1
|
Lu L, Feng J, Zhang S, He H, Hu Z, Yang L, Liu Y, Zhao B, Wang T. Vitiligo associated with type 2 immune inhibitors: FAERS analysis and literature review. J Dermatol 2025. [PMID: 40087891 DOI: 10.1111/1346-8138.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/10/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
With the widespread use of type 2 immune response inhibitors (IRIs), there is growing concern about their association with the occurrence of vitiligo. This study aimed to comprehensively search for cases of vitiligo associated with type 2 IRIs in the US Food and Drug Administration Adverse Event Reporting System (FAERS). We retrieved the clinical characteristics of cases from January 2004 to September 2024 from the FAERS database. Disproportionality and Bayesian analyses were conducted to detect signals for vitiligo associated with type 2 IRIs. A total of 86 cases of vitiligo were identified in association with these inhibitors. The mean onset time was 326 days. Vitiligo associated with dupilumab was the most common (81.4%), with the highest reporting odds ratio (2.67, 95% confidence interval 2.11-3.4), proportional reporting ratio (2.67, χ2 = 70.59), information component (1.38, [IC025 = 1.09), and empirical Bayes geometric mean (2.61, EBGM05 = 2.14). The link between vitiligo and type 2 IRIs underscores the need for continued pharmacovigilance to better understand these drugs and the incidence of related conditions.
Collapse
Affiliation(s)
- Lu Lu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Jindi Feng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Huimin He
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Zhonghui Hu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Bin Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- Department of Pharmacy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
2
|
Nasiri-Jahrodi A, Barati M, Namdar Ahmadabad H, Badali H, Morovati H. A comprehensive review on the role of T cell subsets and CAR-T cell therapy in Aspergillus fumigatus infection. Hum Immunol 2024; 85:110763. [PMID: 38350795 DOI: 10.1016/j.humimm.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Understanding the immune response to Aspergillus fumigatus, a common cause of invasive fungal infections (IFIs) in immunocompromised individuals, is critical for developing effective treatments. Tcells play a critical role in the immune response to A. fumigatus, with different subsets having distinct functions. Th1 cells are important for controlling fungal growth, while Th2 cells can exacerbate infection. Th17 cells promote the clearance of fungi indirectly by stimulating the production of various antimicrobial peptides from epithelial cells and directly by recruiting and activating neutrophils. Regulatory T cells have varied functions in A.fumigatus infection. They expand after exposure to A. fumigatus conidia and prevent organ injury and fungal sepsis by downregulating inflammation and inhibiting neutrophils or suppressing Th17 cells. Regulatory T cells also block Th2 cells to stop aspergillosis allergies. Immunotherapy with CAR T cells is a promising treatment for fungal infections, including A. fumigatus infections, especially in immunocompromised individuals. However, further research is needed to fully understand the mechanisms underlying the immune response to A. fumigatus and to develop effective immunotherapies with CAR-T cells for this infection. This literature review explores the role of Tcell subsets in A.fumigatus infection, and the effects of CAR-T cell therapy on this fungal infection.
Collapse
Affiliation(s)
- Abozar Nasiri-Jahrodi
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Barati
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hasan Namdar Ahmadabad
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Jafarzadeh A, Chauhan P, Nemati M, Jafarzadeh S, Yoshimura A. Aberrant expression of suppressor of cytokine signaling (SOCS) molecules contributes to the development of allergic diseases. Clin Exp Allergy 2023; 53:1147-1161. [PMID: 37641429 DOI: 10.1111/cea.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Suppressor of cytokine signalling (SOCS) proteins bind to certain cytokine receptors, Janus kinases and signalling molecules to regulate signalling pathways, thus controlling immune and inflammatory responses. Dysregulated expression of various types of SOCS molecules was indicated in multiple types of allergic diseases. SOCS1, SOCS2, SOCS3, SOCS5, and cytokine-inducible SH2 domain protein (CISH) can differentially exert anti-allergic impacts through different mechanisms, such as suppressing Th2 cell development and activation, reducing eosinophilia, decreasing IgE production, repressing production of pro-allergic chemokines, promoting Treg cell differentiation and activation, suppressing Th17 cell differentiation and activation, increasing anti-allergic Th1 responses, inhibiting M2 macrophage polarization, modulating survival and development of mast cells, reducing pro-allergic activity of keratinocytes, and suppressing pulmonary fibrosis. Although some anti-allergic effects were attributed to SOCS3, it can perform pro-allergic impacts through several pathways, such as promoting Th2 cell development and activation, supporting eosinophilia, boosting pro-allergic activity of eosinophils, increasing IgE production, enhancing the expression of the pro-allergic chemokine receptor, reducing Treg cell differentiation, increasing pro-allergic Th9 responses, as well as supporting mucus secretion and collagen deposition. In this review, we discuss the contrasting roles of SOCS proteins in contexts of allergic disorders to provide new insights regarding the pathophysiology of these diseases and possibly explore SOCS proteins as potential therapeutic targets for alleviating allergies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Prashant Chauhan
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Dimasuay KG, Schaunaman N, Berg B, Nichols T, Chu HW. Parkin Promotes Airway Inflammatory Response to Interferon Gamma. Biomedicines 2023; 11:2850. [PMID: 37893223 PMCID: PMC10604769 DOI: 10.3390/biomedicines11102850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Increased type 2 interferon (i.e., IFN-γ) signaling has been shown to be involved in airway inflammation in a subset of asthma patients who often show high levels of airway neutrophilic inflammation and poor response to corticosteroid treatment. How IFN-γ mediates airway inflammation in a mitochondrial dysfunction setting (e.g., Parkin up-regulation) remains poorly understood. The goal of this study was to determine the role of Parkin, an E3 ubiquitin ligase, in IFN-γ-mediated airway inflammation and the regulation of Parkin by IFN-γ. METHODS A mouse model of IFN-γ treatment in wild-type and Parkin knockout mice, and cultured human primary airway epithelial cells with or without Parkin gene deficiency were used. RESULTS Parkin was found to be necessary for the production of neutrophil chemokines (i.e., LIX and IL-8) and airway neutrophilic inflammation following IFN-γ treatment. Mechanistically, Parkin was induced by IFN-γ treatment both in vivo and in vitro, which was associated with less expression of a Parkin transcriptional repressor Thap11. Overexpression of Thap11 inhibited Parkin expression in IFN-γ-stimulated airway epithelial cells. CONCLUSIONS Our data suggest a novel mechanism by which IFN-γ induces airway neutrophilic inflammation through the Thap11/Parkin axis. Inhibition of Parkin expression or activity may provide a new therapeutic target for the treatment of excessive neutrophilic inflammation in an IFN-γ-high environment.
Collapse
Affiliation(s)
| | | | | | | | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
5
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
6
|
Kordulewska NK, Topa J, Rozmus D, Jarmołowska B. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci 2021; 22:ijms222413634. [PMID: 34948440 PMCID: PMC8708099 DOI: 10.3390/ijms222413634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
Hyperactivity of the immune system in the gastrointestinal tract leads to the development of chronic, inflammation-associated disorders. Such diseases, including inflammatory bowel disease, are not completely curable, but the specific line of treatment may reduce its symptoms. However, the response to treatment varies among patients, creating a necessity to uncover the pathophysiological basis of immune-mediated diseases and apply novel therapeutic strategies. The present study describes the anti-inflammatory properties of osthole during histamine-induced inflammation in the intestinal Caco-2 cell line. Osthole reduced the secretion of cytokines (CKs) and the expression level of inflammation-associated genes, which were increased after a histamine treatment. We have shown that the secretion of pro-inflammatory CKs (IL-1β, IL-6, IL-8, and TNF-α) during inflammation may be mediated by NFκB, and, after osthole treatment, this signaling pathway was disrupted. Our results suggest a possible role for osthole in the protection against inflammation in the gastrointestinal tract; thus, osthole may be considered as an anti-inflammatory modulator.
