1
|
Miura da Costa K, Fabro AT, Becari C, Figueira RL, Schmidt AF, Ruano R, Sbragia L. Honeymoon Period in Newborn Rats With CDH Is Associated With Changes in the VEGF Signaling Pathway. Front Pediatr 2021; 9:698217. [PMID: 34336744 PMCID: PMC8322230 DOI: 10.3389/fped.2021.698217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Patients with congenital diaphragmatic hernia (CDH) have a short postnatal period of ventilatory stability called the honeymoon period, after which changes in pulmonary vascular reactivity result in pulmonary hypertension. However, the mechanisms involved are still unknown. The aim of this study was to evaluate mechanical ventilation's effect in the honeymoon period on VEGF, VEGFR-1/2 and eNOS expression on experimental CDH in rats. Materials and Methods: Neonates whose mothers were not exposed to nitrofen formed the control groups (C) and neonates with left-sided defects formed the CDH groups (CDH). Both were subdivided into non-ventilated and ventilated for 30, 60, and 90 min (n = 7 each). The left lungs (n = 4) were evaluated by immunohistochemistry of the pulmonary vasculature (media wall thickness), VEGF, VEGFR-1/2 and eNOS. Western blotting (n = 3) was performed to quantify the expression of VEGF, VEGFR-1/2 and eNOS. Results: CDH had lower biometric parameters than C. Regarding the pulmonary vasculature, C showed a reduction in media wall thickness with ventilation, while CDH presented reduction with 30 min and an increase with the progression of the ventilatory time (honeymoon period). CDH and C groups showed different patterns of VEGF, VEGFR-1/2 and eNOS expressions. The receptors and eNOS findings were significant by immunohistochemistry but not by western blotting, while VEGF was significant by western blotting but not by immunohistochemistry. Conclusion: VEGF, its receptors and eNOS were altered in CDH after mechanical ventilation. These results suggest that the VEGF-NO pathway plays an important role in the honeymoon period of experimental CDH.
Collapse
Affiliation(s)
- Karina Miura da Costa
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Christiane Becari
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rebeca Lopes Figueira
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Augusto F. Schmidt
- Division of Neonatology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Lourenço Sbragia
- Laboratory of Experimental Fetal Surgery, Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Yu LJ, Ko VH, Dao DT, Secor JD, Pan A, Cho BS, Mitchell PD, Kishikawa H, Bielenberg DR, Puder M. Investigation of the mechanisms of VEGF-mediated compensatory lung growth: the role of the VEGF heparin-binding domain. Sci Rep 2021; 11:11827. [PMID: 34088930 PMCID: PMC8178332 DOI: 10.1038/s41598-021-91127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Morbidity and mortality for neonates with congenital diaphragmatic hernia-associated pulmonary hypoplasia remains high. These patients may be deficient in vascular endothelial growth factor (VEGF). Our lab previously established that exogenous VEGF164 accelerates compensatory lung growth (CLG) after left pneumonectomy in a murine model. We aimed to further investigate VEGF-mediated CLG by examining the role of the heparin-binding domain (HBD). Eight-week-old, male, C57BL/6J mice underwent left pneumonectomy, followed by post-operative and daily intraperitoneal injections of equimolar VEGF164 or VEGF120, which lacks the HBD. Isovolumetric saline was used as a control. VEGF164 significantly increased lung volume, total lung capacity, and alveolarization, while VEGF120 did not. Treadmill exercise tolerance testing (TETT) demonstrated improved functional outcomes post-pneumonectomy with VEGF164 treatment. In lung protein analysis, VEGF treatment modulated downstream angiogenic signaling. Activation of epithelial growth factor receptor and pulmonary cell proliferation was also upregulated. Human microvascular lung endothelial cells (HMVEC-L) treated with VEGF demonstrated decreased potency of VEGFR2 activation with VEGF121 treatment compared to VEGF165 treatment. Taken together, these data indicate that the VEGF HBD contributes to angiogenic and proliferative signaling, is required for accelerated compensatory lung growth, and improves functional outcomes in a murine CLG model.
Collapse
Affiliation(s)
- Lumeng J. Yu
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Victoria H. Ko
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Duy T. Dao
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Jordan D. Secor
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Amy Pan
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Bennet S. Cho
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Paul D. Mitchell
- grid.2515.30000 0004 0378 8438Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Hiroko Kishikawa
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Diane R. Bielenberg
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Mark Puder
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| |
Collapse
|
3
|
Sun C, Zhang S, Wang J, Jiang W, Xin Q, Chen X, Zhang Z, Luan Y. EPO enhances the protective effects of MSCs in experimental hyperoxia-induced neonatal mice by promoting angiogenesis. Aging (Albany NY) 2020; 11:2477-2487. [PMID: 31035257 PMCID: PMC6519997 DOI: 10.18632/aging.101937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy; however, there is no effective treatment for it. In the present study, a neonatal mouse BPD model was established by continuous exposure to high oxygen (HO) levels. Mice were divided randomly into 5 groups: control, BPD, EPO, MSCs, and MSCs+EPO. At 2 weeks post-treatment, vessel density and the expression levels of endothelial growth factor (VEGF), stromal cell-derived factor-1 (SDF-1), and its receptor C-X-C chemokine receptor type 4 (CXCR4) were significantly increased in the MSC+EPO group compared with the EPO or MSCs group alone; moreover, EPO significantly enhanced MSCs proliferation, migration, and anti-apoptosis ability in vitro. Furthermore, the MSCs could differentiate into cells that were positive for the type II alveolar epithelial cell (AECII)-specific marker surfactant protein-C, but not positive for the AECI-specific marker aquaporin 5. Our present results suggested that MSCs in combination with EPO could significantly attenuate lung injury in a neonatal mouse model of BPD. The mechanism may be by the indirect promotion of angiogenesis, which may involve the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Chao Sun
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Shanshan Zhang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, PR China
| | - Jue Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Wen Jiang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Qian Xin
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Xiaojing Chen
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, PR China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
4
|
Laddha AP, Kulkarni YA. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med 2019; 156:33-46. [PMID: 31421589 DOI: 10.1016/j.rmed.2019.08.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The endothelial cells play a crucial role in the progression of angiogenesis, which causes cell re-modulation, proliferation, adhesion, migration, invasion and survival. Angiogenic factors like cytokines, cell adhesion molecules, growth factors, vasoactive peptides, proteolytic enzymes (metalloproteinases) and plasminogen activators bind to their receptors on endothelial cells and activate the signal transduction pathways like epidermal growth factor receptor (EGFR phosphatidylinositol 3-kinase and (PI3K)/AKT/mammalian target of rapamycin (mTOR) which initiate the process of angiogenesis. Cytokines that stimulate angiogenesis include direct and indirect proangiogenic markers. The direct proangiogenic group of markers consists of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) and hepatocyte growth factor (HGF) whereas the indirect proangiogenic markers include transforming growth factor-beta (TGF-β), interleukin 6 (IL-6), interleukin 8 (IL-8) and platelet-derived growth factor (PDGF). VEGF and FGF-2 are the strongest activators of angiogenesis which stimulate migration and proliferation of endothelial cells in existing vessels to generate and stabilize new blood vessels. VEGF is released in hypoxic conditions as an effect of the hypoxia-inducible factor (HIF-1α) and causes re-modulation and inflammation of bronchi cell. Cell re-modulation and inflammation leads to the development of various lung disorders like pulmonary hypertension, chronic obstructive pulmonary disease, asthma, fibrosis and lung cancer. This indicates that there is a firm link between overexpression of VEGF and FGF-2 with lung disorders. Various natural and synthetic drugs are available for reducing the overexpression of VEGF and FGF-2 which can be helpful in treating lung disorders. Researchers are still searching for new angiogenic inhibitors which can be helpful in the treatment of lung disorders. The present review emphasizes on molecular mechanisms and new drug discovery focused on VEGF and FGF-2 inhibitors and their role as anti-angiogenetic agents in lung disorders.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
5
|
Dao DT, Anez-Bustillos L, Jabbouri SS, Pan A, Kishikawa H, Mitchell PD, Fell GL, Baker MA, Watnick RS, Chen H, Rogers MS, Bielenberg DR, Puder M. A paradoxical method to enhance compensatory lung growth: Utilizing a VEGF inhibitor. PLoS One 2018; 13:e0208579. [PMID: 30566445 PMCID: PMC6300284 DOI: 10.1371/journal.pone.0208579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Exogenous vascular endothelial growth factor (VEGF) accelerates compensatory lung growth (CLG) in mice after unilateral pneumonectomy. In this study, we unexpectedly discovered a method to enhance CLG with a VEGF inhibitor, soluble VEGFR1. Eight-week-old C57BL/6 male mice underwent left pneumonectomy, followed by daily intraperitoneal (ip) injection of either saline (control) or 20 μg/kg of VEGFR1-Fc. On post-operative day (POD) 4, mice underwent pulmonary function tests (PFT) and lungs were harvested for volume measurement and analyses of the VEGF signaling pathway. To investigate the role of hypoxia in mediating the effects of VEGFR1, experiments were repeated with concurrent administration of PT-2385, an inhibitor of hypoxia-induced factor (HIF)2α, via orogastric gavage at 10 mg/kg every 12 hours for 4 days. We found that VEGFR1-treated mice had increased total lung capacity (P = 0.006), pulmonary compliance (P = 0.03), and post-euthanasia lung volume (P = 0.049) compared to control mice. VEGFR1 treatment increased pulmonary levels of VEGF (P = 0.008) and VEGFR2 (P = 0.01). It also stimulated endothelial proliferation (P < 0.0001) and enhanced pulmonary surfactant production (P = 0.03). The addition of PT-2385 abolished the increase in lung volume and endothelial proliferation in response to VEGFR1. By paradoxically stimulating angiogenesis and enhancing lung growth, VEGFR1 could represent a new treatment strategy for neonatal lung diseases characterized by dysfunction of the HIF-VEGF pathway.
