Syndrome/pathology
- Pulmonary Artery/metabolism
- RNA, Messenger/genetics
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/metabolism
- Receptors, Endothelin/metabolism
- Retrospective Studies
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
|
42
|
Abstract
Pulmonary hypertension (PH) often complicates the course of patients with advanced lung disease, and it is associated with a worse prognosis. Per the recent classification of pulmonary hypertensive disorders, PH due to lung disease is considered as a separate category within a group of disorders that was previously referred to as "secondary" PH. Among the lung diseases associated with PH, the incidence and clinical course of PH is best known for patients with COPD. Per studies in patients with COPD and other lung disorders, it is evident that the pathophysiology and treatment of these disorders is generally distinct from that of pulmonary arterial hypertensive disorders. Changes in the pulmonary vasculature that accompany elevations in pulmonary vascular pressure are generally referred to as pulmonary vascular remodeling. Chronic hypoxia is well known to cause pulmonary vascular remodeling and PH, and it is the major mechanism implicated for the development of PH in patients with lung disease. Other mediators have also been implicated in the pathogenesis of PH in animal models and patients with PH, including patients with pulmonary diseases. General features of pulmonary vascular remodeling are discussed with particular emphasis on those changes that have been described in patients with lung diseases. Recent discoveries in these areas are also reviewed, and findings in pulmonary arterial hypertensive diseases are contrasted with those found in patients with PH due to lung diseases. Some of these discoveries have already led to new treatment strategies for patients with the most severe forms of PH. PH due to lung diseases shares some common pathophysiologic features with pulmonary arterial hypertension. Therefore, it is likely that these discoveries and new treatments will also be extended to benefit patients with PH due to lung disease.
Collapse
Affiliation(s)
- Kenneth W Presberg
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
43
|
Blumberg FC, Wolf K, Arzt M, Lorenz C, Riegger GAJ, Pfeifer M. Effects of ET-A receptor blockade on eNOS gene expression in chronic hypoxic rat lungs. J Appl Physiol (1985) 2003; 94:446-52. [PMID: 12391096 DOI: 10.1152/japplphysiol.00239.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxic rats (10% O(2)) were treated with the selective ET-A receptor antagonist LU-135252 (50 mg x kg(-1) x day(-1)). Right ventricular systolic pressure and cross-sectional medial vascular wall area of pulmonary arteries rose significantly, and eNOS mRNA levels increased 1.8- and 2.6-fold after 2 and 4 wk of hypoxia, respectively (each P < 0.05). Pulmonary ET-1 mRNA and ET-1 plasma levels increased significantly after 4 wk of hypoxia (each P < 0.05). LU-135252 reduced right ventricular systolic pressure, vascular remodeling, and eNOS gene expression in chronic hypoxic rats (each P < 0.05), whereas ET-1 production was not altered. We conclude that eNOS expression in chronic hypoxic rat lungs is modified predominantly by hemodynamic factors, whereas the ET-B receptor-mediated pathway and hypoxia seem to be less important.
Collapse
|
44
|
Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 2002; 45:173-202. [PMID: 12525995 DOI: 10.1053/pcad.2002.130041] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical pulmonary hypertension is characterized by a sustained elevation in pulmonary arterial pressure. Pulmonary vascular remodeling involves structural changes in the normal architecture of the walls of pulmonary arteries. The process of vascular remodeling can occur as a primary response to injury, or stimulus such as hypoxia, within the resistance vessels of the lung. Alternatively, the changes seen in more proximal vessels may arise secondary to a sustained increase in intravascular pressure. To withstand the chronic increase in intraluminal pressure, the vessel wall becomes thickened and stronger. This "armouring" of the vessel wall with extra-smooth muscle and extracellular matrix leads to a decrease in lumen diameter and reduced capacity for vasodilatation. This maladaptive response results in increased pulmonary vascular resistance and consequently, sustained pulmonary hypertension. The process of pulmonary vascular remodeling involves all layers of the vessel wall and is complicated by the finding that cellular heterogeneity exists within the traditional compartments of the vascular wall: intima, media, and adventitia. In addition, the developmental stage of the organism greatly modifies the response of the pulmonary circulation to injury. This review focuses on the latest advances in our knowledge of these processes as they relate to specific forms of pulmonary hypertension and particularly in the light of recent genetic studies that have identified specific pathways involved in the pathogenesis of severe pulmonary hypertension.
