1
|
Zhou Q, Xiong H, Wu H, Wang C, Chen X, Liu H. Chicken surfactant protein A1 activates macrophages phagocytosis and attenuates LPS-induced inflammatory response through the TLR4-mediated NF-кB pathway. Poult Sci 2025; 104:104854. [PMID: 39879901 PMCID: PMC11815655 DOI: 10.1016/j.psj.2025.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Chicken surfactant protein A1 (cSP-A1) is a soluble C-type lectin found primarily in chicken lungs. Its function and other potential bioactivities are unclear. This study aimed to express, purify, and identify recombinant cSP-A1 (RcSP-A1), investigate its effects on chicken macrophage HD11 cells, and evaluate its ability to regulate the LPS-induced inflammatory response. The results showed that RcSP-A1 was produced in HEK 293F cells and could be purified using a Ni2+ affinity column. The RcSP-A1 purified concentration was 7.5 µg/mL. Functional examinations showed that RcSP-A1 could aggregate all tested bacterial strains and led to a macrophage phagocytosis rate significantly higher than in the control (p < 0.01). Subsequently, HD11 cells, preincubated with various RcSP-A1 concentrations (12.5, 25, and 50 μg/mL) and 5 mM CaCl2 for 2 h, were stimulated by LPS (1 μg/mL) for 24 h. The results showed that RcSP-A1 significantly attenuated the stimulating effects of LPS on the transcription and protein expression levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and inhibited nitric oxide production. Mechanism studies demonstrated that RcSP-A1 exerted an anti-inflammatory effect on LPS-stimulated cells by down-regulating the expression of TLR4, MyD88, and p65, up-regulating the expression of IкB-α, and inhibiting the activation of the NF-кB signaling pathway. These findings suggested that RcSP-A1 promoted bacterial aggregation and phagocytosis and inhibited the LPS-induced inflammatory response in HD11 cells through the TLR4/NF-κB signaling pathway, displaying an important role in innate immune defense.
Collapse
Affiliation(s)
- Qian Zhou
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Haifeng Xiong
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Hanwen Wu
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Chenxiao Wang
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Xinyuan Chen
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Hongmei Liu
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Yau E, Chen Y, Song C, Webb J, Carillo M, Kawasawa YI, Tang Z, Takahashi Y, Umstead TM, Dovat S, Chroneos ZC. Genomic and epigenomic adaptation in SP-R210 (Myo18A) isoform-deficient macrophages. Immunobiology 2021; 226:152150. [PMID: 34735924 DOI: 10.1016/j.imbio.2021.152150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Macrophages play an important role in maintaining tissue homeostasis, from regulating the inflammatory response to pathogens to resolving inflammation and aiding tissue repair. The surfactant protein A (SP-A) receptor SP-R210 (MYO18A) has been shown to affect basal and inflammatory macrophage states. Specifically, disruption of the longer splice isoform SP-R210L/MYO18Aα renders macrophages hyper-inflammatory, although the mechanism by which this occurs is not well understood. We asked whether disruption of the L isoform led to the hyper-inflammatory state via alteration of global genomic responses. RNA sequencing analysis of L isoform-deficient macrophages (SP-R210L(DN)) revealed basal and influenza-induced upregulation of genes associated with inflammatory pathways, such as TLR, RIG-I, NOD, and cytoplasmic DNA signaling, whereas knockout of both SP-R210 isoforms (L and S) only resulted in increased RIG-I and NOD signaling. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis showed increased genome-wide deposition of the pioneer transcription factor PU.1 in SP-R210L(DN) cells, with increased representation around genes relevant to inflammatory pathways. Additional ChIP-seq analysis of histone H3 methylation marks showed decreases in both repressive H3K9me3 and H3K27me3 marks with a commensurate increase in transcriptionally active (H3K4me3) histone marks in the L isoform deficient macrophages. Influenza A virus (IAV) infection, known to stimulate a wide array of anti-viral responses, caused a differential redistribution of PU.1 binding between proximal promoter and distal sites and decoupling from Toll-like receptor regulated gene promoters in SP-R210L(DN) cells. These finding suggest that the inflammatory differences seen in SP-R210L-deficient macrophages are a result of transcriptional differences that are mediated by epigenetic changes brought about by differential expression of the SP-R210 isoforms. This provides an avenue to explore how the signaling pathways downstream of the receptor and the ligands can modulate the macrophage inflammatory response.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA.
| | - Yan Chen
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA; Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhua Song
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, PA, USA; Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jason Webb
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Marykate Carillo
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, PA, USA
| | - Zhenyuan Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yoshinori Takahashi
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Todd M Umstead
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zissis C Chroneos
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA.
| |
Collapse
|
3
|
Liu L, Aron CZ, Grable CM, Robles A, Liu X, Liu Y, Fatheree NY, Rhoads JM, Alcorn JL. Surfactant protein A reduces TLR4 and inflammatory cytokine mRNA levels in neonatal mouse ileum. Sci Rep 2021; 11:2593. [PMID: 33510368 PMCID: PMC7843620 DOI: 10.1038/s41598-021-82219-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
Levels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A-/-) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A-/- mice compared to wild type mice. Gavage of neonatal SP-A-/- mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A-/- mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110036, China
| | - Chaim Z Aron
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin, Suite 3.222, Houston, TX, 77030, USA
| | - Cullen M Grable
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adrian Robles
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiangli Liu
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuying Liu
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nicole Y Fatheree
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - J Marc Rhoads
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joseph L Alcorn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin, Suite 3.222, Houston, TX, 77030, USA.
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Wang X, Zhang Y, Mei H, An C, Liu C, Zhang Y, Zhang Y, Xin C. Study on the Relationship Between Respiratory Distress Syndrome and SP-A1 (rs1059057) Gene Polymorphism in Mongolian Very Premature Infants. Front Pediatr 2020; 8:81. [PMID: 32257981 PMCID: PMC7090089 DOI: 10.3389/fped.2020.00081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/18/2020] [Indexed: 11/23/2022] Open
Abstract
Aim: To study the relationship between rs1059057 polymorphism of pulmonary surfactant protein A1 (SP-A1) and respiratory distress syndrome (RDS) in Mongolian very premature infants. Methods: Applying the strategy of case-control study, 120 Mongolian RDS very premature infants (58 males and 62 females) in the western part of Inner Mongolia were selected as the case group, and 120 subjects of non-RDS very premature infants (56 males and 64 females) with the same nationality, same sex and similar gestational age were used as the control group. The single nucleotide polymorphism (SNP) site rs1059057 of SP-A1 was genotyped using polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP). Results: Two genotypes, A/G and A/A, were detected at the SP-A1 rs1059057 locus in the western part of Inner Mongolia. In the case group, the frequencies of two genotypes were 53 and 47%, and the frequencies of A allele and G allele were 73 and 27%, respectively. In the control group, the frequencies of the two genotypes were 42 and 58%, and the frequencies of A allele and G allele were 79 and 21%, respectively. There was no significant difference in the genotype frequency of SP-A1 (rs1059057) locus between the case group and the control group (X 2 = 3.275, P > 0.05), and no significant difference in allele frequency between the case group and the control group (X 2 = 2.255, P > 0.05). Conclusion: The genotypes and allele frequencies of SP-A1 (rs1059057) locus were not associated with the incidence of RDS in Mongolian very premature infants in western Inner Mongolia.