Collapse
Affiliation(s)
- Duy T. Dao
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Sahir S. Jabbouri
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Amy Pan
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Paul D. Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA, United States of America
| | - Gillian L. Fell
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Meredith A. Baker
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Randolph S. Watnick
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Michael S. Rogers
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Diane R. Bielenberg
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Mark Puder
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| |
Collapse
|
6
|
Vascular Endothelial Growth Factor Enhances Compensatory Lung Growth in Piglets. Surgery 2018; 164:1279-1286. [PMID: 30193736 DOI: 10.1016/j.surg.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Vascular endothelial growth factor has been found to accelerate compensatory lung growth after left pneumonectomy in mice. The aim of this study was to determine the natural history and the effects of vascular endothelial growth factor on compensatory lung growth in a large animal model. METHODS To determine the natural history of compensatory lung growth, female Yorkshire piglets underwent a left pneumonectomy on days of life 10-11. Tissue harvest and volume measurement of the right lung were performed at baseline (n = 5) and on postoperative days 7 (n = 5), 14 (n = 4), and 21 (n = 5). For pharmacokinetic studies, vascular endothelial growth factor was infused via a central venous catheter, with plasma vascular endothelial growth factor levels measured at various time points. To test the effect of vascular endothelial growth factor on compensatory lung growth, 26 female Yorkshire piglets underwent a left pneumonectomy followed by daily infusion of vascular endothelial growth factor at 200 µg/kg or isovolumetric 0.9% NaCl (saline control). Lungs were harvested on postoperative day 7 for volume measurement and morphometric analyses. RESULTS Compared with baseline, right lung volume after left pneumonectomy increased by factors of 2.1 ± 0.6, 3.3 ± 0.6, and 3.6 ± 0.4 on postoperative days 7, 14, and 21, respectively. The half-life of VEGF ranged from 89 to 144 minutes. Lesser doses of vascular endothelial growth factor resulted in better tolerance, volume of distribution, and clearance. Compared with the control group, piglets treated with vascular endothelial growth factor had greater lung volume (P < 0.0001), alveolar volume (P = 0.001), septal surface area (P = 0.007) and total alveolar count (P = 0.01). CONCLUSION Vascular endothelial growth factor enhanced alveolar growth in neonatal piglets after unilateral pneumonectomy.
Collapse
|
7
|
Morgan JT, Stewart WG, McKee RA, Gleghorn JP. The mechanosensitive ion channel TRPV4 is a regulator of lung development and pulmonary vasculature stabilization. Cell Mol Bioeng 2018; 11:309-320. [PMID: 30713588 DOI: 10.1007/s12195-018-0538-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction – Clinical observations and animal models suggest a critical role for the dynamic regulation of transmural pressure and peristaltic airway smooth muscle contractions for proper lung development. However, it is currently unclear how such mechanical signals are transduced into molecular and transcriptional changes at the cell level. To connect these physical findings to a mechanotransduction mechanism, we identified a known mechanosensor, TRPV4, as a component of this pathway. Methods – Embryonic mouse lung explants were cultured on membranes and in submersion culture to modulate explant transmural pressure. Time-lapse imaging was used to capture active changes in lung biology, and whole-mount images were used to visualize the organization of the epithelial, smooth muscle, and vascular compartments. TRPV4 activity was modulated by pharmacological agonism and inhibition. Results – TRPV4 expression is present in the murine lung with strong localization to the epithelium and major pulmonary blood vessels. TRPV4 agonism and inhibition resulted in hyper- and hypoplastic airway branching, smooth muscle differentiation, and lung growth, respectively. Smooth muscle contractions also doubled in frequency with agonism and were reduced by 60% with inhibition demonstrating a functional role consistent with levels of smooth muscle differentiation. Activation of TRPV4 increased the vascular capillary density around the distal airways, and inhibition resulted in a near complete loss of the vasculature. Conclusions – These studies have identified TRPV4 as a potential mechanosensor involved in transducing mechanical forces on the airways to molecular and transcriptional events that regulate the morphogenesis of the three essential tissue compartments in the lung.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
- Present Address: Department of Bioengineering, University of California, Riverside, CA USA
| | - Wade G Stewart
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Robert A McKee
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
- Department of Biological Sciences, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| |
Collapse
|
8
|
Dao DT, Nandivada P, Vuong JT, Anez-Bustillos L, Pan A, Kishikawa H, Mitchell PD, Baker MA, Fell GL, Martin T, Puder M. Vascular endothelial growth factor accelerates compensatory lung growth by increasing the alveolar units. Pediatr Res 2018; 83:1182-1189. [PMID: 29638228 PMCID: PMC6019135 DOI: 10.1038/pr.2018.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/21/2018] [Indexed: 01/21/2023]
Abstract
BackgroundDeficiency of vascular endothelial growth factor (VEGF) is associated with hypoplastic lung diseases, such as congenital diaphragmatic hernia. Provision of VEGF has been demonstrated to be beneficial in hyperoxia-induced bronchopulmonary dysplasia, and hence could induce lung growth and improve the outcome in hypoplastic lung diseases. We aimed to determine the effects of exogenous VEGF in a rodent model of compensatory lung growth after left pneumonectomy.MethodsEight-to-ten-week-old C57Bl6 male mice underwent left pneumonectomy, followed by daily intra-peritoneal injections of saline or VEGF (0.5 mg/kg). Lung volume measurement, pulmonary function tests, and morphometric analyses were performed on post-operative day (POD) 4 and 10. The pulmonary expression of angiogenic factors was analyzed by quantitative polymerase chain reaction and western blot.ResultsLung volume on POD 4 was higher in the VEGF-treated mice (P=0.03). On morphometric analyses, VEGF increased the parenchymal volume (P=0.001), alveolar volume (P=0.0003), and alveolar number (P<0.0001) on POD 4. The VEGF group displayed higher levels of phosphorylated-VEGFR2/VEGFR2 (P=0.03) and epidermal growth factor (EGF) messenger RNA (P=0.01).ConclusionVEGF accelerated the compensatory lung growth in mice, by increasing the alveolar units. These changes may be mediated by VEGFR2 and EGF-dependent mechanisms.
Collapse
Affiliation(s)
- Duy T. Dao
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| | - Prathima Nandivada
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| | - Jacqueline T. Vuong
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| | - Amy Pan
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| | - Hiroko Kishikawa
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| | - Paul D. Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA
| | - Meredith A. Baker
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| | - Gillian L. Fell
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| | - Thomas Martin
- Pulmonary Function Laboratory, Department of Medicine, Boston Children’s Hospital, Boston, MA
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
9
|
VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease. Int J Mol Sci 2018; 19:ijms19051269. [PMID: 29695053 PMCID: PMC5983653 DOI: 10.3390/ijms19051269] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
Interstitial lung disease (ILD) encompasses a group of heterogeneous diseases characterised by varying degrees of aberrant inflammation and fibrosis of the lung parenchyma. This may occur in isolation, such as in idiopathic pulmonary fibrosis (IPF) or as part of a wider disease process affecting multiple organs, such as in systemic sclerosis. Anti-Vascular Endothelial Growth Factor (anti-VEGF) therapy is one component of an existing broad-spectrum therapeutic option in IPF (nintedanib) and may become part of the emerging therapeutic strategy for other ILDs in the future. This article describes our current understanding of VEGF biology in normal lung homeostasis and how changes in its bioavailability may contribute the pathogenesis of ILD. The complexity of VEGF biology is particularly highlighted with an emphasis on the potential non-vascular, non-angiogenic roles for VEGF in the lung, in both health and disease.
Collapse
|
10
|
Wang J, Liu H, Gao L, Liu X. Impaired FGF10 Signaling and Epithelial Development in Experimental Lung Hypoplasia With Esophageal Atresia. Front Pediatr 2018; 6:109. [PMID: 29732364 PMCID: PMC5921531 DOI: 10.3389/fped.2018.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 01/07/2023] Open
Abstract
Patients with esophageal atresia (EA) and tracheoesophageal fistula (TEF) often experience persistent respiratory tract disease. In experimental models, doxorubicin-induced developmental lung abnormalities may result from downregulation of branching morphogenesis factor fibroblast growth factor (Fgf10). This study investigated the temporospatial expression of Fgf10 pathway components and lung epithelial factors in an doxorubicin-induced EA-TEF model by quantitative polymerase chain reaction, immunohistochemistry, and immunoblotting. Epigenetic regulation of gene expression by histone deacetylation was also investigated. Bone morphogenetic protein (Bmp) 4 and Cathepsin H (Ctsh), downstream targets of Fgf10, were significantly downregulated in the EA-TEF model during the saccular stage, consistent with Fgf10 expression. The developmental expression pattern of P2x7 receptor (ATI-cell marker), Sftpa, and Sftpb in lung epithelial cells was not affected. Sftpc (ATII-cell Marker) and Scgb1a1 (Clara cell marker) were significantly downregulated at the canalicular stage. Meanwhile, histone deacetylase (Hdac) 1 was upregulated and subsequently decreased acetylation of histone H3 Lys56 in the EA-TEF model, which returned to a normal level at the saccular stage. In conclusion, disturbed molecular signaling involving Fgf10/Ctsh was associated with impaired airway branching and epithelial cell development in lung morphogenesis, as evidenced by downregulated Sftpc and Scgb1a1 protein expression. The influence of Hdac1 activity on gene and protein expression in lung epithelial cells deserves further study.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Benxi Central Hospital of China Medical University, Benxi, China
| | - Hao Liu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linlin Gao
- Central Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaomei Liu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Luan Y, Zhang L, Chao S, Liu X, Li K, Wang Y, Zhang Z. Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-β1 signaling. Oncotarget 2018; 7:47082-47094. [PMID: 27191651 PMCID: PMC5216925 DOI: 10.18632/oncotarget.9314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study is to investigate the protection effects of bone marrow mesenchymal stem cells (MSCs) in combination with EPO against hyperoxia-induced bronchopulmonary dysplasia (BPD) injury in neonatal mice. BPD model was prepared by continuous high oxygen exposure, 1×106 bone marrow MSCs and 5000U/kg recombinant human erythropoietin (EPO) were injected respectively. Results showed that administration of MSCs, EPO especially MSCs+EPO significant attenuated hyperoxia-induced lung damage with a decrease of fibrosis, radical alveolar counts and inhibition of the occurrence of epithelial-mesenchymal transition (EMT). Furthermore, MSCs+EPO co-treatment more significantly suppressed the levels of transforming growth factor-β1(TGF-β1) than MSCs or EPO alone. Collectively, these results suggested that MSCs, EPO in particular MSCs+EPO co-treatment could promote lung repair in hyperoxia-induced alveoli dysplasia injury via inhibition of TGF-β1 signaling pathway to further suppress EMT process and may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Luan Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, China
| | - Sun Chao
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Kaili Li
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Yibiao Wang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Valencia AM, Abrantes MA, Hasan J, Aranda JV, Beharry KD. Reactive Oxygen Species, Biomarkers of Microvascular Maturation and Alveolarization, and Antioxidants in Oxidative Lung Injury. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2018; 6:373-388. [PMID: 30533532 DOI: 10.20455/ros.2018.867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lungs of extremely low gestational age neonates (ELGANs) are deficient in pulmonary surfactant and are incapable of efficient gas exchange necessary for successful transition from a hypoxic intrauterine environment to ambient air. To improve gas exchange and survival, ELGANs often receive supplemental oxygen with mechanical ventilation which disrupts normal lung developmental processes, including microvascular maturation and alveolarization. Factors that regulate these developmental processes include vascular endothelial growth factor and matrix metalloproteinases, both of which are influenced by generation of oxygen byproducts, or reactive oxygen species (ROS). ELGANs are also deficient in antioxidants necessary to scavenge excessive ROS. Thus, the accumulation of ROS in the preterm lungs exposed to prolonged hyperoxia, results in inflammation and development of bronchopulmonary dysplasia (BPD), a form of chronic lung disease (CLD). Despite advances in neonatal care, BPD/CLD remains a major cause of neonatal morbidity and mortality. The underlying mechanisms are not completely understood, and the benefits of current therapeutic interventions are limited. The association between ROS and biomarkers of microvascular maturation and alveolarization, as well as antioxidant therapies in the setting of hyperoxia-induced neonatal lung injury are reviewed in this article.
