1
|
Pilard CM, Cardouat G, Gauthereau I, Gassiat L, Dubois M, Robillard P, Sauvestre F, Pelluard F, Berenguer S, Sarreau M, Claverol S, Tokarski C, Sentilhes L, Coatleven F, Vincienne M, Marthan R, Dumas-de-la-Roque E, Berger P, Friedberg MK, Renesme L, Freund-Michel V, Guibert C. Celastrol has beneficial effects on pulmonary hypertension associated with bronchopulmonary dysplasia: Preclinical study outcomes. Biomed Pharmacother 2025; 184:117881. [PMID: 39891950 DOI: 10.1016/j.biopha.2025.117881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
Pulmonary hypertension associated with bronchopulmonary dysplasia (BPD-PH) is a severe cardiorespiratory disease of preterm newborns leading to an excess of mortality in infancy and no curative treatment currently exists. Inflammation and oxidative stress are the common pathways that lead to BPD-PH. Therefore, we aimed to evaluate celastrol, a molecule with anti-inflammatory and antioxidant properties, as a promising preventive treatment in BPD-PH. In a model of neonatal rats exposed to hyperoxia, we demonstrated that mortality was prevented in animals treated with celastrol. Moreover, in vivo, celastrol decreased pulmonary hypertension, right ventricular hypertrophy, vascular remodeling, pulmonary arterial hyperreactivity to endothelin-1 and inflammation but had no effect on hypoalveolarization and altered angiogenesis. In vitro experiments carried out on human fetal pulmonary artery smooth muscle cells (HfPA-SMC) exposed to hyperoxia showed that endothelin-1-induced intracellular calcium response was increased and celastrol significantly inhibited this effect, without modifying endothelin-1 receptors expression. Regarding inflammation, celastrol decreased both CD68 staining in lung and secretion of the pro-inflammatory cytokine Tissue Inhibitor of Metalloproteinases-1 in intrapulmonary arteries from neonatal rats. IL-6 secretion was also decreased by celastrol in HfPA-SMC. Finally, hyperoxia increased heme oxygenase-1 (HO-1) expression and celastrol induced an overexpression of HO-1 in both neonatal rat lung and human cells. These results suggest that celastrol has a preventive effect on major hallmarks of PH in both a rat hyperoxic model of BPD-PH and HfPA-SMC exposed to hyperoxia via modulation of macrophage inflammatory signaling and HfPA-SMC calcium cycling. Celastrol could therefore be considered as a promising preventive treatment in BPD-PH.
Collapse
Affiliation(s)
- Claire-Marie Pilard
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Guillaume Cardouat
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Isabel Gauthereau
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Laure Gassiat
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Mathilde Dubois
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Paul Robillard
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Fanny Sauvestre
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Fanny Pelluard
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Sophie Berenguer
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Melie Sarreau
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | | | | | - Loïc Sentilhes
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Frederic Coatleven
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Marie Vincienne
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Roger Marthan
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Respiratory Functional Explorations Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Eric Dumas-de-la-Roque
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Patrick Berger
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Respiratory Functional Explorations Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Mark K Friedberg
- Department of Pediatrics, the Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Renesme
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Véronique Freund-Michel
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Christelle Guibert
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France.
| |
Collapse
|
2
|
Dutta S, Zhu Y, Almuntashiri S, Peh HY, Zuñiga J, Zhang D, Somanath PR, Ramírez G, Irineo-Moreno V, Jiménez-Juárez F, López-Salinas K, Regino N, Campero P, Crocker SJ, Owen CA, Wang X. PDGFRα-positive cell-derived TIMP-1 modulates adaptive immune responses to influenza A viral infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L60-L74. [PMID: 39585242 PMCID: PMC11905806 DOI: 10.1152/ajplung.00104.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a physiologic inhibitor of the matrix metalloproteinases (MMPs), but little is known about the role of TIMP-1 in regulating the pathogenesis of influenza A virus (IAV) infection. Here, we performed both in vivo and in vitro experiments to investigate the regulation and function of TIMP-1 during IAV infection. Specifically, plasma levels of TIMP-1 are significantly increased in human subjects and wild-type (WT) mice infected with 2009 H1N1 IAV compared with levels in uninfected controls. Also, TIMP-1 is strikingly upregulated in PDGFRα positive (PDGFRα+) cells in IAV-infected murine lungs as demonstrated using conditional KO (cKO) mice with a specific deletion of Timp-1 in PDGFRα+ cells. Our in vitro data indicated that TIMP-1 is induced by transforming growth factor-β (TGF-β) during lipofibroblasts (lipoFBs)-to-myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. IAV-infected Timp-1-deficient mice showed increased macrophages, and B and T cell counts in bronchoalveolar lavage (BAL) on day 7 postinfection (p.i.), but reduced BAL neutrophil counts. Increased Cxcl12 levels were detected in both BAL cells and lungs from Timp-1-deficient mice on day 3 p.i. Taken together, our data strongly link TIMP-1 to IAV pathogenesis. We identified that PDGFRα-lineage cells are the main cellular source of elevated TIMP-1 during IAV infection. Loss of Timp-1 attenuates IAV-induced mortality and promotes T and B cell recruitment. Thus, TIMP-1 may be a novel therapeutic target for IAV infection.NEW & NOTEWORTHY Our data strongly link tissue inhibitor of metalloproteinases-1 (TIMP-1) to influenza A virus (IAV) pathogenesis. TIMP-1 is highly increased in PDGFRα-lineage cells during IAV infection. Transforming growth factor-β (TGF-β) induces TIMP-1 during lipofibroblast (lipoFB)-to- myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. TIMP-1 may be a novel therapeutic target for IAV infection.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Valeria Irineo-Moreno
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Fabiola Jiménez-Juárez
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Karen López-Salinas
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Nora Regino
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Paloma Campero
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, United States
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Kadam AH, Schnitzer JE. Highly Calibrated Relationship Between Bleomycin Concentrations and Facets of the Active Phase Fibrosis in Classical Mouse Bleomycin Model. Int J Mol Sci 2024; 25:12300. [PMID: 39596365 PMCID: PMC11595013 DOI: 10.3390/ijms252212300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The mouse bleomycin model is useful in pre-clinical IPF research to understand pathophysiological mechanisms and pharmacological interventions. In the present study, we systematically investigated the effects of bleomycin at a 60-fold dose range on experimental features of lung fibrosis in the mouse bleomycin model. We analyzed the effect of intratracheal (i.t.) dosing of 0.05-3 U/kg bleomycin on disease phenotypes, including weight loss, morbidity and mortality, pulmonary inflammation, lung collagen content, various BALF biomarkers, and histology in a 14-day mouse model when the animals are in the active phase of fibrosis. In mice, challenge with 1-2 U/kg bleomycin doses induced significant and saturated responses on fibrotic endpoints, confirmed by collagen content, BALF biomarker levels, and marked weight loss compared to the normal control (NC). We observed 100% mortality in 3 U/kg of bleomycin-treated mice. In contrast, 0.05-0.5 U/kg bleomycin doses induced a dose-dependent fibrotic phenotype. The mice challenged with doses of 0.25-0.5 U/kg bleomycin showed optimum body weight loss, a significant increase in pulmonary inflammation, and the fibrotic phenotype compared to NC. Furthermore, we showed 0.25-0.5 U/kg bleomycin increases expression levels of (pro-) fibrotic cytokines, which are the mediators involved in the activation of myofibroblast during fibrogenesis (TGF-β1, IL-13, IL-6, WISP-1, VEGF), angiogenesis (VEGF), matrix remodeling (TIMP-1), and non-invasive lung function biomarker (CRP) compared to NC. A modified Ashcroft scale quantified that the fibrotic changes in the lungs were significantly higher in the lung of mice dosed at 0.25-0.5 U/kg > 0.1 U/kg bleomycin and non-significant in mice lung dosed at 0.05 U/kg bleomycin compared to NC. We demonstrated that the changes due to 0.25-0.5 U/kg i.t. bleomycin on protein biomarkers are enough to drive robust and detectable fibrotic pathology without mortality. The 0.1 U/kg has a moderate phenotype, and 0.05 U/kg had no detectable phenotype. The Goodness of Fit (r2) and Pearson correlation coefficient (r) analyses revealed a positive linear association between change evaluated in all experimental features of fibrosis and bleomycin concentrations (0.05-0.5 U/kg). Here, we provide an examination of a highly calibrated relationship between 60-fold bleomycin concentrations and a set of in vivo readouts that covers various facets of experimental fibrosis. Our study shows that there is a dose-dependent effect of bleomycin on the features of experimental fibrosis at <1 U/kg, whereas saturated responses are achieved at >1 U/kg. Our careful experimental observations, accuracy, and comprehensive data set provided meaningful insights into the effect of bleomycin dose(s) on the fibrotic phenotype, which is valuable in preclinical drug development and lung fibrosis research. In addition, we have presented a set of reproducible frameworks of endpoints that can be used for reliable assessment of the fibrotic phenotype, and in vivo therapeutic intervention(s) with improved accuracy.