Collapse
Affiliation(s)
- Xiaoli Wang
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yuheng Zhang
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Mei
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Chunzhi Liu
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yayu Zhang
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yanbo Zhang
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Chun Xin
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
5
|
Marseglia L, D'Angelo G, Granese R, Falsaperla R, Reiter RJ, Corsello G, Gitto E. Role of oxidative stress in neonatal respiratory distress syndrome. Free Radic Biol Med 2019; 142:132-137. [PMID: 31039400 DOI: 10.1016/j.freeradbiomed.2019.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 02/02/2023]
Abstract
Respiratory distress syndrome is the commonest respiratory disorder in preterm infants. Although it is well known that preterm birth has a key role, the mechanisms of lung injury have not been fully elucidated. The pathogenesis of this neonatal condition is based on the rapid formation of the oxygen reactive species, which surpasses the detoxification capacity of anti-oxidative defense system. The high reactivity of free radical leads to damage to a variety of molecules and may induce respiratory cell death. There is evidence that the oxidative stress involved in the physiopathology of this disease, is particularly related to oxygen supplementation, mechanical ventilation, inflammation/infection and diabetes. This narrative review summarizes what is known regarding the connection between oxidative stress and respiratory distress syndrome.
Collapse
Affiliation(s)
- Lucia Marseglia
- Neonatal Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy
| | - Gabriella D'Angelo
- Neonatal Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy.
| | - Roberta Granese
- Obstetrics and Gynecology Unit, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Italy
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Italy
| | - Eloisa Gitto
- Neonatal Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy
| |
Collapse
|
6
|
Thorenoor N, Kawasawa YI, Gandhi CK, Zhang X, Floros J. Differential Impact of Co-expressed SP-A1/SP-A2 Protein on AM miRNome; Sex Differences. Front Immunol 2019; 10:1960. [PMID: 31475015 PMCID: PMC6707024 DOI: 10.3389/fimmu.2019.01960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
In humans there are two surfactant protein A (SP-A) functional genes SFTPA1 and SFTPA2 encoding innate immune molecules, SP-A1 and SP-A2, respectively, with numerous genetic variants each. SP-A interacts and regulates many of the functions of alveolar macrophages (AM). It is shown that SP-A variants differ in their ability to regulate the AM miRNome in response to oxidative stress (OxS). Because humans have both SP-A gene products, we were interested to determine the combined effect of co-expressed SP-A1/SP-A2 (co-ex) in response to ozone (O3) induced OxS on AM miRNome. Human transgenic (hTG) mice, carrying both SP-A1/SP-A2 (6A2/1A0, co-ex) and SP-A- KO were utilized. The hTG and KO mice were exposed to filtered air (FA) or O3 and miRNA levels were measured after AM isolation with or without normalization to KO. We found: (i) The AM miRNome of co-ex males and females in response to OxS to be largely downregulated after normalization to KO, but after Bonferroni multiple comparison analysis only in females the AM miRNome remained significantly different compared to control (FA); (ii) The targets of the significantly changed miRNAs were downregulated in females and upregulated in males; (iii) Several of the validated mRNA targets were involved in pro-inflammatory response, anti-apoptosis, cell cycle, cellular growth and proliferation; (iv) The AM of SP-A2 male, shown, previously to have major effect on the male AM miRNome in response to OxS, shared similarities with the co-ex, namely in pathways involved in the pro-inflammatory response and anti-apoptosis but also exhibited differences with the cell-cycle, growth, and proliferation pathway being involved in co-ex and ROS homeostasis in SP-A2 male. We speculate that the presence of both gene products vs. single gene products differentially impact the AM responses in males and females in response to OxS.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chintan K Gandhi
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
7
|
Wang G, Umstead TM, Hu S, Mikerov AN, Phelps DS, Floros J. Differential Effects of Human SP-A1 and SP-A2 on the BAL Proteome and Signaling Pathways in Response to Klebsiella pneumoniae and Ozone Exposure. Front Immunol 2019; 10:561. [PMID: 30972061 PMCID: PMC6443908 DOI: 10.3389/fimmu.2019.00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
Surfactant protein A (SP-A) plays critical roles in host defense, regulation of inflammation and surfactant metabolism in the lung. The human SP-A locus consists of two functional genes, SFTPA1 and SFTPA2 encoding surfactant proteins SP-A1 and SP-A2, respectively. Structural and functional differences exist between SP-A1 and SP-A2 in vitro and in vivo. Ozone is a major air pollutant with a negative impact on many biological processes. In this study we used humanized transgenic (hTG) SP-A1 and SP-A2 mice, and SP-A KO mice to study in vivo effects of SP-A1 and SP-A2 on the bronchoalveolar lavage (BAL) proteomic profile and associated signaling pathways in response to ozone or filtered air (FA) exposure and Klebsiella pneumoniae infection. The BAL samples were harvested 24 h after ozone (2 ppm for 3 h) or FA exposure and infection and analyzed by two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-ToF/ToF. We found: that (1) Ozone exposure, but not infection, is a major factor for increases in total BAL protein content. (2) A total of 36 proteins were identified, accounting for 89.62% of the BAL proteins resolved by the 2D-DIGE system. (3) The number of proteins in which levels were altered more than 25% following infection and FA exposure was: SP-A2 > SP-A1 > KO for male mice, and SP-A2 ≈ SP-A1 > KO for female mice. (4) The number of proteins with more than 25% increase/decrease after ozone exposure and infection was: SP-A2 > SP-A1 ≈ KO, with the majority being increases in male mice and decreases in female mice. (5) Eleven out of the 36 proteins, including annexin A5, glutathione S-transferase A4, SP-A1/SP-A2, and 14-3-3 zeta protein, exhibited significant differences among SP-A genotypes. The acute phase response (APR) that includes the NF-kB signaling pathway plays a critical role, followed by Nrf2-mediated oxidative response, and others. These associated with SP-A genotype, sex, and ozone-induced oxidative stress in response to infection. We concluded that human SP-A2 and SP-A1 exhibit differential genotype-and sex-dependent innate immune responses to microbial pathogens and/or ozone-induced oxidative stress by modulating proteomic patterns and signaling pathways in the lung.
Collapse
Affiliation(s)
- Guirong Wang
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Todd M Umstead
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Sanmei Hu
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Anatoly N Mikerov
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David S Phelps
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
8
|
Moulakakis C, Steinhäuser C, Biedziak D, Freundt K, Reiling N, Stamme C. Surfactant Protein A Enhances Constitutive Immune Functions of Clathrin Heavy Chain and Clathrin Adaptor Protein 2. Am J Respir Cell Mol Biol 2017; 55:92-104. [PMID: 26771574 DOI: 10.1165/rcmb.2015-0219oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
NF-κB transcription factors are key regulators of pulmonary inflammatory disorders and repair. Constitutive lung cell type- and microenvironment-specific NF-κB/inhibitor κBα (IκB-α) regulation, however, is poorly understood. Surfactant protein (SP)-A provides both a critical homeostatic and lung defense control, in part by immune instruction of alveolar macrophages (AMs) via clathrin-mediated endocytosis. The central endocytic proteins, clathrin heavy chain (CHC) and the clathrin adaptor protein (AP) complex AP2, have pivotal alternative roles in cellular homeostasis that are endocytosis independent. Here, we dissect endocytic from alternative functions of CHC, the α-subunit of AP2, and dynamin in basal and SP-A-modified LPS signaling of macrophages. As revealed by pharmacological inhibition and RNA interference in primary AMs and RAW264.7 macrophages, respectively, CHC and α-adaptin, but not dynamin, prevent IκB-α degradation and TNF-α release, independent of their canonical role in membrane trafficking. Kinetics studies employing confocal microscopy, Western analysis, and immunomagnetic sorting revealed that SP-A transiently enhances the basal protein expression of CHC and α-adaptin, depending on early activation of protein kinase CK2 (former casein kinase II) and Akt1 in primary AMs from rats, SP-A(+/+), and SP-A(-/-) mice, as well as in vivo when intratracheally administered to SP-A(+/+) mice. Constitutive immunomodulation by SP-A, but not SP-A-mediated inhibition of LPS-induced NF-κB activity and TNF-α release, requires CHC, α-adaptin, and dynamin. Our data demonstrate that endocytic proteins constitutively restrict NF-κB activity in macrophages and provide evidence that SP-A enhances the immune regulatory capacity of these proteins, revealing a previously unknown pathway of microenvironment-specific NF-κB regulation in the lung.