Collapse
Affiliation(s)
- Arwin M Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saddleback Memorial Hospital, Laguna Hills, CA 92653, USA
| | - Maria A Abrantes
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Kaiser Permanente, Anaheim, CA 92806, USA
| | - Jamal Hasan
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Miller's Children's and Women's Hospital, Long Beach, CA 90806, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
13
|
Ifegwu OC, Awale G, Rajpura K, Lo KWH, Laurencin CT. Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discov Today 2017; 22:1027-1044. [PMID: 28359841 PMCID: PMC7440772 DOI: 10.1016/j.drudis.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023]
Abstract
This paper reviews the most recent findings in the search for small molecule cyclic AMP analogues regarding their potential use in musculoskeletal regenerative engineering.
Collapse
Affiliation(s)
- Okechukwu Clinton Ifegwu
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guleid Awale
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06030, USA
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
14
|
Zhang ZH, Pan YY, Jing RS, Luan Y, Zhang L, Sun C, Kong F, Li KL, Wang YB. Protective effects of BMSCs in combination with erythropoietin in bronchopulmonary dysplasia-induced lung injury. Mol Med Rep 2016; 14:1302-8. [PMID: 27279073 DOI: 10.3892/mmr.2016.5378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 05/12/2016] [Indexed: 11/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy, for which no effective therapy is currently available. The aim of the present study was to investigate the effect of treatment with bone marrow mesenchymal stem cells (BMSCs) in combination with recombinant human erythropoietin (rHuEPO) on BPD‑induced mouse lung injury, and discuss the underlying mechanism. The BPD model was established by the exposure of neonatal mice to continuous high oxygen exposure for 14 days, following which 1x106 BMSCs and 5,000 U/kg rHuEPO were injected into the mice 1 h prior to and 7 days following exposure to hyperoxia. The animals received four treatments in total (n=10 in each group). After 14 days, the body weights, airway structure, and levels of matrix metalloproteinase‑9 (MMP‑9) and vascular endothelial growth factor (VEGF) were detected using histological and immunohistochemical analyses. The effect on cell differentiation was observed by examining the presence of platelet endothelial cell adhesion molecule (PECAM) and VEGF using immunofluorescence. Compared with the administration of BMSCs alone, the body weight, airway structure, and the levels of MMP‑9 and VEGF were significantly improved in the BMSCs/rHuEPO group. The results of the present study demonstrated that the intravenous injection of BMSCs significantly improved lung damage in the hyperoxia‑exposed neonatal mouse model. Furthermore, the injection of BMSCs in combination with intraperitoneal injection of rHuEPO had a more marked effect, compared with BMSCs alone, and the mechanism may be mediated by the promoting effects of BMSCs and EPO. The results of the present study provided information, which may assist in future clinical trials.
Collapse
Affiliation(s)
- Zhao-Hua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan-Yan Pan
- Department of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong 066600, P.R. China
| | - Rui-Sheng Jing
- Department of Internal Medicine, Xinji Central Hospital, Changli, Hebei 250000, P.R. China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Luan Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chao Sun
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Kai-Lin Li
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yi-Biao Wang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
15
|
Vogel ER, Britt RD, Trinidad MC, Faksh A, Martin RJ, MacFarlane PM, Pabelick CM, Prakash YS. Perinatal oxygen in the developing lung. Can J Physiol Pharmacol 2014; 93:119-27. [PMID: 25594569 DOI: 10.1139/cjpp-2014-0387] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lung diseases, such as bronchopulmonary dysplasia (BPD), wheezing, and asthma, remain significant causes of morbidity and mortality in the pediatric population, particularly in the setting of premature birth. Pulmonary outcomes in these infants are highly influenced by perinatal exposures including prenatal inflammation, postnatal intensive care unit interventions, and environmental agents. Here, there is strong evidence that perinatal supplemental oxygen administration has significant effects on pulmonary development and health. This is of particular importance in the preterm lung, where premature exposure to room air represents a hyperoxic insult that may cause harm to a lung primed to develop in a hypoxic environment. Preterm infants are also subject to increased episodes of hypoxia, which may also result in pulmonary damage and disease. Here, we summarize the current understanding of the effects of oxygen on the developing lung and how low vs. high oxygen may predispose to pulmonary disease that may extend even into adulthood. Better understanding of the underlying mechanisms will help lead to improved care and outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Elizabeth R Vogel
- a Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Luan Y, Ding W, Ju ZY, Zhang ZH, Zhang X, Kong F. Bone marrow-derived mesenchymal stem cells protect against lung injury in a mouse model of bronchopulmonary dysplasia. Mol Med Rep 2014; 11:1945-50. [PMID: 25406024 DOI: 10.3892/mmr.2014.2959] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of bone marrow‑derived mesenchymal stem cells (BMSCs) in the treatment of lung injury in a mouse model of bronchopulmonary dysplasia (BPD) and examine the underlying mechanisms. A mouse model of BPD was created using continuous exposure to high oxygen levels for 14 days. BMSCs were isolated, cultured and then labeled with green fluorescent protein. Cells (1x106) were subsequently injected intravenously 1 h prior to high oxygen treatment. Animals were randomly divided into three groups (n=5 in each): Control group, BPD model group and BMSC injection group. At two weeks post‑treatment, the expression of transforming growth factor‑β1 (TGF‑β1), vascular endothelial growth factor (VEGF) and von Willebrand factor (vWF) was detected using immunohistochemical staining and immunofluorescence. Compared with the BPD model group, the body weight, airway structure and levels of TGF‑β1 and VEGF were significantly improved in the BMSC‑treated group. Immunofluorescence observations indicated that BMSCs were able to differentiate into cells expressing vWF and VEGF, which are markers of vascular tissues. The present study demonstrated that intravenous injection of BMSCs significantly improved lung damage in a neonatal mouse model of BPD at 14 days following hyperoxia‑induced injury. This provides novel information which may be used to guide further investigation into the use of stem cells in BPD.
Collapse
Affiliation(s)
- Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Wei Ding
- Department of Radiology, Rizhao City People's Hospital, Rizhao, Shandong 276807, P.R. China
| | - Zhi-Ye Ju
- Department of Radiology, Rizhao City People's Hospital, Rizhao, Shandong 276807, P.R. China
| | - Zhao-Hua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Xue Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
17
|
Onoda T, Kanno M, Sato H, Takahashi N, Izumino H, Ohta H, Emura T, Katoh H, Ohizumi H, Ohtake H, Asao H, Dehner LP, Hill AD, Hayasaka K, Mitsui T. Identification of novel ALK rearrangement A2M-ALK in a neonate with fetal lung interstitial tumor. Genes Chromosomes Cancer 2014; 53:865-74. [PMID: 24965693 DOI: 10.1002/gcc.22199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/12/2014] [Indexed: 11/11/2022] Open
Abstract
Fetal lung interstitial tumor (FLIT) is a recently reported type of congenital lung lesion comprising solid and cystic components. The pathological features include unique interstitial mesenchyme-based cell proliferation, and differ from other neoplasms represented by pleuropulmonary blastoma or congenital peribronchial myofibroblastic tumor. FLIT is extremely rare and its gene expression profile has not yet been reported. We provide the first report of a novel chromosomal rearrangement resulting in α-2-macroglobulin (A2M) and anaplastic lymphoma kinase (ALK) gene fusion in a patient with FLIT. The tumor cells contained a t(2;12)(p23;p13) and were mesenchymal in origin (e.g., inflammatory myofibroblastic tumors), suggesting the involvement of ALK in this case of FLIT. Break apart fluorescence in situ hybridization demonstrated chromosomal rearrangement at ALK 2p23. Using 5'-rapid amplification of cDNA ends, we further identified a novel transcript fusing exon 22 of A2M to exon 19 of ALK, which was confirmed by reverse-transcription polymerase chain reaction. The corresponding chimeric gene was subsequently confirmed by sequencing, including the genomic break point between intron 22 and 18 of A2M and ALK, respectively. Discovery of A2M as a novel ALK fusion partner, together with the involvement of ALK, provides new insights into the pathogenesis of FLIT, and suggests the potential for new therapeutic strategies based on ALK inhibitors.
Collapse
Affiliation(s)
- Tadashi Onoda
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan; Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fujioka K, Shibata A, Yokota T, Koda T, Nagasaka M, Yagi M, Takeshima Y, Yamada H, Iijima K, Morioka I. Association of a vascular endothelial growth factor polymorphism with the development of bronchopulmonary dysplasia in Japanese premature newborns. Sci Rep 2014; 4:4459. [PMID: 24662923 PMCID: PMC3964511 DOI: 10.1038/srep04459] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/07/2014] [Indexed: 12/15/2022] Open
Abstract
Our objective was to correlate vascular endothelial growth factor (VEGF) genetic polymorphisms with the risk of bronchopulmonary dysplasia (BPD) development in premature newborns. Fifty-five newborns with BPD (BPD: median gestational age [GA]: 27 weeks, birthweight [BW]: 786 g) and 42 newborns without BPD (non-BPD: median GA: 29 weeks, BW: 1,165 g), who were born at <32 weeks gestational age and were admitted to Kobe University Hospital, were included. BPD was defined as oxygen dependency at 36 weeks postmenstrual age. Genomic DNA was extracted from the umbilical cord, cord blood, or buccal mucosa. Six VEGF genotypes (-1498T > C, -1154G > A, -634C > G, -7C > T, 936C > T, and 1612G > A) were determined by DNA sequencing. Clinical characteristics, and allele and genotype frequencies of VEGF in the BPD and non-BPD groups were analyzed. G allele frequencies in -634C > G of the BPD group were significantly higher than in the non-BPD group (66.4% vs. 50%, P = 0.02). -634C > G genotype distributions differed significantly between the BPD and non-BPD groups (BPD: CC 7%/CG 53%/GG 40%; non-BPD: CC 24%/CG 52%/GG 24%; P = 0.04). Multivariate logistic regression showed that duration of ventilation, VEGF-634G > C G alleles, and male gender were independent risk factors for BPD. In conclusion, polymorphism VEGF -634C > G may influence the risk of BPD.