Collapse
Affiliation(s)
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), 505 Coast Blvd. South, La Jolla, CA 92037, USA;
| |
Collapse
|
4
|
Almuntashiri S, Dutta S, Zhu Y, Gamare S, Ramírez G, Irineo‐Moreno V, Camarena A, Regino N, Campero P, Hernández‐Cardenas CM, Rodriguez‐ Reyna TS, Zuñiga J, Owen CA, Wang X, Zhang D. Estrogen-dependent gene regulation: Molecular basis of TIMP-1 as a sex-specific biomarker for acute lung injury. Physiol Rep 2024; 12:e70047. [PMID: 39267201 PMCID: PMC11392656 DOI: 10.14814/phy2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Increased circulating tissue inhibitor of metalloproteinases-1 (TIMP-1) levels have been observed in patients with acute lung injury (ALI). However, the sex-specific regulation of TIMP-1 and the underlying molecular mechanisms have not been well elucidated. In this study, we found that plasma TIMP-1 levels were significantly higher in COVID-19 and H1N1 patients compared with those in healthy subjects (n = 25). TIMP-1 concentrations were significantly different between males and females in each disease group. Among female but not male patients, TIMP-1 levels significantly correlated with the PaO2/FiO2 ratio and hospital length of stay. Using the mouse model of ALI induced by the H1N1 virus, we found that TIMP-1 is strikingly induced in PDGFRα-positive cells in the murine lungs. Moreover, female mice showed a higher Timp-1 expression in the lungs on day 3 postinfection. Mechanistically, we observed that estrogen can upregulate TIMP-1 expression in lung fibroblasts, not epithelial cells. In addition, overexpression of estrogen receptor α (ERα) increased the TIMP-1 promoter activity. In summary, TIMP-1 is an estrogen-responsive gene, and its promoter activity is regulated by ERα. Circulating TIMP-1 may serve as a sex-specific marker, reflecting the severity and worst outcomes in female patients with SARS-CoV2- and IAV-related ALI.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
- Department of Clinical Pharmacy, College of PharmacyUniversity of HailHailSaudi Arabia
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Siddhika Gamare
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Valeria Irineo‐Moreno
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de Monterrey, School of Medicine and Health SciencesMexico CityMexico
| | - Angel Camarena
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Nora Regino
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de Monterrey, School of Medicine and Health SciencesMexico CityMexico
| | - Paloma Campero
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | - Tatiana S. Rodriguez‐ Reyna
- Department of Immunology and RheumatologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de Monterrey, School of Medicine and Health SciencesMexico CityMexico
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
- Department of Medicine, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
5
|
McDonald OF, Wagner JG, Lewandowski RP, Heine LK, Estrada V, Pourmand E, Singhal M, Harkema JR, Lee KSS, Pestka JJ. Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice. Inhal Toxicol 2024; 36:442-460. [PMID: 39418113 PMCID: PMC11606782 DOI: 10.1080/08958378.2024.2413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO2) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO2 exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity. METHODS Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO2 or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO2 instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies. RESULTS cSiO2-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206+ monocytes, Ly6B.2+ neutrophils, CD3+ T cells, CD45R+ B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO2-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers. DISCUSSION cSiO2 evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO2-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO2-triggered lung inflammation, fibrosis, and early autoimmunity in our model.
Collapse
Affiliation(s)
- Olivia F. McDonald
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren K. Heine
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Vanessa Estrada
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Megha Singhal
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jack R. Harkema
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Almuntashiri S, Alhumaid A, Zhu Y, Han Y, Dutta S, Khilji O, Zhang D, Wang X. TIMP-1 and its potential diagnostic and prognostic value in pulmonary diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:67-76. [PMID: 38343891 PMCID: PMC10857872 DOI: 10.1016/j.pccm.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 08/02/2024]
Abstract
Tissue inhibitors of metalloproteases (TIMPs) have caught the attention of many scientists due to their role in various physiological and pathological processes. TIMP-1, 2, 3, and 4 are known members of the TIMPs family. TIMPs exert their biological effects by, but are not limited to, inhibiting the activity of metalloproteases (MMPs). The balance between MMPs and TIMPs is critical for maintaining homeostasis of the extracellular matrix (ECM), while the imbalance between MMPs and TIMPs can lead to pathological changes, such as cancer. In this review, we summarized the current knowledge of TIMP-1 in several pulmonary diseases namely, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), pneumonia, asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis, and pulmonary fibrosis. Considering the potential of TIMP-1 serving as a non-invasive diagnostic and/or prognostic biomarker, we also reviewed the circulating TIMP-1 levels in translational and clinical studies.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Abdullah Alhumaid
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Yin Zhu
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Ohmed Khilji
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Kadam AH, Schnitzer JE. Characterization of acute lung injury in the bleomycin rat model. Physiol Rep 2023; 11:e15618. [PMID: 36898724 PMCID: PMC10005890 DOI: 10.14814/phy2.15618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
The aim of this study was to describe and characterize the pathophysiological changes occurring during the early inflammatory phase (first 3 days) in the rat bleomycin model of lung injury preceding the development of fibrosis. Further, we wanted to understand the kinetics and factors contributing to bleomycin-induced acute lung injury (ALI) and provide a robust, reliable and reproducible framework of features of ALI readouts to assess effects of therapeutics on bleomycin-induced ALI in rats. We induced ALI in rats with intratracheal (i.t.) installation of bleomycin. The animals were sacrificed on predetermined time points, that is, Day 0, 1, 2, and 3 post the bleomycin challenge. We analyzed bronchoalveolar lavage fluid (BALF) and lung tissue to establish and assess relevant experimental features of ALI. We demonstrated that bleomycin induced key features of experimental ALI including a profound increase in neutrophils in BALF (50-60%), pulmonary edema, and lung pathology on Day 3 after challenge. Furthermore, we showed that TGF-β1, IL-1β, TNF-α, IL-6, CINC-1, TIMP-1, and WISP-1 were induced by studying their kinetic profile during the first 3 days after bleomycin injury consistent with their known role ALI. We also confirmed that detectable fibrogenesis occurs at the earliest on Day 3 after injury based on collagen content, along with changes in the TGF-β/Smad signaling pathway and increased expression of Galectin-3, Vimentin, and Fibronectin in lung homogenate. Our report presents robust features and contributing mediators/factors to the pathology of bleomycin-induced ALI in rats on Day 3. The kinetic data provide insights on the progression of ALI and a detailed understanding of early events before actual fibrosis development. This set of experimental endpoints is very appropriate and invaluable for efficacy testing of potential novel therapeutic treatments (single or combined) in ALI and understanding their mechanism of action.
Collapse
Affiliation(s)
- Anil Hari Kadam
- Proteogenomics Research Institute for Systems Medicine (PRISM)La JollaCaliforniaUSA
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM)La JollaCaliforniaUSA
| |
Collapse
|
8
|
The Biology and Function of Tissue Inhibitor of Metalloproteinase 2 in the Lungs. Pulm Med 2022; 2022:3632764. [PMID: 36624735 PMCID: PMC9825218 DOI: 10.1155/2022/3632764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/02/2023] Open
Abstract
Tissue inhibitors of matrix metalloproteinases (TIMP) are a family of four endogenous proteins that primarily function to inhibit the activities of proteases such as the matrix metalloproteinases (MMP). Altered MMP/TIMP ratios are frequently observed in several human diseases. During aging and disease progression, the extracellular matrix (ECM) undergoes structural changes in which elastin and collagens serve an essential role. MMPs and TIMPs significantly influence the ECM. Classically, elevated levels of TIMPs are suggested to result in ECM accumulation leading to fibrosis, whereas loss of TIMP responses leads to enhanced matrix proteolysis. Here, we outline the known roles of the most abundant TIMP, TIMP2, in pulmonary diseases but also discuss future perspectives in TIMP2 research that could impact the lungs. TIMP2 directly inhibits MMPs, in particular MMP2, but TIMP2 is also required for the activation of MMP2 through its interaction with MMP14. The protease and antiprotease imbalance of MMPs and TIMPs are extensively studied in diseases but recent discoveries suggest that TIMPs, specifically, TIMP2 could play other roles in aging and inflammation processes.
Collapse
|
9
|
Cut loose TIMP-1: an emerging cytokine in inflammation. Trends Cell Biol 2022; 33:413-426. [PMID: 36163148 DOI: 10.1016/j.tcb.2022.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Appreciation of the entire biological impact of an individual protein can be hampered by its original naming based on one function only. Tissue inhibitor of metalloproteinases-1 (TIMP-1), mostly known for its eponymous function to inhibit metalloproteinases, exhibits only a fraction of its cellular effects via this feature. Recently, TIMP-1 emerged as a potent cytokine acting via various cell-surface receptors, explaining a so-far under-appreciated role of TIMP-1-mediated signaling on immune cells. This, at least partly, resolved why elevated blood levels of TIMP-1 correlate with progression of numerous inflammatory diseases. Here, we emphasize the necessity of unbiased name-independent recognition of structure-function relationships to properly appreciate the biological potential of TIMP-1 and other cytokines in complex physiological processes such as inflammation.
Collapse
|
10
|
Alpoim-Moreira J, Fernandes C, Pimenta J, Bliebernicht M, Rebordão MR, Castelo-Branco P, Szóstek-Mioduchowska A, Skarzynski DJ, Ferreira-Dias G. Metallopeptidades 2 and 9 genes epigenetically modulate equine endometrial fibrosis. Front Vet Sci 2022; 9:970003. [PMID: 36032279 PMCID: PMC9412240 DOI: 10.3389/fvets.2022.970003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Endometrium type I (COL1) and III (COL3) collagen accumulation, periglandular fibrosis and mare infertility characterize endometrosis. Metalloproteinase-2 (MMP-2), MMP-9 and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) are involved in collagen turnover. Since epigenetic changes may control fibroproliferative diseases, we hypothesized that epigenetic mechanisms could modulate equine endometrosis. Epigenetic changes can be reversed and therefore extremely promising for therapeutic use. Methylation pattern analysis of a particular gene zone is used to detect epigenetic changes. DNA methylation commonly mediates gene repression. Thus, this study aimed to evaluate if the transcription of some genes involved in equine endometrosis was altered with endometrial fibrosis, and if the observed changes were epigenetically modulated, through DNA methylation analysis. Endometrial biopsies collected from cyclic mares were histologically classified (Kenney and Doig category I, n = 6; category IIA, n = 6; category IIB, n = 6 and category III, n = 6). Transcription of COL1A1, COL1A2, COL3A1, MMP2, MMP9, TIMP1, and TIMP2 genes and DNA methylation pattern by pyrosequencing of COL1A1, MMP2, MMP9, TIMP1 genes were evaluated. Both MMP2 and MMP9 transcripts decreased with fibrosis, when compared with healthy endometrium (category I) (P < 0.05). TIMP1 transcripts were higher in category III, when compared to category I endometrium (P < 0.05). No differences were found for COL1A1, COL1A2, COL3A1 and TIMP2 transcripts between endometrial categories. There were higher methylation levels of (i) COL1A1 in category IIB (P < 0.05) and III (P < 0.01), when compared to category I; (ii) MMP2 in category III, when compared to category I (P < 0.001) and IIA (P < 0.05); and (iii) MMP9 in category III, when compared to category I and IIA (P < 0.05). No differences in TIMP1 methylation levels were observed between endometrial categories. The hypermethylation of MMP2 and MMP9, but not of COL1A1 genes, occurred simultaneously with a decrease in their mRNA levels, with endometrial fibrosis, suggesting that this hypermethylation is responsible for repressing their transcription. Our results show that endometrosis is epigenetically modulated by anti-fibrotic genes (MMP2 and MMP9) inhibition, rather than fibrotic genes activation and therefore, might be promising targets for therapeutic use.