Collapse
Affiliation(s)
| | - Christine Steinhäuser
- 2 Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany; and
| | | | | | - Norbert Reiling
- 2 Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany; and
| | - Cordula Stamme
- Divisions of 1 Cellular Pneumology and.,3 Department of Anesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Huang Q, Wang K, Pan L, Qi K, Liu H, Chen H. Co-infection of H9N2 subtype avian influenza virus and infectious bronchitis virus decreases SP-A expression level in chickens. Vet Microbiol 2017; 203:110-116. [PMID: 28619132 DOI: 10.1016/j.vetmic.2017.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 01/09/2023]
Abstract
Chicken surfactant protein A (cSP-A) is a collectin believed to play an important role in antiviral immunity. However, cSP-A expression in the respiratory tract of chickens after viral co-infection remains unclear. The aim of this study was the detection and characterization of cSP-A in co-infected chickens. For this purpose, four-week-old specific pathogen-free (SPF) chickens were divided into five groups and inoculated intranasally with H9N2 subtype avian influenza virus (AIV), infectious bronchitis virus (IBV), or Newcastle disease virus (NDV). Chickens were sacrificed at three days post inoculation, and the lung, trachea, and air sac samples were taken to determine histological changes and expression levels of cSP-A mRNA and cSP-A protein. The cSP-A mRNA and its protein were detected separately using real-time quantitative reverse transcriptional polymerase chain reaction (qRT-PCR), a sandwich enzyme-linked immunosorbent assay (S-ELISA), and an immunohistochemistry assay (IHC). In comparison, for the PBS group as the negative group and the NDV-infected group as the positive group, the histological changes showed that the lesions of the AIV+ IBV co-infected group were more serious compared to the AIV-infected group and the IBV-infected group. Consequently, the expression level of cSP-A in the AIV+IBV co-infected group significantly decreased when compared to the AIV-infected group and the IBV-infected group by qRT-PCR, ELISA, and IHC analysis. The mechanism of the downregulation of SP-A expression level will be addressed in future.
Collapse
Affiliation(s)
- Qi Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai, 200241 PR China
| | - Kai Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai, 200241 PR China
| | - Ling Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Kezong Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Hongmei Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai, 200241 PR China.
| |
Collapse
|
10
|
Aversa S, Marseglia L, Manti S, D'Angelo G, Cuppari C, David A, Chirico G, Gitto E. Ventilation strategies for preventing oxidative stress-induced injury in preterm infants with respiratory disease: an update. Paediatr Respir Rev 2016; 17:71-79. [PMID: 26572937 DOI: 10.1016/j.prrv.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 10/22/2022]
Abstract
Reactive oxygen and nitrogen species are produced by several inflammatory and structural cells of the airways. The lungs of preterm newborns are susceptible to oxidative injury induced by both reactive oxygen and nitrogen species. Increased oxidative stress and imbalance in antioxidant enzymes may play a role in the pathogenesis of inflammatory pulmonary diseases. Preterm infants are frequently exposed to high oxygen concentrations, infections or inflammation; they have reduced antioxidant defense and high free iron levels which enhance toxic radical generation. Multiple ventilation strategies have been studied to reduce injury and improve outcomes in preterm infants. Using lung protective strategies, there is the need to reach a compromise between satisfaction of gas exchange and potential toxicities related to over-distension, derecruitment of lung units and high oxygen concentrations. In this review, the authors summarize scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the strategies of ventilation.
Collapse
Affiliation(s)
- Salvatore Aversa
- Neonatal Intensive Care Unit, Children Hospital, Spedali Civili of Brescia, Brescia, Italy, PhD course in Intensive Care, University of Messina, Messina, Italy
| | - Lucia Marseglia
- Department of Pediatrics, University of Messina, Messina, Italy.
| | - Sara Manti
- Department of Pediatrics, University of Messina, Messina, Italy
| | | | | | - Antonio David
- Department of Neurosciences, Psychiatric and Anesthesiological Sciences, University of Messina, Messina, Italy
| | - Gaetano Chirico
- Neonatal Intensive Care Unit, Children Hospital, Spedali Civili of Brescia, Brescia, Italy
| | - Eloisa Gitto
- Department of Pediatrics, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Quintanilla HD, Liu Y, Fatheree NY, Atkins CL, Hashmi SS, Floros J, McCormack FX, Rhoads JM, Alcorn JL. Oral administration of surfactant protein-a reduces pathology in an experimental model of necrotizing enterocolitis. J Pediatr Gastroenterol Nutr 2015; 60:613-620. [PMID: 25539191 PMCID: PMC5027895 DOI: 10.1097/mpg.0000000000000678] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Necrotizing enterocolitis (NEC) frequently results in significant morbidity and mortality in premature infants. Others reported that mice deficient in pulmonary surfactant protein-A (SP-A) born and raised in a nonhygienic environment succumb to significant gastrointestinal tract pathology, and enteral administration of purified SP-A significantly reduced mortality. We hypothesized that oral administration of purified SP-A can ameliorate pathology in an experimental model of neonatal NEC. METHODS Experimental NEC was induced in newborn Sprague-Dawley rat pups by daily formula gavage and intermittent exposure to hypoxia. Purified human SP-A (5 μg/day) was administered by oral gavage. After 4 days, surviving pups were sacrificed, and intestinal pathology was assessed by histological examination of distal terminal ileal sections. Intestinal levels of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α) were assessed by enzyme-linked immunosorbent assay and levels of Toll-like receptor 4 (TLR4) by Western analysis. RESULTS Sixty-one percent of the gavaged rat pups that survived to day 4 met the criteria for experimental NEC after hypoxia, whereas treatment with SP-A significantly reduced mortality and assessment of NEC. Intestinal levels of proinflammatory cytokines were significantly increased in pups exposed to hypoxia. Administration of SP-A to pups exposed to hypoxia significantly reduced IL-1β and TNF-α levels, but had little effect on elevated levels of IFN-γ. SP-A treatment of hypoxia-exposed pups significantly reduced expression of intestinal TLR4, key in NEC pathogenesis. CONCLUSIONS In a rat model of experimental neonatal NEC, oral administration of SP-A reduces intestinal levels of proinflammatory cytokines and TLR4 protein and ameliorates adverse outcomes associated with gastrointestinal pathologies.