Collapse
Affiliation(s)
| | - Akio Shibata
- Department of Pediatrics, Kobe University Hospital, Kobe, Japan
| | - Tomoyuki Yokota
- Department of Pediatrics, Kobe University Hospital, Kobe, Japan
| | - Tsubasa Koda
- Department of Pediatrics, Kobe University Hospital, Kobe, Japan
| | - Miwako Nagasaka
- Department of Pediatrics, Kobe University Hospital, Kobe, Japan
| | - Mariko Yagi
- Department of Pediatrics, Kobe University Hospital, Kobe, Japan
| | | | - Hideto Yamada
- Department of Obstetrics and Gynecology, Kobe University Hospital, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Hospital, Kobe, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
19
|
Qi Y, Jiang Q, Chen C, Cao Y, Qian L. Circulating endothelial progenitor cells decrease in infants with bronchopulmonary dysplasia and increase after inhaled nitric oxide. PLoS One 2013; 8:e79060. [PMID: 24244420 PMCID: PMC3823930 DOI: 10.1371/journal.pone.0079060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Impairment of endothelial progenitor cells (EPCs) has been shown to contribute to the development of bronchopulmonary dysplasia (BPD). In the current study, the relationship between EPC changes of after birth and the development of BPD was investigated, and the effects of inhaled nitric oxide (iNO) on EPCs were evaluated. METHODS Sixty infants with a gestational age of less than 32 weeks and a birth weight of less than 1500 g were studied. NO was administered to infants who were receiving mechanical ventilation or CPAP for at least 2 days between the ages of 7 and 21 days. EPC level was determined by flow cytometry at birth, 7, 21 and 28 days of age and 36 weeks' postmenstrual age (PMA), before and after the iNO treatment. Plasma concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 and granulocyte-macrophage colony-stimulating factor were determined via immunochemical assay. RESULTS Twenty-five neonates developed BPD, 35 neonates survived and did not develop BPD. EPC level was decreased on day 7 and 21 in infants who later developed BPD compared with infants that did not develop BPD. From birth to 21 days of age, BPD infants had a persistently lower VEGF concentration compared with non-BPD infants. No difference was found between the two groups at day 28 or 36 weeks PMA. In infants that later developed BPD, iNO raised the KDR(+)CD133(+) and CD34(+)KDR(+)CD133(+) EPC numbers along with increasing the level of plasma VEGF. CONCLUSION EPC level was reduced at 7 days of age in infants with BPD, and iNO increased the EPC number along with increasing the level of VEGF. Further studies are needed to elucidate the mechanism leading to the decrease of EPCs in infants with BPD and to investigate the role of iNO treatment in the prevention of BPD.
Collapse
Affiliation(s)
- Yuanyuan Qi
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
| | - Qian Jiang
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
| | - Chao Chen
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
| | - Yun Cao
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
| | - Liling Qian
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Fang R, Jiang JJ, Smith BL, Wu D. Expression of hypoxia inducible factor-1α and vascular endothelia growth factor in vocal polyps. Laryngoscope 2013; 123:2184-8. [PMID: 23821497 DOI: 10.1002/lary.23743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/09/2012] [Accepted: 08/23/2012] [Indexed: 01/22/2023]
Affiliation(s)
- Rui Fang
- EENT Hospital of Fudan University; Shanghai; People's Republic of China
| | | | - Benjamin L. Smith
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery; University of Wisconsin School of Medicine and Public Health; Madison; Wisconsin; U.S.A
| | - Daquan Wu
- EENT Hospital of Fudan University; Shanghai; People's Republic of China
| |
Collapse
|
21
|
Levesque BM, Kalish LA, Winston AB, Parad RB, Hernandez-Diaz S, Phillips M, Zolit A, Morey J, Gupta M, Mammoto A, Ingber DE, Van Marter LJ. Low urine vascular endothelial growth factor levels are associated with mechanical ventilation, bronchopulmonary dysplasia and retinopathy of prematurity. Neonatology 2013; 104:56-64. [PMID: 23711562 DOI: 10.1159/000351040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/26/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND Organ-specific vascular endothelial growth factor (VEGF) expression is decreased during the pathogenesis of bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) several weeks before either disease can be diagnosed. Early measurement of organ-specific tissue VEGF levels might allow identification of infants at high risk for these diseases, but is not clinically feasible. Urine VEGF is easily measured and useful in early diagnosis of several diseases. OBJECTIVES Our aims were to assess the correlation of urine VEGF levels measured in the first postnatal month with subsequent BPD or ROP diagnosis and to determine whether various infant characteristics influence urine VEGF levels. METHODS 106 subjects born at <29 weeks' gestation and surviving to 36 weeks' postmenstrual age were selected from an existing database and biorepository. Urine VEGF and total protein were measured in 2-3 samples per subject. RESULTS Urine VEGF/protein levels increased by 72% per week (p < 0.0001) during the first postnatal month. In multivariable analysis controlling for postnatal age, lower VEGF/protein was associated with higher levels of mechanical respiratory support (p = 0.006), male gender (p = 0.001) and early sepsis (p = 0.003) but not with fraction of inspired oxygen. Lower urine VEGF/protein and mechanical ventilation were each associated with BPD and ROP. In analyses adjusted for respiratory support, lower urine VEGF/protein and ROP remained associated but urine VEGF/protein and BPD did not. CONCLUSIONS Low urine VEGF/protein levels in the first postnatal month are associated with mechanical ventilation, BPD, and ROP.
Collapse
|
22
|
Cao J, Ma X, Wang X, Wang X, Zhang Z, Geng Z, Wang Z. Azole derivatives as novel non-iron-chelating inhibitors of prolyl hydroxylase 3 for HIF-1 activation. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00117b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 2012; 9:16. [PMID: 22871018 PMCID: PMC3502106 DOI: 10.1186/1742-9994-9-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature's astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park 2006, P,O, Box 524, Johannesburg, South Africa.
| |
Collapse
|
24
|
Lazic T, Sow FB, Van Geelen A, Meyerholz DK, Gallup JM, Ackermann MR. Exposure to ethanol during the last trimester of pregnancy alters the maturation and immunity of the fetal lung. Alcohol 2011; 45:673-80. [PMID: 21163613 DOI: 10.1016/j.alcohol.2010.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/22/2010] [Accepted: 11/25/2010] [Indexed: 01/06/2023]
Abstract
The effects of ethanol exposure on fetal lungs remain under investigation. Previously, we demonstrated that lambs exposed to ethanol during gestation had impaired expression of pulmonary surfactant protein A, a crucial component of lung immunity. In this study, we investigated the effects of in utero exposure to ethanol on maturation and immunity of the fetal lung. Pregnant ewes were surgically implanted with an abomasal cannula and administered 1g ethanol/kg (n=8) or water (n=8) during the last trimester of pregnancy. Lambs were delivered prematurely or naturally. Neonatal lungs were assessed for maturation markers (hypoxia-inducible factor-1α [HIF-1α], HIF-2α, HIF-3α, vascular endothelial growth factor-A [VEGF-A], VEGFR-1, VEGFR-2, glycogen, and lung protein levels) and immunity (cytokines and chemokines). Preterm animals exposed to ethanol had significantly reduced VEGF-A mRNA (P=.066) and protein levels, HIF-1α (P=.055), HIF-2α (P=.019), VEGFR-1 (P=.088), and VEGFR-2 (P=.067) mRNA levels but no changes in HIF-3α mRNA. No significant changes occurred in full-term animals exposed to ethanol. Glycogen levels were significantly higher in preterm animals exposed to ethanol (P=.006) but not in full-term animals. Ethanol exposure was associated with significantly lower lung protein levels in preterm (P=.03) but not full-term animals. Preterm animals exposed to ethanol had significantly reduced TNF-α (P=.05), IL-10 (P=.03), chemokine (C-C motif) ligand 5 (CCL5) (P=.017), and monocyte chemotactic protein-1 (MCP-1) (P=.0004) mRNA. In full-term animals exposed to ethanol, the immune alterations were either sustained (TNF-α, P=.009; IL-10, P=.03) or returned to near baseline levels (CCL5 and MCP-1). The ethanol-mediated alterations in fetal lung maturation and immunity may explain the increased incidence of respiratory infections in neonates exposed to ethanol in utero.
Collapse
|
25
|
Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary Hypertension and Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2011; 45:1-15. [DOI: 10.1165/rcmb.2010-0365tr] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
26
|
Sen P, Choudhury T, Smith EO, Langston C. Expression of angiogenic and vasculogenic proteins in the lung in alveolar capillary dysplasia/misalignment of pulmonary veins: an immunohistochemical study. Pediatr Dev Pathol 2010; 13:354-61. [PMID: 20331367 DOI: 10.2350/09-04-0640-oa.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare, universally fatal developmental disorder of the lung affecting both the parenchyma and the vasculature. Its cause remains incompletely understood; the occurrence of familial cases has suggested a genetic abnormality. While several candidate genes have been studied previously, the affected pathway(s) have not yet been fully defined. The expression patterns of 8 gene products (endothelial nitric oxide synthase-3, fetal liver kinase-1, hypoxia inducible factor 1α, Von Hippel Lindau protein, 3 vascular endothelial growth factors [VEGF147, VEGFC1, and VEGFA20], and activin receptor-like kinase 1), all known to have a role in vascular development in the lung, were studied in 13 ACD/MPV and 17 control lungs by immunohistochemistry to further address the underlying molecular abnormality. Expression was graded with regard to degree and extent for multiple components of the lung parenchyma and pulmonary vasculature for each antibody. Statistical analyses of the data using the Mann-Whitney test revealed only a few significant differences (P ≤ 0.05) in degree of expression between ACD/MPV and control lung samples and do not clearly implicate one of these genes in ACD/MPV.