Collapse
Affiliation(s)
- Joana Alpoim-Moreira
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Carina Fernandes
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Jorge Pimenta
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos (UEISBR), Instituto Nacional de Investigação Agrária e Veterinária, I. P. (INIAV), Vairão, Portugal
| | | | - Maria Rosa Rebordão
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Polytechnic of Coimbra, Coimbra Agriculture School, Coimbra, Portugal
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | | | | | - Graça Ferreira-Dias
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- *Correspondence: Graça Ferreira-Dias
| |
Collapse
|
11
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
12
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
13
|
Perramón M, Carvajal S, Reichenbach V, Fernández‐Varo G, Boix L, Macias‐Muñoz L, Melgar‐Lesmes P, Bruix J, Melmed S, Lamas S, Jiménez W. The pituitary tumour-transforming gene 1/delta-like homologue 1 pathway plays a key role in liver fibrogenesis. Liver Int 2022; 42:651-662. [PMID: 35050550 PMCID: PMC9303549 DOI: 10.1111/liv.15165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS PTTG1 is almost undetectable in adult livers but is highly expressed in hepatocarcinoma. While little is known about its involvement in liver fibrosis, PTTG1 expression is associated with DLK1. We assessed the role of the PTTG1/DLK1 pathway in fibrosis progression and the potential therapeutic effect of PTTG1 silencing in fibrosis. METHODS Pttg1 and Dlk1 were studied in liver and isolated cell populations of control and fibrotic rats and in human liver biopsies. The fibrotic molecular signature was analysed in Pttg1-/- and Pttg1+/+ fibrotic mice. Finally, Pttg1 silencing was evaluated in rats as a novel antifibrotic therapy. RESULTS Pttg1 and Dlk1 mRNA selectively increased in fibrotic rats paralleling fibrosis progression. Serum DLK1 concentrations correlated with hepatic collagen content and systemic and portal haemodynamics. Human cirrhotic livers showed greater PTTG1 and DLK1 transcript abundance than non-cirrhotic, and reduced collagen was observed in Pttg1 Pttg1-/- mice. The liver fibrotic molecular signature revealed lower expression of genes related to extracellular matrix remodelling including Mmp8 and 9 and Timp4 and greater eotaxin and Mmp13 than fibrotic Pttg1+/+ mice. Finally, interfering Pttg1 resulted in reduced liver fibrotic area, lower α-Sma and decreased portal pressure than fibrotic animals. Furthermore, Pttg1 silencing decreased the transcription of Dlk1, collagens I and III, Pdgfrβ, Tgfrβ, Timp1, Timp2 and Mmp2. CONCLUSIONS Pttg1/Dlk1 are selectively overexpressed in the cirrhotic liver and participate in ECM turnover regulation. Pttg1 disruption decreases Dlk1 transcription and attenuates collagen deposition. PTTG1/DLK1 signalling is a novel pathway for targeting the progression of liver fibrosis.
Collapse
Affiliation(s)
- Meritxell Perramón
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Silvia Carvajal
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Vedrana Reichenbach
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Guillermo Fernández‐Varo
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Loreto Boix
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of MedicineUniversity of BarcelonaBarcelonaSpain,Barcelona‐Clínic Liver Cancer GroupHospital Clínic UniversitariBarcelonaSpain
| | - Laura Macias‐Muñoz
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain
| | - Pedro Melgar‐Lesmes
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of BiomedicineUniversity of BarcelonaBarcelonaSpain,Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Jordi Bruix
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of MedicineUniversity of BarcelonaBarcelonaSpain,Barcelona‐Clínic Liver Cancer GroupHospital Clínic UniversitariBarcelonaSpain
| | - Shlomo Melmed
- Department of Medicine, Cedars‐Sinai Research InstituteUniversity of California School of MedicineLos AngelesCAUSA
| | - Santiago Lamas
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)MadridSpain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics ServiceHospital Clínic UniversitariBarcelonaSpain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD)BarcelonaSpain,Department of BiomedicineUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
14
|
Guizani I, Fourti N, Zidi W, Feki M, Allal-Elasmi M. SARS-CoV-2 and pathological matrix remodeling mediators. Inflamm Res 2021; 70:847-858. [PMID: 34286362 PMCID: PMC8294315 DOI: 10.1007/s00011-021-01487-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recognizing only sharp elevation in a short period of time, the COVID-19 SARS-CoV-2 propagation is more and more marked in the whole world. Induced inflammation afterwards infection engenders a high infiltration of immune cells and cytokines that triggers matrix metalloproteinases (MMPs) activation. These endopeptidases are mediators of the lung extracellular matrix (ECM), a basic element for alveoli structure and gas exchange. METHODS When immune cells, MMPs, secreted cytokines and several other mediators are gathered a pathological matrix remodeling occurs. This phenomenon tends to tissue destruction in the first place and a pulmonary hypertrophy and fibrosis in the second place. FINDINGS After pathological matrix remodeling establishment, pathological diseases take place even after infection state. Since post COVID-19 pulmonary fibrosis is an emerging complication of the disease, there is an urge to better understand and characterize the implication of ECM remodeling during SARS-CoV-2 infection. CONCLUSION Targeting MMPs and their inhibitors could be a probable solution for occurred events since there are many cured patients that remain with severe sequels even after the end of infection.
Collapse
Affiliation(s)
- Imen Guizani
- LR99ES11, Laboratory of Biochemistry, Department of Biochemistry, Faculty of Medicine, La Rabta Hospital, University of Tunis El Manar, Jebbari, 1007, Tunis, Tunisia
- Faculty of Mathematics, Physics and Natural Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Nesrine Fourti
- LR99ES11, Laboratory of Biochemistry, Department of Biochemistry, Faculty of Medicine, La Rabta Hospital, University of Tunis El Manar, Jebbari, 1007, Tunis, Tunisia
- Faculty of Mathematics, Physics and Natural Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Wiem Zidi
- LR99ES11, Laboratory of Biochemistry, Department of Biochemistry, Faculty of Medicine, La Rabta Hospital, University of Tunis El Manar, Jebbari, 1007, Tunis, Tunisia
| | - Moncef Feki
- LR99ES11, Laboratory of Biochemistry, Department of Biochemistry, Faculty of Medicine, La Rabta Hospital, University of Tunis El Manar, Jebbari, 1007, Tunis, Tunisia
| | - Monia Allal-Elasmi
- LR99ES11, Laboratory of Biochemistry, Department of Biochemistry, Faculty of Medicine, La Rabta Hospital, University of Tunis El Manar, Jebbari, 1007, Tunis, Tunisia.
| |
Collapse
|
15
|
Song MK, Kim DI, Lee K. Causal relationship between humidifier disinfectant exposure and Th17-mediated airway inflammation and hyperresponsiveness. Toxicology 2021; 454:152739. [PMID: 33640443 DOI: 10.1016/j.tox.2021.152739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
In this study, we investigated whether humidifier disinfectants (HDs) induce asthmatic airway inflammation in an animal model and compared the features of HD-induced inflammatory symptoms with ovalbumin (OVA)-induced allergic asthma. Mice were intratracheally instilled three times with either the control or 0.1, 0.3, or 0.5 mg/kg of polyhexamethylene guanidine phosphate (PHMG-P). To characterize asthmatic features, the following parameters were analyzed: (i) differential cell counts and cytokine expression in the bronchoalveolar lavage fluid (BALF); (ii) presence of mucus-producing goblet cells and pulmonary eosinophilic infiltration in the lungs; (iii) serum immunoglobulin levels; and (iv) airway hyperresponsiveness (AHR). RNA-Seq and bioinformatics tools were used to investigate whether PHMG-P altered asthma-related gene expression in lung tissues. The PHMG-P exposure groups showed higher peribronchial/perivascular inflammation, elevated goblet cell hyperplasia, and inhaled methacholine-induced airway resistance. Additionally, IL-13 and IL-17 in BALF were significantly increased in the PHMG-P exposure groups. However, there were no significant differences in total serum IgE and BALF IL-4 and IL-5 levels in the PHMG-P exposure groups compared to the control group. PHMG-P exposure modulated the expression of genes related to Th17 signaling pathways including the IL-17A, IL-23, and STAT3 signaling pathways, but not the Th2 signaling pathway. Altogether, our results suggest that repeated exposure to low does PHMG-P induces asthma-like symptoms and is thus a possible risk factor for developing asthma. The PHMG-P-induced asthmatic airway inflammation showed a different pattern from that found in typical allergic asthma and may be related to irritant-induced airway inflammation and hyperresponsiveness characterized by Th2-low, Th17-related, IgE-independent, and mixed granulocytic features.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
16
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Hamaguchi I. Immunogenicity and Toxicity of Different Adjuvants Can Be Characterized by Profiling Lung Biomarker Genes After Nasal Immunization. Front Immunol 2020; 11:2171. [PMID: 33013912 PMCID: PMC7516075 DOI: 10.3389/fimmu.2020.02171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of vaccine adjuvants depends on their ability to appropriately enhance the immunogenicity of vaccine antigens, which is often insufficient in non-adjuvanted vaccines. Genomic analyses of immune responses elicited by vaccine adjuvants provide information that is critical for the rational design of adjuvant vaccination strategies. In this study, biomarker genes from the genomic analyses of lungs after priming were used to predict the efficacy and toxicity of vaccine adjuvants. Based on the results, it was verified whether the efficacy and toxicity of the tested adjuvants could be predicted based on the biomarker gene profiles after priming. Various commercially available adjuvants were assessed by combining them with the split influenza vaccine and were subsequently administered in mice through nasal inoculation. The expression levels of lung biomarker genes within 24 h after priming were analyzed. Furthermore, we analyzed the antibody titer, cytotoxic T lymphocyte (CTL) induction, IgG1/IgG2a ratio, leukopenic toxicity, and cytotoxicity in mice vaccinated at similar doses. The association between the phenotypes and the changes in the expression levels of biomarker genes were analyzed. The ability of the adjuvants to induce the production of antigen-specific IgA could be assessed based on the levels of Timp1 expression. Furthermore, the expression of this gene partially correlated with the levels of other damage-associated molecular patterns in bronchoalveolar lavage fluid. Additionally, the changes in the expression of proteasome- and transporter-related genes involved in major histocompatibility complex class 1 antigen presentation could be monitored to effectively assess the expansion of CTL by adjuvants. The monitoring of certain genes is necessary for the assessment of leukopenic toxicity and cytotoxicity of the tested adjuvant. These results indicate that the efficacy and toxicity of various adjuvants can be characterized by profiling lung biomarker genes after the first instance of immunization. This approach could make a significant contribution to the development of optimal selection and exploratory screening strategies for novel adjuvants.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
17
|
Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am J Respir Cell Mol Biol 2020; 62:413-422. [PMID: 31967851 DOI: 10.1165/rcmb.2019-0328tr] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pirfenidone (PFD) is a pharmacological compound with therapeutic efficacy in idiopathic pulmonary fibrosis. It has been chiefly characterized as an antifibrotic agent, although it was initially developed as an antiinflammatory compound because of its ability to diminish the accumulation of inflammatory cells and cytokines. Despite recent studies that have elucidated key mechanisms, the precise molecular activities of PFD remain incompletely understood. PFD modulates fibrogenic growth factors, thereby attenuating fibroblast proliferation, myofibroblast differentiation, collagen and fibronectin synthesis, and deposition of extracellular matrix. This effect is mediated by suppression of TGF-β1 (transforming growth factor-β1) and other growth factors. Here, we appraise the impact of PFD on TGF-β1 production and its downstream pathways. Accumulating evidence indicates that PFD also downregulates inflammatory pathways and therefore has considerable potential as a viable and innovative antiinflammatory compound. We examine the effects of PFD on inflammatory cells and the production of pro- and antiinflammatory cytokines in the lung. In this context, recent evidence that PFD can target inflammasome pathways and ensuing lung inflammation is highlighted. Finally, the antioxidant properties of PFD, such as its ability to inhibit redox reactions and regulate oxidative stress-related genes and enzymes, are detailed. In summary, this narrative review examines molecular mechanisms underpinning PFD and its recognized benefits in lung fibrosis. We highlight preclinical data that demonstrate the potential of PFD as a nonsteroidal antiinflammatory agent and outline areas for future research.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Belinda J Thomas
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
18
|
The Role of Autophagy and NLRP3 Inflammasome in Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7269150. [PMID: 32733951 PMCID: PMC7369671 DOI: 10.1155/2020/7269150] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is an intrinsic repair process of chronic injury with excessive deposition of extracellular matrix. As an early stage of various liver diseases, liver fibrosis is a reversible pathological process. Therefore, if not being controlled in time, liver fibrosis will evolve into cirrhosis, liver failure, and liver cancer. It has been demonstrated that hepatic stellate cells (HSCs) play a crucial role in the formation of liver fibrosis. In particular, the activation of HSCs is a key step for liver fibrosis. Recent researches have suggested that autophagy and inflammasome have biological effect on HSC activation. Herein, we review current studies about the impact of autophagy and NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasome on liver fibrosis and the underlying mechanisms.
