1
|
Feng Y, Xu L, Zhang J, Bin J, Pang X, He S, Fang L. Allergenic protein-induced type I hypersensitivity models: a review. FRONTIERS IN ALLERGY 2024; 5:1481011. [PMID: 39483683 PMCID: PMC11525013 DOI: 10.3389/falgy.2024.1481011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Context Type I hypersensitivity affects approximately one-third of the global population. As the pathophysiology underlying the development of type I hypersensitivity (asthma, food allergy, and anaphylactic shock, etc.) is complex and heterogeneous, animal model studies continue to be the key to identifying novel molecular pathways and providing therapeutic strategies. Objective Selection of the animal model should be done with careful consideration of the protocol variables, animal species, and strains to accurately reflect the clinical symptoms typical of humans. Methods The following databases were searched: PubMed and Web of Science. Results and conclusion Foreign allergens include allergenic proteins and chemical haptens. This review summarizes the various methods used for designing animal models of common allergenic protein-induced type I hypersensitivity, namely, passive anaphylaxis model, active systemic anaphylaxis/anaphylaxis shock model, food allergy model, asthma model, and IgE-mediated cell models. Additionally, we summarize shrimp tropomyosin-induced type I hypersensitivity models from our previous studies and discuss their advantages and limitations compared with that of ovalbumin-induced models.
Collapse
Affiliation(s)
- Yanhua Feng
- Paediatric Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| | - Liangyu Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jinming Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jinlian Bin
- Paediatric Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xialing Pang
- Paediatric Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| | - Sheng He
- Paediatric Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Fang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University Medical College, Yangzhou, China
| |
Collapse
|
2
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Nascimento CM, Casaro MC, Perez ER, Ribeiro WR, Mayer MPA, Ishikawa KH, Lino-dos-Santos-Franco A, Pereira JNB, Ferreira CM. Experimental allergic airway inflammation impacts gut homeostasis in mice. Heliyon 2023; 9:e16429. [PMID: 37484240 PMCID: PMC10360590 DOI: 10.1016/j.heliyon.2023.e16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Background /Aims: Epidemiological data show that there is an important relationship between respiratory and intestinal diseases. To improve our understanding on the interconnectedness between the lung and intestinal mucosa and the overlap between respiratory and intestinal diseases, our aim was to investigate the influence of ovalbumin (OVA)-induced allergic airway inflammation on gut homeostasis. Methods A/J mice were sensitized and challenged with OVA. The animals were euthanized 24 h after the last challenge, lung inflammation was determined by evaluating cells in Bronchoalveolar lavage fluid, serum anti-OVA IgG titers and colon morphology, inflammation and integrity of the intestinal mucosa were investigated. IL-4 and IL-13 levels and myeloperoxidase activity were determined in the colon samples. The expression of genes involved in inflammation and mucin production at the gut mucosa was also evaluated. Results OVA challenge resulted not only in lung inflammation but also in macroscopic alterations in the gut such as colon shortening, increased myeloperoxidase activity and loss of integrity in the colonic mucosal. Neutral mucin intensity was lower in the OVA group, which was followed by down-regulation of transcription of ATOH1 and up-regulation of TJP1 and MUC2. In addition, the OVA group had higher levels of IL-13 and IL-4 in the colon. Ova-specific IgG1 and OVA-specific IgG2a titers were higher in the serum of the OVA group than in controls. Conclusions Our data using the OVA experimental model suggested that challenges in the respiratory system may result not only in allergic airway inflammation but also in the loss of gut homeostasis.
Collapse
Affiliation(s)
- Carolina Martins Nascimento
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Mateus Campos Casaro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Evelyn Roxana Perez
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Willian Rodrigues Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Karin Hitomi Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
4
|
Erb A, Zissler UM, Oelsner M, Chaker AM, Schmidt-Weber CB, Jakwerth CA. Genome-Wide Gene Expression Analysis Reveals Unique Genes Signatures of Epithelial Reorganization in Primary Airway Epithelium Induced by Type-I, -II and -III Interferons. BIOSENSORS 2022; 12:929. [PMID: 36354438 PMCID: PMC9688329 DOI: 10.3390/bios12110929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip for gene expression sensing was used to examine the effects of type-I, -II, and -III IFN stimulation on the epithelial expression profiles of primary organotypic 3D air-liquid interface airway cultures. All types of IFNs induced similar interferon-stimulated genes (ISGs): OAS1, OAS2, and IFIT2. However, they differentially induced transcription factors, epithelial modulators, and pro-inflammatory genes. Type-I IFN-induced genes were associated with cell-cell adhesion and tight junctions, while type-III IFNs promoted genes important for transepithelial transport. In contrast, type-II IFN stimulated proliferation-triggering genes associated and enhanced pro-inflammatory mediator secretion. In conclusion, with our microarray system, we provide evidence that the three IFN types exceed their antiviral ISG-response by inducing distinct remodeling processes, thereby likely strengthening the epithelial airway barrier by enhancing cross-cell-integrity (I), transepithelial transport (III) and finally reconstruction through proliferation (II).
Collapse
Affiliation(s)
- Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, 81675 Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| |
Collapse
|
5
|
Akkoc T, O'Mahony L, Ferstl R, Akdis C, Akkoc T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:119-133. [PMID: 34398449 DOI: 10.1007/5584_2021_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is a complex and heterogeneous inflammatory airway disease primarily characterized by airway obstruction, which affects up to 15% of the population in Westernized countries with an increasing prevalence. Descriptive laboratory and clinical studies reveal that allergic asthma is due to an immunological inflammatory response and is significantly influenced by an individual's genetic background and environmental factors. Due to the limitations associated with human experiments and tissue isolation, direct mouse models of asthma provide important insights into the disease pathogenesis and in the discovery of novel therapeutics. A wide range of asthma models are currently available, and the correct model system for a given experimental question needs to be carefully chosen. Despite recent advances in the complexity of murine asthma models, for example humanized murine models and the use of clinically relevant allergens, the limitations of the murine system should always be acknowledged, and it remains to be seen if any single murine model can accurately replicate all the clinical features associated with human asthmatic disease.
Collapse
Affiliation(s)
- Tolga Akkoc
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey.
| | - Liam O'Mahony
- Department of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ruth Ferstl
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Tunc Akkoc
- Department of Pediatric Allergy-Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Boucher M, Henry C, Dufour-Mailhot A, Khadangi F, Bossé Y. Smooth Muscle Hypocontractility and Airway Normoresponsiveness in a Mouse Model of Pulmonary Allergic Inflammation. Front Physiol 2021; 12:698019. [PMID: 34267677 PMCID: PMC8277197 DOI: 10.3389/fphys.2021.698019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/04/2021] [Indexed: 01/25/2023] Open
Abstract
The contractility of airway smooth muscle (ASM) is labile. Although this feature can greatly modulate the degree of airway responsiveness in vivo, the extent by which ASM's contractility is affected by pulmonary allergic inflammation has never been compared between strains of mice exhibiting a different susceptibility to develop airway hyperresponsiveness (AHR). Herein, female C57BL/6 and BALB/c mice were treated intranasally with either saline or house dust mite (HDM) once daily for 10 consecutive days to induce pulmonary allergic inflammation. The doses of HDM were twice greater in the less susceptible C57BL/6 strain. All outcomes, including ASM contractility, were measured 24 h after the last HDM exposure. As expected, while BALB/c mice exposed to HDM became hyperresponsive to a nebulized challenge with methacholine in vivo, C57BL/6 mice remained normoresponsive. The lack of AHR in C57BL/6 mice occurred despite exhibiting more than twice as much inflammation than BALB/c mice in bronchoalveolar lavages, as well as similar degrees of inflammatory cell infiltrates within the lung tissue, goblet cell hyperplasia and thickening of the epithelium. There was no enlargement of ASM caused by HDM exposure in either strain. Unexpectedly, however, excised tracheas derived from C57BL/6 mice exposed to HDM demonstrated a decreased contractility in response to both methacholine and potassium chloride, while tracheas from BALB/c mice remained normocontractile following HDM exposure. These results suggest that the lack of AHR in C57BL/6 mice, at least in an acute model of HDM-induced pulmonary allergic inflammation, is due to an acquired ASM hypocontractility.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
Casaro MB, Thomas AM, Mendes E, Fukumori C, Ribeiro WR, Oliveira FA, Crisma AR, Murata GM, Bizzarro B, Sá-Nunes A, Setubal JC, Mayer MPA, Martins FS, Vieira AT, Antiorio ATFB, Tavares-de-Lima W, Camara NOS, Curi R, Dias-Neto E, Ferreira CM. A probiotic has differential effects on allergic airway inflammation in A/J and C57BL/6 mice and is correlated with the gut microbiome. MICROBIOME 2021; 9:134. [PMID: 34112246 PMCID: PMC8194189 DOI: 10.1186/s40168-021-01081-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.