Collapse
Affiliation(s)
- T K Jeffery
- Respiratory Medicine Unit, Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | |
Collapse
|
45
|
Ohuchi N, Koike K, Sano M, Kusama T, Kizawa Y, Hayashi K, Taniguchi Y, Ohsawa M, Iwamoto K, Murakami H. Proliferative effects of angiotensin II and endothelin-1 on guinea pig gingival fibroblast cells in culture. Comp Biochem Physiol C Toxicol Pharmacol 2002; 132:451-60. [PMID: 12223201 DOI: 10.1016/s1532-0456(02)00098-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated whether phenytoin (PHT) and nifedipine (NIF) induce angiotensin II (Ang II) and endothelin-1 (ET-1) generation by cultured gingival fibroblasts derived from guinea pigs and whether Ang II and ET-1 induce proliferation of these cells. Immunohistochemical experiments showed that PHT (250 nM) and NIF (250 nM) increased the immunostaining intensities of immunoreactive Ang II and ET-1 (IRET-1) in these cells. Captopril (3 microM), an angiotensin-converting enzyme inhibitor, reduced these enhanced intensities to control levels. Ang II (100 nM) enhanced the immunostaining intensity of IRET-1. PHT (250 nM) and NIF (250 nM)-induced cell proliferation. Both PHT- and NIF-induced proliferation was inhibited by captopril (3 microM). Ang II (100 nM) and ET-1 (100 nM) also induced cell proliferation. Ang II-induced proliferation was inhibited by CV11974 (1 microM), an AT(1) receptor antagonist and saralasin (1 microM), an AT(1)/AT(2) receptor antagonist, but not by PD123,319 (1 microM), an AT(2) receptor antagonist. ET-1-induced proliferation was inhibited by BQ123 (10 microM), an ET(A) receptor antagonist, but not by BQ788 (1 microM), an ET(B) receptor antagonist. These findings suggest that PHT- and NIF-induced gingival fibroblast proliferation is mediated indirectly through the induction of Ang II and ET-1 and probably mediated through AT(1) and ET(A) receptors present in or on gingival fibroblasts.
Collapse
Affiliation(s)
- Nozomi Ohuchi
- Department of Chemical Pharmacology, Toho University School of Pharmaceutical Sciences, Miyama, Funabashi, Chiba 274-8510, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Johnson W, Nohria A, Garrett L, Fang JC, Igo J, Katai M, Ganz P, Creager MA. Contribution of endothelin to pulmonary vascular tone under normoxic and hypoxic conditions. Am J Physiol Heart Circ Physiol 2002; 283:H568-75. [PMID: 12124203 DOI: 10.1152/ajpheart.00099.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contribution of endothelin to resting pulmonary vascular tone and hypoxic pulmonary vasoconstriction in humans is unknown. We studied the hemodynamic effects of BQ-123, an endothelin type A receptor antagonist, on healthy volunteers exposed to normoxia and hypoxia. Hemodynamics were measured at room air and after 15 min of exposure to hypoxia (arterial PO(2) 99.8 +/- 1.8 and 49.4 +/- 0.4 mmHg, respectively). Measurements were then repeated in the presence of BQ-123. BQ-123 decreased pulmonary vascular resistance (PVR) 26% and systemic vascular resistance (SVR) 21%, whereas it increased cardiac output (CO) 22% (all P < 0.05). Hypoxia raised CO 28% and PVR 95%, whereas it reduced SVR 23% (all P < 0.01). During BQ-123 infusion, hypoxia increased CO 29% and PVR 97% and decreased SVR 22% (all P < 0.01). The pulmonary vasoconstrictive response to hypoxia was similar in the absence and presence of BQ-123 [P = not significant (NS)]. In vehicle-treated control subjects, hypoxic pulmonary vasoconstriction did not change with repeated exposure to hypoxia (P = NS). Endothelin contributes to basal pulmonary and systemic vascular tone during normoxia, but does not mediate the additional pulmonary vasoconstriction induced by acute hypoxia.