Collapse
|
19
|
Roque W, Boni A, Martinez-Manzano J, Romero F. A Tale of Two Proteolytic Machines: Matrix Metalloproteinases and the Ubiquitin-Proteasome System in Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21113878. [PMID: 32485920 PMCID: PMC7312171 DOI: 10.3390/ijms21113878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the activation of fibroblasts and the irreversible deposition of connective tissue matrices that leads to altered pulmonary architecture and physiology. Multiple factors have been implicated in the pathogenesis of lung fibrosis, including genetic and environmental factors that cause abnormal activation of alveolar epithelial cells, leading to the development of complex profibrotic cascade activation and extracellular matrix (ECM) deposition. One class of proteinases that is thought to be important in the regulation of the ECM are the matrix metalloproteinases (MMPs). MMPs can be up- and down- regulated in idiopathic pulmonary fibrosis (IPF) lungs and their role depends upon their location and function. Furthermore, alterations in the ubiquitin-proteosome system (UPS), a major intracellular protein degradation complex, have been described in aging and IPF lungs. UPS alterations could potentially lead to the abnormal accumulation and deposition of ECM. A better understanding of the specific roles MMPs and UPS play in the pathophysiology of pulmonary fibrosis could potentially drive to the development of novel biomarkers that can be as diagnostic and therapeutic targets. In this review, we describe how MMPs and UPS alter ECM composition in IPF lungs and mouse models of pulmonary fibrosis, thereby influencing the alveolar epithelial and mesenchymal cell behavior. Finally, we discuss recent findings that associate MMPs and UPS interplay with the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Willy Roque
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Alexandra Boni
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Jose Martinez-Manzano
- Brigham and Women’s Hospital—Pulmonary and Critical Care Medicine, Boston, MA 02115, USA;
| | - Freddy Romero
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and the Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
20
|
Todd JL, Vinisko R, Liu Y, Neely ML, Overton R, Flaherty KR, Noth I, Newby LK, Lasky JA, Olman MA, Hesslinger C, Leonard TB, Palmer SM, Belperio JA. Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort. BMC Pulm Med 2020; 20:64. [PMID: 32171287 PMCID: PMC7071646 DOI: 10.1186/s12890-020-1103-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 11/12/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) play important roles in the turnover of extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). This study aimed to determine the utility of circulating MMPs and TIMPs in distinguishing patients with IPF from controls and to explore associations between MMPs/TIMPs and measures of disease severity in patients with IPF. Methods The IPF cohort (n = 300) came from the IPF-PRO Registry, an observational multicenter registry of patients with IPF that was diagnosed or confirmed at the enrolling center in the past 6 months. Controls (n = 100) without known lung disease came from a population-based registry. Generalized linear models were used to compare circulating concentrations of MMPs 1, 2, 3, 7, 8, 9, 12, and 13 and TIMPs 1, 2, and 4 between patients with IPF and controls, and to investigate associations between circulating levels of these proteins and measures of IPF severity. Multivariable models were fit to identify the MMP/TIMPs that best distinguished patients with IPF from controls. Results All the MMP/TIMPs analyzed were present at significantly higher levels in patients with IPF compared with controls except for TIMP2. Multivariable analyses selected MMP8, MMP9 and TIMP1 as top candidates for distinguishing patients with IPF from controls. Higher concentrations of MMP7, MMP12, MMP13 and TIMP4 were significantly associated with lower diffusion capacity of the lung for carbon monoxide (DLCO) % predicted and higher composite physiologic index (worse disease). MMP9 was associated with the composite physiologic index. No MMP/TIMPs were associated with forced vital capacity % predicted. Conclusions Circulating MMPs and TIMPs were broadly elevated among patients with IPF. Select MMP/TIMPs strongly associated with measures of disease severity. Our results identify potential MMP/TIMP targets for further development as disease-related biomarkers.
Collapse
Affiliation(s)
- Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA. .,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA.
| | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yi Liu
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA
| | | | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Imre Noth
- University of Virginia, Charlottesville, VA, USA
| | - L Kristin Newby
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA.,Duke Clinical & Translational Science Institute, Durham, NC, USA
| | - Joseph A Lasky
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Mitchell A Olman
- Department of Inflammation and Immunity and Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Scott M Palmer
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA
| | - John A Belperio
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
21
|
Tao Y, Qiu T, Yao X, Jiang L, Wang N, Jia X, Wei S, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Autophagic-CTSB-inflammasome axis modulates hepatic stellate cells activation in arsenic-induced liver fibrosis. CHEMOSPHERE 2020; 242:124959. [PMID: 31669990 DOI: 10.1016/j.chemosphere.2019.124959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Long-term exposure to arsenic can cause liver injury and fibrosis. The activation of hepatic stellate cells (HSCs) plays an essential role in the process of liver fibrosis. We found that NaAsO2 caused liver damage and fibrosis in vivo, accompanied by excessive collagen deposition and HSCs activation. In addition, NaAsO2 upregulated autophagy flux, elevated the level of cytoplasmic cathepsin B (CTSB), and activated the NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasome in a subtle way. Consistent with these findings in vivo, we demonstrated that NaAsO2-induced activation of HSCs depended on CTSB-mediated NLRP3 inflammasome activation in HSC-t6 cells and rats primary HSCs. Moreover, inhibition of autophagy decreased the cytoplasmic CTSB and alleviated the activation of the NLRP3 inflammasome, thereby attenuating the NaAsO2-induced HSCs activation. In summary, these results indicated that NaAsO2 induced HSCs activation via autophagic-CTSB-NLRP3 inflammasome pathway. These findings may provide a novel insight into the potential mechanism of NaAsO2-induced liver fibrosis.
Collapse
Affiliation(s)
- Ye Tao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Ningning Wang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xue Jia
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Sen Wei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Zhidong Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Pei Pei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Yuhan Zhu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Shuang Liu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
22
|
Mahalanobish S, Saha S, Dutta S, Sil PC. Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating condition where excess collagen deposition occurs in the extracellular matrix. At first sight, it is expected that the level of different kinds of matrix metalloproteinases might be downregulated in IPF as it is a matrix degrading collagenase. However, the role of some matrix metalloproteinases (MMPs) is profibrotic where others have anti-fibrotic functions. These profibrotic MMPs effectively promote fibrosis development by stimulating the process of epithelial to mesenchymal transition. These profibrotic groups also induce macrophage polarization and fibrocyte migration. All of these events ultimately disrupt the balance between profibrotic and antifibrotic mediators, resulting aberrant repair process. Therefore, inhibition of these matrix metalloproteinases functions in IPF is a potential therapeutic approach. In addition to the use of synthetic inhibitor, various natural compounds, gene silencing act as potential natural MMP inhibitor to recover IPF.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
23
|
Song MK, Kim DI, Lee K. Time-course transcriptomic alterations reflect the pathophysiology of polyhexamethylene guanidine phosphate-induced lung injury in rats. Inhal Toxicol 2020; 31:457-467. [PMID: 31971030 DOI: 10.1080/08958378.2019.1707912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: Humidifier-disinfectant-induced lung injury is a new syndrome associated with a high mortality rate and characterized by severe hypersensitivity pneumonitis, acute interstitial pneumonia, or acute respiratory distress syndrome. Polyhexamethylene guanidine phosphate (PHMG-P), a guanidine-based antimicrobial agent, is a major component associated with severe lung injury. In-depth studies are needed to determine how PHMG-P affects pathogenesis at the molecular level. Therefore, in this study, we analyzed short-term (4 weeks) and long-term (10 weeks) PHMG-P-exposure-specific gene-expression patterns in rats to improve our understanding of time-dependent changes in fibrosis.Materials and methods: Gene-expression profiles were analyzed in rat lung tissues using DNA microarrays and bioinformatics tools.Results: Clustering analysis of gene-expression data showed different gene-alteration patterns in the short- and long-term exposure groups and higher sensitivity to gene-expression changes in the long-term exposure group than in the short-term exposure group. Supervised analysis revealed 34 short-term and 335 long-term exposure-specific genes, and functional analysis revealed that short-term exposure-specific genes were involved in PHMG-P-induced initial inflammatory responses, whereas long-term exposure-specific genes were involved in PHMG-P-related induction of chronic lung fibrosis.Conclusion: The results of transcriptomic analysis were consistent with lung histopathology results. These findings indicated that exposure-time-specific changes in gene expression closely reflected time-dependent pathological changes in PHMG-P-induced lung injury.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Garrett SM, Hsu E, Thomas JM, Pilewski JM, Feghali-Bostwick C. Insulin-like growth factor (IGF)-II- mediated fibrosis in pathogenic lung conditions. PLoS One 2019; 14:e0225422. [PMID: 31765403 PMCID: PMC6876936 DOI: 10.1371/journal.pone.0225422] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Type 2 insulin-like growth factor (IGF-II) levels are increased in fibrosing lung diseases such as idiopathic pulmonary fibrosis (IPF) and scleroderma/systemic sclerosis-associated pulmonary fibrosis (SSc). Our goal was to investigate the contribution of IGF receptors to IGF-II-mediated fibrosis in these diseases and identify other potential mechanisms key to the fibrotic process. Cognate receptor gene and protein expression were analyzed with qRT-PCR and immunoblot in primary fibroblasts derived from lung tissues of normal donors (NL) and patients with IPF or SSc. Compared to NL, steady-state receptor gene expression was decreased in SSc but not in IPF. IGF-II stimulation differentially decreased receptor mRNA and protein levels in NL, IPF, and SSc fibroblasts. Neutralizing antibody, siRNA, and receptor inhibition targeting endogenous IGF-II and its primary receptors, type 1 IGF receptor (IGF1R), IGF2R, and insulin receptor (IR) resulted in loss of the IGF-II response. IGF-II tipped the TIMP:MMP balance, promoting a fibrotic environment both intracellularly and extracellularly. Differentiation of fibroblasts into myofibroblasts by IGF-II was blocked with a TGFβ1 receptor inhibitor. IGF-II also increased TGFβ2 and TGFβ3 expression, with subsequent activation of canonical SMAD2/3 signaling. Therefore, IGF-II promoted fibrosis through IGF1R, IR, and IGF1R/IR, differentiated fibroblasts into myofibroblasts, decreased protease production and extracellular matrix degradation, and stimulated expression of two TGFβ isoforms, suggesting that IGF-II exerts pro-fibrotic effects via multiple mechanisms.