Collapse
Affiliation(s)
- Mateus B Casaro
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Andrew M Thomas
- Department CIBIO, University of Trento, Trento, Italy
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Mendes
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Claudio Fukumori
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Willian R Ribeiro
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Fernando A Oliveira
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC - UFABC, São Bernardo do Campo, SP, Brazil
| | - Amanda R Crisma
- Department of Clinical Analyses, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gilson M Murata
- Department of Medical Clinic, Faculty of Medicine, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Joao C Setubal
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flaviano S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal Universidade de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica T Vieira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana T F B Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal Science, Universidade de São Paulo, São Paulo, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences I, Universidade de São Paulo, São Paulo, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline M Ferreira
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil.
| |
Collapse
|
8
|
Keumatio Doungstop BC, van Vliet SJ, van Ree R, de Jong EC, van Kooyk Y. Carbohydrates in allergy: from disease to novel immunotherapies. Trends Immunol 2021; 42:635-648. [PMID: 34052120 DOI: 10.1016/j.it.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Respiratory allergic disorders are a global public health problem that are responsible for substantial morbidity and healthcare expenditure. Despite the availability of allergen immunotherapy (AIT), its efficacy is suboptimal and regimens are lengthy, with a significant risk of potentially severe side effects. Studies on the recognition of allergens by immune cells through carbohydrate-lectin interactions, which play a crucial role in immune modulation and pathogenesis of allergy, have paved the way for improvements in AIT. We highlight innovative approaches for more effective and safer AIT, including the use of allergens conjugated to specific carbohydrates that bind to C-type lectins (CLRs) and sialic acid-binding immunoglobulin-type lectins (Siglecs) on immune cells to induce suppressive responses.
Collapse
Affiliation(s)
- B C Keumatio Doungstop
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC), location Vrije Universiteit Medical Center (VUmc), Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - S J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC), location Vrije Universiteit Medical Center (VUmc), Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - R van Ree
- Department of Experimental Immunology, Amsterdam UMC, location Academic Medical Center (AMC), Amsterdam, The Netherlands; Department of Otorhinolaryngology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - E C de Jong
- Department of Experimental Immunology, Amsterdam UMC, location Academic Medical Center (AMC), Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Y van Kooyk
- Department of Experimental Immunology, Amsterdam UMC, location Academic Medical Center (AMC), Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Fukumori C, Casaro MB, Thomas AM, Mendes E, Ribeiro WR, Crisma AR, Murata GM, Bizzarro B, Dias-Neto E, Setubal JC, Oliveira MA, Tavares-de-Lima W, Curi R, Bordin S, Sartorelli P, Ferreira CM. Maternal supplementation with a synbiotic has distinct outcomes on offspring gut microbiota formation in A/J and C57BL/6 mice, differentially affecting airway inflammatory cell infiltration and mucus production. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Spacova I, Ceuppens JL, Seys SF, Petrova MI, Lebeer S. Probiotics against airway allergy: host factors to consider. Dis Model Mech 2018; 11:11/7/dmm034314. [PMID: 30037806 PMCID: PMC6078401 DOI: 10.1242/dmm.034314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The worldwide prevalence of allergic diseases has drastically increased in the past decades. Recent studies underline the importance of microbial exposure for the development of a balanced immune system. Consequently, probiotic bacteria are emerging as a safe and natural strategy for allergy prevention and treatment. However, clinical probiotic intervention studies have so far yielded conflicting results. There is increasing awareness about the importance of host-associated factors that determine whether an individual will respond to a specific probiotic treatment, and it is therefore crucial to promote a knowledge-based instead of an empirical selection of promising probiotic strains and their administration regimen.In this Review, we summarize the insights from animal model studies of allergic disease, which reveal how host-related factors - such as genetic makeup, sex, age and microbiological status - can impact the outcomes of preventive or curative probiotic treatment. We explore why and how these factors can influence the results of probiotic studies and negatively impact the reproducibility in animal experiments. These same factors might profoundly influence the outcomes of human clinical trials, and can potentially explain the conflicting results from probiotic intervention studies. Therefore, we also link these host-related factors to human probiotic study outcomes in the context of airway allergies.
Collapse
Affiliation(s)
- Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium.,Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (M²S), KU Leuven, Belgium
| | - Jan L Ceuppens
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Mariya I Petrova
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (M²S), KU Leuven, Belgium
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium .,Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (M²S), KU Leuven, Belgium
| |
Collapse
|
11
|
Abstract
The diversity of asthma phenotypes increases its complexity. Animal models represent a useful tool to elucidate the pathophysiological mechanisms involved in both allergic and nonallergic asthma, as well as to identify potential targets for the development of new treatments. Among all available animal models, mice offer significant advantages for the study of asthma. In this chapter, the applications of mouse models to the study of asthma will be reviewed.
Collapse
|
12
|
Zhang J, Yin Y, Lin X, Yan X, Xia Y, Zhang L, Cao J. IL-36 induces cytokine IL-6 and chemokine CXCL8 expression in human lung tissue cells: Implications for pulmonary inflammatory responses. Cytokine 2017; 99:114-123. [PMID: 28869889 DOI: 10.1016/j.cyto.2017.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 11/15/2022]
Abstract
IL-36α, IL-36β and IL-36γ are cytokine members of IL-1 family. Although IL-36 expression was observed in human lung during pulmonary infections, it remains unknown whether IL-36 could act directly on lung tissue cells during pulmonary inflammatory responses. In this study, we showed that IL-36 receptor was expressed in human lung fibroblasts and bronchial epithelial cells. Correspondingly, IL-36α, IL-36β or IL-36γ up-regulated gene expression of cytokine IL-6 and chemokine CXCL8 in human lung fibroblasts and bronchial epithelial cells, and promoted IL-6 and CXCL8 release from human lung fibroblasts and bronchial epithelial cells. The production of IL-6 and CXCL8 in these lung tissues cells induced by IL-36α, IL-36β or IL-36γ was regulated by p38MAPK, ERK or Akt signaling pathways. Taken together, the above results suggest that IL-36-mediated IL-6 and CXCL8 production in human lung fibroblasts and bronchial epithelial cells may be involved in pulmonary inflammation especially caused by bacterial or viral infections.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingxing Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Fear VS, Lai SP, Zosky GR, Perks KL, Gorman S, Blank F, von Garnier C, Stumbles PA, Strickland DH. A pathogenic role for the integrin CD103 in experimental allergic airways disease. Physiol Rep 2016; 4:4/21/e13021. [PMID: 27905296 PMCID: PMC5112499 DOI: 10.14814/phy2.13021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 11/24/2022] Open
Abstract
The integrin CD103 is the αE chain of integrin αEβ7 that is important in the maintenance of intraepithelial lymphocytes and recruitment of T cells and dendritic cells (DC) to mucosal surfaces. The role of CD103 in intestinal immune homeostasis has been well described, however, its role in allergic airway inflammation is less well understood. In this study, we used an ovalbumin (OVA)-induced, CD103-knockout (KO) BALB/c mouse model of experimental allergic airways disease (EAAD) to investigate the role of CD103 in disease expression, CD4+ T-cell activation and DC activation and function in airways and lymph nodes. We found reduced airways hyper-responsiveness and eosinophil recruitment to airways after aerosol challenge of CD103 KO compared to wild-type (WT) mice, although CD103 KO mice showed enhanced serum OVA-specific IgE levels. Following aerosol challenge, total numbers of effector and regulatory CD4+ T-cell subsets were significantly increased in the airways of WT but not CD103 KO mice, as well as a lack of DC recruitment into the airways in the absence of CD103. While total airway DC numbers, and their in vivo allergen capture activity, were essentially normal in steady-state CD103 KO mice, migration of allergen-laden airway DC to draining lymph nodes was disrupted in the absence of CD103 at 24 h after aerosol challenge. These data support a role for CD103 in the pathogenesis of EAAD in BALB/c mice through local control of CD4+ T cell and DC subset recruitment to, and migration from, the airway mucosa during induction of allergic inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabian Blank
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Philip A Stumbles
- Telethon Kids Institute, Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, Perth, Australia .,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| |
Collapse
|
15
|
Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge. G3-GENES GENOMES GENETICS 2016; 6:2857-65. [PMID: 27449512 PMCID: PMC5015943 DOI: 10.1534/g3.116.032912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene-environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design in which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.