Collapse
Affiliation(s)
- Partha Sen
- Department of Pediatrics and Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
27
|
Scott CL, Walker DJ, Cwiklinski E, Tait C, Tee AR, Land SC. Control of HIF-1{alpha} and vascular signaling in fetal lung involves cross talk between mTORC1 and the FGF-10/FGFR2b/Spry2 airway branching periodicity clock. Am J Physiol Lung Cell Mol Physiol 2010; 299:L455-71. [PMID: 20622121 PMCID: PMC2957420 DOI: 10.1152/ajplung.00348.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung development requires coordinated signaling between airway and vascular growth, but the link between these processes remains unclear. Mammalian target of rapamycin complex-1 (mTORC1) can amplify hypoxia-inducible factor-1α (HIF-1α) vasculogenic activity through an NH(2)-terminal mTOR binding (TOS) motif. We hypothesized that this mechanism coordinates vasculogenesis with the fibroblast growth factor (FGF)-10/FGF-receptor2b/Spry2 regulator of airway branching. First, we tested if the HIF-1α TOS motif participated in epithelial-mesenchymal vascular signaling. mTORC1 activation by insulin significantly amplified HIF-1α activity at fetal Po(2) (23 mmHg) in human bronchial epithelium (16HBE14o-) and induced vascular traits (Flk1, sprouting) in cocultured human embryonic lung mesenchyme (HEL-12469). This enhanced activation of HIF-1α by mTORC1 was abolished on expression of a HIF-1α (F99A) TOS-mutant and also suppressed vascular differentiation of HEL-12469 cocultures. Next, we determined if vasculogenesis in fetal lung involved regulation of mTORC1 by the FGF-10/FGFR2b/Spry2 pathway. Fetal airway epithelium displayed distinct mTORC1 activity in situ, and its hyperactivation by TSC1(-/-) knockout induced widespread VEGF expression and disaggregation of Tie2-positive vascular bundles. FGF-10-coated beads grafted into fetal lung explants from Tie2-LacZ transgenic mice induced localized vascular differentiation in the peripheral mesenchyme. In rat fetal distal lung epithelial (FDLE) cells cultured at fetal Po(2), FGF-10 induced mTORC1 and amplified HIF-1α activity and VEGF secretion without induction of ERK1/2. This was accompanied by the formation of a complex between Spry2, the cCBL ubiquitin ligase, and the mTOR repressor, TSC2, which abolished GTPase activity directed against Rheb, the G protein inducer of mTORC1. Thus, mTORC1 links HIF-1α-driven vasculogenesis with the FGF-10/FGFR2b/Spry2 airway branching periodicity regulator.
Collapse
Affiliation(s)
- C L Scott
- Centre for Cardiovascular and Lung Biology, Ninewells Hospital, Univ. of Dundee, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Ribatti D, Puxeddu I, Crivellato E, Nico B, Vacca A, Levi-Schaffer F. Angiogenesis in asthma. Clin Exp Allergy 2010; 39:1815-21. [PMID: 20085597 DOI: 10.1111/j.1365-2222.2009.03385.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by infiltration and activation of inflammatory cells and by structural changes, including subepithelial fibrosis, smooth muscle cells hypertrophy/hyperplasia, epithelial cell metaplasia and angiogenesis. These structural changes are thought to correlate with asthma severity and to account for the development of progressive lung function deterioration. The mechanism underlying airway angiogenesis in asthma and its precise clinical relevance have not yet been completely elucidated. This review provides recent data showing the contribution of allergic inflammation in increased airway vascularity and potential therapeutical approaches in asthma treatment by acting on bronchial microvascular changes.
Collapse
Affiliation(s)
- D Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Hasan J, Beharry KD, Valencia AM, Strauss A, Modanlou HD. Soluble vascular endothelial growth factor receptor 1 in tracheal aspirate fluid of preterm neonates at birth may be predictive of bronchopulmonary dysplasia/chronic lung disease. Pediatrics 2009; 123:1541-7. [PMID: 19482766 DOI: 10.1542/peds.2008-1670] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE We tested the hypothesis that soluble vascular endothelial growth factor receptors are involved in the development of bronchopulmonary dysplasia/chronic lung disease. PATIENTS AND METHODS Neonates with a birth weight of < or =1500 g and/or < or =30 weeks' gestation, with respiratory failure, requiring O(2) and mechanical ventilation within 24 hours, were eligible. Tracheal aspirate fluid samples were collected from 65 neonates before surfactant and/or assisted mechanical ventilation (baseline), at 3 and 7 days after birth, and weekly thereafter until extubation. Samples were analyzed for total vascular endothelial growth factor, soluble vascular endothelial growth factor receptor 1 and 2 levels and compared in infants with bronchopulmonary dysplasia/chronic lung disease (n = 31) versus those with no bronchopulmonary dysplasia/chronic lung disease (n = 34). RESULTS Mean gestational age and birth weight were lower in infants with bronchopulmonary dysplasia/chronic lung disease. At baseline, vascular endothelial growth factor levels in the tracheal aspirate fluid were significantly lower, whereas soluble vascular endothelial growth factor receptor 1 levels were higher in the bronchopulmonary dysplasia/chronic lung disease infants compared with infants with no bronchopulmonary dysplasia/chronic lung disease. Vascular endothelial growth factor levels progressively increased from baseline to 4 weeks in all of the infants developing bronchopulmonary dysplasia/chronic lung disease. Conversely, soluble vascular endothelial growth factor receptor 1 declined in both groups from baseline to 5 weeks of age. Similarly, soluble vascular endothelial growth factor receptor 2 declined from baseline to 5 weeks in the control infants, but there were significant increases at 3 and 4 weeks in infants developing bronchopulmonary dysplasia/chronic lung disease. CONCLUSIONS We speculate that low vascular endothelial growth factor levels in tracheal aspirate fluid, concurrent with elevated soluble vascular endothelial growth factor receptor 1 levels on the first day of life, are biological markers for the development of bronchopulmonary dysplasia/chronic lung disease in very low birth weight infants requiring O(2) and assisted mechanical ventilation.
Collapse
Affiliation(s)
- Jamal Hasan
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of California Irvine Medical Center, 101 The City Drive South, Route 81, Building 56, Suite 600, Orange, CA 92868, USA
| | | | | | | | | |
Collapse
|
30
|
Nemec AA, Barchowsky A. Signal transducer and activator of transcription 1 (STAT1) is essential for chromium silencing of gene induction in human airway epithelial cells. Toxicol Sci 2009; 110:212-23. [PMID: 19403854 DOI: 10.1093/toxsci/kfp084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)-dependent pathway to silence nickel (Ni)-induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase-activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1 alpha (HIF-1 alpha) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1 alpha activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | |
Collapse
|
31
|
Combined application of 17beta-estradiol and progesterone enhance vascular endothelial growth factor and surfactant protein expression in cultured embryonic lung cells of mice. Int J Pediatr 2009; 2009:170491. [PMID: 19946415 PMCID: PMC2778567 DOI: 10.1155/2009/170491] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 02/17/2009] [Indexed: 11/17/2022] Open
Abstract
Preterm delivery is associated with disruption of the placental supply with 17beta-estradiol (E2) and progesterone (P). The aim is to evaluate the role of E2 and P on the regulation of key proteins in lung development in embryonic lung cells. Alveolar cell type II (AT-II) and central lung fibroblast cultures were established from mouse embryos. Cells were exposed for 24 hours to E2 and/or P, the estrogen receptor antagonist ICI 182.780 (ICI) and the progesterone receptor antagonist mifepristone (RU 486). The mRNA expression of vascular endothelial growth factor (VEGF) and surfactant protein B and C (SB-B, SB-C) was determined, and protein levels of VEGF were measured. Only the combined treatment with E2 and P increased mRNA expression and VEGF protein in AT-II cells and lung fibroblasts. Combined treatment also promoted SP-B and SP-C expression in AT-II cells. Pretreatment with ICI and RU 486 completely abolished the E2 and P induced effects. E2 and P enhanced expression of VEGF and surfactant proteins in primary embryonic lung cells and may be involved in regulating expression of key molecules for the prenatal lung development and postnatal lung function.
Collapse
|
32
|
Tschirch E, Weber B, Koehne P, Guthmann F, von Gise A, Wauer RR, Rüdiger M. Vascular endothelial growth factor as marker for tissue hypoxia and transfusion need in anemic infants: a prospective clinical study. Pediatrics 2009; 123:784-90. [PMID: 19255003 DOI: 10.1542/peds.2007-2304] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Oxygen-carrying capacity of blood is reduced in anemic infants because of low hemoglobin levels. Red blood cell transfusions become necessary if low hematocrit causes tissue hypoxia. No reliable parameters exist for detecting chronic tissue hypoxia. Vascular endothelial growth factor is upregulated by hypoxia; hence, elevated vascular endothelial growth factor levels may be a marker for tissue hypoxia and may indicate the need for red blood cell transfusions. METHODS In a prospective study, plasma vascular endothelial growth factor levels were measured in 3 groups of infants suspected of requiring red blood cell transfusions to find a vascular endothelial growth factor cutoff value indicative of tissue hypoxia. The 3 groups were acute anemic (an episode of acute bleeding [hematocrit drop > 5%] per day); chronic anemic (hematocrit drop < 5% per day); and nontransfused (hematocrit drop < 5% per day) but not meeting clinical criteria for a transfusion. Blood was sampled before transfusion and again 48 hours after transfusion if required. Plasma vascular endothelial growth factor and erythropoietin concentrations were measured. RESULTS Vascular endothelial growth factor concentrations were lower in acutely anemic compared with chronically anemic infants, whereas erythropoietin levels did not differ between these groups. The vascular endothelial growth factor concentration was <140 pg/mL in all acutely anemic infants, and this was deemed the threshold level indicating sufficient tissue oxygenation in subsequent analysis. We found that 30% of chronically anemic and 43% of nontransfused infants had vascular endothelial growth factor levels of >140 pg/mL. In transfused infants, with elevated vascular endothelial growth factor levels, red blood cell transfusion resulted in lowering of vascular endothelial growth factor concentrations. CONCLUSIONS Vascular endothelial growth factor concentrations of >140 pg/mL may indicate insufficient oxygen delivery to tissues and may serve as a marker of the need for transfusion or of tissue hypoxia in other diseases.