Collapse
Affiliation(s)
- Sara M. Garrett
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
| | - Eileen Hsu
- Mid Atlantic Permanente Medical Group, Mclean, Virginia, United States of America
| | - Justin M. Thomas
- Eisenhower Medical Center, Rancho Mirage, California, United States of America
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol Feghali-Bostwick
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Vu TN, Chen X, Foda HD, Smaldone GC, Hasaneen NA. Interferon-γ enhances the antifibrotic effects of pirfenidone by attenuating IPF lung fibroblast activation and differentiation. Respir Res 2019; 20:206. [PMID: 31511015 PMCID: PMC6737625 DOI: 10.1186/s12931-019-1171-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) pathogenesis involves multiple pathways, and combined antifibrotic therapy is needed for future IPF therapy. Inhaled interferon-γ (IFN-γ) was recently shown to be safe and without systemic effects in patients with IPF. AIM To examine the in vitro effects of individual and combined treatment with IFN-γ and pirfenidone (PFD) on normal and IPF fibroblast activation and extracellular matrix remodeling after TGF-β1 and PDGF-BB stimulation. METHODS IPF and normal human lung fibroblasts (NHLF) were treated with IFN-γ, PFD or a combination of both drugs in the presence of either TGF-β1 or PDGF-BB. The effects of TGF-β1 and PDGF-BB treatment on cell viability, proliferation, differentiation and migration were examined. The expression of collagen 1, matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs) was analyzed using qPCR, Western blotting and gelatin zymography. Total collagen content in conditioned media was also measured using a Sircol assay. RESULTS Compared to that of PFD, the effect of IFN-γ in downregulating normal and IPF lung fibroblast differentiation to myofibroblasts in response to TGF-β1 was more potent. Importantly, the combination of IFN-γ and PFD had a possibly synergistic/additive effect in inhibiting the TGF-β1- and PDGF-BB-induced proliferation, migration and differentiation of normal and IPF lung fibroblasts. Furthermore, both drugs reversed TGF-β1-induced effects on MMP-1, - 2, - 3, - 7, and - 9, while only PFD promoted TIMP-1 and-2 expression and release. CONCLUSIONS Our findings demonstrate that the antifibrotic effects of IFN-γ and PFD on normal and IPF lung fibroblasts are different and complementary. Combination therapy with inhaled IFN-γ and PFD in IPF is promising and should be further explored in IPF clinical trials.
Collapse
Affiliation(s)
- Tuong N Vu
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA
| | - Xuesong Chen
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA
| | - Hussein D Foda
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA.,Department of Medicine and Research, VAMC Northport, Stony Brook, NY, USA
| | - Gerald C Smaldone
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA
| | - Nadia A Hasaneen
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA. .,Department of Medicine and Research, VAMC Northport, Stony Brook, NY, USA.
| |
Collapse
|
26
|
Belardin LB, Antoniassi MP, Camargo M, Intasqui P, Fraietta R, Bertolla RP. Semen levels of matrix metalloproteinase (MMP) and tissue inhibitor of metallorproteinases (TIMP) protein families members in men with high and low sperm DNA fragmentation. Sci Rep 2019; 9:903. [PMID: 30696858 PMCID: PMC6351682 DOI: 10.1038/s41598-018-37122-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022] Open
Abstract
Matrix Metalloproteinases (MMPs) and their regulators – Tissue Inhibitors of Matrix Metalloproteinases (TIMPs) – participate in extracellular matrix remodeling, fibrosis, and semen liquefaction, as well as to inflammatory activity. Seminal plasma has been shown to contain MMPs (MMP-2 and MMP-9) and TIMPs (TIMP-1 and TIMP-2). Also, a link between MMPs gene expression and excessive reactive oxygen species (ROS) has been established. In semen, ROS are associated with altered sperm function and increased DNA fragmentation. In this study, it is hypothesized that seminal MMPs and TIMPs levels are associated with sperm DNA fragmentation due to the fact that MMPs have been associated with semen quality. We also hypothesized that these proteins could predict DNA fragmentation status in sperm. Therefore, this study set out to verify if sperm DNA fragmentation levels relate to seminal levels of members of the MMP and TIMP protein families. The High sperm DNA fragmentation group presented lower seminal plasma levels of MMP-2, MMP-7, TIMP-1, TIMP-2 and TIMP-4 when compared to Low sperm DNA fragmentation group. Also, samples in the high sperm DNA fragmentation group presented higher acrosome integrity and lower mitochondrial activity levels when compared to low sperm DNA fragmentation samples. In the logistic regression analysis, MMP-2, MMP-7, and TIMP-4 classified samples as low and high sperm DNA fragmentation, with an overall model fit of 74.5%. Results from this study may demonstrate a specific inflammatory mechanism in samples with high sperm DNA fragmentation. This, in turn, can lead to the development of new studies regarding this mechanism and, in the future, create an opportunity to treat these patients for sperm DNA fragmentation by treating inflammatory seminal activity.
Collapse
Affiliation(s)
| | | | - Mariana Camargo
- Department of Surgery, Division of Urology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Intasqui
- Department of Surgery, Division of Urology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Fraietta
- Department of Surgery, Division of Urology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Universidade Federal de São Paulo, São Paulo, Brazil. .,Hospital São Paulo, São Paulo, Brazil.
| |
Collapse
|
27
|
Allen JR, Ge L, Huang Y, Brauer R, Parimon T, Cassel SL, Sutterwala FS, Chen P. TIMP-1 Promotes the Immune Response in Influenza-Induced Acute Lung Injury. Lung 2018; 196:737-743. [PMID: 30167842 DOI: 10.1007/s00408-018-0154-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Influenza infects millions of people each year causing respiratory distress and death in severe cases. On average, 200,000 people annually are hospitalized in the United States for influenza related complications. Tissue inhibitor of metalloproteinase-1 (TIMP-1), a secreted protein that inhibits MMPs, has been found to be involved in lung inflammation. Here, we evaluated the role of TIMP-1 in the host response to influenza-induced lung injury. METHODS Wild-type (WT) and Timp1-deficient (Timp1-/-) mice that were 8-12 weeks old were administered A/PR/8/34 (PR8), a murine adapted H1N1 influenza virus, and euthanized 6 days after influenza installation. Bronchoalveolar lavage fluid and lungs were harvested from each mouse for ELISA, protein assay, PCR, and histological analysis. Cytospins were executed on bronchoalveolar lavage fluid to identify immune cells based on morphology and cell count. RESULTS WT mice experienced significantly more weight loss compared to Timp1-/- mice after influenza infection. WT mice demonstrated more immune cell infiltrate and airway inflammation. Interestingly, PR8 levels were identical between the WT and Timp1-/- mice 6 days post-influenza infection. CONCLUSION The data suggest that Timp1 promotes the immune response in the lungs after influenza infection facilitating an injurious phenotype as a result of influenza infection.
Collapse
Affiliation(s)
- Jenieke R Allen
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Lingyin Ge
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Ying Huang
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Rena Brauer
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Tanyalak Parimon
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Suzanne L Cassel
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - Peter Chen
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
28
|
Dong J, Ma Q. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis. Front Immunol 2018; 9:1120. [PMID: 29872441 PMCID: PMC5972321 DOI: 10.3389/fimmu.2018.01120] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/03/2018] [Indexed: 01/29/2023] Open
Abstract
T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type 2 signaling on pulmonary fibrosis development. These analyses provide new insights into the mechanistic understanding of CNT-induced lung fibrosis, as well as the potential of using type 2 responses as a monitoring target and therapeutic strategy for human fibrotic lung disease.
Collapse
Affiliation(s)
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
29
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
30
|
Garlíková Z, Silva AC, Rabata A, Potěšil D, Ihnatová I, Dumková J, Koledová Z, Zdráhal Z, Vinarský V, Hampl A, Pinto-do-Ó P, Nascimento DS. Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk. Tissue Eng Part C Methods 2017; 24:1-13. [PMID: 28895470 DOI: 10.1089/ten.tec.2017.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.