Collapse
|
16
|
Eiymo Mwa Mpollo MS, Brandt EB, Shanmukhappa SK, Arumugam PI, Tiwari S, Loberg A, Pillis D, Rizvi T, Lindsey M, Jonck B, Carmeliet P, Kalra VK, Le Cras TD, Ratner N, Wills-Karp M, Hershey GKK, Malik P. Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13. J Clin Invest 2015; 126:571-84. [PMID: 26690703 DOI: 10.1172/jci77250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/12/2015] [Indexed: 12/25/2022] Open
Abstract
Airway hyperresponsiveness (AHR) affects 55%-77% of children with sickle cell disease (SCD) and occurs even in the absence of asthma. While asthma increases SCD morbidity and mortality, the mechanisms underlying the high AHR prevalence in a hemoglobinopathy remain unknown. We hypothesized that placenta growth factor (PlGF), an erythroblast-secreted factor that is elevated in SCD, mediates AHR. In allergen-exposed mice, loss of Plgf dampened AHR, reduced inflammation and eosinophilia, and decreased expression of the Th2 cytokine IL-13 and the leukotriene-synthesizing enzymes 5-lipoxygenase and leukotriene-C4-synthase. Plgf-/- mice treated with leukotrienes phenocopied the WT response to allergen exposure; conversely, anti-PlGF Ab administration in WT animals blunted the AHR. Notably, Th2-mediated STAT6 activation further increased PlGF expression from lung epithelium, eosinophils, and macrophages, creating a PlGF/leukotriene/Th2-response positive feedback loop. Similarly, we found that the Th2 response in asthma patients is associated with increased expression of PlGF and its downstream genes in respiratory epithelial cells. In an SCD mouse model, we observed increased AHR and higher leukotriene levels that were abrogated by anti-PlGF Ab or the 5-lipoxygenase inhibitor zileuton. Overall, our findings indicate that PlGF exacerbates AHR and uniquely links the leukotriene and Th2 pathways in asthma. These data also suggest that zileuton and anti-PlGF Ab could be promising therapies to reduce pulmonary morbidity in SCD.
Collapse
|
17
|
Limjunyawong N, Craig JM, Lagassé HAD, Scott AL, Mitzner W. Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans. Am J Physiol Lung Cell Mol Physiol 2015; 309:L662-76. [PMID: 26232300 PMCID: PMC4593839 DOI: 10.1152/ajplung.00214.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
Emphysema, one of the major components of chronic obstructive pulmonary disease (COPD), is characterized by the progressive and irreversible loss of alveolar lung tissue. Even though >80% of COPD cases are associated with cigarette smoking, only a relatively small proportion of smokers develop emphysema, suggesting a potential role for genetic factors in determining individual susceptibility to emphysema. Although strain-dependent effects have been shown in animal models of emphysema, the molecular basis underlying this intrinsic susceptibility is not fully understood. In this present study, we investigated emphysema development using the elastase-induced experimental emphysema model in two commonly used mouse strains, C57BL/6J and BALB/cJ. The results demonstrate that mice with different genetic backgrounds show disparate susceptibility to the development of emphysema. BALB/cJ mice were found to be much more sensitive than C57BL/6J to elastase injury in both a dose-dependent and time-dependent manner, as measured by significantly higher mortality, greater body weight loss, greater decline in lung function, and a greater loss of alveolar tissue. The more susceptible BALB/cJ strain also showed the persistence of inflammatory cells in the lung, especially macrophages and lymphocytes. A comparative gene expression analysis following elastase-induced injury showed BALB/cJ mice had elevated levels of il17A mRNA and a number of classically (M1) and alternatively (M2) activated macrophage genes, whereas the C57BL/6J mice demonstrated augmented levels of interferon-γ. These findings suggest a possible role for these cellular and molecular mediators in modulating the severity of emphysema and highlight the possibility that they might contribute to the heterogeneity observed in clinical emphysema outcomes.
Collapse
Affiliation(s)
- Nathachit Limjunyawong
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| | - John M Craig
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| | - H A Daniel Lagassé
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Alan L Scott
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| |
Collapse
|
18
|
Causton B, Ramadas RA, Cho JL, Jones K, Pardo-Saganta A, Rajagopal J, Xavier RJ, Medoff BD. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:683-94. [PMID: 26041536 DOI: 10.4049/jimmunol.1402983] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/15/2015] [Indexed: 12/28/2022]
Abstract
Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung.
Collapse
Affiliation(s)
- Benjamin Causton
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | | | - Josalyn L Cho
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Khristianna Jones
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Ana Pardo-Saganta
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jayaraj Rajagopal
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129;
| |
Collapse
|
19
|
Morris A, Wang B, Waern I, Venkatasamy R, Page C, Schmidt EP, Wernersson S, Li JP, Spina D. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus. PLoS One 2015; 10:e0127032. [PMID: 26039697 PMCID: PMC4454641 DOI: 10.1371/journal.pone.0127032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/11/2015] [Indexed: 01/08/2023] Open
Abstract
Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT) control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil) recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD) found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.
Collapse
Affiliation(s)
- Abigail Morris
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Bo Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, Uppsala, Sweden
| | - Radhakrishnan Venkatasamy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Eric P. Schmidt
- Program in Translational Lung Research, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Uppsala, Sweden
| | - Domenico Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Gabay C, Towne JE. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol 2015; 97:645-52. [DOI: 10.1189/jlb.3ri1014-495r] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
21
|
Downey J, Gour N, Wills-Karp M. Mechanisms of Experimental Mouse Models of Airway Hyperresponsiveness. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Olsen PC, Kitoko JZ, Ferreira TP, de-Azevedo CT, Arantes AC, Martins ΜA. Glucocorticoids decrease Treg cell numbers in lungs of allergic mice. Eur J Pharmacol 2014; 747:52-8. [PMID: 25499819 DOI: 10.1016/j.ejphar.2014.11.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 11/18/2022]
Abstract
Glucocorticoids have been the hallmark anti-inflammatory drug used to treat asthma. It has been shown that glucocorticoids ameliorate asthma by increasing numbers and activity of Tregs, in contrast recent data show that glucocorticoid might have an opposite effect on Treg cells from normal mice. Since Tregs are target cells that act on the resolution of asthma, the aim of this study was to elucidate the effect of glucocorticoid treatment on lung Tregs in mouse models of asthma. Allergen challenged mice were treated with either oral dexamethasone or nebulized budesonide. Broncoalveolar lavage and airway hyperresponsiveness were evaluated after allergenic challenge. Lung, thymic and lymph node cells were phenotyped on Treg through flow cytometry. Lung cytokine secretion was detected by ELISA. Although dexamethasone inhibited airway inflammation and hyperresponsiveness, improving resolution, we have found that both dexamethasone and budesonide induce a reduction of Treg numbers on lungs and lymphoid organs of allergen challenged mice. The reduction of lung Treg levels was independent of mice strain or type of allergen challenge. Our study also indicates that both glucocorticoids do not increase Treg activity through production of IL-10. Glucocorticoid systemic or localized treatment induced thymic atrophy. Taken together, our results demonstrate that glucocorticoids decrease Treg numbers and activity in different asthma mouse models, probably by reducing thymic production of T cells. Therefore, it is possible that glucocorticoids do not have beneficial effects on lung populations of Treg cells from asthmatic patients.
Collapse
Affiliation(s)
- P C Olsen
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Laboratory of Clinical Bacteriology and Immunology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - J Z Kitoko
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - T P Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - C T de-Azevedo
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - A C Arantes
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Μ A Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Concomitant exposure to ovalbumin and endotoxin augments airway inflammation but not airway hyperresponsiveness in a murine model of asthma. PLoS One 2014; 9:e98648. [PMID: 24968337 PMCID: PMC4072597 DOI: 10.1371/journal.pone.0098648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA.
Collapse
|
24
|
Risse PA, Lavoie-Lamoureux A, Jo T, Tsuchiya K, Siddiqui S, Martin JG. Airway arginase expression and Nω-hydroxy-nor-arginine effect on methacholine-induced bronchoconstriction differentiate Lewis and Fischer rat strains. J Appl Physiol (1985) 2014; 116:621-7. [PMID: 24505101 DOI: 10.1152/japplphysiol.01241.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Innate airway hyperresponsiveness (AHR) is well modeled by two strains of rat, the hyperresponsive Fischer 344 rat and the normoresponsive Lewis rat. Arginase has been implicated in AHR associated with allergic asthma models. We addressed the role of arginase in innate AHR using the Fischer-Lewis model. In vivo arginase inhibition with N(ω)-hydroxy-nor-arginine (nor-NOHA) was evaluated on methacholine-induced bronchoconstriction in the Fischer and the Lewis rats. Arginase activity and mRNA expression were quantified in structural and resident cells of the proximal airway tree. The effect of nor-NOHA was evaluated on cultured tracheal smooth muscle proliferation. Fischer rats exhibited significantly greater changes in respiratory resistance and elastance in response to methacholine compared with Lewis rats. nor-NOHA reduced the methacholine-induced bronchoconstriction in the central airways of Lewis rats, while it did not change the innate AHR of Fischer rats. Lewis rats exhibited greater arginase activity in tracheal smooth muscle but a lower proliferation rate compared with Fischer rats. Smooth muscle proliferation was not affected by nor-NOHA in either strain of rats. The strain-specific arginase expression in the smooth muscle may contribute to the differences in sensitivity of the methacholine challenged airways of Lewis and Fischer rats to inhibition of arginase.