Collapse
Affiliation(s)
- Wendy Johnson
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ivy DD, Yanagisawa M, Gariepy CE, Gebb SA, Colvin KL, McMurtry IF. Exaggerated hypoxic pulmonary hypertension in endothelin B receptor-deficient rats. Am J Physiol Lung Cell Mol Physiol 2002; 282:L703-12. [PMID: 11880295 DOI: 10.1152/ajplung.00272.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms by which endothelin (ET)-1 mediates chronic pulmonary hypertension remain incompletely understood. Although activation of the ET type A (ET(A)) receptor causes vasoconstriction, stimulation of ET type B (ET(B)) receptors can elicit vasodilation or vasoconstriction. We hypothesized that the ET(B) receptor attenuates the development of hypoxic pulmonary hypertension and studied a genetic rat model of ET(B) receptor deficiency (transgenic sl/sl). After 3 wk of severe hypoxia, the transgenic sl/sl pulmonary vasculature lacked expression of mRNA for the ET(B) receptor and developed exaggerated pulmonary hypertension that was characterized by elevated pulmonary arterial pressure, diminished cardiac output, and increased total pulmonary resistance. Plasma ET-1 was fivefold higher in transgenic sl/sl rats than in transgenic controls. Although mRNA for prepro-ET-1 was not different, mRNA for ET-converting enzyme-1 was higher in transgenic sl/sl than in transgenic control lungs. Hypertensive lungs of sl/sl rats also produced less nitric oxide metabolites and 6-ketoprostaglandin F(1alpha), a metabolite of prostacyclin, than transgenic controls. These findings suggest that the ET(B) receptor plays a protective role in the pulmonary hypertensive response to chronic hypoxia.
Collapse
Affiliation(s)
- D Dunbar Ivy
- Section of Pediatric Cardiology, Pediatric Heart Lung Center, University of Colorado School of Medicine, 1056 E. 19th Ave., Denver, CO 80218, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Rossi GP, Seccia TM, Nussdorfer GG. Reciprocal regulation of endothelin-1 and nitric oxide: relevance in the physiology and pathology of the cardiovascular system. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:241-72. [PMID: 11580202 DOI: 10.1016/s0074-7696(01)09014-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The endothelium plays a crucial role in the regulation of cardiovascular structure and function by releasing several mediators in response to biochemical and physical stimuli. These mediators are grouped into two classes: (1) endothelium-derived constricting factors (EDCFs) and (2) endothelium-derived relaxing factors (EDRFs), the roles of which are considered to be detrimental and beneficial, respectively. Endothelin-1 (ET-1) and nitric oxide (NO) are the prototypes of EDCFs and EDRFs, respectively, and their effects on the cardiovascular system have been studied in depth. Numerous conditions characterized by an impaired availability of NO have been found to be associated with enhanced synthesis of ET-1, and vice versa, thereby suggesting that these two factors have a reciprocal regulation. Experimental studies have provided evidence that ET-1 may exert a bidirectional effect by either enhancing NO production via ETB receptors located in endothelial cells or blunting it via ETA receptors prevalently located in the vascular smooth muscle cells. Conversely, NO was found to inhibit ET-1 synthesis in different cell types. In vitro and in vivo studies have started to unravel the molecular mechanisms involved in this complex interaction. It has been clarified that several factors affect in opposite directions the transcription of preproET-1 and NO-synthase genes, nuclear factor-KB and peroxisome proliferator-activated receptors playing a key role in these regulatory mechanisms. ET-1 and NO interplay seems to have a great relevance in the physiological regulation of vascular tone and blood pressure, as well as in vascular remodeling. Moreover, an imbalance between ET-1 and NO systems may underly the mechanisms involved in the pathogenesis of systemic and pulmonary hypertension and atherosclerosis.