Collapse
Affiliation(s)
- Zuzana Garlíková
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic .,2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Ana Catarina Silva
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal .,5 ICBAS-Instituto de Ciências Biomédicas de Abel Salazar , Porto, Portugal .,6 Gladstone Institutes, University of California San Francisco , San Francisco, California
| | - Anas Rabata
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - David Potěšil
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Ivana Ihnatová
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Jana Dumková
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - Zuzana Koledová
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - Zbyněk Zdráhal
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Vladimír Vinarský
- 2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Aleš Hampl
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic .,2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Perpétua Pinto-do-Ó
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal .,5 ICBAS-Instituto de Ciências Biomédicas de Abel Salazar , Porto, Portugal
| | - Diana Santos Nascimento
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal
| |
Collapse
|
31
|
Duke KS, Bonner JC. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1498. [PMID: 28984415 DOI: 10.1002/wnan.1498] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023]
Abstract
Carbon nanotubes (CNTs) are engineered nanomaterials (ENMs) with numerous beneficial applications. However, they could pose a risk to human health from occupational or consumer exposures. Rodent models demonstrate that exposure to CNTs via inhalation, instillation, or aspiration results in pulmonary fibrosis. The severity of the fibrogenic response is determined by various physicochemical properties of the nanomaterial such as residual metal catalyst content, rigidity, length, aggregation status, or surface charge. CNTs are also increasingly functionalized post-synthesis with organic or inorganic agents to modify or enhance surface properties. The mechanisms of CNT-induced fibrosis involve oxidative stress, innate immune responses of macrophages, cytokine and growth factor production, epithelial cell injury and death, expansion of the pulmonary myofibroblast population, and consequent extracellular matrix accumulation. A comprehensive understanding of how physicochemical properties affect the fibrogenic potential of various types of CNTs should be considered in combination with genetic variability and gain or loss of function of specific genes encoding secreted cytokines, enzymes, or intracellular cell signaling molecules. Here, we cover the current state of the literature on mechanisms of CNT-exposed pulmonary fibrosis in rodent models with a focus on physicochemical characteristics as principal drivers of the mechanisms leading to pulmonary fibrosis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Katherine S Duke
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - James C Bonner
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
32
|
Richards CD. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung. J Interferon Cytokine Res 2017; 37:52-61. [PMID: 28117653 DOI: 10.1089/jir.2016.0112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.
Collapse
Affiliation(s)
- Carl D Richards
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, Canada
| |
Collapse
|
33
|
Dong J, Ma Q. TIMP1 promotes multi-walled carbon nanotube-induced lung fibrosis by stimulating fibroblast activation and proliferation. Nanotoxicology 2016; 11:41-51. [PMID: 27852133 DOI: 10.1080/17435390.2016.1262919] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) may cause fibrosing lesions in animal lungs, raising health concerns about such exposure in humans. The mechanisms underlying fibrosis development remain unclear, but they are believed to involve the dysfunction of fibroblasts and myofibroblasts. Using a mouse model of MWCNT exposure, we found that the tissue inhibitor of metalloproteinase 1 (Timp1) gene was rapidly and highly induced in the lungs by MWCNTs in a time- and dose-dependent manner. Concomitantly, a pronounced elevation of secreted TIMP1 was observed in the bronchoalveolar lavage (BAL) fluid and serum. Knockout (KO) of Timp1 in mice caused a significant reduction in fibrotic focus formation, collagen fiber deposition, recruitment of fibroblasts and differentiation of fibroblasts into myofibroblasts in the lungs, indicating that TIMP1 plays a critical role in the pulmonary fibrotic response to MWCNTs. At the molecular level, MWCNT exposure significantly increased the expression of the cell proliferation markers Ki-67 and PCNA and a panel of cell cycle-controlling genes in the lungs in a TIMP1-dependent manner. MWCNT-stimulated cell proliferation was most prominent in fibroblasts but not myofibroblasts. Furthermore, MWCNTs elicited a significant induction of CD63 and integrin β1 in lung fibroblasts, leading to the formation of a TIMP1/CD63/integrin β1 complex on the surface of fibroblasts in vivo and in vitro, which triggered the phosphorylation and activation of Erk1/2. Our study uncovers a new pathway through which induced TIMP1 critically modulates the pulmonary fibrotic response to MWCNTs by promoting fibroblast activation and proliferation via the TIMP1/CD63/integrin β1 axis and ERK signaling.
Collapse
Affiliation(s)
- Jie Dong
- a Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, WV , USA
| | - Qiang Ma
- a Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, WV , USA
| |
Collapse
|
34
|
Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci Rep 2016; 36:BSR20160107. [PMID: 27247426 PMCID: PMC4945993 DOI: 10.1042/bsr20160107] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis.
Collapse
|
35
|
Song C, He L, Zhang J, Ma H, Yuan X, Hu G, Tao L, Zhang J, Meng J. Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway. J Cell Mol Med 2016; 20:2064-2077. [PMID: 27306439 PMCID: PMC5082399 DOI: 10.1111/jcmm.12898] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/09/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)‐1β plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. The production of IL‐1β is dependent upon caspase‐1‐containing multiprotein complexes called inflammasomes and IL‐1R1/MyD88/NF‐κB pathway. In this study, we explored whether a potential anti‐fibrotic agent fluorofenidone (FD) exerts its anti‐inflammatory and anti‐fibrotic effects through suppressing activation of NACHT, LRR and PYD domains‐containing protein 3 (NALP3) inflammasome and the IL‐1β/IL‐1R1/MyD88/NF‐κB pathway in vivo and in vitro. Male C57BL/6J mice were intratracheally injected with Bleomycin (BLM) or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with haemotoxylin and eosin and Masson's trichrome. Cytokines were measured by ELISA, and α‐smooth muscle actin (α‐SMA), fibronectin, collagen I, caspase‐1, IL‐1R1, MyD88 were measured by Western blot and/or RT‐PCR. The human actue monocytic leukaemia cell line (THP‐1) were incubated with monosodium urate (MSU), with or without FD pre‐treatment. The expression of caspase‐1, IL‐1β, NALP3, apoptosis‐associated speck‐like protein containing (ASC) and pro‐caspase‐1 were measured by Western blot, the reactive oxygen species (ROS) generation was detected using the Flow Cytometry, and the interaction of NALP3 inflammasome‐associated molecules were measured by Co‐immunoprecipitation. RLE‐6TN (rat lung epithelial‐T‐antigen negative) cells were incubated with IL‐1β, with or without FD pre‐treatment. The expression of nuclear protein p65 was measured by Western blot. Results showed that FD markedly reduced the expressions of IL‐1β, IL‐6, monocyte chemotactic protein‐1 (MCP‐1), myeloperoxidase (MPO), α‐SMA, fibronectin, collagen I, caspase‐1, IL‐1R1 and MyD88 in mice lung tissues. And FD inhibited MSU‐induced the accumulation of ROS, blocked the interaction of NALP3 inflammasome‐associated molecules, decreased the level of caspase‐1 and IL‐1β in THP‐1 cells. Besides, FD inhibited IL‐1β‐induced the expression of nuclear protein p65. This study demonstrated that FD, attenuates BLM‐induced pulmonary inflammation and fibrosis in mice via inhibiting the activation of NALP3 inflammasome and the IL‐1β/IL‐1R1/MyD88/ NF‐κB pathway.
Collapse
Affiliation(s)
- Cheng Song
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Respiratory Medicine, Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science & Technology, Wuhan, China
| | - Lujuan He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Zhang
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Ma
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoyun Hu
- Pharmaceutical School, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Jie Meng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
36
|
Yu SH, Liu LJ, Lv B, Che CL, Fan DP, Wang LF, Zhang YM. Inhibition of bleomycin-induced pulmonary fibrosis by bone marrow-derived mesenchymal stem cells might be mediated by decreasing MMP9, TIMP-1, INF-γ and TGF-β. Cell Biochem Funct 2015; 33:356-66. [PMID: 26178702 DOI: 10.1002/cbf.3118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/08/2022]
Abstract
The study was aimed to investigate the mechanism and administration timing of bone marrow-derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)-induced pulmonary fibrosis mice. Thirty-six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase-1 (TIMP-1), γ-interferon (INF-γ) and transforming growth factor β1 (TGF-β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up-regulated MMP9, TIMP-1, INF-γ and TGF-β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down-regulating MMP9, TIMP-1, INF-γ and TGF-β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Highlights are as follows: 1. BMSCs repair lung injury induced by BLM. 2. BMSCs attenuate pulmonary fibrosis induced by BLM. 3. BMSCs transplantation down-regulates MMP9 and TIMP-1. 4. BMSCs transplantation down-regulates INF-γ and TGF-β. 5. Delayed transplantation timing of BMSCs might exhibit a better effect against BLM.
Collapse
Affiliation(s)
- Shi-huan Yu
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-jie Liu
- Department of Pulmonary Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Lv
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun-li Che
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Da-ping Fan
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-feng Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi-mei Zhang
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
37
|
Remst DFG, Blaney Davidson EN, van der Kraan PM. Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness. Rheumatology (Oxford) 2015; 54:1954-63. [PMID: 26175472 DOI: 10.1093/rheumatology/kev228] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 01/01/2023] Open
Abstract
Synovial fibrosis is often found in OA, contributing heavily to joint pain and joint stiffness, the main symptoms of OA. At this moment the underlying mechanism of OA-related synovial fibrosis is not known and there is no cure available. In this review we discuss factors that have been reported to be involved in synovial fibrosis. The aim of the study was to gain insight into how these factors contribute to the fibrotic process and to determine the best targets for therapy in synovial fibrosis. In this regard, the following factors are discussed: TGF-β, connective tissue growth factor, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2, tissue inhibitor of metalloproteinase 1, A disintegrin and metalloproteinase domain 12, urotensin-II, prostaglandin F2α and hyaluronan.