Collapse
Affiliation(s)
- Natalia K. Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| |
Collapse
|
7
|
Lewis BW, Jackson D, Amici SA, Walum J, Guessas M, Guessas S, Coneglio E, Boda AV, Guerau-de-Arellano M, Grayson MH, Britt RD. Corticosteroid insensitivity persists in the absence of STAT1 signaling in severe allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1194-L1205. [PMID: 34755542 PMCID: PMC8715027 DOI: 10.1152/ajplung.00244.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid insensitivity in asthma limits the ability to effectively manage severe asthma, which is characterized by persistent airway inflammation, airway hyperresponsiveness (AHR), and airflow obstruction despite corticosteroid treatment. Recent reports indicate that corticosteroid insensitivity is associated with increased interferon-γ (IFN-γ) levels and T-helper (Th) 1 lymphocyte infiltration in severe asthma. Signal transducer and activator of transcription 1 (STAT1) activation by IFN-γ is a key signaling pathway in Th1 inflammation; however, its role in the context of severe allergic airway inflammation and corticosteroid sensitivity remains unclear. In this study, we challenged wild-type (WT) and Stat1-/- mice with mixed allergens (MA) augmented with c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate], an inducer of Th1 cell infiltration with increased eosinophils, neutrophils, Th1, Th2, and Th17 cells. Compared with WT mice, Stat1-/- had reduced neutrophils, Th1, and Th17 cell infiltration. To evaluate corticosteroid sensitivity, mice were treated with either vehicle, 1 or 3 mg/kg fluticasone propionate (FP). Corticosteroids significantly reduced eosinophil infiltration and cytokine levels in both c-di-GMP + MA-challenged WT and Stat1-/- mice. However, histological and functional analyses show that corticosteroids did not reduce airway inflammation, epithelial mucous cell abundance, airway smooth muscle mass, and AHR in c-di-GMP + MA-challenged WT or Stat1-/- mice. Collectively, our data suggest that increased Th1 inflammation is associated with a decrease in corticosteroid sensitivity. However, increased airway pathology and AHR persist in the absence of STAT1 indicate corticosteroid insensitivity in structural airway cells is a STAT1 independent process.
Collapse
Affiliation(s)
- Brandon W. Lewis
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Devine Jackson
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Stephanie A. Amici
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio
| | - Joshua Walum
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Manel Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Sonia Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Elise Coneglio
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Akhila V. Boda
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Mireia Guerau-de-Arellano
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio,6Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio,7Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio,8Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Mitchell H. Grayson
- 2Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,3Division of Allergy and Immunology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Rodney D. Britt
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Sagwal S, Prasad R, Kaur J, Singh M. Cytokine signaling pathway in cystic fibrosis: expression of SOCS and STATs genes in different clinical phenotypes of the disease. Mol Cell Biochem 2021; 476:2869-2876. [PMID: 33740185 DOI: 10.1007/s11010-021-04051-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
This was an observational cross-sectional study which was done to assess the expression profile of STATs and SOCS genes in cystic fibrosis. The mRNA was isolated from peripheral blood mononuclear cells of CF patients in exacerbation, colonization and post exacerbation phases of the disease. The relative gene expression level for SOCS 1, -3, -5 and STAT 1, -3,-4,-6 genes was quantified by Real-time PCR. The levels of IL-6 were also measured in the serum by ELISA. The expression of the Th1 pathway associated genes (SOCS1, SOCS5, STAT4 and STAT1) was downregulated while the expression of Th2/Th17 pathway genes (SOCS3, STAT3, STAT6) was upregulated in both exacerbation and colonization phases as compared to healthy controls. The serum levels of IL-6 were also elevated in both the disease groups. After antibiotic treatment, the expression of SOCS5 and STAT4 was increased while the expression of rest of the genes showed downregulation which shows a shift in immune response from Th2/Th17 to Th1. Our results suggest that infection alters the cytokine signaling pathway through modulation of STATs and SOCS genes which is not able to regulate the overstimulation of cytokine signaling further leading to chronic inflammation in CF.
Collapse
Affiliation(s)
- Swati Sagwal
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rajendra Prasad
- Department of Biochemistry, Maharishi Markandeswar Institute of Medical Sciences and Research, Ambala, Haryana, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenu Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
9
|
Choi W, Yang AX, Sieve A, Kuo SH, Mudalagiriyappa S, Vieson M, Maddox CW, Nanjappa SG, Lau GW. Pulmonary Mycosis Drives Forkhead Box Protein A2 Degradation and Mucus Hypersecretion through Activation of the Spleen Tyrosine Kinase-Epidermal Growth Factor Receptor-AKT/Extracellular Signal-Regulated Kinase 1/2 Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:108-130. [PMID: 33069717 PMCID: PMC7786105 DOI: 10.1016/j.ajpath.2020.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary mycoses are difficult to treat and detrimental to patients. Fungal infections modulate the lung immune response, induce goblet cell hyperplasia and metaplasia, and mucus hypersecretion in the airways. Excessive mucus clogs small airways and reduces pulmonary function by decreasing oxygen exchange, leading to respiratory distress. The forkhead box protein A2 (FOXA2) is a transcription factor that regulates mucus homeostasis in the airways. However, little is known whether pulmonary mycosis modulates FOXA2 function. Herein, we investigated whether Blastomyces dermatitidis and Histoplasma capsulatum-infected canine and feline lungs and airway epithelial cells could serve as higher animal models to examine the relationships between fungal pneumonia and FOXA2-regulated airway mucus homeostasis. The results indicate that fungal infection down-regulated FOXA2 expression in airway epithelial cells, with concomitant overexpression of mucin 5AC (MUC5AC) and mucin 5B (MUC5B) mucins. Mechanistic studies reveal that B. dermatitidis infection, as well as β-glucan exposure, activated the Dectin-1-SYK-epidermal growth factor receptor-AKT/extracellular signal-regulated kinase 1/2 signaling pathway that inhibits the expression of FOXA2, resulting in overexpression of MUC5AC and MUC5B in canine airway cells. Further understanding of the role of FOXA2 in mucus hypersecretion may lead to novel therapeutics against excessive mucus in both human and veterinary patients with pulmonary mycosis.
Collapse
Affiliation(s)
- Woosuk Choi
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Alina X Yang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Aaron Sieve
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Shanny H Kuo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Srinivasu Mudalagiriyappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Miranda Vieson
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Carol W Maddox
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Som G Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gee W Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
10
|
Nickaeen N, Ghaisari J, Heiner M, Moein S, Gheisari Y. Agent-based modeling and bifurcation analysis reveal mechanisms of macrophage polarization and phenotype pattern distribution. Sci Rep 2019; 9:12764. [PMID: 31484958 PMCID: PMC6726649 DOI: 10.1038/s41598-019-48865-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023] Open
Abstract
Macrophages play a key role in tissue regeneration by polarizing to different destinies and generating various phenotypes. Recognizing the underlying mechanisms is critical in designing therapeutic procedures targeting macrophage fate determination. Here, to investigate the macrophage polarization, a nonlinear mathematical model is proposed in which the effect of IL4, IFNγ and LPS, as external stimuli, on STAT1, STAT6, and NFκB is studied using bifurcation analysis. The existence of saddle-node bifurcations in these internal key regulators allows different combinations of steady state levels which are attributable to different fates. Therefore, we propose dynamic bifurcation as a crucial built-in mechanism of macrophage polarization. Next, in order to investigate the polarization of a population of macrophages, bifurcation analysis is employed aligned with agent-based approach and a two-layer model is proposed in which the information from single cells is exploited to model the behavior in tissue level. Also, in this model, a partial differential equation describes the diffusion of secreted cytokines in the medium. Finally, the model was validated against a set of experimental data. Taken together, we have here developed a cell and tissue level model of macrophage polarization behavior which can be used for designing therapeutic interventions.
Collapse
Affiliation(s)
- Niloofar Nickaeen
- Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Jafar Ghaisari
- Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Monika Heiner
- Computer Science Department, Brandenburg University of Technology, 03013, Cottbus, Germany
| | - Shiva Moein
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
11
|
Takeshima H, Horie M, Mikami Y, Makita K, Miyashita N, Matsuzaki H, Noguchi S, Urushiyama H, Hiraishi Y, Mitani A, Borok Z, Nagase T, Yamauchi Y. CISH is a negative regulator of IL-13-induced CCL26 production in lung fibroblasts. Allergol Int 2019; 68:101-109. [PMID: 30197185 DOI: 10.1016/j.alit.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bronchial asthma is a chronic airway disease characterized by eosinophilic airway inflammation. Lung fibroblasts activated by IL-13 serve as important sources of chemokines, such as eotaxins, contributing to persistent eosinophilic inflammation. Src-homology 2-containing protein (CISH), belonging to the suppressor of cytokine signaling (SOCS) family, acts as a negative regulator of cytokine induction. The aim of this study was to elucidate the role of CISH in the production of eosinophil chemotactic chemokines in human lung fibroblasts. METHODS Normal human lung fibroblasts were stimulated by IL-13, and global gene expression profile was assessed by cDNA microarray. Expression changes and downstream of IL-13 signaling were evaluated by quantitative RT-PCR, ELISA or western blotting. Loss- and gain-of-function analyses of CISH were performed by small interfering RNA and vector overexpression, respectively. RESULTS Ingenuity pathway analysis revealed that IL-13 induced chemokine signaling, including the eotaxin family, while significantly suppressing IFN-α/β signaling. Among eight SOCS family members, CISH was most strongly induced by IL-13 via phosphorylation of signal transducer and activator of transcription 6 (STAT6). Loss- and gain-of-function studies demonstrated that CISH negatively regulated the expression of CCL26. CONCLUSIONS These findings suggest that CISH plays a key role in the eosinophilic inflammation associated with bronchial asthma by regulating IL-13-induced CCL26 production. Augmentation of CISH function could be a novel approach for treating eosinophilic inflammation in severe asthma.