Collapse
Affiliation(s)
- Paul-André Risse
- Meakins Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Berndt A, Sundberg BA, Silva KA, Kennedy VE, Richardson MA, Li Q, Bronson RT, Uitto J, Sundberg JP. Phenotypic characterization of the KK/HlJ inbred mouse strain. Vet Pathol 2013; 51:846-57. [PMID: 24009271 DOI: 10.1177/0300985813501335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detailed histopathological diagnoses of inbred mouse strains are important for interpreting research results and defining novel models of human diseases. The aim of this study was to histologically detect lesions affecting the KK/HlJ inbred strain. Mice were examined at 6, 12, and 20 months of age and near natural death (ie, moribund mice). Histopathological lesions were quantified by percentage of affected mice per age group and sex. Predominant lesions were mineralization, hyperplasia, and fibro-osseous lesions. Mineralization was most frequently found in the connective tissue dermal sheath of vibrissae, the heart, and the lung. Mineralization was also found in many other organs but to a lesser degree. Hyperplasia was found most commonly in the pancreatic islets, and fibro-osseous lesions were observed in several bones. The percentage of lesions increased with age until 20 months. This study shows that KK/HlJ mice demonstrate systemic aberrant mineralization, with greatest frequency in aged mice. The detailed information about histopathological lesions in the inbred strain KK/HlJ can help investigators to choose the right model and correctly interpret the experimental results.
Collapse
Affiliation(s)
- A Berndt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - K A Silva
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - M A Richardson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Q Li
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA
| | | | - J Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA
| | | |
Collapse
|
26
|
Knight JM, Lee SH, Roberts L, Smith CW, Weiss ST, Kheradmand F, Corry DB. CD11a polymorphisms regulate TH2 cell homing and TH2-related disease. J Allergy Clin Immunol 2013; 133:189-97.e1-8. [PMID: 23726040 DOI: 10.1016/j.jaci.2013.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/20/2013] [Accepted: 03/28/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND TH2-dependent diseases vary in severity according to genotype, but relevant gene polymorphisms remain largely unknown. The integrin CD11a is a critical determinant of allergic responses, and allelic variants of this gene might influence allergic phenotypes. OBJECTIVE We sought to determine major CD11a allelic variants in mice and human subjects and their importance to allergic disease expression. METHODS We sequenced mouse CD11a alleles from C57BL/6 and BALB/c strains to identify major polymorphisms; human CD11a single nucleotide polymorphisms were compared with allergic disease phenotypes as part of the international HapMap project. Mice on a BALB/c or C57BL/6 background and congenic for the other strain's CD11a allele were created to determine the importance of mouse CD11a polymorphisms in vivo and in vitro. RESULTS Compared with the C57BL/6 allele, the BALB/c CD11a allele contained a nonsynonymous change from asparagine to aspartic acid within the metal ion binding domain. In general, the BALB/c CD11a allele enhanced and the C57BL/6 CD11a allele suppressed TH2 cell-dependent disease caused by the parasite Leishmania major and allergic lung disease caused by the fungus Aspergillus niger. Relative to the C57BL/6 CD11a allele, the BALB/c CD11a allele conferred both greater T-cell adhesion to CD54 in vitro and enhanced TH2 cell homing to lungs in vivo. We further identified a human CD11a polymorphism that significantly associated with atopic disease and relevant allergic indices. CONCLUSIONS Polymorphisms in CD11a critically influence TH2 cell homing and diverse TH2-dependent immunopathologic states in mice and potentially influence the expression of human allergic disease.
Collapse
Affiliation(s)
- John M Knight
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Tex
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Luz Roberts
- Department of Medicine, Baylor College of Medicine, Houston, Tex
| | - C Wayne Smith
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Scott T Weiss
- Channing laboratory Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Tex; Department of Medicine, Baylor College of Medicine, Houston, Tex
| | - David B Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Tex; Department of Medicine, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
27
|
Role of m2 muscarinic receptor in the airway response to methacholine of mice selected for minimal or maximal acute inflammatory response. BIOMED RESEARCH INTERNATIONAL 2013; 2013:805627. [PMID: 23691511 PMCID: PMC3652127 DOI: 10.1155/2013/805627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 01/24/2023]
Abstract
Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation.
Collapse
|
28
|
Himes BE, Sheppard K, Berndt A, Leme AS, Myers RA, Gignoux CR, Levin AM, Gauderman WJ, Yang JJ, Mathias RA, Romieu I, Torgerson DG, Roth LA, Huntsman S, Eng C, Klanderman B, Ziniti J, Senter-Sylvia J, Szefler SJ, Lemanske RF, Zeiger RS, Strunk RC, Martinez FD, Boushey H, Chinchilli VM, Israel E, Mauger D, Koppelman GH, Postma DS, Nieuwenhuis MAE, Vonk JM, Lima JJ, Irvin CG, Peters SP, Kubo M, Tamari M, Nakamura Y, Litonjua AA, Tantisira KG, Raby BA, Bleecker ER, Meyers DA, London SJ, Barnes KC, Gilliland FD, Williams LK, Burchard EG, Nicolae DL, Ober C, DeMeo DL, Silverman EK, Paigen B, Churchill G, Shapiro SD, Weiss ST. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene. PLoS One 2013; 8:e56179. [PMID: 23457522 PMCID: PMC3572953 DOI: 10.1371/journal.pone.0056179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/07/2013] [Indexed: 12/29/2022] Open
Abstract
Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS) data. We used Efficient Mixed Model Association (EMMA) analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG) and two human AHR GWAS (i.e., SHARP, DAG), the Kv channel interacting protein 4 (KCNIP4) gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04), while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04). The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.
Collapse
Affiliation(s)
- Blanca E Himes
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dietze J, Böcking C, Heverhagen JT, Voelker MN, Renz H. Obesity lowers the threshold of allergic sensitization and augments airway eosinophilia in a mouse model of asthma. Allergy 2012; 67:1519-29. [PMID: 23005257 DOI: 10.1111/all.12031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Clinical and epidemiological studies show a close association between obesity and the risk of asthma development. The underlying cause-effect relationship between metabolism, innate and adaptive immunity, and inflammation remains to be elucidated. METHODS We developed an animal model to study the interaction between metabolic abnormalities and experimentally induced asthma. Obesity-susceptible AKR mice were fed with high-fat diet (HFD) or normal low-fat diet (LFD) and subjected to a protocol of ovalbumin (OVA) sensitization and airway allergen challenges followed by assessment of inflammation and lung function. RESULTS AKR mice developed obesity and a prestage of metabolic syndrome following HFD. This phenotype was associated with an increase in proinflammatory macrophages (CD11b+/CD11c+) together with higher serum levels of interleukin 6. Obese mice showed increased susceptibility to allergic sensitization as compared to LFD animals. Anti-ovalbumin IgE antibody titers correlated positively and anti-OVA IgG2a antibodies titers correlated negatively with body weight. Airway eosinophilia showed a positive correlation with body weight, whereas mucus production did not change with obesity. CONCLUSIONS This obesity model demonstrates that HFD-induced obesity lowers the sensitization threshold in a model of asthma. This finding helps to understand why, particularly during childhood, obesity is a risk factor for the development of allergic asthma.