Collapse
Affiliation(s)
- Dennis F G Remst
- Radboud University Medical Center, Experimental Rheumatology, Nijmegen, The Netherlands
| | | | - Peter M van der Kraan
- Radboud University Medical Center, Experimental Rheumatology, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 2015; 44-46:247-54. [PMID: 25805621 DOI: 10.1016/j.matbio.2015.03.005] [Citation(s) in RCA: 500] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs), which inhibit matrix metalloproteinases (MMPs) as well as the closely related, a disintegrin and metalloproteinases (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs), were traditionally thought to control extracellular matrix (ECM) proteolysis through direct inhibition of MMP-dependent ECM proteolysis. This classical role for TIMPs suggests that increased TIMP levels results in ECM accumulation (or fibrosis), whereas loss of TIMPs leads to enhanced matrix proteolysis. Mice lacking TIMP family members have provided support for such a role; however, studies with these TIMP deficient mice have also demonstrated that loss of TIMPs can often be associated with an accumulation of ECM. Collectively, these studies suggest that the divergent roles of TIMPs in matrix accumulation and proteolysis, which together can be referred to as ECM turnover, are dependent on the TIMP, specific tissue, and local tissue environment (i.e. health vs. injury/disease). Ultimately, these combined factors dictate the specific metalloproteinases being regulated by a given TIMP, and it is likely the diversity of metalloproteinases and their physiological substrates that determines whether TIMPs inhibit matrix proteolysis or accumulation. In this review, we discuss the evidence for the dichotomous roles of TIMPs in ECM turnover highlighting some of the common findings between different TIMP family members. Importantly, while we now have a better understanding of the role of TIMPs in regulating ECM turnover, much remains to be determined. Data on the specific metalloproteinases inhibited by different TIMPs in vivo remains limited and must be the focus of future studies.
Collapse
Affiliation(s)
- Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael Brock
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
39
|
Ovet H, Oztay F. The copper chelator tetrathiomolybdate regressed bleomycin-induced pulmonary fibrosis in mice, by reducing lysyl oxidase expressions. Biol Trace Elem Res 2014; 162:189-99. [PMID: 25349139 DOI: 10.1007/s12011-014-0142-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/29/2014] [Indexed: 11/25/2022]
Abstract
Pulmonary fibrosis (PF) is characterized by an increase in the number of fibroblasts and an accumulation of collagen fibers in the extracellular matrix (ECM). The members of the copper-dependent lysyl oxidase (LOX) enzyme family regulate the collagen accumulation in the ECM. Tetrathiomolybdate (TM) is a copper chelator. The present study reported the effect of TM on the expression of LOX proteins (LOX, LOXL1, and LOXL2), collagen digestion enzymes (MMP2 and MMP8), and TIMP1 (a collagenase inhibitor) in PF. The PF in mice was induced by intratracheal bleomycin instillation. Adult mice were divided into four groups: mice dissected after 21 days of the first bleomycin (0.08 mg/kg, single dose) treatment (I) and their controls (II), and mice treated with TM for 1 week (1.2 mg/day/mice for the first 4 days and 0.9 mg/day/mice for the last 3 days) after 14 days of the first bleomycin instillation and dissected in the 21st day of the experiment (III) and their controls (IV). Mice in groups III and IV were fed a low-copper (2 mg/kg) diet during the last 7 days of the experiment. The fibrosis score in the lung was determined under a microscope. The expressions of collagen-I, LOX, MMP, and TIMP1 proteins were analyzed by Western blotting in the lung. Mice lungs with fibrosis were characterized by an overexpression of collagen-I, LOX, MMP, and TIMP1 proteins in addition to an accumulation of collagen fibers. TM treatments significantly regressed the overexpression of these proteins in the fibrotic mice lung. In conclusion, TM treatments can be used for the regression of PF, by decreasing collagen-I protein expression and accumulation.
Collapse
Affiliation(s)
- Hale Ovet
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey,
| | | |
Collapse
|
40
|
Hussain S, Sangtian S, Anderson SM, Snyder RJ, Marshburn JD, Rice AB, Bonner JC, Garantziotis S. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Part Fibre Toxicol 2014; 11:28. [PMID: 24915862 PMCID: PMC4067690 DOI: 10.1186/1743-8977-11-28] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background In vivo studies have demonstrated the ability of multi-walled carbon nanotubes (MWCNT) to induce airway remodeling, a key feature of chronic respiratory diseases like asthma and chronic obstructive pulmonary disease. However, the mechanism leading to remodeling is poorly understood. Particularly, there is limited insight about the role of airway epithelial injury in these changes. Objectives We investigated the mechanism of MWCNT-induced primary human bronchial epithelial (HBE) cell injury and its contribution in inducing a profibrotic response. Methods Primary HBE cells were exposed to thoroughly characterized MWCNTs (1.5-24 μg/mL equivalent to 0.37-6.0 μg/cm2) and MRC-5 human lung fibroblasts were exposed to 1:4 diluted conditioned medium from these cells. Flow cytometry, ELISA, immunostainings/immunoblots and PCR analyses were employed to study cellular mechanisms. Results MWCNT induced NLRP3 inflammasome dependent pyroptosis in HBE cells in a time- and dose-dependent manner. Cell death and cytokine production were significantly reduced by antioxidants, siRNA to NLRP3, a caspase-1 inhibitor (z-WEHD-FMK) or a cathepsin B inhibitor (CA-074Me). Conditioned medium from MWCNT-treated HBE cells induced significant increase in mRNA expression of pro-fibrotic markers (TIMP-1, Tenascin-C, Procollagen 1, and Osteopontin) in human lung fibroblasts, without a concomitant change in expression of TGF-beta. Induction of pro-fibrotic markers was significantly reduced when IL-1β, IL-18 and IL-8 neutralizing antibodies were added to the conditioned medium or when conditioned medium from NLRP3 siRNA transfected HBE cells was used. Conclusions Taken together these results demonstrate induction of a NLRP3 inflammasome dependent but TGF-beta independent pro-fibrotic response after MWCNT exposure.
Collapse
Affiliation(s)
- Salik Hussain
- Clinical Research Unit, National Institute of Environmental Health Sciences (NIEHS)/National Institute of Health (NIH), Research Triangle Park, Durham, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Remst DFG, Blom AB, Vitters EL, Bank RA, van den Berg WB, Blaney Davidson EN, van der Kraan PM. Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor β-responsive genes in osteoarthritis-related fibrosis. Arthritis Rheumatol 2014; 66:647-56. [PMID: 24574225 DOI: 10.1002/art.38266] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/31/2013] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Synovial fibrosis is a major contributor to joint stiffness in osteoarthritis (OA). Transforming growth factor β (TGFβ), which is elevated in OA, plays a key role in the onset and persistence of synovial fibrosis. However, blocking of TGFβ in OA as a therapeutic intervention for fibrosis is not an option since TGFβ is crucial for cartilage maintenance and repair. Therefore, we undertook the present study to seek targets downstream of TGFβ for preventing OA-related fibrosis without interfering with joint homeostasis. METHODS Experiments were performed to determine whether genes involved in extracellular matrix turnover were responsive to TGFβ and were elevated in OA-related fibrosis. We analyzed gene expression in TGFβ-stimulated human OA synovial fibroblasts and in the synovium of mice with TGFβ-induced fibrosis, mice with experimental OA, and humans with end-stage OA. Gene expression was determined by microarray, low-density array, or quantitative polymerase chain reaction analysis. RESULTS We observed an increase in expression of procollagen genes and genes encoding collagen crosslinking enzymes under all of the OA-related fibrotic conditions investigated. Comparison of gene expression in TGFβ-stimulated human OA synovial fibroblasts, synovium from mice with experimental OA, and synovium from humans with end-stage OA revealed that the genes PLOD2, LOX, COL1A1, COL5A1, and TIMP1 were up-regulated in all of these conditions. Additionally, we confirmed that these genes were up-regulated by TGFβ in vivo in mice with TGFβ-induced synovial fibrosis. CONCLUSION Most of the up-regulated genes identified in this study would be poor targets for therapy development, due to their crucial functions in the joint. However, the highly up-regulated gene PLOD2, responsible for the formation of collagen crosslinks that make collagen less susceptible to enzymatic degradation, is an attractive and promising target for interference in OA-related synovial fibrosis.
Collapse
Affiliation(s)
- D F G Remst
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Effects of Mesenchymal Stem Cell Therapy on the Time Course of Pulmonary Remodeling Depend on the Etiology of Lung Injury in Mice. Crit Care Med 2013; 41:e319-33. [DOI: 10.1097/ccm.0b013e31828a663e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Zhou XM, Wen GY, Zhao Y, Liu YM, Li JX. Inhibitory effects of alkaline extract of Citrus reticulata on pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:372-378. [PMID: 23318412 DOI: 10.1016/j.jep.2013.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/08/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The pericarp of Citrus reticulata possesses medical functions of regulating Qi and expelling phlegm, and has been clinically used for the treatment of lung related diseases in traditional Chinese medicine for a long time. Our previous research revealed that Citrus reticulata exhibited inhibitory effects on pulmonary fibrosis; however, its active principles are still unclear. AIM OF THE STUDY To investigate the inhibitory effects on pulmonary fibrosis of alkaline extract from ethanol extract of Citrus reticulata and clarify its possible mechanism. MATERIALS AND METHODS The citrus alkaline extract (CAE) was prepared from ethanol extract of Citrus reticulata and MRC-5 cells were used for the evaluation of inhibitory activity in vitro. CAE was further orally administrated to bleomycin (BLM)-induced pulmonary fibrosis rats. The rat body weight, hydroxyproline levels in serum and lung, pathological changes of lung, as well as mRNA and protein expressions of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and tumor necrosis factor-α (TNF-α) in rat lung tissues were analyzed. RESULTS CAE dose-dependently inhibited the proliferation of MRC-5 cells, and the LDH assay clearly revealed that the inhibitory activity of CAE was not due to its cytotoxicity. CAE treatment significantly increased rat weight gain, ameliorated alveolitis and pulmonary fibrosis degree, and lowered hydroxyproline contents in both serum and lung tissues. RT-PCR and western blot revealed that mRNA and protein expressions of MMP-9 were significantly elevated, while mRNA and protein levels of TIMP-1 and TNF-α were markedly decreased in lung tissues of CAE treated rats. CONCLUSIONS The results collectively demonstrated that CAE possessed an inhibitory activity on the proliferation of MRC-5 and a preventive effect on BLM-induced pulmonary fibrosis in rats. The preliminary mechanisms of the effects may be through upregulation of MMP-9 expression and inhibition of the expressions of TNF-α and TIMP-1.