Collapse
|
12
|
Bai J, Wu L, Chen X, Wang L, Li Q, Zhang Y, Wu J, Cai G, Chen X. Suppressor of Cytokine Signaling-1/STAT1 Regulates Renal Inflammation in Mesangial Proliferative Glomerulonephritis Models. Front Immunol 2018; 9:1982. [PMID: 30214448 PMCID: PMC6125399 DOI: 10.3389/fimmu.2018.01982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mesangial proliferative glomerulonephritis (MsGN) is a significant global threat to public health. Inflammation plays a crucial role in MsGN; however, the underlying mechanism remains unknown. Herein, we demonstrate that suppression of the cytokine signaling-1 (SOCS1)/signal transducer and activator of transcription 1 (STAT1) signaling pathway is associated with renal inflammation and renal injury in MsGN. Using MsGN rat (Thy1.1 GN) and mouse (Habu GN) models, renal SOCS1/STAT1 was determined to be associated with CD4+ T cell infiltration and related cytokines. In vitro, SOCS1 overexpression repressed IFN-γ-induced MHC class II and cytokine levels and STAT1 phosphorylation in mesangial cells. SOCS1 and STAT1 inhibitors significantly inhibited IFN-γ-induced CIITA promoter activity and MHC class II expression. In conclusion, our study emphasizes the pivotal role of the SOCS1/STAT1 axis in the regulation of inflammation in MsGN.
Collapse
Affiliation(s)
- Jiuxu Bai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiaoniao Chen
- Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Qinggang Li
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Jie Wu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Guangyan Cai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| |
Collapse
|
13
|
Insulin-Like Growth Factor-I as an Effector Element of the Cytokine IL-4 in the Development of a Leishmania major Infection. Mediators Inflamm 2018; 2018:9787128. [PMID: 30150896 PMCID: PMC6087592 DOI: 10.1155/2018/9787128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/11/2018] [Accepted: 07/08/2018] [Indexed: 01/07/2023] Open
Abstract
Certain cytokines modulate the expression of insulin-like growth factor- (IGF-) I. Since IL-4 and IGF-I promote growth of the protozoan Leishmania major, we here addressed their interaction in downregulating the expression of Igf-I mRNA using small interfering RNA (siRNA) in Leishmania major-infected macrophages. Parasitism was decreased in the siRNA-treated cells compared with the nontreated cells, reversed by the addition of recombinant IGF-I (rIGF-I). In IL-4-stimulated macrophages, parasitism and the Igf-I mRNA amount were increased, and the effects were nullified upon siRNA transfection. IGF-I downregulation inhibited both parasite and macrophage arginase activation even in IL-4-stimulated cells. Searching for intracellular signaling components shared by IL-4 and IGF-I, upon siRNA transfection, phosphorylated p44, p38, and Akt proteins were decreased, affecting the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. In L. major-infected C57BL6-resistant mice, the preincubation of the parasite with rIGF-I changed the infection profile to be similar to that of susceptible mice. We conclude that IGF-I constitutes an effector element of IL-4 involving the PI3K/Akt pathway during L. major infection.
Collapse
|
14
|
Tang M, Tian L, Luo G, Yu X. Interferon-Gamma-Mediated Osteoimmunology. Front Immunol 2018; 9:1508. [PMID: 30008722 PMCID: PMC6033972 DOI: 10.3389/fimmu.2018.01508] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoimmunology is the interdiscipline that focuses on the relationship between the skeletal and immune systems. They are interconnected by shared signal pathways and cytokines. Interferon-gamma (IFN-γ) plays important roles in immune responses and bone metabolism. IFN-γ enhances macrophage activation and antigen presentation. It regulates antiviral and antibacterial immunity as well as signal transduction. IFN-γ can promote osteoblast differentiation and inhibit bone marrow adipocyte formation. IFN-γ plays dual role in osteoclasts depending on its stage. Furthermore, IFN-γ is an important pathogenetic factor in some immune-mediated bone diseases including rheumatoid arthritis, postmenopausal osteoporosis, and acquired immunodeficiency syndrome. This review will discuss the contradictory findings of IFN-γ in osteoimmunology and its clinical application potential.
Collapse
Affiliation(s)
- Mengjia Tang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc Natl Acad Sci U S A 2018; 115:E1012-E1021. [PMID: 29339515 PMCID: PMC5798318 DOI: 10.1073/pnas.1706928115] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems-based approach, we examined differential regulation of IFN-γ-dependent genes following infection with robust respiratory viruses including influenza viruses [A/influenza/Vietnam/1203/2004 (H5N1-VN1203) and A/influenza/California/04/2009 (H1N1-CA04)] and coronaviruses [severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV)]. Categorizing by function, we observed down-regulation of gene expression associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down-regulation of antigen-presentation gene expression, which was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role in MERS-CoV-mediated antagonism of antigen-presentation gene expression; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common mechanism utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.
Collapse
|
16
|
Procyanidin A2 Modulates IL-4-Induced CCL26 Production in Human Alveolar Epithelial Cells. Int J Mol Sci 2016; 17:ijms17111888. [PMID: 27845745 PMCID: PMC5133887 DOI: 10.3390/ijms17111888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is an inflammatory lung disease that is partly sustained by the chemokine eotaxin-3 (CCL26), which extends eosinophil migration into tissues long after allergen exposure. Modulation of CCL26 could represent a means to mitigate airway inflammation. Here we evaluated procyanidin A2 as a means of modulating CCL26 production and investigated interactions with the known inflammation modulator, Interferon γ (IFNγ). We used the human lung epithelial cell line A549 and optimized the conditions for inducing CCL26. Cells were exposed to a range of procyanidin A2 or IFNγ concentrations for varied lengths of time prior to an inflammatory insult of interleukin-4 (IL-4) for 24 h. An enzyme-linked immunosorbent assay was used to measure CCL26 production. Exposing cells to 5 μM procyanidin A2 (prior to IL-4) reduced CCL26 production by 35% compared with control. Greatest inhibition by procyanidin A2 was seen with a 2 h exposure prior to IL-4, whereas IFNγ inhibition was greatest at 24 h. Concomitant incubation of procyanidin A2 and IFNγ did not extend the inhibitory efficacy of procyanidin A2. These data provide evidence that procyanidin A2 can modulate IL-4-induced CCL26 production by A549 lung epithelial cells and that it does so in a manner that is different from IFNγ.