Collapse
Affiliation(s)
- Hector D. Quintanilla
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yuying Liu
- Department of Pediatrics, Division of Pediatric Gastroenterology, The University of Texas Health Science Center at Houston, Houston, TX 77030
- Department of Pediatrics, Pediatric Research Center, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nicole Y. Fatheree
- Department of Pediatrics, Division of Pediatric Gastroenterology, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Constance L. Atkins
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Syed S. Hashmi
- Department of Pediatrics, Pediatric Research Center, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Joanna Floros
- Center for Host defense, Inflammation and Lung Disease, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, 17033
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care Medicine and Sleep, University of Cincinnati School of Medicine, Cincinnati, OH 45267
| | - Jon Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, The University of Texas Health Science Center at Houston, Houston, TX 77030
- Department of Pediatrics, Pediatric Research Center, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Joseph L. Alcorn
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
- Department of Pediatrics, Pediatric Research Center, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
12
|
Dani C, Poggi C. The role of genetic polymorphisms in antioxidant enzymes and potential antioxidant therapies in neonatal lung disease. Antioxid Redox Signal 2014; 21:1863-80. [PMID: 24382101 PMCID: PMC4203110 DOI: 10.1089/ars.2013.5811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Oxidative stress is involved in the development of newborn lung diseases, such as bronchopulmonary dysplasia and persistent pulmonary hypertension of the newborn. The activity of antioxidant enzymes (AOEs), which is impaired as a result of prematurity and oxidative injury, may be further affected by specific genetic polymorphisms or an unfavorable combination of more of them. RECENT ADVANCES Genetic polymorphisms of superoxide dismutase and catalase were recently demonstrated to be protective or risk factors for the main complications of prematurity. A lot of research focused on the potential of different antioxidant strategies in the prevention and treatment of lung diseases of the newborn, providing promising results in experimental models. CRITICAL ISSUES The effect of different genetic polymorphisms on protein synthesis and activity has been poorly detailed in the newborn, hindering to derive conclusive results from the observed associations with adverse outcomes. Therapeutic strategies that aimed at enhancing the activity of AOEs were poorly studied in clinical settings and partially failed to produce clinical benefits. FUTURE DIRECTIONS The clarification of the effects of genetic polymorphisms on the proteomics of the newborn is mandatory, as well as the assessment of a larger number of polymorphisms with a possible correlation with adverse outcome. Moreover, antioxidant treatments should be carefully translated to clinical settings, after further details on optimal doses, administration techniques, and adverse effects are provided. Finally, the study of genetic polymorphisms could help select a specific high-risk population, who may particularly benefit from targeted antioxidant strategies.
Collapse
Affiliation(s)
- Carlo Dani
- Section of Neonatology, Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University Hospital , Florence, Italy
| | | |
Collapse
|
13
|
Gidvani MP, Theisen E, Leduc R, George CLS. Maternal surfactant protein A influences the immunoprotective properties of milk in a murine model. Pediatr Res 2014; 76:135-41. [PMID: 24858142 DOI: 10.1038/pr.2014.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/19/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Maternal surfactant protein A (SP-A), a collectin with innate immune system function, is critical to newborn mouse survival preventing bacterial peritonitis associated with a nonhygienic environmental exposure. We hypothesized that SP-A improves newborn survival by optimizing milk immunoprotection. METHODS Regional (lung) and systemic (milk and serum) immunologic responses to a novel antigen, 2,4-dintirophenyl keyhole limpet hemocyanin (DNP-KLH), and to a nonhygienic environment were evaluated in wild-type (WT) and SP-A null murine dams. Cross-fostering pups assessed the impact of milk on newborn survival. RESULTS Maternal SP-A optimized antigen-specific milk secretory IgA (sIgA) production following the DNP-KLH exposure. Milk total and environment-specific sIgA production was not dependent on maternal SP-A in the nonhygienic exposure. At baseline, SP-A null milk contained physiologically meaningful increases in two proinflammatory cytokines compared with WT milk. The lack of SP-A plus the nonhygienic environmental exposure synergistically increased the number of proinflammatory cytokines contained in milk. Finally, the SP-A null genotype decreased pup survival during a nonhygienic environmental exposure. CONCLUSION Maternal SP-A impacts milk sIgA and cytokine content, and is associated with improved newborn health.
Collapse
Affiliation(s)
- Monisha P Gidvani
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, Minnesota
| | - Erin Theisen
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Robert Leduc
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
14
|
Antioxidant strategies and respiratory disease of the preterm newborn: an update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:721043. [PMID: 24803984 PMCID: PMC3996983 DOI: 10.1155/2014/721043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 01/20/2023]
Abstract
Preterm newborns are challenged by an excessive oxidative burden, as a result of several perinatal stimuli, as intrauterine infections, resuscitation, mechanical ventilation, and postnatal complications, in the presence of immature antioxidant capacities. "Oxygen radical disease of neonatology" comprises a wide range of conditions sharing a common pathway of pathogenesis and includes bronchopulmonary dysplasia (BPD) and other main complications of prematurity. Antioxidant strategies may be beneficial in the prevention and treatment of oxidative stress- (OS-) related lung disease of the preterm newborn. Endotracheal supplementation or lung-targeted overexpression of superoxide dismutase was proved to reduce lung damage in several models; however, the supplementation in preterm newborn failed to reduce the risk of BPD, although long-term respiratory outcomes were improved. Also melatonin administration to small cohorts of preterm newborns suggested beneficial effects on lung OS. The possibility to identify single nucleotide polymorphism affecting the risk of BPD may help to identify specific populations with particularly high risk of OS-related diseases and may pose the basis for individually targeted treatments. Finally, surfactant replacement may lead to local anti-inflammatory and antioxidant effects, thanks to specific enzymatic and nonenzymatic antioxidants naturally present in animal surfactants.
Collapse
|
15
|
Dani C, Poggi C. Antioxidant Properties of Surfactant. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [PMCID: PMC7121990 DOI: 10.1007/978-1-4939-1405-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Surfactant treatment is one of the milestones of respiratory distress syndrome (RDS) treatment in preterm infants, but it has been also demonstrated to exert consistent antioxidant and anti-inflammatory activities. Exogenous natural surfactant contains antioxidant enzymes, such as catalase (CAT) and superoxide dismutase (SOD), and nonenzymatic antioxidant molecules, such as plasmalogens and polyunsaturated phospholipids (PUPLs). Moreover, surfactant can contribute to the modulation of intra-alveolar inflammatory processes through the regulation effect of the surfactant A (SP-A) and B (SP-B) proteins. Although less extensively investigated, these functions may contribute to the efficacy of exogenous surfactant administration in preterm neonates with RDS.