Collapse
Affiliation(s)
- G P Rossi
- Department of Clinical and Experimental Medicine, University Hospital, University of Padua, Italy
| | | | | |
Collapse
|
49
|
Davie N, Haleen SJ, Upton PD, Polak JM, Yacoub MH, Morrell NW, Wharton J. ET(A) and ET(B) receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 2002; 165:398-405. [PMID: 11818328 DOI: 10.1164/ajrccm.165.3.2104059] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We determined the distribution of ET(A) and ET(B) receptors in pulmonary arteries from pulmonary hypertensive patients and control subjects, using in vitro autoradiography, and investigated their role in mediating the proliferative effects of endothelin-1 (ET-1) on distal human pulmonary artery smooth muscle cells (PASMCs). Distal arteries possessed more medial [(125)I]-ET-1 binding sites (105 +/- 10 versus 45 +/- 6 amol/mm(2); p < 0.001) and a greater proportion of ET(B) receptors than proximal arteries (36 +/- 3% versus 3 +/- 1%; p < 0.001). Receptor density in distal arteries and lung parenchyma was twofold greater (p < 0.05) in pulmonary hypertensive patients than in control subjects. ET-1 (10(-9)-10(-7) mol/L) stimulated DNA synthesis (147 +/- 10% of control subjects; p < 0.05) and attenuated the antiproliferative action of cicaprost and forskolin on PASMCs, these effects being mediated via ET(A) and ET(B) receptors. Serum-stimulated proliferation was attenuated by inhibiting either endogenous ET-1 release with phosphoramidon (10(-5) mol/L) or its action with PD145065 (10(-5) mol/L). Cicaprost (10(-10)-10(-7) mol/L) inhibited ET-1 release from PASMCs (49 +/- 16% of control after 24 h; p < 0.001) and increased intracellular cAMP levels, whereas ET(B) receptor stimulation selectively reduced cAMP levels. In conclusion, ET(A) and ET(B) receptors are differentially distributed in human pulmonary arteries. Both receptors promote the proliferation of PASMCs in vitro and may contribute to vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Neil Davie
- Section on Clinical Pharmacology, Department of Histochemistry, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Kavanagh M, Battistini B, Jean S, Crochetière J, Fournier L, Wessale J, Opgenorth TJ, Cloutier R, Major D. Effect of ABT-627 (A-147627), a potent selective ET(A) receptor antagonist, on the cardiopulmonary profile of newborn lambs with surgically-induced diaphragmatic hernia. Br J Pharmacol 2001; 134:1679-88. [PMID: 11739244 PMCID: PMC1572904 DOI: 10.1038/sj.bjp.0704424] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Postnatal mortality in isolated congenital diaphragmatic hernia (CDH) is mainly related to the associated pulmonary hypertension (PH) and to right-to-left shunting. 2. Endothelins (ETs) are potent vasoconstrictors and pro-mitogenic peptides. Strong evidences support their participation in CDH and in the etiology of PH via the activation of ET(A) receptors (ET(A)-Rs). 3. Evaluation of the effect of ABT-627, a selective non-peptidic ET(A)-R antagonist, given from -15 to 210 min post-delivery (1 mg kg(-1) bolus +0.01 mg kg(-1) h(-1) infusion, i.v.), was conducted in the lamb model of CDH. 4. Severity of CDH was assessed in comparison to untreated controls (n=5). Untreated CDH lambs (n=7) had a higher mean pulmonary arterial pressure (MPAP; P<0.0001), lower mean blood pressure (MBP; P=0.0004), higher MPAP / MBP ratio (P<0.0001), lower arterial pH (P<0.0001), higher paCO(2) (P<0.0001), lower paO(2) (P<0.0001) and lower post-ductal pulsatile SaO(2) (P<0.0001) than untreated controls. 5. Treated controls (n=7) showed a higher MPAP, lower MBP, higher MPAP/MBP ratio, lower arterial pH, higher paCO(2), lower paO(2), lower post-ductal pulsatile SaO(2) and lower plasmatic ir-ET ratios compared to untreated controls (P<0.0001). 6. Treated CDH lambs (n=8) showed a higher MBP (P<0.0001), lower MPAP / MBP ratio (P<0.0001), higher arterial pH (P<0.0001), lower paCO(2) (P<0.0001), higher paO(2) (P=0.0228), higher post-ductal pulsatile SaO(2) (P=0.0016) and lower plasmatic ir-ET ratios (P=0.0247) when compared to untreated CDH lambs. 7. These observations revealed that, although acute perinatal treatment with a selective non-peptidic ET(A)-R antagonist had some adverse effects in controls, it attenuated the progressive cardiopulmonary deterioration that occurred after birth in CDH lambs.
Collapse
Affiliation(s)
- M Kavanagh
- Anaesthesiology and Neonatology Investigation Laboratory, Laval University Research Centre / Pediatric Unit, CHUQ / CHUL, Sainte-Foy, Québec, G1V 4G2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|