Collapse
|
17
|
Min JY, Ocampo CJ, Stevens WW, Price CPE, Thompson CF, Homma T, Huang JH, Norton JE, Suh LA, Pothoven KL, Conley DB, Welch KC, Shintani-Smith S, Peters AT, Grammer LC, Harris KE, Hulse KE, Kato A, Modyanov NN, Kern RC, Schleimer RP, Tan BK. Proton pump inhibitors decrease eotaxin-3/CCL26 expression in patients with chronic rhinosinusitis with nasal polyps: Possible role of the nongastric H,K-ATPase. J Allergy Clin Immunol 2016; 139:130-141.e11. [PMID: 27717558 DOI: 10.1016/j.jaci.2016.07.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is often characterized by tissue eosinophilia that is associated with poor prognosis. Recent findings that proton pump inhibitors (PPIs) directly modulate the expression of eotaxin-3, an eosinophil chemoattractant, in patients with eosinophilic diseases suggest therapeutic potential for PPIs in those with CRSwNP. OBJECTIVE We assessed the effect of type 2 mediators, particularly IL-13 and eotaxin-3, on tissue eosinophilia and disease severity in patients with chronic rhinosinusitis (CRS). Further investigation focused on PPI suppression of eotaxin-3 expression in vivo and in vitro, with exploration of underlying mechanisms. METHODS Type 2 mediator levels in nasal tissues and secretions were measured by using a multiplex immunoassay. Eotaxin-3 and other chemokines expressed in IL-13-stimulated human sinonasal epithelial cells (HNECs) and BEAS-2B cells with or without PPIs were assessed by using ELISA, Western blotting, real-time PCR, and intracellular pH imaging. RESULTS Nasal tissues and secretions from patients with CRSwNP had increased IL-13, eotaxin-2, and eotaxin-3 levels, and these were positively correlated with tissue eosinophil cationic protein levels and radiographic scores in patients with CRS (P < .05). IL-13 stimulation of HNECs and BEAS-2B cells dominantly induced eotaxin-3 expression, which was significantly inhibited by PPIs (P < .05). Patients with CRS taking PPIs also showed lower in vivo eotaxin-3 levels compared with those without PPIs (P < .05). Using intracellular pH imaging and altering extracellular K+, we found that IL-13 enhanced H+,K+-exchange, which was blocked by PPIs and the mechanistically unrelated H,K-ATPase inhibitor, SCH-28080. Furthermore, knockdown of ATP12A (gene for the nongastric H,K-ATPase) significantly attenuated IL-13-induced eotaxin-3 expression in HNECs. PPIs also had effects on accelerating IL-13-induced eotaxin-3 mRNA decay. CONCLUSION Our results demonstrated that PPIs reduce IL-13-induced eotaxin-3 expression by airway epithelial cells. Furthermore, mechanistic studies suggest that the nongastric H,K-ATPase is necessary for IL-13-mediated epithelial responses, and its inhibitors, including PPIs, might be of therapeutic value in patients with CRSwNP by reducing epithelial production of eotaxin-3.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Christopher J Ocampo
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Caroline P E Price
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Christopher F Thompson
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Tetsuya Homma
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Respiratory Medicine and Allergology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Julia H Huang
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn L Pothoven
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Anju T Peters
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Nikolai N Modyanov
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
18
|
Homma T, Kato A, Bhushan B, Norton JE, Suh LA, Carter RG, Gupta DS, Schleimer RP. Role of Aspergillus fumigatus in Triggering Protease-Activated Receptor-2 in Airway Epithelial Cells and Skewing the Cells toward a T-helper 2 Bias. Am J Respir Cell Mol Biol 2016; 54:60-70. [PMID: 26072921 DOI: 10.1165/rcmb.2015-0062oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aspergillus fumigatus (AF) infection and sensitization are common and promote Th2 disease in individuals with asthma. Innate immune responses of bronchial epithelial cells are now known to play a key role in determination of T cell responses upon encounter with inhaled pathogens. We have recently shown that extracts of AF suppress JAK-STAT signaling in epithelial cells and thus may promote Th2 bias. To elucidate the impact of AF on human bronchial epithelial cells, we tested the hypothesis that AF can modulate the response of airway epithelial cells to favor a Th2 response and explored the molecular mechanism of the effect. Primary normal human bronchial epithelial (NHBE) cells were treated with AF extract or fractionated AF extract before stimulation with poly I:C or infection with human rhinovirus serotype 16 (HRV16). Expression of CXCL10 mRNA (real-time RT-PCR) and protein (ELISA) were measured as markers of IFN-mediated epithelial Th1-biased responses. Western blot was performed to evaluate expression of IFN regulatory factor-3 (IRF-3), NF-κB, and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11), which are other markers of Th1 skewing. Knockdown experiments for protease-activated receptor-2 (PAR-2) and PTPN11 were performed to analyze the role of PAR-2 in the mechanism of suppression by AF. AF and a high-molecular-weight fraction of AF extract (HMW-AF; > 50 kD) profoundly suppressed poly I:C- and HRV16-induced expression of both CXCL10 mRNA and protein from NHBE cells via a mechanism that relied upon PAR-2 activation. Both AF extract and a specific PAR-2 activator (AC-55541) suppressed the poly I:C activation of phospho-IRF-3 without affecting activation of NF-κB. Furthermore, HMW-AF extract enhanced the expression of PTPN11, a phosphatase known to inhibit IFN signaling, and concurrently suppressed poly I:C-induced expression of both CXCL10 mRNA and protein from NHBE cells. These results show that exposure of bronchial epithelial cells to AF extract suppressed poly I:C and HRV16 signaling via a mechanism shown to involve activation of PAR-2 and PTPN11. This action of AF may promote viral disease exacerbations and may skew epithelial cells to promote Th2 inflammation in allergic airway disorders mediated or exacerbated by AF, such as asthma and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Tetsuya Homma
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,2 Division of Respiratory Medicine and Allergology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Atsushi Kato
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bharat Bhushan
- 3 Division of Otolaryngology-Head and Neck Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago and the Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - James E Norton
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lydia A Suh
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Roderick G Carter
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dave S Gupta
- 4 Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan
| | - Robert P Schleimer
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
19
|
Meguro K, Nakagomi D, Suzuki K, Hosokawa J, Fukuta T, Yokota M, Maezawa Y, Suto A, Nakajima H. SOCS3 Expressed in M2 Macrophages Attenuates Contact Hypersensitivity by Suppressing MMP-12 Production. J Invest Dermatol 2015; 136:649-657. [PMID: 27015453 DOI: 10.1016/j.jid.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2015] [Accepted: 11/17/2015] [Indexed: 11/18/2022]
Abstract
Numerous studies have clarified the immunological mechanisms of contact hypersensitivity (CHS). In addition, we have recently shown that M2 macrophages play key roles in the development of CHS by producing matrix metalloproteinase-12 (MMP-12). However, regulatory mechanisms of the elicitation phase in CHS remain largely unknown. To determine the roles of suppressor of cytokine signaling (SOCS) family members in M2 macrophages in the regulation of CHS, we investigated the expression of SOCS family members in M2 macrophages at the inflammatory sites of CHS. Transcriptome analysis revealed that among SOCS family members, SOCS3 was highly expressed in M2 macrophages at the site of CHS, and SOCS3 induction was reduced by IFN-? neutralization. 2,4-Dinitrofluorobenzene-induced CHS was significantly enhanced and prolonged in mice lacking SOCS3 expression in monocytes/macrophages (SOCS3(?/?) mice) compared with that in control mice. Importantly, expression of MMP-12 in M2 macrophages was significantly increased in SOCS3(?/?) mice at the site of CHS, and deletion of the MMP-12 gene reduced the exacerbated CHS in SOCS3(?/?) mice. Finally, IFN-? inhibited IL-4-induced MMP-12 expression in a SOCS3-dependent manner. Taken together, these results suggest that SOCS3 expressed in M2 macrophages is involved in the attenuation and/or resolution of CHS, presumably by suppressing MMP-12 production.
Collapse
Affiliation(s)
- Kazuyuki Meguro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daiki Nakagomi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Junichi Hosokawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadashi Fukuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaya Yokota
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Maezawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
20
|
Edukulla R, Singh B, Jegga AG, Sontake V, Dillon SR, Madala SK. Th2 Cytokines Augment IL-31/IL-31RA Interactions via STAT6-dependent IL-31RA Expression. J Biol Chem 2015; 290:13510-20. [PMID: 25847241 DOI: 10.1074/jbc.m114.622126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 12/19/2022] Open
Abstract
Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.
Collapse
Affiliation(s)
| | | | - Anil G Jegga
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | | | - Stacey R Dillon
- the ZymoGenetics, Inc. (a Bristol-Myers Squibb Company), Seattle, Washington 98102
| | | |
Collapse
|
21
|
Bian F, Barbosa FL, Corrales RM, Pelegrino FSA, Volpe EA, Pflugfelder SC, de Paiva CS. Altered balance of interleukin-13/interferon-gamma contributes to lacrimal gland destruction and secretory dysfunction in CD25 knockout model of Sjögren's syndrome. Arthritis Res Ther 2015; 17:53. [PMID: 25889094 PMCID: PMC4392623 DOI: 10.1186/s13075-015-0582-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
Introduction The lacrimal gland (LG) of the CD25-/- model of Sjögren’s syndrome (SS) has high interleukin (IL)-17, IL-13 and interferon-gamma (IFN-γ) cytokines. The specific contribution of these cytokines to the onset and severity of dacryoadenitis in the CD25-/- mice has not been evaluated. Methods CD25−/−IL-17A−/−, CD25−/−IL-17−/−IFN-γ−/− and CD25−/−IFN-γ−/− were used at 4, 8, 12, 16 weeks (W). Total lymphocytic infiltration was evaluated by histology and characterized by flow cytometry. Epidermal growth factor (EGF) concentration was measured in tears. Immunofluorescent staining evaluated expression of IFN-γ receptor (IFN-γR) and apoptosis. Real-time PCR evaluated inflammatory and T cell-related cytokines expression in LG. Caspase-3, -8, -9 activities was assayed in LG lysates. T helper cytokines were measured in serum by Luminex assay. Results The greatest total LG infiltration at 8 W was seen in CD25−/−IL-17A−/− (95%), followed by CD25−/− (71%) and IL-17−/− (12%). Tear EGF concentration was in normal range in CD25−/− at 4 W and in very low levels in both CD25−/− and CD25−/−IL-17A−/−. CD25−/− had high levels of inflammatory cytokines transcripts in LG compared to IL-17−/− mice; however, CD25−/−IL-17A−/− had even higher IL-1β, IFN-γR, caspase-3, -8, -9 mRNA levels, greater immunoreactivity to IFN-γR in LG acini, greater number of apoptotic+ cells and greater caspases activities in the LG at 8 W. CD25−/−IL-17A−/− had lower IL-13 concentration and lower IL-13/IFN-γ ratio compared to CD25−/− in serum. CD25−/−IFN-γ−/− had lower number of apoptotic+ cells and decreased caspase-3 expression in LG. CD25−/−IL-17−/−IFN-γ−/− had lower total lymphocytic cell infiltration at 8 W (48%), CD4+T cell infiltration and expression of IFN-γR and apoptotic+ cells in the LG and increased tear EGF concentration in tears. Conclusions IFN-γ is critical for LG destruction and secretory dysfunction in the CD25−/− model of SS. Altered balance between IFN-γ and IL-13 in the CD25−/−IL-17A−/− mice accelerates LG destruction by increasing glandular apoptosis and facilitating apoptosis through increased expression of IFN-γR by glandular epithelium and activation of caspases. Targeting both IFN-γ and IL-17 may be beneficial for treating the LG inflammation in SS.