Collapse
|
16
|
Ketko AK, Lin C, Moore BB, LeVine AM. Surfactant protein A binds flagellin enhancing phagocytosis and IL-1β production. PLoS One 2013; 8:e82680. [PMID: 24312669 PMCID: PMC3846784 DOI: 10.1371/journal.pone.0082680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/27/2013] [Indexed: 01/29/2023] Open
Abstract
Surfactant protein A (SP-A), a pulmonary collectin, plays a role in lung innate immune host defense. In this study the role of SP-A in regulating the inflammatory response to the flagella of Pseudomonas aeruginosa (PA) was examined. Intra-tracheal infection of SP-A deficient (SP-A-/-) C57BL/6 mice with wild type flagellated PA (PAK) resulted in an increase in inflammatory cell recruitment and increase in pro-inflammatory cytokines IL-6 and TNF-α, which was not observed with a mutant pseudomonas lacking flagella (fliC). SP-A directly bound flagellin, via the N-linked carbohydrate moieties and collagen-like domain, in a concentration dependent manner and enhanced macrophage phagocytosis of flagellin and wild type PAK. IL-1β was reduced in the lungs of SP-A-/- mice following PAK infection. MH-s cells, a macrophage cell line, generated greater IL-1β when stimulated with flagellin and SP-A. Historically flagella stimulate IL-1β production through the toll-like receptor 5 (TLR-5) pathway and through a caspase-1 activating inflammasome pathway. IL-1β expression became non-detectable in SP-A and flagellin stimulated MH-s cells in which caspase-1 was silenced, suggesting SP-A induction of IL-1β appears to be occurring through the inflammasome pathway. SP-A plays an important role in the pathogenesis of PA infection in the lung by binding flagellin, enhancing its phagocytosis and modifying the macrophage inflammatory response.
Collapse
Affiliation(s)
- Anastasia K. Ketko
- Department of Pediatrics, Division of Neonatology, Division of Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chinhong Lin
- Department of Pediatrics, Division of Neonatology, Division of Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bethany B. Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ann Marie LeVine
- Department of Pediatrics, Division of Neonatology, Division of Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
17
|
Keese SP, Brandenburg K, Roessle M, Schromm AB. Pulmonary surfactant protein A-induced changes in the molecular conformation of bacterial deep-rough LPS lead to reduced activity on human macrophages. Innate Immun 2013; 20:787-98. [PMID: 24122298 DOI: 10.1177/1753425913506269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The lung is constantly exposed to immune stimulation by LPS from inhaled microorganisms. A primary mechanism to maintain immune homeostasis is based on anti-inflammatory regulation by surfactant protein A (SP-A), a secreted component of lung innate immunity. The architecture of LPS aggregates is strongly associated with biological activity. We therefore investigated whether SP-A affects the physico-chemical properties of LPS. Determination of the three-dimensional aggregate structure of LPS by small-angle X-ray scattering demonstrated that SP-A induced the formation of multi-lamellar aggregate structures. Determination of the acyl-chain-fluidity of LPS aggregates by Fourier transform infrared (FTIR) spectroscopy showed that the phase transition temperature of LPS was reduced in the presence of SP-A. The phosphate groups at the diglucosamine backbone of LPS represent important functional groups for the bioactivity of LPS. FTIR analysis revealed changes in the vibrational bands νas PO-(2), indicating an interaction of SP-A with the 1-phosphate, but not with the 4'-phosphate. The physico-chemical changes induced by SP-A were associated with up to 90% reduction in LPS-induced TNF-α-production by human macrophages. In conclusion, our data demonstrate that the SP-A/LPS interaction induces conformational changes in LPS aggregates leading to biologically less active structures, thereby providing a new molecular mechanism of immune modulation by SP-A.
Collapse
Affiliation(s)
- Susanne P Keese
- Division of Immunobiophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Klaus Brandenburg
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Manfred Roessle
- European Molecular Biology Laboratory c/o DESY, Hamburg, Germany
| | - Andra B Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
18
|
Sender V, Lang L, Stamme C. Surfactant protein-A modulates LPS-induced TLR4 localization and signaling via β-arrestin 2. PLoS One 2013; 8:e59896. [PMID: 23536892 PMCID: PMC3607558 DOI: 10.1371/journal.pone.0059896] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/19/2013] [Indexed: 12/17/2022] Open
Abstract
The soluble C-type lectin surfactant protein (SP)-A mediates lung immune responses partially via its direct effects on alveolar macrophages (AM), the main resident leukocytes exposed to antigens. SP-A modulates the AM threshold of lipopolysaccharide (LPS) activity towards an anti-inflammatory phenotype both in vitro and in vivo through various mechanisms. LPS responses are tightly regulated via distinct pathways including subcellular TLR4 localization and thus ligand sensing. The cytosolic scaffold and signaling protein β-arrestin 2 acts as negative regulator of LPS-induced TLR4 activation. Here we show that SP-A neither increases TLR4 abundancy nor co-localizes with TLR4 in primary AM. SP-A significantly reduces the LPS-induced co-localization of TLR4 with the early endosome antigen (EEA) 1 by promoting the co-localization of TLR4 with the post-Golgi compartment marker Vti1b in freshly isolated AM from rats and wild-type (WT) mice, but not in β-arrestin 2(-/-) AM. Compared to WT mice pulmonary LPS-induced TNF-α release in β-arrestin 2(-/-) mice is accelerated and enhanced and exogenous SP-A fails to inhibit both lung LPS-induced TNF-α release and TLR4/EEA1 positioning. SP-A, but not LPS, enhances β-arrestin 2 protein expression in a time-dependent manner in primary rat AM. The constitutive expression of β-arrestin 2 in AM from SP-A(-/-) mice is significantly reduced compared to SP-A(+/+) mice and is rescued by SP-A. Prolonged endosome retention of LPS-induced TLR4 in AM from SP-A(-/-) mice is restored by exogenous SP-A, and is antagonized by β-arrestin 2 blocking peptides. LPS induces β-arrestin 2/TLR4 association in primary AM which is further enhanced by SP-A. The data demonstrate that SP-A modulates LPS-induced TLR4 trafficking and signaling in vitro and in vivo engaging β-arrestin 2.
Collapse
Affiliation(s)
- Vicky Sender
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Linda Lang
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- Department of Anesthesiology, University Hospital of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
19
|
Molecular mechanism of sustained inflation in acute respiratory distress syndrome. J Trauma Acute Care Surg 2013; 73:1106-13. [PMID: 22976418 DOI: 10.1097/ta.0b013e318265cc6f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect and the potential molecular mechanism of sustained inflation (SI) recruitment maneuvers in acute respiratory distress syndrome (ARDS) in beagle dog following endotracheal suctioning. METHODS ARDS was induced in 24 beagle dogs with oleic acid. They had mechanical ventilation support. They were randomized into four groups after the establishment of the ARDS model: non-SI-open group where no SI was applied in beagle dogs with ARDS following open endotracheal suctioning; non-SI-closed group where no SI was applied in beagle dogs with ARDS following closed endotracheal suctioning; SI-open group where SI was applied in beagle dogs with ARDS following open endotracheal suctioning; and SI-closed group where SI was applied in beagle dogs with ARDS following closed endotracheal suctioning. Oxygenation, indexes of respiratory mechanics, and hemodynamic indexes were serially measured during the procedure. The serum protein level, or the messenger RNA in the heart and lung, of inflammation-related cytokines was investigated. RESULTS SI in ARDS improved oxygenation, lung compliance, and airway resistance but had no significant effect in the hemodynamic indexes. At molecular level, SI in ARDS neutralized the increases of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 1β [IL-1β], and IL-6), and anti-inflammatory cytokine (IL-10) in the serum. Furthermore, SI in ARDS increased aquaporin 1 and aquaporin 5 messenger RNA in the lung tissue, and decreased IL-6 messenger RNA in the lung and heart tissue. CONCLUSION SI in ARDS could improve oxygenation, lung compliance, and airway resistance, which was related to the improved degree of inflammation and better maintained aquaporins.