Collapse
Affiliation(s)
- Xian-Mei Zhou
- Department of Respiratory Medicine, Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China.
| | | | | | | | | |
Collapse
|
44
|
Fujii Y, Kimura M, Ishii Y, Yamamoto R, Morita R, Hayashi SM, Suzuki K, Shibutani M. Effect of enzymatically modified isoquercitrin on preneoplastic liver cell lesions induced by thioacetamide promotion in a two-stage hepatocarcinogenesis model using rats. Toxicology 2013; 305:30-40. [PMID: 23318833 DOI: 10.1016/j.tox.2013.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 02/06/2023]
Abstract
To investigate the protective effect of enzymatically modified isoquercitrin (EMIQ) on the hepatocarcinogenic process, we used a two-stage hepatocarcinogenesis model in N-diethylnitrosamine-initiated and thioacetamide (TAA)-promoted rats. We examined the modifying effect of co-administration with EMIQ on the liver tissue environment including hepatic macrophages and lymphocytes and on the induction mechanism of preneoplastic cell apoptosis during early stages of hepatocellular tumor promotion. TAA increased the number and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of proliferating and apoptotic cells in randomly selected areas in liver sections. Co-administration with EMIQ suppressed these effects. TAA also increased the numbers of ED2(+), cyclooxygenase-2(+), and heme oxygenase-1(+) liver cells, as well as the number of CD3(+) lymphocytes. These effects were also suppressed by EMIQ. EMIQ increased liver levels of thiobarbituric acid-reactive substance and 8-hydroxydeoxyguanosine, and TUNEL(+) apoptotic cells, death receptor 5 (DR5)(+) cells and 4-hydroxy-2-nonenal(+) cells within GST-P(+) foci. Outside the GST-P(+) foci, EMIQ decreased the numbers of apoptotic cells and DR5(+) cells. These results suggest that TAA-induced tumor promotion involves activation of hepatic macrophages producing proinflammatory factors. EMIQ may suppress the TAA-induced tumor-promoting activity by an anti-inflammatory mechanism mediated by suppressing the activation of these macrophages. Furthermore, EMIQ may suppress tumor-promoting activity differentially between the inside and outside of GST-P(+) foci. Within GST-P(+) foci, EMIQ facilitates the apoptosis of preneoplastic cells through the upregulation of DR5. Outside the GST-P(+) foci, EMIQ suppresses apoptosis and the subsequent regeneration of non-transformed liver cells.
Collapse
Affiliation(s)
- Yuta Fujii
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Van Wettere AJ, Law JM, Hinton DE, Kullman SW. Anchoring hepatic gene expression with development of fibrosis and neoplasia in a toxicant-induced fish model of liver injury. Toxicol Pathol 2012. [PMID: 23197195 DOI: 10.1177/0192623312464308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fish have been used as laboratory models to study hepatic development and carcinogenesis but not for pathogenesis of hepatic fibrosis. In this study, a dimethylnitrosamine-induced fish model of hepatic injury was developed in Japanese medaka (Oryzias latipes) and gene expression was anchored with the development of hepatic fibrosis and neoplasia. Exposed livers exhibited mild hepatocellular degenerative changes 2 weeks' postexposure. Within 6 weeks, hepatic fibrosis/cirrhosis was evident with development of neoplasia by 10 weeks. Stellate cell activation and development of fibrosis was associated with upregulation of transforming growth factor beta 1 (tgfb1), tgfb receptor 2, mothers against decapentaplegic homolog 3 (smad3a), smad3b, beta-catenin (ctnnb1), myc, matrix metalloproteinase (mmp2), mmp14a, mmp14b, tissue inhibitors of metalloproteinase (timp) 2a, timp2b, timp3, collagen type I alpha 1a (col1a1a), and col1a1b and a less pronounced increase in mmp13 and col4a1 expression. Tgfb receptor I expression was unchanged. Immunohistochemistry suggested that biliary epithelial cells and stellate cells were the main producers of TGF-β1. This study identified a group of candidate genes likely to be involved in the development of hepatic fibrosis and demonstrated that the TGF-β pathway likely plays a major role in the pathogenesis. These results support the medaka as a viable fish model of hepatic fibrosis.
Collapse
Affiliation(s)
- Arnaud J Van Wettere
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA.
| | | | | | | |
Collapse
|
46
|
Sun G, Haginoya K, Chiba Y, Uematsu M, Hino-Fukuyo N, Tanaka S, Onuma A, Iinuma K, Tsuchiya S. Elevated plasma levels of tissue inhibitors of metalloproteinase-1 and their overexpression in muscle in human and mouse muscular dystrophy. J Neurol Sci 2010; 297:19-28. [DOI: 10.1016/j.jns.2010.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 06/21/2010] [Accepted: 06/30/2010] [Indexed: 11/28/2022]
|
47
|
Gill SE, Huizar I, Bench EM, Sussman SW, Wang Y, Khokha R, Parks WC. Tissue inhibitor of metalloproteinases 3 regulates resolution of inflammation following acute lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:64-73. [PMID: 20008147 DOI: 10.2353/ajpath.2010.090158] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tissue inhibitor of metalloproteinases 3 (TIMP3) inhibits not only matrix metalloproteinases but also a disintegrin and metalloproteinase domain family members and thus contributes to controlling diverse processes mediated by proteolysis. We used Timp3(-/-) mice to assess the role of this inhibitor in acute lung injury. After bleomycin-induced injury, inflammation, as indicated by the influx of neutrophils in bronchoalveolar lavage (BAL), peaked at 7 days post-injury in the wild-type mice and began to wane thereafter; however, in Timp3(-/-) mice, inflammation persisted up to 28 days. Furthermore, although the level of chemokines in BAL and lung homogenate was similar in both genotypes, BAL from Timp3(-/-) mice 7, 14, and 28 days post-injury had increased neutrophil chemotactic activity compared with wild-type BAL. At day 14, a higher percentage of apoptotic neutrophils were present in wild-type mice compared with Timp3(-/-) mice, further suggesting that TIMP3 constrains continued neutrophil influx. In addition, total matrix metalloproteinase activity was increased in lungs from Timp3(-/-) mice, and treatment of mice with a synthetic inhibitor of metalloproteinases rescued the enhanced neutrophilia phenotype. These data demonstrate that TIMP3 regulates neutrophil influx in the lung following injury through its ability to inhibit metalloproteinase activity and indicates that TIMP3 functions to promote the resolution of inflammation in the lung.
Collapse
Affiliation(s)
- Sean E Gill
- Center for Lung Biology, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, Boyd R, Trounson A. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:303-13. [PMID: 19497992 DOI: 10.2353/ajpath.2009.080629] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute respiratory distress syndrome is characterized by loss of lung tissue as a result of inflammation and fibrosis. Augmenting tissue repair by the use of mesenchymal stem cells may be an important advance in treating this condition. We evaluated the role of term human umbilical cord cells derived from Wharton's jelly with a phenotype consistent with mesenchymal stem cells (uMSCs) in the treatment of a bleomycin-induced mouse model of lung injury. uMSCs were administered systemically, and lungs were harvested at 7, 14, and 28 days post-bleomycin. Injected uMSCs were located in the lung 2 weeks later only in areas of inflammation and fibrosis but not in healthy lung tissue. The administration of uMSCs reduced inflammation and inhibited the expression of transforming growth factor-beta, interferon-gamma, and the proinflammatory cytokines macrophage migratory inhibitory factor and tumor necrosis factor-alpha. Collagen concentration in the lung was significantly reduced by uMSC treatment, which may have been a consequence of the simultaneous reduction in Smad2 phosphorylation (transforming growth factor-beta activity). uMSCs also increased matrix metalloproteinase-2 levels and reduced their endogenous inhibitors, tissue inhibitors of matrix metalloproteinases, favoring a pro-degradative milieu following collagen deposition. Notably, injected human lung fibroblasts did not influence either collagen or matrix metalloproteinase levels in the lung. The results of this study suggest that uMSCs have antifibrotic properties and may augment lung repair if used to treat acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yuben Moodley
- Department of Medicine, Monash Immunology and Stem Cell Laboratories, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lagente V, Le Quement C, Boichot E. Macrophage metalloelastase (MMP-12) as a target for inflammatory respiratory diseases. Expert Opin Ther Targets 2009; 13:287-95. [PMID: 19236151 DOI: 10.1517/14728220902751632] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND MMPs are known to regulate the turnover of extracellular matrix and have been suggested to be important in lung disease associated with tissue remodeling. Macrophage elastase (MMP-12) is able to degrade extracellular matrix components such as elastin and is involved in tissue remodeling in inflammatory respiratory diseases such as chronic obstructive pulmonary diseases (COPD), including emphysema. Recent studies using MMP-12 inhibitors have demonstrated a reduction in both the inflammatory process and airspace enlargement in lung tissue. OBJECTIVE/METHODS This review discusses the potential involvement of MMP-12 in the pathophysiological process and proposes MMP-12 as a target for inflammatory disorders of the respiratory system. RESULTS/CONCLUSIONS MMP-12 plays a predominant role in the inflammatory process induced by cigarette smoke, and therefore is potentially an important therapeutic target for the treatment of COPD.
Collapse
Affiliation(s)
- Vincent Lagente
- Université de Rennes I, INSERM U620/EA MDC, 2, avenue du Pr. Léon Bernard, 35043 Rennes Cedex, France.
| | | | | |
Collapse
|
50
|
Sands MF, Ohtake PJ, Mahajan SD, Takyar SS, Aalinkeel R, Fang YV, Blume JW, Mullan BA, Sykes DE, Lachina S, Knight PR, Schwartz SA. Tissue inhibitor of metalloproteinase-1 modulates allergic lung inflammation in murine asthma. Clin Immunol 2009; 130:186-98. [PMID: 18955015 PMCID: PMC2676334 DOI: 10.1016/j.clim.2008.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/08/2008] [Accepted: 08/30/2008] [Indexed: 10/21/2022]
Abstract
Matrix metalloproteinases (MMPs) modulate development, inflammation, and repair in lungs. Tissue inhibitors of MMPs (TIMPs) interact with MMPs, controlling the intensity and nature of the response to injury. Absence of MMP-9, -2, and -8 activities is associated with altered lung inflammation during allergic sensitization. To test the hypothesis that the absence of TIMP-1 enhances allergic lung inflammation, airway hyperreactivity (AHR), and lung remodeling in asthma, we studied TIMP-1 null (TIMP-1 KO) mice and their WT controls using an ovalbumin (OVA) asthma model. TIMP-1 KO mice, compared to WT controls, developed an asthma phenotype characterized by AHR, pronounced cellular lung infiltrates, greater reduction in lung compliance, enhanced Th2 cytokine mRNA and protein expression, and altered collagen lung content associated with enhanced MMP-9 activity. Our findings support the hypothesis that TIMP-1 plays a protective role by preventing AHR and modulating inflammation, remodeling, and cytokine expression in an animal model of asthma.
Collapse
Affiliation(s)
- Mark F Sands
- VA Western New York Healthcare System, Buffalo, NY 14215, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|