Collapse
Affiliation(s)
- Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Flavia L Barbosa
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Rosa M Corrales
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Flavia S A Pelegrino
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Eugene A Volpe
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC505G, Houston, TX 77030, Texas, USA.
| |
Collapse
|
22
|
Gielen V, Sykes A, Zhu J, Chan B, Macintyre J, Regamey N, Kieninger E, Gupta A, Shoemark A, Bossley C, Davies J, Saglani S, Walker P, Nicholson SE, Dalpke AH, Kon OM, Bush A, Johnston SL, Edwards MR. Increased nuclear suppressor of cytokine signaling 1 in asthmatic bronchial epithelium suppresses rhinovirus induction of innate interferons. J Allergy Clin Immunol 2015; 136:177-188.e11. [PMID: 25630941 PMCID: PMC4541718 DOI: 10.1016/j.jaci.2014.11.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 10/27/2014] [Accepted: 11/12/2014] [Indexed: 01/13/2023]
Abstract
Background Rhinovirus infections are the dominant cause of asthma exacerbations, and deficient virus induction of IFN-α/β/λ in asthmatic patients is important in asthma exacerbation pathogenesis. Mechanisms causing this interferon deficiency in asthmatic patients are unknown. Objective We sought to investigate the expression of suppressor of cytokine signaling (SOCS) 1 in tissues from asthmatic patients and its possible role in impaired virus-induced interferon induction in these patients. Methods We assessed SOCS1 mRNA and protein levels in vitro, bronchial biopsy specimens, and mice. The role of SOCS1 was inferred by proof-of-concept studies using overexpression with reporter genes and SOCS1-deficient mice. A nuclear role of SOCS1 was shown by using bronchial biopsy staining, overexpression of mutant SOCS1 constructs, and confocal microscopy. SOCS1 levels were also correlated with asthma-related clinical outcomes. Results We report induction of SOCS1 in bronchial epithelial cells (BECs) by asthma exacerbation–related cytokines and by rhinovirus infection in vitro. We found that SOCS1 was increased in vivo in bronchial epithelium and related to asthma severity. SOCS1 expression was also increased in primary BECs from asthmatic patients ex vivo and was related to interferon deficiency and increased viral replication. In primary human epithelium, mouse lung macrophages, and SOCS1-deficient mice, SOCS1 suppressed rhinovirus induction of interferons. Suppression of virus-induced interferon levels was dependent on SOCS1 nuclear translocation but independent of proteasomal degradation of transcription factors. Nuclear SOCS1 levels were also increased in BECs from asthmatic patients. Conclusion We describe a novel mechanism explaining interferon deficiency in asthmatic patients through a novel nuclear function of SOCS1 and identify SOCS1 as an important therapeutic target for asthma exacerbations.
Collapse
Affiliation(s)
- Vera Gielen
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom
| | - Annemarie Sykes
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom; Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Jie Zhu
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom
| | - Brian Chan
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jonathan Macintyre
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom; Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | | | | | - Atul Gupta
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amelia Shoemark
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Cara Bossley
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane Davies
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patrick Walker
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Sandra E Nicholson
- Walter & Eliza Hall Institute, Parkville, Australia; Department of Medical Biology of the University of Melbourne, Parkville, Australia
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Onn-Min Kon
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Andrew Bush
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom; Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Michael R Edwards
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom.
| |
Collapse
|
23
|
Li W, Holsinger RMD, Kruse CA, Flügel A, Graeber MB. The potential for genetically altered microglia to influence glioma treatment. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:750-62. [PMID: 24047526 DOI: 10.2174/18715273113126660171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 01/06/2023]
Abstract
Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells.
Collapse
Affiliation(s)
- W Li
- Brain and Mind Research Institute, The University of Sydney, Camperdown, NSW, Australia.
| | | | | | | | | |
Collapse
|
24
|
The expression of the eotaxins IL-6 and CXCL8 in human epithelial cells from various levels of the respiratory tract. Cell Mol Biol Lett 2013; 18:612-30. [PMID: 24297684 PMCID: PMC6275597 DOI: 10.2478/s11658-013-0107-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/27/2013] [Indexed: 11/23/2022] Open
Abstract
Airway epithelium acts as multifunctional site of response in the respiratory tract. Epithelial activity plays an important part in the pathophysiology of obstructive lung disease. In this study, we compare normal human epithelial cells from various levels of the respiratory tract in terms of their reactivity to pro-allergic and pro-inflammatory stimulation. Normal human nasal, bronchial and small airway epithelial cells were stimulated with IL-4 and IL-13. The expressions of the eotaxins IL-6 and CXCL8 were evaluated at the mRNA and protein levels. The effects of pre-treatment with IFN-γ on the cell reactivity were measured, and the responses to TNF-α, LPS and IFN-γ were evaluated. All of the studied primary cells expressed CCL26, IL-6 and IL-8 after IL-4 or IL-13 stimulation. IFN-γ pre-treatment resulted in decreased CCL26 and increased IL-6 expression in the nasal and small airway cells, but this effect was not observed in the bronchial cells. IL-6 and CXCL8 were produced in varying degrees by all of the epithelial primary cells in cultures stimulated with TNF-α, LPS or IFN-γ. We showed that epithelial cells from the various levels of the respiratory tract act in a united way, responding in a similar manner to stimulation with IL-4 and IL-13, showing similar reactivity to TNF-α and LPS, and giving an almost unified response to IFN-γ pre-stimulation.
Collapse
|
25
|
Dasgupta P, Qi X, Smith EP, Keegan AD. Absence of the common gamma chain (γ(c)), a critical component of the Type I IL-4 receptor, increases the severity of allergic lung inflammation. PLoS One 2013; 8:e71344. [PMID: 23940740 PMCID: PMC3734063 DOI: 10.1371/journal.pone.0071344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/18/2013] [Indexed: 01/13/2023] Open
Abstract
The TH2 cytokines, IL-4 and IL-13, play critical roles in inducing allergic lung inflammation and drive the alternative activation of macrophages (AAM). Although both cytokines share receptor subunits, IL-4 and IL-13 have differential roles in asthma pathogenesis: IL-4 regulates TH2 cell differentiation, while IL-13 regulates airway hyperreactivity and mucus production. Aside from controlling TH2 differentiation, the unique contribution of IL-4 signaling via the Type I receptor in airway inflammation remains unclear. Therefore, we analyzed responses in mice deficient in gamma c (γc) to elucidate the role of the Type I IL-4 receptor. OVA primed CD4+ OT-II T cells were adoptively transferred into RAG2−/− and γc−/− mice and allergic lung disease was induced. Both γc−/− and γcxRAG2−/− mice developed increased pulmonary inflammation and eosinophilia upon OVA challenge, compared to RAG2−/− mice. Characteristic AAM proteins FIZZ1 and YM1 were expressed in lung epithelial cells in both mouse strains, but greater numbers of FIZZ1+ or YM1+ airways were present in γc−/− mice. Absence of γc in macrophages, however, resulted in reduced YM1 expression. We observed higher TH2 cytokine levels in the BAL and an altered DC phenotype in the γc−/− recipient mice suggesting the potential for dysregulated T cell and dendritic cell (DC) activation in the γc-deficient environment. These results demonstrate that in absence of the Type I IL-4R, the Type II R can mediate allergic responses in the presence of TH2 effectors. However, the Type I R regulates AAM protein expression in macrophages.