Collapse
|
20
|
Tolle LB, Standiford TJ. Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol 2013; 229:145-56. [PMID: 23097158 DOI: 10.1002/path.4124] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
Danger-associated molecular patterns (DAMPs) are host-derived molecules that can function to regulate the activation of pathogen recognition receptors (PRRs). These molecules play a critical role in modulating the lung injury response. DAMPs originate from multiple sources, including injured and dying cells, the extracellular matrix, or exist as immunomodulatory proteins within the airspace and interstitium. DAMPs can function as either toll-like receptor (TLR) agonists or antagonists, and can modulate both TLR and nod-like receptor (NLR) signalling cascades. Collectively, this diverse group of molecules may represent important therapeutic targets in the prevention and/or treatment of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Leslie B Tolle
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | |
Collapse
|
21
|
Rakhesh M, Cate M, Vijay R, Shrikant A, Shanjana A. A TLR4-interacting peptide inhibits lipopolysaccharide-stimulated inflammatory responses, migration and invasion of colon cancer SW480 cells. Oncoimmunology 2012; 1:1495-1506. [PMID: 23264896 PMCID: PMC3525605 DOI: 10.4161/onci.22089] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammation is a major risk factor for carcinogenesis in patients affected by chronic colitis, yet the molecular mechanisms underlying the progression from chronic inflammation to cancer are not completely understood. Activation of the Toll-like receptor 4 (TLR4)-NFκB signaling axis is associated with inflammation. Thus, we hypothesized that inhibition of TLR4-NFκB signaling might help in limiting inflammatory responses and inflammation-induced oncogenesis. In this work, we studied the effects of a TLR4-interacting surfactant protein A-derived (SPA4) peptide on lipopolysaccharide (LPS)-induced TLR4-NFκB signaling and cancer progression. We first characterized this peptide for its ability to bind the TLR4 ligand-LPS and for physico-chemical characteristics. Inflammation was induced by challenging the colon cancer SW480 cells with Escherichia coli LPS. Cells were then treated with varying amounts of the SPA4 peptide. Changes in the expression of TLR4, interleukin (IL)-1β and IL-6, in intracellular NFκB-related signal transducers (IKBα, p65, phosphorylated IKBα, phosphorylated p65, RelB, COX-2) as well as in the transcriptional activity of NFκB were studied by immunocytochemistry, immunoblotting and NFκB reporter assay, respectively. Simultaneously, the effects on LPS-induced cell migration and invasion were determined. We found that the SPA4 peptide does not bind to LPS. Rather, its binding to TLR4 inhibits the LPS-induced phosphorylation of p65, production of IL-1β and IL-6, activity of NFκB, migration and invasion of SW480 cells. In conclusion, our results suggest that the inhibition of TLR4-NFκB signaling by a TLR4-binding peptide may help for the treatment of chronic inflammation and prevention of inflammation-induced cancer in patients with colitis.
Collapse
Affiliation(s)
- Madhusoodhanan Rakhesh
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Moriasi Cate
- Department of Molecular and Integrative Physiology; University of Kansas Medical Center; Kansas City, KS USA
| | - Ramani Vijay
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Anant Shrikant
- Department of Molecular and Integrative Physiology; University of Kansas Medical Center; Kansas City, KS USA
| | - Awasthi Shanjana
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| |
Collapse
|
22
|
Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 2009; 25:13-26. [PMID: 20054141 DOI: 10.1159/000272047] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; their distinct interactions with surfactant phospholipids are necessary for the ultra-structural organization, stability, metabolism, and lowering of surface tension. In addition, SP-A and SP-D bind pathogens, inflict damage to microbial membranes, and regulate microbial phagocytosis and activation or deactivation of inflammatory responses by alveolar macrophages. SP-A and SP-D, also known as pulmonary collectins, mediate microbial phagocytosis via SP-A and SP-D receptors and the coordinated induction of other innate receptors. Several receptors (SP-R210, CD91/calreticulin, SIRPalpha, and toll-like receptors) mediate the immunological functions of SP-A and SP-D. However, accumulating evidence indicate that SP-B and SP-C and one or more lipid constituents of surfactant share similar immuno-regulatory properties as SP-A and SP-D. The present review discusses current knowledge on the interaction of surfactant with lung innate host defense.
Collapse
Affiliation(s)
- Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708-3154, USA.
| | | | | |
Collapse
|
23
|
Lawless MW, O'Byrne KJ, Gray SG. Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy. J Cell Mol Med 2009; 13:2800-21. [PMID: 19602054 PMCID: PMC4498937 DOI: 10.1111/j.1582-4934.2009.00845.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) form as a natural by-product of the normal metabolism of oxygen and play important roles within the cell. Under normal circumstances the cell is able to maintain an adequate homeostasis between the formation of ROS and its removal through particular enzymatic pathways or via antioxidants. If however, this balance is disturbed a situation called oxidative stress occurs. Critically, oxidative stress plays important roles in the pathogenesis of many diseases, including cancer. Epigenetics is a process where gene expression is regulated by heritable mechanisms that do not cause any direct changes to the DNA sequence itself, and disruption of epigenetic mechanisms has important implications in disease. Evidence is emerging that histone deacetylases (HDACs) play decisive roles in regulating important cellular oxidative stress pathways including those involved with sensing oxidative stress and those involved with regulating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by HDACs may play critical roles in cancer progression. In this review we discuss the current evidence linking epigenetics and oxidative stress and cancer, using chronic obstructive pulmonary disease and non-small cell lung cancer to illustrate the importance of epigenetics on these pathways within these disease settings.
Collapse
Affiliation(s)
- Matthew W Lawless
- Centre for Liver Disease, School of Medicine and Medical Science, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
24
|
Ramadas RA, Wu L, LeVine AM. Surfactant protein A enhances production of secretory leukoprotease inhibitor and protects it from cleavage by matrix metalloproteinases. THE JOURNAL OF IMMUNOLOGY 2009; 182:1560-7. [PMID: 19155504 DOI: 10.4049/jimmunol.182.3.1560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mice lacking surfactant protein A (SP-A) are susceptible to bacterial infection associated with an excessive inflammatory response in the lung. To determine mechanisms by which SP-A is antiinflammatory in the lung during bacterial infection, SP-A regulation of secretory leukoprotease inhibitor (SLPI), an inhibitor of serine proteases, was assessed. SLPI protein expression and antineutrophil elastase activity were reduced in bronchoalveolar fluid of SP-A(-/-) compared with SP-A(+/+) mice. Intratracheal administration of SP-A to SP-A(-/-) mice enhanced SLPI protein expression and antineutrophil elastase activity in the lung. SLPI mRNA was similar in whole lung and alveolar type II cells; however, it was significantly reduced in alveolar macrophages from SP-A(-/-) compared with SP-A(+/+) mice. In vitro, SP-A enhanced SLPI production by macrophage THP-1 cells but not respiratory epithelial A549 cells. SP-A inhibited LPS induced IkappaB-alpha degradation in THP-1 cells, which was partially reversed with knockdown of SLPI. Matrix metalloproteinase (MMP)-12 cleaved SLPI and incubation with SP-A reduced MMP-12-mediated SLPI cleavage. The collagen-like region of SP-A conferred protection of SLPI against MMP mediated cleavage. SP-A plays an important role in the lung during bacterial infection regulating protease and antiprotease activity.