Collapse
Affiliation(s)
- J. Dietze
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics; University Hospital Giessen and Marburg; Marburg; Germany
| | - C. Böcking
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics; University Hospital Giessen and Marburg; Marburg; Germany
| | - J. T. Heverhagen
- Department of Diagnostic Radiology; Philipps University Hospital Giessen and Marburg; Marburg; Germany
| | - M. N. Voelker
- Department of Diagnostic Radiology; Philipps University Hospital Giessen and Marburg; Marburg; Germany
| | - H. Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics; University Hospital Giessen and Marburg; Marburg; Germany
| |
Collapse
|
30
|
Ohno T, Okamoto M, Hara T, Hashimoto N, Imaizumi K, Matsushima M, Nishimura M, Shimokata K, Hasegawa Y, Kawabe T. Detection of loci for allergic asthma using SMXA recombinant inbred strains of mice. Immunogenetics 2012; 65:17-24. [PMID: 23081743 DOI: 10.1007/s00251-012-0656-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Asthma is regarded as a multifactorial inflammatory disorder arising as a result of inappropriate immune responses in genetically susceptible individuals to common environmental antigens. However, the precise molecular basis is unknown. To identify genes for susceptibility to three asthma-related traits, airway hyperresponsiveness (AHR), eosinophil infiltration, and allergen-specific serum IgE levels, we conducted a genetic analysis using SMXA recombinant inbred (RI) strains of mice. Quantitative trait locus analysis detected a significant locus for AHR on chromosome 17. For eosinophil infiltration, significant loci were detected on chromosomes 9 and 16. Although we could not detect any significant loci for allergen-specific serum IgE, analysis of consomic strains showed that chromosomes 17 and 19 carried genes that affected this trait. We detected genetic susceptibility loci that separately regulated the three asthma-related phenotypes. Our results suggested that different genetic mechanisms regulate these asthma-related phenotypes. Genetic analyses using murine RI and consomic strains enhance understanding of the molecular mechanisms of asthma in human.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Church RJ, Jania LA, Koller BH. Prostaglandin E(2) produced by the lung augments the effector phase of allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 188:4093-102. [PMID: 22412193 DOI: 10.4049/jimmunol.1101873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Elevated PGE(2) is a hallmark of most inflammatory lesions. This lipid mediator can induce the cardinal signs of inflammation, and the beneficial actions of nonsteroidal anti-inflammatory drugs are attributed to inhibition of cyclooxygenase (COX)-1 and COX-2, enzymes essential in the biosynthesis of PGE(2) from arachidonic acid. However, both clinical studies and rodent models suggest that, in the asthmatic lung, PGE(2) acts to restrain the immune response and limit physiological change secondary to inflammation. To directly address the role of PGE(2) in the lung, we examined the development of disease in mice lacking microsomal PGE(2) synthase-1 (mPGES1), which converts COX-1/COX-2-derived PGH(2) to PGE(2). We show that mPGES1 determines PGE(2) levels in the naive lung and is required for increases in PGE(2) after OVA-induced allergy. Although loss of either COX-1 or COX-2 increases the disease severity, surprisingly, mPGES1(-/-) mice show reduced inflammation. However, an increase in serum IgE is still observed in the mPGES1(-/-) mice, suggesting that loss of PGE(2) does not impair induction of a Th2 response. Furthermore, mPGES1(-/-) mice expressing a transgenic OVA-specific TCR are also protected, indicating that PGE(2) acts primarily after challenge with inhaled Ag. PGE(2) produced by the lung plays the critical role in this response, as loss of lung mPGES1 is sufficient to protect against disease. Together, this supports a model in which mPGES1-dependent PGE(2) produced by populations of cells native to the lung contributes to the effector phase of some allergic responses.
Collapse
Affiliation(s)
- Rachel J Church
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
32
|
Connor AJ, Laskin JD, Laskin DL. Ozone-induced lung injury and sterile inflammation. Role of toll-like receptor 4. Exp Mol Pathol 2012; 92:229-35. [PMID: 22300504 DOI: 10.1016/j.yexmp.2012.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/17/2012] [Indexed: 01/04/2023]
Abstract
Inhalation of toxic doses of ozone is associated with a sterile inflammatory response characterized by an accumulation of macrophages in the lower lung which are activated to release cytotoxic/proinflammatory mediators that contribute to tissue injury. Toll-like receptor 4 (TLR4) is a pattern recognition receptor present on macrophages that has been implicated in sterile inflammatory responses. In the present studies we used TLR4 mutant C3H/HeJ mice to analyze the role of TLR4 in ozone-induced lung injury, oxidative stress and inflammation. Acute exposure of control C3H/HeOuJ mice to ozone (0.8ppm for 3h) resulted in increases in bronchoalveolar lavage (BAL) lipocalin 24p3 and 4-hydroxynonenal modified protein, markers of oxidative stress and lipid peroxidation. This was correlated with increases in BAL protein, as well as numbers of alveolar macrophages. Levels of surfactant protein-D, a pulmonary collectin known to regulate macrophage inflammatory responses, also increased in BAL following ozone inhalation. Ozone inhalation was associated with classical macrophage activation, as measured by increased NF-κB binding activity and expression of TNFα mRNA. The observation that these responses to ozone were not evident in TLR4 mutant C3H/HeJ mice demonstrates that functional TLR4 contributes to ozone-induced sterile inflammation and macrophage activation.
Collapse
Affiliation(s)
- Agnieszka J Connor
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
33
|
Mori T, Saito K, Ohki Y, Arakawa H, Tominaga M, Tokuyama K. Lack of transient receptor potential vanilloid-1 enhances Th2-biased immune response of the airways in mice receiving intranasal, but not intraperitoneal, sensitization. Int Arch Allergy Immunol 2011; 156:305-12. [PMID: 21720176 DOI: 10.1159/000323889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 12/22/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transient receptor potential vanilloid-1 (TRPV1) may modulate allergic airway inflammation because it is expressed not only on the nerve endings but also on several cells of the immune system. We wanted to know the characteristics of airway and systemic responses against sensitization and challenge with allergens in TRPV1 receptor gene knockout mice (TRPV1(-/-)). METHODS TRPV1(-/-) and their wild-type counterparts (TRPV1(+/+)) were sensitized with either house dust mite (HDM) or ovalbumin (OVA) via intranasal (i.n.) or intraperitoneal (i.p.) route before the final i.n. challenge with the corresponding allergen. One day after the final challenge, serum IgE levels, cytokine levels in the bronchoalveolar lavage fluid (BALF), and the number of BALF cells were examined after measuring bronchial hyperresponsiveness against methacholine. RESULTS Compared to TRPV1(+/+), TRPV1(-/-) showed enhanced Th2-biased response after i.n. HDM or OVA sensitization, including increased levels of serum IgE, interleukin 4 (IL-4) and eosinophils in the BALF. By contrast, when sensitized via i.p. route, the response against OVA or HDM was almost similar between TRPV1(+/+) and TRPV1(-/-). CONCLUSION TRPV1 receptor may downregulate Th2-biased immune response when sensitized via airways, although this was not the case when sensitized systemically.
Collapse
Affiliation(s)
- Tetsuya Mori
- Laboratory of Allergy and Immunology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Ramadas RA, Ewart SL, Medoff BD, LeVine AM. Interleukin-1 family member 9 stimulates chemokine production and neutrophil influx in mouse lungs. Am J Respir Cell Mol Biol 2011; 44:134-45. [PMID: 20299540 PMCID: PMC3049228 DOI: 10.1165/rcmb.2009-0315oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 02/23/2010] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1 (IL-1) is a proinflammatory cytokine that signals through the Type I IL-1 receptor (IL-1RI). Novel IL-1-like cytokines were recently identified. Their functions in lung disease remain unclear. Interleukin-1 family member-9 (IL-1F9) is one such IL-1-like cytokine, expressed in the lungs of humans and mice. IL-1F9 signals through IL-1 receptor-related protein 2 (IL-1Rrp2/IL-1RL2), which is distinct from IL-1RI. We sought to determine if IL-1F9 acts as a proinflammatory cytokine in lung disease. IL-1F9 protein was increased in lung homogenates of house dust mite-challenged A/J mice compared with controls, and expression was seen in airway epithelial cells. The intratracheal administration of recombinant mouse IL-1F9 increased airway hyperresponsiveness and induced neutrophil influx and mucus production, but not eosinophilic infiltration in the lungs of mice. In addition, IL-1α protein levels in bronchoalveolar lavage fluid, chemokines, and chemokine-receptor mRNA expression in the lungs were increased after the instillation of intratracheal IL-1F9. Consistent with these changes, NF-κB transcription factor activity was increased in the lungs of mice challenged with IL-1F9 and in a macrophage cell line treated with IL-1F9. These data suggest that IL-1F9 is upregulated during inflammation, and acts as a proinflammatory cytokine in the lungs.