Collapse
Affiliation(s)
- Edda Tschirch
- University Hospital Carl Gustav Carus Dresden, Department of Neonatology and Pediatric Intensive Care, Pediatrics, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Tuder RM, Yun JH. Vascular endothelial growth factor of the lung: friend or foe. Curr Opin Pharmacol 2008; 8:255-60. [PMID: 18468486 DOI: 10.1016/j.coph.2008.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 12/17/2022]
Abstract
The discovery of vascular endothelial growth factor (VEGF) changed the field of angiogenesis. We have learned that VEGF has broader actions than merely a driver of tumor angiogenesis, particularly that VEGF controlled several fundamental functions and properties of endothelial cells and nonendothelial cells. The lung is one of the main organs where VEGF controls several crucial physiological functions. These actions rely on tightly regulated temporal and concentration gradients of VEGF and VEGF receptor expression in the lung. Excessive or diminished VEGF have been linked to abnormal lung phenotypes and, in humans, linked to several diseases. The beneficial and detrimental actions of VEGF underscore that therapeutic targeting of VEGF in disease has to carefully consider the lung biology of VEGF.
Collapse
Affiliation(s)
- Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Denver, School of Medicine, Denver, CO 80262, United States.
| | | |
Collapse
|
34
|
Köbbert C, Berndt A, Bierbaum T, Sontag W, Breithardt G, Weissen-Plenz G, Sindermann JR. Low-energy electromagnetic fields promote proliferation of vascular smooth muscle cells. Electromagn Biol Med 2008; 27:41-53. [PMID: 18327713 DOI: 10.1080/15368370701878929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The rationale was to investigate the effects of low-energy electromagnetic fields (EMF) on the proliferation of bovine coronary and murine aortic smooth muscle cells (SMC). EMF were applied to SMC at field frequencies of 25, 50, or 100 Hz, and exposure time was set to 5, 15, or 30 minutes. Significant increases in SMC-counts compared with sham exposed controls were found for all EMF-frequencies tested. The effect was most pronounced for 50 Hz fields with maximum increases of 1.2-fold over controls. Sequential double exposure of mouse aortic SMC to 50 Hz fields revealed significantly enhanced cell proliferation by 1.2 fold compared with single exposure (p < 0.05). Experiments performed on bovine SMC also revealed significant increases in cell proliferation. The results demonstrate that EMF are capable of significantly enhancing the proliferation of vascular SMC. These results rise the question whether EMF would qualify as supportive means to angio-/arteriogenic approaches.
Collapse
Affiliation(s)
- Christiane Köbbert
- Department of Cardiology and Angiology, Hospital of the University of Münster, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Nonaka M, Pawankar R, Fukumoto A, Yagi T. Heterogeneous response of nasal and lung fibroblasts to transforming growth factor-β1. Clin Exp Allergy 2008; 38:812-21. [DOI: 10.1111/j.1365-2222.2008.02959.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Rajatapiti P, van der Horst IWJM, de Rooij JD, Tran MGB, Maxwell PH, Tibboel D, Rottier R, de Krijger RR. Expression of hypoxia-inducible factors in normal human lung development. Pediatr Dev Pathol 2008; 11:193-9. [PMID: 17990921 DOI: 10.2350/07-04-0257.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/30/2007] [Indexed: 01/02/2023]
Abstract
Pulmonary vascular development is essential for proper lung development, and its disturbance can lead to neonatal morbidity and mortality, as exemplified in congenital diaphragmatic hernia. Hypoxia-inducible factors (HIFs) appear to be key molecules in physiologic angiogenesis and in certain forms of lung pathology, such as bronchopulmonary dysplasia. Little is known about the qualitative and quantitative expression of HIFs in normal human fetal lung development. Therefore, we investigated the expression of HIF-1alpha, HIF-2alpha, and HIF-3alpha, along with their upstream regulators and downstream targets, von Hippel-Lindau protein, vascular endothelial growth factor A (VEGF-A), and its receptor, VEGFR-2, in 20 normal human fetal lungs (13.5 weeks in gestation until term) and 5 adult lungs. Quantitative polymerase chain reaction demonstrated a positive correlation between HIF-2alpha and VEGF-A expression and gestational age. Although there appeared to be a decreasing trend in HIF-3alpha expression during pregnancy, it did not reach statistical significance. Immunohistochemistry for HIF-1alpha and HIF-2alpha revealed that HIF-1alpha is expressed in the epithelium, while HIF-2alpha is expressed in both interstitium and epithelium. Our data indicate that HIFs, most notably HIF-2alpha, appear to exert an important role in angiogenesis during human fetal lung development, especially in the last phases of pregnancy, preparing the fetus for extrauterine life. As such, our results form the baseline data for the evaluation and interpretation of abnormal pulmonary vascular development.
Collapse
Affiliation(s)
- Prapapan Rajatapiti
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Muehlethaler V, Kunig AM, Seedorf G, Balasubramaniam V, Abman SH. Impaired VEGF and nitric oxide signaling after nitrofen exposure in rat fetal lung explants. Am J Physiol Lung Cell Mol Physiol 2008; 294:L110-20. [DOI: 10.1152/ajplung.00407.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that abnormal fetal lung growth in experimental congenital diaphragmatic hernia after maternal nitrofen exposure alters lung structure due to impaired VEGF signaling, which can be reversed with VEGF or nitric oxide (NO) treatment. Timed-pregnant Sprague-Dawley rats were treated with nitrofen on embryonic day 9 (E9), and fetal lungs were harvested for explant culture on E15. Explants were maintained in 3% O2for 3 days and were treated with NO gas or recombinant human VEGF protein for 3 days. To determine the effects of VEGF inhibition on lung structure, normal fetal lung explants were treated with SU-5416, a VEGF receptor inhibitor, with or without exogenous NO or VEGF. We found that nitrofen treatment impaired lung structure, as evidenced by decreased branching at day 0, but lung structure was not different from controls after 3 days in culture. Nitrofen reduced lung VEGF but not endothelial NO synthase protein level. Treatment with NO enhanced lung growth in control and nitrofen-exposed lungs; however, the response to NO in the nitrofen-treated lungs was reduced when compared with controls. VEGF treatment did not cause a further increase in lung complexity after nitrofen exposure. SU-5416 treatment altered lung structure, which improved with NO but not VEGF treatment. Both nitrofen and SU-5416 treatment increased apoptosis in the mesenchyme of fetal lung explants. We conclude that nitrofen exposure increased apoptosis, decreased lung growth and reduced VEGF expression, and that exogenous NO but not VEGF treatment enhances lung growth. Disruption of lung architecture after VEGF receptor blockade was similar to nitrofen-induced changes but was more responsive to NO.
Collapse
|
38
|
Pinto MDL, Rodrigues P, Coelho AC, Pires MDA, dos Santos DL, Gonçalves C, Bairos VA. Prenatal administration of vitamin A alters pulmonary and plasma levels of vascular endothelial growth factor in the developing mouse. Int J Exp Pathol 2007; 88:393-401. [PMID: 18039276 DOI: 10.1111/j.1365-2613.2007.00565.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vitamin A and the retinoids play a unique role in mammalian embryonic and foetal development and are essential for both cellular differentiation and the establishment of normal morphogenesis. Vascular endothelial growth factor (VEGF) is a known potent mitogenic factor that plays a key role in lung development and function maintenance. In order to contribute to a better knowledge of the modulating effects of vitamin A in lung development, we investigated the effects of the antenatal administration of vitamin A on VEGF expression in lungs and plasma from foetuses and neonates. Pregnant mice were subjected to subcutaneous administration of vitamin A on the 12th gestational day. The lungs and plasma from foetuses and neonates were collected daily from the 15th gestational day till the day of birth. Our results show that vitamin A modulates VEGF concentrations both in lungs and plasma. Statistically significant differences were observed at gestational days 15 (P = 0.004 for lungs; P < 0.0001 for plasma), 16 (P < 0.0001 for lungs and plasma) and 18 (P < 0.0001 for lungs; P < 0.05 for plasma). Vitamin A tends to increase the expression of this factor in the lung, particularly during the critical period of perinatal adaptation to postnatal life. These effects seem to be spatial and temporally regulated, and point out to the important role of vitamin A during lung development.
Collapse
Affiliation(s)
- Maria de Lurdes Pinto
- Department of Veterinary Sciences and Centre for Studies on Agricultural and Veterinary Sciences, University of Trás-os-Montes w Alto Douro, Vila Real, Portugal.
| | | | | | | | | | | | | |
Collapse
|
39
|
Raidl M, Sibbing B, Strauch J, Müller K, Nemat A, Schneider PM, Hag H, Erdmann E, Koch A. Impaired TNFalpha-induced VEGF expression in human airway smooth muscle cells from smokers with COPD: role of MAPkinases and histone acetylation--effect of dexamethasone. Cell Biochem Biophys 2007; 49:98-110. [PMID: 17906365 DOI: 10.1007/s12013-007-0043-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 06/22/2007] [Indexed: 01/17/2023]
Abstract
The cytokine and potent angiogenic factor vascular endothelial growth factor (VEGF) plays an important role in airway remodelling in various airway diseases such as idiopathic pulmonary fibrosis, pulmonary hypertension, lung cancer, asthma and chronic obstructive pulmonary disease (COPD). The effect of cigarette-smoking on VEGF expression, the modulatory role of extracellular signal-regulated kinase (ERK)-1,-2, p38mitogen-activated protein kinase (MAPK), histone acetylation and the anti-inflammatory effect of dexamethasone on TNFalpha-induced VEGF expression were examined in human airway smooth muscle cells (HASMC) of five non-smokers, 17 smokers without airflow limitation and 15 smokers with COPD. TNFalpha increased VEGF expression 5.4-fold and 4.0-fold in HASMC from non-smokers and smokers without airflow limitation, respectively, but only 2.5-fold in HASMC from smokers with COPD compared with non-stimulated HASMC. VEGF production was dependent on phosphorylation of ERK-1,-2 and p38MAPK, as was shown by examining the effects of PD 098059 (10 microM), an inhibitor of the upstream activator of MAPKkinase (MKK)-1, and SB 203580 (10 microM), an inhibitor of p38MAPK; there were no differences between non-smokers, smokers without airflow limitation and smokers with COPD in this respect. Dexamethasone (DEX; 10(-12)-10(-4) M) reduced TNFalpha-induced phosphorylation of ERK-1/-2 and prevented TNFalpha-induced VEGF generation without differences between non-smokers, smokers with and without COPD. There was an additional inhibitory effect of DEX (10(-12) M) on VEGF-release when PD 098059 was added. The basal and TNFalpha-induced acetylation status of the VEGF-promoter (chromatin immunoprecipitation [ChIP] assay) was increased in HASMC from smokers with COPD compared with smokers without airflow limitation and non-smokers. In comparison to non-stimulated HASMC, TNFalpha decreased the acetylation status of the VEGF-promoter by approximately 46% and approximately 43% in HASMC from non-smokers and smokers without COPD compared with approximately 68% in HASMC from smokers with COPD. The data suggest that HASMC express VEGF in response to TNFalpha and that this may be reduced in HASMC of smokers with COPD in a smoking-independent manner. VEGF expression is directly modulated by phosphorylation of ERK-1,-2 and p38MAPK and by histone acetylation and the acetylation status of the VEGF gene is increased in HASMC of smokers with COPD in a smoking-independent manner. TNFalpha reduced the acetylation status of the VEGF promoter in HASMC.