Collapse
Affiliation(s)
- Ravisankar A Ramadas
- Department of Pediatrics, Division of Critical Care Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
25
|
Moulakakis C, Stamme C. Role of clathrin-mediated endocytosis of surfactant protein A by alveolar macrophages in intracellular signaling. Am J Physiol Lung Cell Mol Physiol 2009; 296:L430-41. [PMID: 19136579 DOI: 10.1152/ajplung.90458.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We recently provided evidence that anti-inflammatory macrophage activation, i.e., the inhibition of constitutive and signal-induced NF-kappaB activity by the pulmonary collectin surfactant protein (SP)-A, critically involves a promoted stabilization of IkappaB-alpha, the predominant inhibitor of NF-kappaB, via posttranscriptional mechanisms comprising the activation of atypical (a)PKCzeta. SP-A uptake and degradation by alveolar macrophages (AMphi) occur in a receptor-mediated, clathrin-dependent manner. However, a mutual link between endocytosis of and signaling by SP-A remains elusive. The aim of this study was to investigate whether clathrin-mediated endocytosis (CME) of SP-A by AMphi is a prerequisite for its modulation of the IkappaB-alpha/NF-kappaB pathway. The inhibition of clathrin-coated pit (CCP) formation and clathrin-coated vesicle (CCV) formation/budding abrogates SP-A-mediated IkappaB-alpha stabilization and SP-A-mediated inhibition of LPS-induced NF-kappaB activation in freshly isolated rat AMphi, as determined by Western analysis, fluorescence-activated cell sorting, confocal microscopy, and EMSA. Actin depolymerization and inhibition of CCP formation further abolished SP-A-mediated inhibition of LPS-induced TNF-alpha release, as determined by ELISA. In addition, SP-A-induced atypical PKCzeta activation was abolished by pretreatment of AMphi with CCV inhibitors as determined by in vitro immunocomplex kinase assay. Although CME is classically considered as a means to terminate signaling, our results demonstrate that SP-A uptake via CME by AMphi has to precede the initiation of SP-A signaling.
Collapse
Affiliation(s)
- Christina Moulakakis
- Department of Clinical Medicine, Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | | |
Collapse
|
26
|
Henning LN, Azad AK, Parsa KVL, Crowther JE, Tridandapani S, Schlesinger LS. Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 180:7847-58. [PMID: 18523248 DOI: 10.4049/jimmunol.180.12.7847] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pulmonary innate immune system responds to various airborne microbes. Although its specificity is broad and based on the recognition of pathogen-associated molecular patterns, it is uniquely regulated to limit inflammation and thereby prevent damage to the gas-exchanging alveoli. Macrophages, critical cell determinants of this system, recognize microbes through pattern recognition receptors such as TLRs, which typically mediate proinflammatory responses. The lung collectin, surfactant protein A (SP-A), has emerged as an important innate immune determinant that regulates microbe-macrophage interactions in this environment. In this study, we report the basal and SP-A-induced transcriptional and posttranslational regulation of TLR2 and TLR4 expression during the differentiation of primary human monocytes into macrophages. Despite SP-A's ability to up-regulate TLR2 expression on human macrophages, it dampens TLR2 and TLR4 signaling in these cells. SP-A decreases the phosphorylation of IkappaBalpha, a key regulator of NF-kappaB activity, and nuclear translocation of p65 which result in diminished TNF-alpha secretion in response to TLR ligands. SP-A also reduces the phosphorylation of TLR signaling proteins upstream of NF-kappaB, including members of the MAPK family. Finally, we report for the first time that SP-A decreases the phosphorylation of Akt, a major cell regulator of NF-kappaB and potentially MAPKs. These data identify a critical role for SP-A in modulating the lung inflammatory response by regulating macrophage TLR activity.
Collapse
Affiliation(s)
- Lisa N Henning
- Center for Microbial Interface Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
27
|
Moulakakis C, Adam S, Seitzer U, Schromm AB, Leitges M, Stamme C. Surfactant protein A activation of atypical protein kinase C zeta in IkappaB-alpha-dependent anti-inflammatory immune regulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:4480-91. [PMID: 17878344 DOI: 10.4049/jimmunol.179.7.4480] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pulmonary collectin surfactant protein (SP)-A has a pivotal role in anti-inflammatory modulation of lung immunity. The mechanisms underlying SP-A-mediated inhibition of LPS-induced NF-kappaB activation in vivo and in vitro are only partially understood. We previously demonstrated that SP-A stabilizes IkappaB-alpha, the primary regulator of NF-kappaB, in alveolar macrophages (AM) both constitutively and in the presence of LPS. In this study, we show that in AM and PBMC from IkappaB-alpha knockout/IkappaB-beta knockin mice, SP-A fails to inhibit LPS-induced TNF-alpha production and p65 nuclear translocation, confirming a critical role for IkappaB-alpha in SP-A-mediated LPS inhibition. We identify atypical (a) protein kinase C (PKC) zeta as a pivotal upstream regulator of SP-A-mediated IkappaB-alpha/NF-kappaB pathway modulation deduced from blocking experiments and confirmed by using AM from PKCzeta-/- mice. SP-A transiently triggers aPKCThr(410/403) phosphorylation, aPKC kinase activity, and translocation in primary rat AM. Coimmunoprecipitation experiments reveal that SP-A induces aPKC/p65 binding under constitutive conditions. Together the data indicate that anti-inflammatory macrophage activation via IkappaB-alpha by SP-A critically depends on PKCzeta activity, and thus attribute a novel, stimulus-specific signaling function to PKCzeta in SP-A-modulated pulmonary immune response.
Collapse
Affiliation(s)
- Christina Moulakakis
- Department of Immunochemistry and Biochemical Microbiology, Division of Cellular Pneumology, Research Center Borstel, Leibniz Center for Medicine and Bioscience, Borstel, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Surfactant-associated protein A provides critical immunoprotection in neonatal mice. Infect Immun 2007; 76:380-90. [PMID: 17967856 DOI: 10.1128/iai.01043-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The collectins surfactant-associated protein A (SP-A) and SP-D are components of innate immunity that are present before birth. Both proteins bind pathogens and assist in clearing infection. The significance of SP-A and SP-D as components of the neonatal immune system has not been investigated. To determine the role of SP-A and SP-D in neonatal immunity, wild-type, SP-A null, and SP-D null mice were bred in a bacterium-laden environment (corn dust bedding) or in a semisterile environment (cellulose fiber bedding). When reared in the corn dust bedding, SP-A null pups had significant mortality (P < 0.001) compared to both wild-type and SP-D null pups exposed to the same environment. The mortality of the SP-A null pups was associated with significant gastrointestinal tract pathology but little lung pathology. Moribund SP-A null newborn mice exhibited Bacillus sp. and Enterococcus sp. peritonitis. When the mother or newborn produced SP-A, newborn survival was significantly improved (P < 0.05) compared to the results when there was a complete absence of SP-A in both the mother and the pup. Significant sources of SP-A likely to protect a newborn include the neonatal lung and gastrointestinal tract but not the lactating mammary tissue of the mother. Furthermore, exogenous SP-A delivered by mouth to newborn SP-A null pups with SP-A null mothers improved newborn survival in the corn dust environment. Therefore, a lack of SP-D did not affect newborn survival, while SP-A produced by either the mother or the pup or oral exogenous SP-A significantly reduced newborn mortality associated with environmentally induced infection in SP-A null newborns.