Collapse
Affiliation(s)
- Ravisankar A. Ramadas
- Department of Pediatrics, University of Florida, Gainesville, Florida; Department of Large Animal Clinical Sciences, Michigan State University, Lansing, Michigan; and Pulmonary and Critical Care Unit, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Susan L. Ewart
- Department of Pediatrics, University of Florida, Gainesville, Florida; Department of Large Animal Clinical Sciences, Michigan State University, Lansing, Michigan; and Pulmonary and Critical Care Unit, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Benjamin D. Medoff
- Department of Pediatrics, University of Florida, Gainesville, Florida; Department of Large Animal Clinical Sciences, Michigan State University, Lansing, Michigan; and Pulmonary and Critical Care Unit, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Ann Marie LeVine
- Department of Pediatrics, University of Florida, Gainesville, Florida; Department of Large Animal Clinical Sciences, Michigan State University, Lansing, Michigan; and Pulmonary and Critical Care Unit, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
35
|
Wu W, Kaminski N. Chronic lung diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:298-308. [PMID: 20835999 DOI: 10.1002/wsbm.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic lung diseases often have high morbidity and mortality rate and have posed a serious threat to human health. The incidence of many chronic lung diseases such as asthma has been on the rise in the past decade, which causes serious economic burden. Despite many efforts which employed traditional experimental approaches to elucidate the mechanisms of the diseases have been made, little is known about the pathogenesis of complex lung diseases. Systems biology approaches which aim to integrate and analyze information gathered from multiple sources offer a great opportunity to examine complex human diseases from a new angle. Many attempts have been made using high-throughput technologies such as microarrays to study chronic lung diseases; although compared with the full-fledged systems biology approach, research strategies employed in most of these investigations still have much room to improve, promising findings have already emerged from these efforts, which demonstrates the potential of implementing systems biology in pulmonary biomedical research.
Collapse
Affiliation(s)
- Wei Wu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naftali Kaminski
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
36
|
Nawijn MC, Piavaux BJA, Jeurink PV, Gras R, Reinders MA, Stearns T, Foote S, Hylkema MN, Groot PC, Korstanje R, Oosterhout AJMV. Identification of the Mhc region as an asthma susceptibility locus in recombinant congenic mice. Am J Respir Cell Mol Biol 2010; 45:295-303. [PMID: 20971879 DOI: 10.1165/rcmb.2009-0369oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse models of allergic asthma are characterized by airway hyperreactivity (AHR), Th2-driven eosinophilic airway inflammation, high allergen-specific IgE (anti-OVA IgE) levels in serum, and airway remodeling. Because asthma susceptibility has a strong genetic component, we aimed to identify new asthma susceptibility genes in the mouse by analyzing the asthma phenotypes of the Leishmania major resistant (lmr) recombinant congenic (RC) strains. The lmr RC strains are derived from C57BL/6 and BALB/c intercrosses and carry congenic loci on chromosome 17 (lmr1) and 9 (lmr2) in both backgrounds. Whereas the lmr2 locus on chromosome 9 contributes to a small background-specific effect on anti-OVA IgE and AHR, the lmr1 locus on chromosome 17 mediates a strong effect on Th2-driven eosinophilic airway inflammation and background-specific effects on anti-OVA IgE and AHR. The lmr1 locus contains almost 600 polymorphic genes. To narrow down this number of candidate genes, we performed genome-wide transcriptional profiling on lung tissue from C.lmr1 RC mice and BALB/c control mice. We identified a small number of differentially expressed genes located within the congenic fragment, including a number of Mhc genes, polymorphic between BALB/c and C57Bl/6. The analysis of asthma phenotypes in the C.B10-H2b RC strain, carrying the C57Bl/6 haplotype of the Mhc locus in a BALB/c genetic background, reveals a strikingly similar asthma phenotype compared with C.lmr1, indicating that the differentially expressed genes located within the C.B10-H2b congenic fragment are the most likely candidate genes to contribute to the reduced asthma phenotypes associated with the C57Bl/6 allele of lmr1.
Collapse
Affiliation(s)
- Martijn C Nawijn
- Laboratory of Allergology & Pulmonary Diseases, Department of Pathology and Medical Biology, GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Berndt A, Leme AS, Williams LK, Von Smith R, Savage HS, Stearns TM, Tsaih SW, Shapiro SD, Peters LL, Paigen B, Svenson KL. Comparison of unrestrained plethysmography and forced oscillation for identifying genetic variability of airway responsiveness in inbred mice. Physiol Genomics 2010; 43:1-11. [PMID: 20823217 DOI: 10.1152/physiolgenomics.00108.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung function detection in mice is currently most accurately measured by invasive techniques, which are costly, labor intensive, and terminal. This limits their use for large-scale or longitudinal studies. Noninvasive assays are often used instead, but their accuracy for measuring lung function parameters such as resistance and elastance has been questioned in studies involving small numbers of mouse strains. Here we compared parameters detected by two different methods using 29 inbred mouse strains: enhanced pause (Penh), detected by unrestrained plethysmography, and central airway resistance and lung elastance, detected by a forced oscillation technique. We further tested whether the phenotypic variations were determined by the same genomic location in genome-wide association studies using a linear mixed model algorithm. Penh, resistance, and elastance were measured in nonexposed mice or mice exposed to saline and increasing doses of aerosolized methacholine. Because Penh differed from airway resistance in several strains and because the peak genetic associations found for Penh, resistance, or elastance were located at different genomic regions, we conclude that using Penh as an indicator for lung function changes in high-throughput genetic studies (i.e., genome-wide association studies or quantitative trait locus studies) measures something fundamentally different than airway resistance and lung elastance.
Collapse
|
38
|
Page K, Ledford JR, Zhou P, Dienger K, Wills-Karp M. Mucosal sensitization to German cockroach involves protease-activated receptor-2. Respir Res 2010; 11:62. [PMID: 20497568 PMCID: PMC2889872 DOI: 10.1186/1465-9921-11-62] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/24/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Allergic asthma is on the rise in developed countries. A common characteristic of allergens is that they contain intrinsic protease activity, and many have been shown to activate protease-activated receptor (PAR)-2 in vitro. The role for PAR-2 in mediating allergic airway inflammation has not been assessed using a real world allergen. METHODS Mice (wild type or PAR-2-deficient) were sensitized to German cockroach (GC) feces (frass) or protease-depleted GC frass by either mucosal exposure or intraperitoneal injection and measurements of airway inflammation (IL-5, IL-13, IL-17A, and IFNgamma levels in the lung, serum IgE levels, cellular infiltration, mucin production) and airway hyperresponsiveness were performed. RESULTS Following systemic sensitization, GC frass increased airway hyperresponsiveness, Th2 cytokine release, serum IgE levels, cellular infiltration and mucin production in wild type mice. Interestingly, PAR-2-deficient mice had similar responses as wild type mice. Since these data were in direct contrast to our finding that mucosal sensitization with GC frass proteases regulated airway hyperresponsiveness and mucin production in BALB/c mice (Page et. al. 2007 Resp Res 8:91), we backcrossed the PAR-2-deficient mice into the BALB/c strain. Sensitization to GC frass could now occur via the more physiologically relevant method of intratracheal inhalation. PAR-2-deficient mice had significantly reduced airway hyperresponsiveness, Th2 and Th17 cytokine release, serum IgE levels, and cellular infiltration compared to wild type mice when sensitization to GC frass occurred through the mucosa. To confirm the importance of mucosal exposure, mice were systemically sensitized to GC frass or protease-depleted GC frass via intraperitoneal injection. We found that removal of proteases from GC frass had no effect on airway inflammation when administered systemically. CONCLUSIONS We showed for the first time that allergen-derived proteases in GC frass elicit allergic airway inflammation via PAR-2, but only when allergen was administered through the mucosa. Importantly, our data suggest the importance of resident airway cells in the initiation of allergic airway disease, and could make allergen-derived proteases attractive therapeutic targets.