Collapse
Affiliation(s)
- Maria Raidl
- Clinic III for Internal Medicine, Department of Pneumology, University of Cologne, Joseph-Stelzmann-Str. 9, Cologne, 50924, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yao Y, Nowak S, Yochelis A, Garfinkel A, Boström KI. Matrix GLA protein, an inhibitory morphogen in pulmonary vascular development. J Biol Chem 2007; 282:30131-42. [PMID: 17670744 DOI: 10.1074/jbc.m704297200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deficiency of matrix GLA protein (MGP), an inhibitor of bone morphogenetic protein (BMP)-2/4, is known to cause arterial calcification and peripheral pulmonary artery stenosis. Yet the vascular role of MGP remains poorly understood. To further investigate MGP, we created a new MGP transgenic mouse model with high expression of the transgene in the lungs. The excess MGP led to a disruption of the pulmonary pattern of BMP-4, and resulted in significant morphological defects in the pulmonary artery tree. Specifically, the vascular branching pattern lacked characteristic side branching, whereas control lungs had extensive side branching accounting for as much as 40% of the vascular endothelium. The vascular changes could be explained by a dramatic reduction of phosphorylated SMAD1/5/8 in the alveolar epithelium, and in epithelial expression of the activin-like kinase receptor 1 and vascular endothelial growth factor, both critical in vascular formation. Abnormalities were also found in the terminal airways and in lung cell differentiation; high levels of surfactant protein-B were distributed in an abnormal pattern suggesting lost coordination between vasculature and airways. Ex vivo, lung cells from MGP transgenic mice showed higher proliferation, in particular surfactant protein B-expressing cells, and conditioned medium from these cells poorly supported in vitro angiogenesis compared with normal lung cells. The vascular branching defect can be mechanistically explained by a computational model based on activator/inhibitor reaction-diffusion dynamics, where BMP-4 and MGP are considered as an activating and inhibitory morphogen, respectively, suggesting that morphogen interactions are important for vascular branching.
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1679
| | | | | | | | | |
Collapse
|
41
|
Yamamoto Y, Shiraishi I, Dai P, Hamaoka K, Takamatsu T. Regulation of embryonic lung vascular development by vascular endothelial growth factor receptors, Flk-1 and Flt-1. Anat Rec (Hoboken) 2007; 290:958-73. [PMID: 17654674 DOI: 10.1002/ar.20564] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The biological effects of vascular endothelial growth factor A (VEGF-A) are mediated by fetal liver kinase-1 (Flk-1) and fms-like tyrosine kinase-1 (Flt-1). In lung tissue, VEGF-A is diffusely expressed throughout the embryonic stages, whereas the development of vascular endothelial cells is not uniform. Noting the signaling properties of the two receptors, we hypothesized that Flk-1 and Flt-1 regulate the embryonic development of lung vasculature. We herein show the spatiotemporal expression and experimental inhibition of Flk-1 and Flt-1 of embryonic mouse lung tissue. When Flk-1 was predominantly expressed (embryonic day [E] 9.5-E13.5), then vascular endothelial cells actively proliferated. When Flt-1 was enhanced (E14.5-E16.5), these cells less actively proliferated, thereby constituting organized networks. The treatment of cultured lung buds (E11.5) with antisense oligonucleotides complementary to Flk-1 inhibited branching of capillaries and proliferation of endothelial cells. In contrast, the inhibition of Flt-1 promoted the branching of capillaries and enhanced proliferation of endothelial cells. Of interest, inhibition of Flt-1 promoted Flk-1 expression. These results suggest that the two VEGF-A receptors regulate pulmonary vascular development by modulating the VEGF-A signaling.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Endothelium, Vascular/physiology
- Ephrin-B2/genetics
- Ephrin-B2/physiology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Lung/blood supply
- Lung/cytology
- Lung/embryology
- Mice
- Mice, Inbred ICR
- Morphogenesis/drug effects
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/physiology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- Signal Transduction/physiology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/physiology
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/physiology
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/physiology
Collapse
Affiliation(s)
- Yasutoshi Yamamoto
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | | | | | | | | |
Collapse
|
42
|
Groenman FA, Rutter M, Wang J, Caniggia I, Tibboel D, Post M. Effect of chemical stabilizers of hypoxia-inducible factors on early lung development. Am J Physiol Lung Cell Mol Physiol 2007; 293:L557-67. [PMID: 17545484 DOI: 10.1152/ajplung.00486.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Low oxygen stimulates pulmonary vascular development and airway branching and involves hypoxia-inducible factor (HIF). HIF is stable and initiates expression of angiogenic factors under hypoxia, whereas normoxia triggers hydroxylation of the HIF-1α subunit by prolyl hydroxylases (PHDs) and subsequent degradation. Herein, we investigated whether chemical stabilization of HIF-1α under normoxic (20% O2) conditions would stimulate vascular growth and branching morphogenesis in early lung explants. Tie2-LacZ (endothelial LacZ marker) mice were used for visualization of the vasculature. Embryonic day 11.5 (E11.5) lung buds were dissected and cultured in 20% O2 in the absence or presence of cobalt chloride (CoCl2, a hypoxia mimetic), dimethyloxalylglycine (DMOG; a nonspecific inhibitor of PHDs), or desferrioxamine (DFO; an iron chelator). Vascularization was assessed by X-gal staining, and terminal buds were counted. The fine vascular network surrounding the developing lung buds seen in control explants disappeared in CoCl2- and DFO-treated explants. Also, epithelial branching was reduced in the explants treated with CoCl2 and DFO. In contrast, DMOG inhibited branching but stimulated vascularization. Both DFO and DMOG increased nuclear HIF-1α protein levels, whereas CoCl2 had no effect. Since HIF-1α induces VEGF expression, the effect of SU-5416, a potent VEGF receptor (VEGFR) blocker, on early lung development was also investigated. Inhibition of VEGFR2 signaling in explants maintained under hypoxic (2% O2) conditions completely abolished vascularization and slightly decreased epithelial branching. Taken together, the data suggest that DMOG stabilization of HIF-1α during early development leads to a hypervascular lung and that airway branching proceeds without the vasculature, albeit at a slower rate.
Collapse
Affiliation(s)
- Freek A Groenman
- CIHR Group in Lung Development, Hospital for Sick Children Research Institute, Department of Pediatrics and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Thébaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 2007; 175:978-85. [PMID: 17272782 PMCID: PMC2176086 DOI: 10.1164/rccm.200611-1660pp] [Citation(s) in RCA: 403] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bronchopulmonary dysplasia and emphysema are significant global health problems at the extreme stages of life. Both are characterized by arrested alveolar development or loss of alveoli, respectively. Both lack effective treatment strategies. Knowledge about the genetic control of branching morphogenesis in mammals derives from investigations of the respiratory system in Drosophila, but mechanisms that regulate alveolar development remain poorly understood. Even less is known about regulation of the growth and development of the pulmonary vasculature. Understanding how alveoli and the underlying capillary network develop, and how these mechanisms are disrupted in disease states, are critical for developing effective therapies for lung diseases characterized by impaired alveolar structure. Recent observations have challenged old notions that the development of the blood vessels in the lung passively follows that of the airways. Rather, increasing evidence suggests that lung blood vessels actively promote alveolar growth during development and contribute to the maintenance of alveolar structures throughout postnatal life. Our working hypothesis is that disruption of angiogenesis impairs alveolarization, and that preservation of vascular growth and endothelial survival promotes growth and sustains the architecture of the distal airspace. Furthermore, the explosion of interest in stem cell biology suggests potential roles for endothelial progenitor cells in the pathogenesis or treatment of lung vascular disease. In this Pulmonary Perspective, we review recent data on the importance of the lung circulation, specifically examining the relationship between dysmorphic vascular growth and impaired alveolarization, and speculate on how these new insights may lead to novel therapeutic strategies for bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Bernard Thébaud
- Department of Pediatrics, Division of Neonatology, Vascular Biology Group, University of Alberta, HMRC 407, Edmonton, AB, T6G 2S2, Canada.
| | | |
Collapse
|
44
|
Tuder RM, Yoshida T, Fijalkowka I, Biswal S, Petrache I. Role of lung maintenance program in the heterogeneity of lung destruction in emphysema. Ann Am Thorac Soc 2007; 3:673-9. [PMID: 17065372 PMCID: PMC2647653 DOI: 10.1513/pats.200605-124sf] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Centrilobular emphysema caused by chronic cigarette smoking is a heterogeneous disease with a predominance of upper lobe involvement. It is presumed that this heterogeneity indicates a particular susceptibility to cigarette smoke or the fact that the inhaled smoke distributes preferentially to upper lung zones. The less involved areas might therefore retain the capacity for lung regeneration and gain of pulmonary function in terminally ill patients. We propose that the interplay between molecular and cellular switches involved in the lung response to environmental injuries determines the heterogeneous pattern of emphysema due to cigarette smoke. Regional activation of alveolar destruction by apoptosis and oxidative stress coupled with regional failure of defense mechanisms may account for the irregular pattern of lung destruction in cigarette smoke-induced emphysema. Protection afforded by the key antioxidant transcription factor Nrf-2 and the antiproteolytic and antiapoptotic actions of alpha(1)-antitrypsin is central to maintain lung homeostasis and lung structure. As the lung is injured by environmental pollutants, including cigarette smoke, molecular sensors of cellular stress, such as the mTOR/protein translation regulator RTP-801, may engage both inflammation and alveolar cell apoptosis. As injury prevails during the course of this chronic disease, it leads to a more homogeneous pattern of lung disease.