Collapse
Affiliation(s)
- Preeta Dasgupta
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xiulan Qi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth P. Smith
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Induction of antitumor immunity ex vivo using dendritic cells transduced with fowl pox vector expressing MUC1, CEA, and a triad of costimulatory molecules (rF-PANVAC). J Immunother 2013; 35:555-69. [PMID: 22892452 DOI: 10.1097/cji.0b013e31826a73de] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The fowl pox vector expressing the tumor-associated antigens, mucin-1 and carcinoembryonic antigen in the context of costimulatory molecules (rF-PANVAC) has shown promise as a tumor vaccine. However, vaccine-mediated expansion of suppressor T-cell populations may blunt clinical efficacy. We characterized the cellular immune response induced by ex vivo dendritic cells (DCs) transduced with (rF)-PANVAC. Consistent with the functional characteristics of potent antigen-presenting cells, rF-PANVAC-DCs demonstrated strong expression of mucin-1 and carcinoembryonic antigen and costimulatory molecules, CD80, CD86, and CD83; decreased levels of phosphorylated STAT3, and increased levels of Tyk2, Janus kinase 2, and STAT1. rF-PANVAC-DCs stimulated expansion of tumor antigen-specific T cells with potent cytolytic capacity. However, rF-PANVAC-transduced DCs also induced the concurrent expansion of FOXP3 expressing CD4CD25 regulatory T cells (Tregs) that inhibited T-cell activation. Moreover, Tregs expressed high levels of Th2 cytokines [interleukin (IL)-10, IL-4, IL-5, and IL-13] together with phosphorylated STAT3 and STAT6. In contrast, the vaccine-expanded Treg population expressed high levels of Th1 cytokines IL-2 and interferon-γ and the proinflammatory receptor-related orphan receptor γt (RORγt) and IL-17A suggesting that these cells may share effector functions with conventional TH17 T cells. These data suggest that Tregs expanded by rF-PANVAC-DCs, exhibit immunosuppressive properties potentially mediated by Th2 cytokines, but simultaneous expression of Th1 and Th17-associated factors suggests a high degree of plasticity.
Collapse
|
27
|
Abstract
The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases.
Collapse
|
28
|
Higashino M, Takabayashi T, Takahashi N, Okamoto M, Narita N, Kojima A, Hyo S, Kawata R, Takenaka H, Fujieda S. Interleukin-19 downregulates interleukin-4-induced eotaxin production in human nasal fibroblasts. Allergol Int 2011; 60:449-57. [PMID: 21593579 DOI: 10.2332/allergolint.10-oa-0262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/31/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Interleukin-19 (IL-19), a member of the IL-10 family, is characterized as the cytokine suppressing the release and function of several proinflammatory cytokines. For regulation of local reaction in allergic rhinitis (AR), IL-19 might play an especially important role. METHODS We examined effects of IL-19 on IL-4-induced eotaxin production by human nasal fibroblasts. Early receptor-mediated events (expression of the suppressors of cytokine signaling (SOCS) and phosphorylation of signal transducer and activator of transcription 6 [STAT6]) by IL-19 was examined. Knockdown methods by RNAi were administered to investigate the involvement of those signal transductions. RESULTS Pretreatment with IL-19 downregulates IL-4-induced eotaxin production, but not interferon-γ(IFN-γ)-induced RANTES. Pretreatment with IL-19 suppressed the IL-4-induced STAT6 phosphorylation. The IL-19 induced SOCS-1, but not SOCS-3 or SOCS-5. The SOCS-1 knockdown by RNAi diminished pretreatment with IL-19-induced down-regulation of eotaxin production. CONCLUSIONS These results suggest that IL-19 down-regulates IL-4-induced eotaxin production via SOCS-1 in human nasal fibroblasts. In non-hematopoietic cells in AR, IL-19 might be an immunosuppressive factor.
Collapse
Affiliation(s)
- Masaaki Higashino
- Department of Otorhinolaryngology, Osaka Medical College, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mitchell C, Provost K, Niu N, Homer R, Cohn L. IFN-γ acts on the airway epithelium to inhibit local and systemic pathology in allergic airway disease. THE JOURNAL OF IMMUNOLOGY 2011; 187:3815-20. [PMID: 21873527 DOI: 10.4049/jimmunol.1100436] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inhibiting allergic airway inflammation is the goal of therapy in persistent asthma. Administration of medication via the airways delivers drug directly to the site of inflammation and avoids systemic side effects but often fails to modulate systemic features of asthma. We have shown that Th1 cells, through production of IFN-γ, inhibit many Th2-induced effector functions that promote disease. Using a newly generated mouse that expresses IFN-γR only on airway epithelial cells, we show that the airway epithelium controls a range of pathological responses in asthma. IFN-γ acting only through the airway epithelium inhibits mucus, chitinases, and eosinophilia, independent of Th2 cell activation. IFN-γ signaling through the airway epithelium inhibits eosinophil generation in the bone marrow, indicating that signals on the airway mucosal surface can regulate distant functions to inhibit disease. IFN-γ actions through the airway epithelium will limit airway obstruction and inflammation and may be therapeutic in refractory asthma.
Collapse
Affiliation(s)
- Charlotte Mitchell
- Section of Pulmonary and Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
30
|
Tsang TY, Tang WY, Chan JYW, Co NN, Au Yeung CL, Yau PL, Kong SK, Fung KP, Kwok TT. P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells. Apoptosis 2011; 16:524-35. [PMID: 21336967 DOI: 10.1007/s10495-011-0581-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
P-glycoprotein (Pgp), an efflux pump, was confirmed the first time to regulate the expressions of miR/gene in cells. Pgp is known to be associated with multidrug resistance. RHepG2 cells, the multidrug resistant subline of human hepatocellular carcinoma HepG2 cells, expressed higher levels of Pgp as well as miR-16, and lower level of Bcl-2 than the parental cells. In addition, RHepG2 cells were more radiation sensitive and showed more pronounced radiation-induced apoptotic cell death than the parental cells. Mechanistic analysis revealed that transfection with mdr1 specific antisense oligos suppressed radiation-induced apoptosis in HepG2 cells. On the other hand, ectopic mdr1 expression enhanced radiation-induced apoptosis in HepG2 cells, SK-HEP-1 cells, MiHa cells, and furthermore, induced miR-16 and suppressed its target gene Bcl-2 in HepG2 cells. Moreover, the enhancement effects of Pgp and miR-16 on radiation-induced apoptosis were counteracted by overexpression of Bcl-2. The Pgp effect on miR-16/Bcl-2 was suppressed by Pgp blocker verapamil indicating the importance of the efflux of Pgp substrates. The present study is the first to reveal the role of Pgp in regulation of miRNA/gene expressions. The findings may provide new perspective in understanding the biological function of Pgp.
Collapse
Affiliation(s)
- Tsun Yee Tsang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stellato C, Gubin MM, Magee JD, Fang X, Fan J, Tartar DM, Chen J, Dahm GM, Calaluce R, Mori F, Jackson GA, Casolaro V, Franklin CL, Atasoy U. Coordinate regulation of GATA-3 and Th2 cytokine gene expression by the RNA-binding protein HuR. THE JOURNAL OF IMMUNOLOGY 2011; 187:441-9. [PMID: 21613615 DOI: 10.4049/jimmunol.1001881] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The posttranscriptional mechanisms whereby RNA-binding proteins (RBPs) regulate T cell differentiation remain unclear. RBPs can coordinately regulate the expression of functionally related genes via binding to shared regulatory sequences, such as the adenylate-uridylate-rich elements (AREs) present in the 3' untranslated region (UTR) of mRNA. The RBP HuR posttranscriptionally regulates IL-4, IL-13, and other Th2 cell-restricted transcripts. We hypothesized that the ARE-bearing GATA-3 gene, a critical regulator of Th2 polarization, is under HuR control as part of its coordinate posttranscriptional regulation of the Th2 program. We report that in parallel with stimulus-induced increase in GATA-3 mRNA and protein levels, GATA-3 mRNA half-life is increased after restimulation in the human T cell line Jurkat, in human memory and Th2 cells, and in murine Th2-skewed cells. We demonstrate by immunoprecipitation of ribonucleoprotein complexes that HuR associates with the GATA-3 endogenous transcript in human T cells and found, using biotin pulldown assay, that HuR specifically interacts with its 3'UTR. Using both loss-of-function and gain-of-function approaches in vitro and in animal models, we show that HuR is a critical mediator of stimulus-induced increase in GATA-3 mRNA and protein expression and that it positively influences GATA-3 mRNA turnover, in parallel with selective promotion of Th2 cytokine overexpression. These results suggest that HuR-driven posttranscriptional control plays a significant role in T cell development and effector function in both murine and human systems. A better understanding of HuR-mediated control of Th2 polarization may have utility in altering allergic airway inflammation in human asthmatic patients.