Collapse
Affiliation(s)
- Kristen Page
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
39
|
Rondini EA, Walters DM, Bauer AK. Vanadium pentoxide induces pulmonary inflammation and tumor promotion in a strain-dependent manner. Part Fibre Toxicol 2010; 7:9. [PMID: 20385015 PMCID: PMC2861012 DOI: 10.1186/1743-8977-7-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/12/2010] [Indexed: 11/10/2022] Open
Abstract
Background Elevated levels of air pollution are associated with increased risk of lung cancer. Particulate matter (PM) contains transition metals that may potentiate neoplastic development through the induction of oxidative stress and inflammation, a lung cancer risk factor. Vanadium pentoxide (V2O5) is a component of PM derived from fuel combustion as well as a source of occupational exposure in humans. In the current investigation we examined the influence of genetic background on susceptibility to V2O5-induced inflammation and evaluated whether V2O5 functions as a tumor promoter using a 2-stage (initiation-promotion) model of pulmonary neoplasia in mice. Results A/J, BALB/cJ (BALB), and C57BL/6J (B6) mice were treated either with the initiator 3-methylcholanthrene (MCA; 10 μg/g; i.p.) or corn oil followed by 5 weekly aspirations of V2O5 or PBS and pulmonary tumors were enumerated 20 weeks following MCA treatment. Susceptibility to V2O5-induced pulmonary inflammation was assessed in bronchoalveolar lavage fluid (BALF), and chemokines, transcription factor activity, and MAPK signaling were quantified in lung homogenates. We found that treatment of animals with MCA followed by V2O5 promoted lung tumors in both A/J (10.3 ± 0.9 tumors/mouse) and BALB (2.2 ± 0.36) mice significantly above that observed with MCA/PBS or V2O5 alone (P < 0.05). No tumors were observed in the B6 mice in any of the experimental groups. Mice sensitive to tumor promotion by V2O5 were also found to be more susceptible to V2O5-induced pulmonary inflammation and hyperpermeability (A/J>BALB>B6). Differential strain responses in inflammation were positively associated with elevated levels of the chemokines KC and MCP-1, higher NFκB and c-Fos binding activity, as well as sustained ERK1/2 activation in lung tissue. Conclusions In this study we demonstrate that V2O5, an occupational and environmentally relevant metal oxide, functions as an in vivo lung tumor promoter among different inbred strains of mice. Further, we identified a positive relationship between tumor promotion and susceptibility to V2O5-induced pulmonary inflammation. These findings suggest that repeated exposures to V2O5 containing particles may augment lung carcinogenesis in susceptible individuals through oxidative stress mediated pathways.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Department of Pathobiology and Diagnostic Investigation and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
40
|
Leme AS, Berndt A, Williams LK, Tsaih SW, Szatkiewicz JP, Verdugo R, Paigen B, Shapiro SD. A survey of airway responsiveness in 36 inbred mouse strains facilitates gene mapping studies and identification of quantitative trait loci. Mol Genet Genomics 2010; 283:317-26. [PMID: 20143096 PMCID: PMC2885868 DOI: 10.1007/s00438-010-0515-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
Airway hyper-responsiveness (AHR) is a critical phenotype of human asthma and animal models of asthma. Other studies have measured AHR in nine mouse strains, but only six strains have been used to identify genetic loci underlying AHR. Our goals were to increase the genetic diversity of available strains by surveying 27 additional strains, to apply haplotype association mapping to the 36-strain survey, and to identify new genetic determinants for AHR. We derived AHR from the increase in airway resistance in females subjected to increasing levels of methacholine concentrations. We used haplotype association mapping to identify associations between AHR and haplotypes on chromosomes 3, 5, 8, 12, 13, and 14. And we used bioinformatics techniques to narrow the identified region on chromosome 13, reducing the region to 29 candidate genes, with 11 of considerable interest. Our combined use of haplotype association mapping with bioinformatics tools is the first study of its kind for AHR on these 36 strains of mice. Our analyses have narrowed the possible QTL genes and will facilitate the discovery of novel genes that regulate AHR in mice.
Collapse
Affiliation(s)
- Adriana S. Leme
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Laura K. Williams
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | - Steven D. Shapiro
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
41
|
Kaplan BLF, Oberdick JE, Karmaus PWF, Ngaotepprutaram T, Birmingham NP, Harkema JR, Kaminski NE. The effects of targeted deletion of cannabinoid receptors CB1 and CB2 on intranasal sensitization and challenge with adjuvant-free ovalbumin. Toxicol Pathol 2010; 38:382-92. [PMID: 20190202 PMCID: PMC2941344 DOI: 10.1177/0192623310362706] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms by which cannabinoid receptors CB(1) and CB(2) modulate immune function are not fully elucidated. Critical tools for the determination of the role of both receptors in the immune system are CB(1)/CB(2) double null mice (CB(1)/CB(2) null), and previous studies have shown that CB(1)/CB(2) null mice exhibit exaggerated responses to various immunological stimuli. The objective of these studies was to determine the magnitude to which CB(1)/CB(2) null mice responded to the respiratory allergen ovalbumin (OVA) as compared with wild-type C57BL/6 mice. The authors determined that in the absence of adjuvant, both wild-type and CB(1)/CB(2) null mice mounted a marked response to intranasally instilled OVA as assessed by inflammatory cell infiltrate in the bronchoalveolar lavage fluid (BALF), eosinophilia, induction of mucous cell metaplasia, and IgE production. Many of the endpoints measured in response to OVA were similar in wild-type versus CB(1)/CB(2) null mice, with exceptions being modest reductions in OVA-induced IgE and attenuation of BALF neutrophilia in CB(1)/CB(2) null mice as compared with wild-type mice. These results suggest that T-cell responses are not universally exaggerated in CB(1)/CB(2) null mice.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Administration, Intranasal
- Allergens/administration & dosage
- Allergens/immunology
- Animals
- Bronchial Hyperreactivity/genetics
- Bronchial Hyperreactivity/immunology
- Bronchial Hyperreactivity/metabolism
- Bronchoalveolar Lavage Fluid/immunology
- Cytokines/biosynthesis
- Enzyme-Linked Immunosorbent Assay
- Female
- Immunoglobulin E/blood
- Immunoglobulin G/blood
- Lung/immunology
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- RNA, Messenger/analysis
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/immunology
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/immunology
- Receptor, Cannabinoid, CB2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Barbara L. F. Kaplan
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Jody E. Oberdick
- Department of Pathobiology and Diagnostic Investigation Michigan State University, East Lansing, Michigan, USA
| | - Peer W. F. Karmaus
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Thitirat Ngaotepprutaram
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Neil P. Birmingham
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Department of Pathobiology and Diagnostic Investigation Michigan State University, East Lansing, Michigan, USA
| | - Jack R. Harkema
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Department of Pathobiology and Diagnostic Investigation Michigan State University, East Lansing, Michigan, USA
| | - Norbert E. Kaminski
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
42
|
Camateros P, Marino R, Fortin A, Martin JG, Skamene E, Sladek R, Radzioch D. Identification of novel chromosomal regions associated with airway hyperresponsiveness in recombinant congenic strains of mice. Mamm Genome 2009; 21:28-38. [PMID: 20012967 DOI: 10.1007/s00335-009-9236-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/27/2009] [Indexed: 11/24/2022]
Abstract
Airway responsiveness is the ability of the airways to respond to bronchoconstricting stimuli by reducing their diameter. Airway hyperresponsiveness has been associated with asthma susceptibility in both humans and murine models, and it has been shown to be a complex and heritable trait. In particular, the A/J mouse strain is known to have hyperresponsive airways, while the C57BL/6 strain is known to be relatively refractory to bronchoconstricting stimuli. We analyzed recombinant congenic strains (RCS) of mice generated from these hyper- and hyporesponsive parental strains to identify genetic loci underlying the trait of airway responsiveness in response to methacholine as assessed by whole-body plethysmography. Our screen identified 16 chromosomal regions significantly associated with airway hyperresponsiveness (genome-wide P <or= 0.05): 8 are supported by independent and previously published reports while 8 are entirely novel. Regions that overlap with previous reports include two regions on chromosome 2, three on chromosome 6, one on chromosome 15, and two on chromosome 17. The 8 novel regions are located on chromosome 1 (92-100 cM), chromosome 5 (>73 cM), chromosome 7 (>63 cM), chromosome 8 (52-67 cM), chromosome 10 (3-7 cM and >68 cM), and chromosome 12 (25-38 cM and >52 cM). Our data identify several likely candidate genes from the 16 regions, including Ddr2, Hc, Fbn1, Flt3, Utrn, Enpp2, and Tsc.
Collapse
Affiliation(s)
- Pierre Camateros
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H3A 2T5, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
A genome-wide association study on African-ancestry populations for asthma. J Allergy Clin Immunol 2009; 125:336-346.e4. [PMID: 19910028 DOI: 10.1016/j.jaci.2009.08.031] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/06/2009] [Accepted: 08/21/2009] [Indexed: 12/18/2022]
Abstract
BACKGROUND Asthma is a complex disease characterized by striking ethnic disparities not explained entirely by environmental, social, cultural, or economic factors. Of the limited genetic studies performed on populations of African descent, notable differences in susceptibility allele frequencies have been observed. OBJECTIVES We sought to test the hypothesis that some genes might contribute to the profound disparities in asthma. METHODS We performed a genome-wide association study in 2 independent populations of African ancestry (935 African American asthmatic cases and control subjects from the Baltimore-Washington, DC, area and 929 African Caribbean asthmatic subjects and their family members from Barbados) to identify single-nucleotide polymorphisms (SNPs) associated with asthma. RESULTS A meta-analysis combining these 2 African-ancestry populations yielded 3 SNPs with a combined P value of less than 10(-5) in genes of potential biologic relevance to asthma and allergic disease: rs10515807, mapping to the alpha-1B-adrenergic receptor (ADRA1B) gene on chromosome 5q33 (3.57 x 10(-6)); rs6052761, mapping to the prion-related protein (PRNP) gene on chromosome 20pter-p12 (2.27 x 10(-6)); and rs1435879, mapping to the dipeptidyl peptidase 10 (DPP10) gene on chromosome 2q12.3-q14.2. The generalizability of these findings was tested in family and case-control panels of United Kingdom and German origin, respectively, but none of the associations observed in the African groups were replicated in these European studies. Evidence for association was also examined in 4 additional case-control studies of African Americans; however, none of the SNPs implicated in the discovery population were replicated. CONCLUSIONS This study illustrates the complexity of identifying true associations for a complex and heterogeneous disease, such as asthma, in admixed populations, especially populations of African descent.