Collapse
Affiliation(s)
- Rubin M Tuder
- Division of Cardiopulmonary Pathology, Department of Pathology, Ross Research Building, Room 519, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
45
|
Khan PA, Cloutier M, Piedboeuf B. Tracheal occlusion: A review of obstructing fetal lungs to make them grow and mature. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2007; 145C:125-38. [PMID: 17436297 DOI: 10.1002/ajmg.c.30127] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fetal lung growth and functional differentiation are affected strongly by the extent that pulmonary tissue is distended (expanded) by liquid that naturally fills developing future airspaces. Methods that prevent normal egress of this lung fluid through the trachea magnify mechanical stretching of lung parenchymal cells, thereby promoting lung development. Indeed, experimental observations demonstrate that in utero tracheal occlusion (TO) performed on fetuses during the late canalicular-early saccular stage potently stimulates pulmonary growth and maturation. In this review, we present the four principle non-human animal models of TO/obstruction and discuss them in relation to their utility in elucidating lung development, in remedying congenital diaphragmatic hernia (CDH) as well as in investigating the stretching effects on growth and remodeling of the fine vasculature.
Collapse
Affiliation(s)
- Paul A Khan
- CRCHUL Medical Research Centre, Laval University, Québec, Canada
| | | | | |
Collapse
|
46
|
Groenman F, Rutter M, Caniggia I, Tibboel D, Post M. Hypoxia-inducible factors in the first trimester human lung. J Histochem Cytochem 2006; 55:355-63. [PMID: 17189520 DOI: 10.1369/jhc.6a7129.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung development takes place in a relatively low-oxygen environment, which is beneficial for lung organogenesis, including vascular development. Hypoxia-inducible factor (HIF)-1 plays an important role in mediating oxygen-regulated events. HIF-1 is stable and initiates gene transcription under hypoxia, whereas in normoxia, interaction with the von Hippel-Lindau (VHL) tumor suppressor protein leads to rapid degradation of the HIF-1alpha subunit. Interaction with VHL requires hydroxylation of HIF-1alpha proline residues by prolyl hydroxylases (PHDs). We investigated the expression of the various components regulating HIF-1alpha stability in first trimester (8-14 weeks) human lungs. Spatial expression was assessed by immunohistochemistry and temporal expression by quantitative PCR. Immunoreactivity for PHD1, PHD3, and seven in absentia homolog (SIAH)1 was noted in the pulmonary epithelium. PHD2 was not expressed in the airway epithelium, but in the lung parenchyma. HIF-1alpha and vascular endothelial growth factor (VEGF) immunoreactivity were primarily detected in the branching epithelium. HIF-2alpha and ARNT proteins localized to the developing epithelium as well as mesenchymal, most likely vascular, structures in the parenchyma. VEGF receptor 2 (VEGFR2) was found in the subepithelium as well as in vascular structures of the mesenchyme. All components of the VEC complex (VHL, NEDD8, and Cullin2) were found in the epithelium. Quantitative PCR analysis demonstrated that VEGF, VEGFR1, HIF-1alpha, HIF-2alpha, ARNT, PHD1, PHD2, PHD3, and SIAH1 gene expression was constant during early pulmonary organogenesis. Cumulatively, the data suggest that the lung develops in a low-oxygen environment that allows for proper vascular development through HIF-regulated pathways.
Collapse
Affiliation(s)
- Frederick Groenman
- Canadian Institute of Health Research Group in Lung Development, Hospital for Sick Children Research Institute, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
47
|
Papaioannou AI, Kostikas K, Kollia P, Gourgoulianis KI. Clinical implications for vascular endothelial growth factor in the lung: friend or foe? Respir Res 2006; 7:128. [PMID: 17044926 PMCID: PMC1629021 DOI: 10.1186/1465-9921-7-128] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 10/17/2006] [Indexed: 11/10/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent mediator of angiogenesis which has multiple effects in lung development and physiology. VEGF is expressed in several parts of the lung and the pleura while it has been shown that changes in its expression play a significant role in the pathophysiology of some of the most common respiratory disorders, such as acute lung injury, asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, idiopathic pulmonary fibrosis, pulmonary hypertension, pleural disease, and lung cancer. However, the exact role of VEGF in the lung is not clear yet, as there is contradictory evidence that suggests either a protective or a harmful role. VEGF seems to interfere in a different manner, depending on its amount, the location, and the underlying pathologic process in lung tissue. The lack of VEGF in some disease entities may provide implications for its substitution, whereas its overexpression in other lung disorders has led to interventions for the attenuation of its action. Many efforts have been made in order to regulate the expression of VEGF and anti-VEGF antibodies are already in use for the management of lung cancer. Further research is still needed for the complete understanding of the exact role of VEGF in health and disease, in order to take advantage of its benefits and avoid its adverse effects. The scope of the present review is to summarize from a clinical point of view the changes in VEGF expression in several disorders of the respiratory system and focus on its diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Andriana I Papaioannou
- Respiratory Medicine Department, University of Thessaly School of Medicine, University Hospital of Larissa, Larissa 41110, Greece
| | - Konstantinos Kostikas
- Respiratory Medicine Department, University of Thessaly School of Medicine, University Hospital of Larissa, Larissa 41110, Greece
| | - Panagoula Kollia
- Biology Department, University of Thessaly School of Medicine, University Hospital of Larissa, Larissa 41110, Greece
| | - Konstantinos I Gourgoulianis
- Respiratory Medicine Department, University of Thessaly School of Medicine, University Hospital of Larissa, Larissa 41110, Greece
| |
Collapse
|
48
|
Wallace MJ, Thiel AM, Lines AM, Polglase GR, Sozo F, Hooper SB. Role of platelet-derived growth factor-B, vascular endothelial growth factor, insulin-like growth factor-II, mitogen-activated protein kinase and transforming growth factor-beta1 in expansion-induced lung growth in fetal sheep. Reprod Fertil Dev 2006; 18:655-65. [PMID: 16930512 DOI: 10.1071/rd05163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 03/21/2006] [Indexed: 01/23/2023] Open
Abstract
Increased fetal lung expansion induces lung growth, cell differentiation and extracellular matrix remodelling, although the mechanisms involved are unknown. Platelet-derived growth factor (PDGF)-B, vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF)-II are mitogens activating the mitogen-activated protein kinase (MAPK) pathway, whereas transforming growth factor (TGF)-beta1 induces differentiation and extracellular matrix remodelling. In the present study, we investigated the mRNA levels of PDGF-B, VEGF, IGF-II and TGF-beta1, as well as active MAPK levels, during increased fetal lung expansion induced by tracheal obstruction (TO) in sheep for 0 (controls), 36 h or 2, 4, or 10 days (n = 5 in each group). The 3.7-kb VEGF transcript increased by 30% (P < 0.05) at 36 h TO. The expression of PDGF-B decreased by approximately 25% (P < 0.01) at 2-10 days TO. In contrast, TGF-beta1 mRNA increased by 96% (P < 0.05) at 10 days TO, when bioactive TGF-beta1 decreased by 55% (P < 0.05). Insulin-like growth factor-II mRNA tended to increase at 10 days TO (37% above controls; P = 0.07), whereas mRNA for its receptor, IGF1R, was reduced by TO. There was no change in active MAPK levels preceding or at the time of a TO-induced 800% increase in cell proliferation. We conclude that VEGF is likely to promote expansion-induced endothelial cell proliferation, but the mechanisms underlying expansion-induced proliferation of fibroblasts and alveolar epithelial cells are unlikely to be mediated by increases in PDGF-B or IGF-II expression or activation of the MAPK pathway.
Collapse
Affiliation(s)
- Megan J Wallace
- Department of Physiology, Monash University, Vic. 3800, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Shinkai M, Shinkai T, Montedonico S, Puri P. Effect of VEGF on the branching morphogenesis of normal and nitrofen-induced hypoplastic fetal rat lung explants. J Pediatr Surg 2006; 41:781-6. [PMID: 16567193 DOI: 10.1016/j.jpedsurg.2006.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Changes in vascular structures as well as vascular endothelial growth factor (VEGF) downregulation have been reported in hypoplastic lungs associated with congenital diaphragmatic hernia. We hypothesized that VEGF may accelerate branching morphogenesis and thus may modulate lung growth in normal and nitrofen-induced pulmonary hypoplastic lungs. METHODS A hypoplastic fetal lung model and a normal control lung model were induced by feeding pregnant rats with or without nitrofen, respectively. Fetal lungs harvested on day 13.5 were cultured at ambient oxygen tensions for 72 hours with 0, 25, 50, or 100 ng/mL of exogenous rat VEGF added daily in the serum-free medium. The rates of increase in bud count and airway contour were evaluated. Real-time polymerase chain reaction was carried out to evaluate the expression of surfactant protein C mRNA in the explants at the end of culture. RESULTS Vascular endothelial growth factor accelerated the increase in bud count and airway contour in normal and hypoplastic lung explants compared to controls. Surfactant protein C mRNA expression was significantly increased at 50 ng/mL VEGF compared to controls in both normal and hypoplastic lung explants. CONCLUSION These data suggest that VEGF plays an important role in lung morphogenesis and may accelerate lung growth in nitrofen-induced hypoplastic lung.
Collapse
Affiliation(s)
- Masato Shinkai
- Children's Research Center, Our Lady's Hospital for Sick Children, University College Dublin, 12 Dublin, Ireland
| | | | | | | |
Collapse
|
50
|
Bustani P, Hodge R, Tellabati A, Li J, Pandya H, Kotecha S. Differential response of the epithelium and interstitium in developing human fetal lung explants to hyperoxia. Pediatr Res 2006; 59:383-8. [PMID: 16492976 DOI: 10.1203/01.pdr.0000198774.79043.5c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hyperoxia is closely linked with the development of chronic lung disease of prematurity (CLD), but the exact mechanisms whereby hyperoxia alters the lung architecture in the developing lung remain largely unknown. We developed a fetal human lung organ culture model to investigate (a) the morphologic changes induced by hyperoxia and (b) whether hyperoxia resulted in differential cellular responses in the epithelium and interstitium. The effects of hyperoxia on lung morphometry were analyzed using computer-assisted image analysis. The lung architecture remained largely unchanged in normoxia lasting as long as 4 d. In contrast, hyperoxic culture of pseudoglandular fetal lungs resulted in significant dilatation of airways, thinning of the epithelium, and regression of the interstitium including the pulmonary vasculature. Although there were no significant differences in Ki67 between normoxic and hyperoxic lungs, activated caspase-3 was significantly increased in interstitial cells, but not epithelial cells, under hyperoxic conditions. These changes show that exposure of pseudoglandular lungs to hyperoxia modulates the lung architecture to resemble saccular lungs.
Collapse
Affiliation(s)
- Porus Bustani
- Division of Child Health, University of Leicester, UK
| | | | | | | | | | | |
Collapse
|