Collapse
|
29
|
Mueller M, Stamme C, Draing C, Hartung T, Seydel U, Schromm AB. Cell Activation of Human Macrophages by Lipoteichoic Acid Is Strongly Attenuated by Lipopolysaccharide-binding Protein. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84057-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Papavlassopoulos M, Stamme C, Thon L, Adam D, Hillemann D, Seydel U, Schromm AB. MaxiK Blockade Selectively Inhibits the Lipopolysaccharide-Induced IκB-α/NF-κB Signaling Pathway in Macrophages. THE JOURNAL OF IMMUNOLOGY 2006; 177:4086-93. [PMID: 16951373 DOI: 10.4049/jimmunol.177.6.4086] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Macrophages have a pivotal function in innate immunity against bacterial infections. They are present in all body compartments and able to detect invading microorganisms with high sensitivity. LPS (endotoxin) of Gram-negative bacteria is among the most potent stimuli for macrophages and initiates a wide panel of cellular activation responses. The release of mediators such as TNF-alpha and ILs is essential for the initiation of a proinflammatory antibacterial response. Here, we show that blockade of the large-conductance Ca2+ -activated potassium channel MaxiK (BK) inhibited cytokine production from LPS-stimulated macrophages at the transcriptional level. This inhibitory effect of channel blockade was specific to stimulation with LPS and affected neither stimulation of macrophages with the cytokine TNF-alpha nor LPS-induced activation of cells that do not express MaxiK. Investigation of the upstream intracellular signaling pathways induced by LPS revealed that the blockade of MaxiK selectively inhibited signaling pathways leading to the activation of the transcription factor NF-kappaB and the MAPK p38, whereas activation of ERK was unaffected. We present data supporting that proximal regulation of the inhibitory factor IkappaB-alpha is critically involved in the observed inhibition of NF-kappaB translocation. Using alveolar macrophages from rats, we could show that the necessity of MaxiK function in activation of NF-kappaB and subsequent cytokine production is not restricted to in vitro-generated monocyte-derived macrophages but also can be observed in primary cells. Thus, MaxiK appears to be a central molecule in the NF-kappaB-dependent inflammatory response of macrophages to bacterial LPS.
Collapse
Affiliation(s)
- Martin Papavlassopoulos
- Research Center Borstel, Center for Medicine and Biosciences, Department of Immunochemistry and Biochemical Microbiology, Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Mueller M, Stamme C, Draing C, Hartung T, Seydel U, Schromm AB. Cell activation of human macrophages by lipoteichoic acid is strongly attenuated by lipopolysaccharide-binding protein. J Biol Chem 2006; 281:31448-56. [PMID: 16928689 DOI: 10.1074/jbc.m605966200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lipoteichoic acid (LTA) represents immunostimulatory molecules expressed by Gram-positive bacteria. They activate the innate immune system via Toll-like receptors. We have investigated the role of serum proteins in activation of human macrophages by LTA from Staphylococcus aureus and found it to be strongly attenuated by serum. In contrast, the same cells showed a sensitive response to LTA and a significantly enhanced production of tumor necrosis factor alpha under serum-free conditions. We show that LTA interacts with the serum protein lipopolysaccharide-binding protein (LBP) and inhibits the integration of LBP into phospholipid membranes, indicating the formation of complexes of LTA and soluble LBP. The addition of recombinant human LBP to serum-free medium inhibited the production of tumor necrosis factor alpha and interleukins 6 and 8 after stimulation of human macrophages with LTA in a dose-dependent manner. Using anti-LBP antibodies, this inhibitory effect could be attributed to soluble LBP, whereas LBP in its recently described transmembrane configuration did not modulate cell activation. Also, using primary alveolar macrophages from rats, we show a sensitive cytokine response to LTA under serum-free culture conditions that was strongly attenuated in the presence of serum. In summary, our data suggest that innate immune recognition of LTA is organ-specific with negative regulation by LBP in serum-containing compartments and sensitive recognition in serum-free compartments like the lung.
Collapse
Affiliation(s)
- Mareike Mueller
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Division of Biophysics, 23845 Borstel, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Zaas AK, Schwartz DA. Innate immunity and the lung: defense at the interface between host and environment. Trends Cardiovasc Med 2006; 15:195-202. [PMID: 16182128 DOI: 10.1016/j.tcm.2005.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/01/2005] [Accepted: 07/07/2005] [Indexed: 12/19/2022]
Abstract
The lung serves as a major interface between the host and the external environment. As such, numerous lines of defense protect the host from inhaled potential pathogens. A breach in pulmonary innate immunity can lead to deleterious outcomes, such as pneumonia and disseminated infection. Pulmonary innate immunity, the first line of defense, is mediated by airway and alveolar epithelial cells as well as resident and recruited leukocytes. This article will discuss the key cellular and secreted components of the pulmonary innate immune system.
Collapse
Affiliation(s)
- Aimee K Zaas
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
33
|
García-Verdugo I, Sánchez-Barbero F, Soldau K, Tobias P, Casals C. Interaction of SP-A (surfactant protein A) with bacterial rough lipopolysaccharide (Re-LPS), and effects of SP-A on the binding of Re-LPS to CD14 and LPS-binding protein. Biochem J 2006; 391:115-24. [PMID: 15932345 PMCID: PMC1237145 DOI: 10.1042/bj20050529] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SP-A (surfactant protein A) is a lipid-binding collectin primarily involved in innate lung immunity. SP-A interacts with the bacterial rough LPS (lipopolysaccharide) Re-LPS (Re595 mutant of LPS from Salmonella minnesota), but not with smooth LPS. In the present study, we first examined the characteristics of the interaction of human SP-A with Re-LPS. Fluorescence intensity and anisotropy measurements of FITC-labelled Re-LPS in the presence and absence of SP-A indicated that SP-A bound to Re-LPS in solution in a Ca2+-independent manner, with a dissociation constant of 2.8x10(-8) M. In the presence of calcium, a high-mobility complex of SP-A and [3H]Rb-LPS (Rb mutant of LPS from Escherichia coli strain LCD 25) micelles was formed, as detected by sucrose density gradients. Re-LPS aggregation induced by SP-A was further characterized by light scattering. On the other hand, human SP-A inhibited TNF-alpha (tumour necrosis factor-alpha) secretion by human macrophage-like U937 cells stimulated with either Re-LPS or smooth LPS. We further examined the effects of human SP-A on the binding of Re-LPS to LBP (LPS-binding protein) and CD14. SP-A decreased the binding of Re-LPS to CD14, but not to LBP, as detected by cross-linking experiments with 125I-ASD-Re-LPS [125I-labelled sulphosuccinimidyl-2-(p-azidosalicylamido)-1,3-dithiopropionate derivative of Re-LPS] and fluorescence analysis with FITC-Re-LPS. When SP-A, LBP and CD14 were incubated together, SP-A reduced the ability of LBP to transfer 125I-ASD-Re-LPS to CD14. These SP-A effects were not due to the ability of SP-A to aggregate Re-LPS in the presence of calcium, since they were observed in both the absence and the presence of calcium. These studies suggest that SP-A could contribute to modulate Re-LPS responses by altering the competence of the LBP-CD14 receptor complex.
Collapse
Affiliation(s)
- Ignacio García-Verdugo
- *Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, 28040-Madrid, Spain
| | - Fernando Sánchez-Barbero
- *Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, 28040-Madrid, Spain
| | - Katrin Soldau
- †Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Peter S. Tobias
- †Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Cristina Casals
- *Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, 28040-Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, Alabama 35294-2172, USA.
| | | |
Collapse
|