Collapse
|
44
|
Shin YS, Takeda K, Gelfand EW. Understanding asthma using animal models. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2009; 1:10-8. [PMID: 20224665 PMCID: PMC2831565 DOI: 10.4168/aair.2009.1.1.10] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 01/14/2023]
Abstract
Asthma is a complex syndrome with many clinical phenotypes in children and adults. Despite the rapidly increasing prevalence, clinical investigation and epidemiological studies of asthma, the successful introduction of new drugs has been limited due to the different disease phenotypes and ethical issues. Mouse models of asthma replicate many of the features of human asthma, including airway hyperreactivity, and airway inflammation. Therefore, examination of disease mechanisms in mice has been used to elucidate asthma pathology and to identify and evaluate new therapeutic agents. In this article, we discuss the various animal models of asthma with a focus on mouse strains, allergens, protocols, and outcome measurements.
Collapse
Affiliation(s)
- Yoo Seob Shin
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | | |
Collapse
|
45
|
Patel AC, Brett TJ, Holtzman MJ. The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 2009; 71:425-49. [PMID: 18954282 DOI: 10.1146/annurev.physiol.010908.163253] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. On the basis of this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions.
Collapse
Affiliation(s)
- Anand C Patel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
46
|
Pinelli V, Marchica CL, Ludwig MS. Allergen-induced asthma in C57Bl/6 mice: hyper-responsiveness, inflammation and remodelling. Respir Physiol Neurobiol 2009; 169:36-43. [PMID: 19686870 DOI: 10.1016/j.resp.2009.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/17/2009] [Accepted: 08/10/2009] [Indexed: 12/22/2022]
Abstract
The relationship among airway responsiveness, inflammation and remodelling in asthma is incompletely understood. To investigate potential mechanistic associations, allergen-induced asthma was studied in C57Bl/6 mice. Mice were sensitized and challenged with ovalbumin (OVA) using sub-acute (SA) or chronic (C) protocols. Responsiveness was assessed by measuring respiratory impedence which was partitioned into airway resistance (Raw) and distal lung components (Gti, Hti) during methacholine-induced constriction. Inflammation, airway mucus, airway smooth muscle, collagen, biglycan and decorin were quantified. The airways were sub-divided into central or peripheral. In SA and C OVA, Raw, Gti and Hti responsiveness were significantly increased; the peripheral response was significantly greater in SA vs C OVA. Airway inflammation and mucus were increased in both groups, but more significantly in peripheral airways in SA OVA. In the SA OVA model, inflammation and mucus appear to drive the mechanical response, especially in the lung periphery; airway remodelling seems to contribute to hyper-responsiveness to an equivalent degree, after both challenge protocols.
Collapse
Affiliation(s)
- Valentina Pinelli
- Meakins Christie Laboratories, McGill University Hospital Centre, 3626 St. Urbain St., Montreal, PQ, Canada H2X 2P2
| | | | | |
Collapse
|
47
|
Parvataneni S, Birmingham NP, Gonipeta B, Gangur V. Dominant, non-MHC genetic control of food allergy in an adjuvant-free mouse model. Int J Immunogenet 2009; 36:261-7. [PMID: 19624800 DOI: 10.1111/j.1744-313x.2009.00860.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Food allergy is a potentially fatal immune-mediated disorder with incompletely understood mechanisms. We studied the genetic control of food allergy using major histocompatibility complex-identical mice (H2(s)) and an adjuvant-free method of sensitization. Whereas, transdermal exposure to hazelnut - a model allergenic food, elicited robust IgG1 response in both strains, an IgE response was evident only in A.SW mice. Following oral challenge, only A.SW but not SJL mice exhibited signs of systemic anaphylaxis and hypothermia. In addition, (A.SW x SJL) F1 hybrids exhibited IgE responsiveness, systemic anaphylaxis and hypothermia similar to A.SW, indicating dominant inheritance of these traits. Furthermore, whereas A.SW and F1 mice but not SJL elicited robust interleukin (IL)-4 response, all three strains elicited IL-5 and IL-13 responses by spleen cells. These data demonstrate for the first time, dominant non-MHC genetic control of food allergy and a critical role of IL-4 but not IL-5 or IL-13 in this model.
Collapse
Affiliation(s)
- S Parvataneni
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
48
|
March TH, Bowen LE, Finch GL, Nikula KJ, Wayne BJ, Hobbs CH. Effects of Strain and Treatment with Inhaled All-Trans-Retinoic Acid on Cigarette Smoke-Induced Pulmonary Emphysema in Mice. COPD 2009. [DOI: 10.1081/copd-57614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Camateros P, Kanagaratham C, Henri J, Sladek R, Hudson TJ, Radzioch D. Modulation of the allergic asthma transcriptome following resiquimod treatment. Physiol Genomics 2009; 38:303-18. [PMID: 19491150 DOI: 10.1152/physiolgenomics.00057.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Resiquimod is a compound belonging to the imidazoquinoline family of compounds known to signal through Toll-like receptor 7. Resiquimod treatment has been demonstrated to inhibit the development of allergen induced asthma in experimental models. The aim of the present study was to elucidate the molecular processes that were altered following resiquimod treatment and allergen challenge in a mouse model of allergic asthma. Employing microarray analysis, we have characterized the "asthmatic" transcriptome of the lungs of A/J and C57BL/6 mice and determined that it includes genes involved in the control of cell cycle progression, the complement and coagulation cascades, and chemokine signaling. Our results demonstrated that resiquimod treatment resulted in the normalization of the expression of genes involved with airway remodeling, and generally, chemokine signaling. Resiquimod treatment also altered the expression of cell adhesion molecules, and molecules involved in natural killer (NK) cell-mediated cytotoxicity. Furthermore, we have demonstrated that systemic resiquimod administration resulted in the recruitment of NK cells to the lungs and livers of the mice, although no causal relationship between NK cell recruitment and treatment efficacy was found. Overall, our findings identified several genes, important in the development of asthma pathology, that were normalized following resiquimod treatment, thus improving our understanding of the molecular consequences of resiquimod treatment in the lung milieu. The recruitment of NK cells to the lungs may also have application in the treatment of virally induced asthma exacerbations.
Collapse
Affiliation(s)
- Pierre Camateros
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec
| | | | | | | | | | | |
Collapse
|
50
|
Zosky GR, Larcombe AN, White OJ, Burchell JT, von Garnier C, Holt PG, Turner DJ, Wikstrom ME, Sly PD, Stumbles PA. Airway hyperresponsiveness is associated with activated CD4+ T cells in the airways. Am J Physiol Lung Cell Mol Physiol 2009; 297:L373-9. [PMID: 19482896 DOI: 10.1152/ajplung.00053.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that atopic asthma depends on an allergic response in the airway, yet the immune mechanisms that underlie the development of airway hyperresponsiveness (AHR) are poorly understood. Mouse models of asthma have been developed to study the pathobiology of this disease, but there is considerable strain variation in the induction of allergic disease and AHR. The aim of this study was to compare the development of AHR in BALB/c, 129/Sv, and C57BL/6 mice after sensitization and challenge with ovalbumin (OVA). AHR to methacholine was measured using a modification of the forced oscillation technique in anesthetized, tracheostomized mice to distinguish between airway and parenchymal responses. Whereas all strains showed signs of allergic sensitization, BALB/c was the only strain to develop AHR, which was associated with the highest number of activated (CD69(+)) CD4(+) T cells in the airway wall and the highest levels of circulating OVA-specific IgG(1). AHR did not correlate with total or antigen-specific IgE. We assessed the relative contribution of CD4(+) T cells and specific IgG(1) to the development of AHR in BALB/c mice using adoptive transfer of OVA-specific CD4(+) T cells from DO11.10 mice. AHR developed in these mice in a progressive fashion following multiple OVA challenges. There was no evidence that antigen-specific antibody had a synergistic effect in this model, and we concluded that the number of antigen-specific T cells activated and recruited to the airway wall was crucial for development of AHR.
Collapse
Affiliation(s)
- Graeme R Zosky
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|