Collapse
Affiliation(s)
- Cristiana Stellato
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Suppressors of cytokine signaling 3 expression in eosinophils: regulation by PGE₂ and Th2 cytokines. Clin Dev Immunol 2011; 2011:917015. [PMID: 21765854 PMCID: PMC3135166 DOI: 10.1155/2011/917015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/02/2011] [Accepted: 03/17/2011] [Indexed: 12/14/2022]
Abstract
Asthma and nonasthmatic eosinophilic bronchitis (NAEB) are respiratory disorders characterized by a predominance of Th2 cells and eosinophilic inflammation. Suppressors of cytokine signaling (SOCS) proteins play an important role in Th2-mediated allergic responses through control of the balance between Th1 and Th2 cells, particularly, SOCS3 and SOCS5. The aim of this study was to analyze SOCS expression in human peripheral blood eosinophils from patients with asthma, NAEB and healthy controls. SOCS expression in eosinophils from subjects was demonstrated by different techniques. Results showed that expression of SOCS3 in eosinophils and CD4 T cells from patients was higher than in healthy subjects. In addition, we demonstrated that prostaglandin E2 (PGE2) and Th2 cytokines are able to upregulate SOCS3 production in eosinophils and attenuate its degranulation. In conclusion, eosinophils are able to transcribe and translate SOCS3 protein and can contribute to the regulation of the Th1/Th2 balance through SOCS3 production.
Collapse
|
33
|
Kim SH, Lee CE. Counter-regulation mechanism of IL-4 and IFN-α signal transduction through cytosolic retention of the pY-STAT6:pY-STAT2:p48 complex. Eur J Immunol 2010; 41:461-72. [PMID: 21268015 DOI: 10.1002/eji.201040668] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/18/2010] [Accepted: 11/16/2010] [Indexed: 11/08/2022]
Abstract
IFN-α and IL-4 induce Th1 and Th2 responses, respectively, and often display antagonistic actions against each other. To elucidate the molecular mechanism of counter-regulation, we have investigated the signal interception by IFN-α and IL-4, employing a human B-cell line Ramos, sensitive to both cytokines. In these cells, IFN-α effectively inhibited IL-4-induced Fc epsilon receptor II (CD23) expression, whereas IL-4 suppressed IFN-α-mediated IRF7 expression. The counter-regulatory action by IL-4 and IFN-α proceeded with a delayed kinetics requiring 4 h. Notably, IFN-α did not affect the IL-4-induced tyrosine phosphorylation of STAT6, but induced a time-dependent cytoplasmic accumulation of phosphotyrosine(pY)-STAT6 and a corresponding decrease in nuclear pY-STAT6. By confocal analysis and co-immunoprecipitation assays, we demonstrated the colocalization and molecular interaction of IL-4-induced pY-STAT6 with IFN-α-induced pY-STAT2:p48 in the cytosol. In addition, the over-expression of STAT2 or STAT6 induced the concomitant cytosolic accumulation of pY-STAT6 or pY-STAT2, leading to the suppression of IL-4-induced CD23 or IFN-α-induced IRF7 gene expression, respectively. Our data suggest that the signals ensued by IFN-α and IL-4 induce cytoplasmic sequestration of IL-4-activated STAT6 and IFN-α-activated STAT2:p48 in B cells through the formation of pY-STAT6:pY-STAT2:p48 complex, which provides a novel mechanism by which IFN-α and IL-4 cross-regulate their signaling into the nucleus.
Collapse
Affiliation(s)
- Seol-Hee Kim
- Laboratory of Immunology, Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | | |
Collapse
|
34
|
Hurst SM, McGhie TK, Cooney JM, Jensen DJ, Gould EM, Lyall KA, Hurst RD. Blackcurrant proanthocyanidins augment IFN-gamma-induced suppression of IL-4 stimulated CCL26 secretion in alveolar epithelial cells. Mol Nutr Food Res 2010; 54 Suppl 2:S159-70. [PMID: 20229526 DOI: 10.1002/mnfr.200900297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epidemiological studies reveal that fruit consumption reduces the prevalence of airway inflammation and childhood asthma. In particular, blackcurrant polyphenolic extracts have been shown to alleviate lung inflammation. Since IL-4-stimulated eotaxin-3 (CCL26) secretion is a major factor in the continuous eosinophil recruitment observed in atopic asthma, our focus was to evaluate the effectiveness of blackcurrant polyphenolic compounds on CCL26 secretion in human alveolar epithelial cells. Our results indicate that a proanthocyanin-enriched blackcurrant extract (BC-P), but not anthocyanin-enriched blackcurrant extract suppressed both IL-4- and IL-13-stimulated CCL26 secretion in a dose-dependent manner. Furthermore pre-incubation of cells with BC-P caused a time-dependent suppression of IL-4-stimulated CCL26 secretion. Moreover, epigallocatechin (EGC), and to a lesser extent epicatechin, metabolites identified in the proanthocyanidin extract, suppressed IL-4-stimulated CCL26 secretion. EGC was also effective at reducing the cellular phosphorylated STAT-6/STAT-6 ratio. Furthermore, both BC-P and purified EGC potentiated the ability of IFN-gamma to suppress IL-4-stimulated CCL26 secretion. The progression of an allergic immune response is complex, identifying plant compounds that target specific cellular events and complement the body's own immune actions is important for the development of functional foods. Our findings support the potential for blackcurrant polyphenolic compounds to reduce eosinophil recruitment and alleviate eosinophilic-driven airway inflammation.
Collapse
Affiliation(s)
- Suzanne M Hurst
- Food Innovation portfolio, The Plant and Food Research Institute of New Zealand Ltd., Palmerston North, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
35
|
de Luca A, Bozza S, Zelante T, Zagarella S, D'Angelo C, Perruccio K, Vacca C, Carvalho A, Cunha C, Aversa F, Romani L. Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cell Mol Immunol 2010; 7:459-70. [PMID: 20835271 DOI: 10.1038/cmi.2010.43] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Innate responses combine with adaptive immunity to generate the most effective form of anti-Aspergillus immune resistance. Whereas the pivotal role of dendritic cells in determining the balance between immunopathology and protective immunity to the fungus is well established, we determined that epithelial cells (ECs) also contributes to this balance. Mechanistically, EC-mediated protection occurred through a Toll-like receptor 3/Toll/IL-1 receptor domain-containing adaptor-inducing interferon (TLR3/TRIF)-dependent pathway converging on indoleamine 2,3-dioxygenase (IDO) via non-canonical nuclear factor-κB activation. Consistent with the high susceptibility of TRIF-deficient mice to pulmonary aspergillosis, bone marrow chimeric mice with TRIF unresponsive ECs exhibited higher fungal burdens and inflammatory pathology than control mice, underexpressed the IDO-dependent T helper 1/regulatory T cell (Th1/Treg) pathway and overexpressed the Th17 pathway with massive neutrophilic inflammation in the lungs. Further studies with interferon (IFN)-γ, IDO or IL-17R unresponsive cells confirmed the dependency of immune tolerance to the fungus on the IFN-γ/IDO/Treg pathway and of immune resistance on the MyD88 pathway controlling the fungal growth. Thus, distinct immune pathways contribute to resistance and tolerance to the fungus, to which the hematopoietic/non-hematopoietic compartments contribute through distinct, yet complementary, roles.
Collapse
Affiliation(s)
- Antonella de Luca
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
White SR, Martin LD, Stern R, Laxman B, Marroquin BA. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L681-93. [PMID: 20729386 DOI: 10.1152/ajplung.00422.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation.
Collapse
Affiliation(s)
- Steven R White
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
37
|
Tengara S, Tominaga M, Kamo A, Taneda K, Negi O, Ogawa H, Takamori K. Keratinocyte-derived anosmin-1, an extracellular glycoprotein encoded by the X-linked Kallmann syndrome gene, is involved in modulation of epidermal nerve density in atopic dermatitis. J Dermatol Sci 2010; 58:64-71. [PMID: 20219326 DOI: 10.1016/j.jdermsci.2010.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 01/26/2023]
Abstract
BACKGROUND Epidermal nerve density is increased in atopic dermatitis (AD), suggesting that the hyperinnervation is partly responsible for abnormal itch perception. It is probably controlled by axonal guidance molecules produced by keratinocytes. An extracellular matrix glycoprotein anosmin-1 encoded by KAL1 has chemoattractive or chemorepulsive effects on different neuronal types. OBJECTIVE This study was performed to investigate the roles of anosmin-1 in skin innervation. METHODS Rat dorsal root ganglion (DRG) neurones were cultured in conditioned medium from control or KAL1-overexpressing cells for neurite outgrowth assay. KAL1 expression in cultured epidermal keratinocytes or human skin was examined by quantitative RT-PCR (qRT-PCR). Anosmin-1 distribution in normal and atopic skin was examined immunohistochemically. The effects of calcium concentrations and cytokines on KAL1 expression in cultured normal human epidermal keratinocytes (NHEK) were analysed by qRT-PCR. RESULTS Neurite outgrowth in cultured DRG neurones was inhibited by conditioned medium from KAL1-overexpressing cells, while it was rescued by addition of recombinant fibroblast growth factor receptor 1 for capturing anosmin-1. KAL1 transcripts were expressed in cultured keratinocytes or in normal skin. Anosmin-1 was strongly expressed in the basal cell layer of normal skin, but decreased in atopic skin, concomitant with increases of epidermal nerve fibres. KAL1 expression was downregulated during keratinocyte differentiation. The expression was also upregulated by interleukin-4 (IL-4), IL-13 or transforming growth factor (TGF)-beta1. TGF-beta1 acted synergistically with IL-13 to enhance KAL1 expression, while interferon-gamma inhibited its expression. CONCLUSION Anosmin-1 produced by epidermal keratinocytes in response to calcium concentrations or cytokines may modulate epidermal nerve density in AD.
Collapse
Affiliation(s)
- Suhandy Tengara
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Stubbs VEL, Power C, Patel KD. Regulation of eotaxin-3/CCL26 expression in human monocytic cells. Immunology 2010; 130:74-82. [PMID: 20059579 DOI: 10.1111/j.1365-2567.2009.03214.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Eotaxin-3/CCL26 is an agonist for chemokine receptor 3 (CCR3) and a natural antagonist for CCR1, CCR2 and CCR5. CCL26 expression by non-haematopoietic cells has been well documented; however, no studies to date have demonstrated CCL26 expression by leucocytes. In this study, we investigated the ability of human monocytic cells to produce CCL26 in response to cytokines. We found that interleukin-4 (IL-4) increased the expression of CCL26 messenger RNA (mRNA) and protein in U937 cells, in human monocytes and in human monocyte-derived macrophages. Tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) alone did not induce CCL26 expression, yet these pro-inflammatory cytokines synergized with IL-4 to increase CCL26 protein expression. Signal transducer and activator of transcription 6 (STAT6) was not affected by costimulation with TNF-alpha, suggesting that the synergy between IL-4 and TNF-alpha occurs at a step downstream of STAT6 activation. Co-incubation of interferon-gamma (IFN-gamma) with IL-4 had no effect on CCL26 protein release. By contrast, pretreatment with IFN-gamma decreased total STAT6 protein, blocked IL-4-mediated STAT6 phosphorylation and decreased IL-4-mediated CCL26 mRNA expression and protein release. These data show that IL-4 and pro-inflammatory cytokines such as TNF-alpha, IL-1beta and IFN-gamma regulate CCL26 synthesis in human monocytic cells, which may be important in regulating monocyte inflammatory responses.
Collapse
|
39
|
Menzies FM, Henriquez FL, Alexander J, Roberts CW. Sequential expression of macrophage anti-microbial/inflammatory and wound healing markers following innate, alternative and classical activation. Clin Exp Immunol 2010; 160:369-79. [PMID: 20059482 DOI: 10.1111/j.1365-2249.2009.04086.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The present study examines the temporal dynamics of macrophage activation marker expression in response to variations in stimulation. We demonstrate that markers can be categorized as 'early' (expressed most abundantly at 6 h post-stimulation) or 'late' (expressed at 24 h post-stimulation). Thus nos2 and p40 (IL-12/IL-23) are early markers of innate and classical activation, while dectin-1 and mrc-1 are early markers and fizz1 (found in inflammatory zone-1) and ym1 are late markers of alternative activation. Furthermore, argI is a late marker of both innate and alternative activation. The ability of interferon (IFN)-gamma to alter these activation markers was studied at both the protein level and gene level. As reported previously, IFN-gamma was able to drive macrophages towards the classical phenotype by enhancing nos2 gene expression and enzyme activity and p40 (IL-12/IL-23) gene expression in lipopolysaccharide (LPS)-stimulated macrophages. IFN-gamma antagonized alternative macrophage activation, as evident by reduced expression of dectin-1, mrc-1, fizz1 and ym1 mRNA transcripts. In addition, IFN-gamma antagonized arginase activity irrespective of whether macrophages were activated innately or alternatively. Our data explain some apparent contradictions in the literature, demonstrate temporal plasticity in macrophage activation states and define for the first time 'early' and 'late' markers associated with anti-microbial/inflammatory and wound healing responses, respectively.
Collapse
Affiliation(s)
- F M Menzies
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|
40
|
Asonuma S, Imatani A, Asano N, Oikawa T, Konishi H, Iijima K, Koike T, Ohara S, Shimosegawa T. Helicobacter pylori induces gastric mucosal intestinal metaplasia through the inhibition of interleukin-4-mediated HMG box protein Sox2 expression. Am J Physiol Gastrointest Liver Physiol 2009; 297:G312-G322. [PMID: 19520737 DOI: 10.1152/ajpgi.00518.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori is a major cause of the transdifferentiation into intestinal metaplasia that may develop gastric cancer. However, the molecular pathogenesis of this transdifferentiation is poorly understood. A SRY-related HMG box protein Sox2 is an essential transcription factor of organ development in brain, lung, and stomach. Our aim of this study was to investigate the mechanism responsible for regulation of Sox2 in host Th1-dominant response to H. pylori. Sox2 protein was immunohistochemically expressed in both human oxyntic and pyloric glands with H. pylori infection, but not in intestinal metaplasia. Western immunoblotting of gastric epithelial cell lines showed that IL-4, a Th2-related cytokine, dose dependently enhanced Sox2 expression among H. pylori infection-mediated cytokines. Small changes of Sox2 expression were observed after each treatment with IFN-gamma, IL-1beta, or TNF-alpha. IL-4-mediated Sox2 induction was suppressed by the inhibition of STAT6 activation with STAT6 RNA interference, and electrophoretic mobility shift assay indicated that activation of the Sox2 promoter by IL-4 occurred through the action of STAT6. Furthermore, H. pylori and IFN-gamma inhibited the phosphorylation of STAT6, resulting in the suppression of IL-4-mediated Sox2 expression. Immunohistochemical analyses showed significantly the suppressed STAT6 activity in H. pylori-infected human gastric mucosa. Additionally, downregulation of Sox2 by knockdown experiments led to intestinal phenotype with expressions of Cdx2 and MUC2. These results suggest that H. pylori and IFN-gamma interfere with the differentiation into oxyntic and pyloric glands by the downregulation of Sox2 on IL-4/STAT6 signaling, which may contribute to the transdifferentiation into intestinal metaplasia.
Collapse
Affiliation(s)
- Sho Asonuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Korsholm KS, Petersen RV, Agger EM, Andersen P. T-helper 1 and T-helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection. Immunology 2009; 129:75-86. [PMID: 19824919 DOI: 10.1111/j.1365-2567.2009.03164.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccine adjuvants activate the innate immune system and thus influence subsequent adaptive T-cell responses. However, little is known about the initial immune mechanisms preceding the adjuvant-induced differentiation of T-helper (Th) cells. The effect of a T-helper 1 (Th1) adjuvant, dimethyldioctadecylammonium liposomes with monophosphoryl lipid-A (DDA/MPL), and a T-helper 2 adjuvant, aluminium hydroxide [Al(OH)(3)], on early, innate chemotactic signals and inflammatory cell influx at the site of injection was therefore investigated. Injection of the adjuvants into the peritoneal cavity of mice demonstrated distinct differences in the magnitude, quality and kinetics of the response. The inflammatory response to DDA/MPL was prominent, inducing high local levels of pro-inflammatory cytokines, chemokines and a pronounced inflammatory exudate consisting of neutrophils, monocytes/macrophages and activated natural killer cells. This was in contrast to the response induced by Al(OH)(3), which, although sharing some of the early chemokine signals, was more moderate and consisted almost exclusively of neutrophils and eosinophils. Notably, Al(OH)(3) specifically induced the release of a significant amount of interleukin (IL)-5, whereas DDA/MPL induced high amounts of tumour necrosis factor-alpha (TNF-alpha), IL-1alpha and IL-6. Finally, a microarray analysis confirmed that the effect of DDA/MPL was broader with more than five times as many genes being specifically up-regulated after injection of DDA/MPL compared with Al(OH)(3). Thus, the adjuvants induced qualitatively distinct local inflammatory signals early after injection.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
42
|
Anderson VE, Nguyen Y, Weinberg JB. Effects of allergic airway disease on mouse adenovirus type 1 respiratory infection. Virology 2009; 391:25-32. [PMID: 19564030 DOI: 10.1016/j.virol.2009.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/26/2009] [Accepted: 06/02/2009] [Indexed: 12/01/2022]
Abstract
Virus infection may contribute to asthma pathogenesis. In turn, a Th2-polarized pulmonary environment may increase host susceptibility to infection. We used a cockroach antigen (CRA) model of allergic airway disease to test the hypothesis that Th2 cytokine overproduction increases susceptibility to mouse adenovirus type 1 (MAV-1). CRA sensitization led to upregulated lung expression of IL-4 and IL-13, lung cellular inflammation, and exaggerated airway mucus production. Following intranasal MAV-1 infection, lung cellular inflammation was more pronounced in CRA-sensitized mice than in unsensitized mice at 7 days post-infection but not at a later time point. CRA sensitization did not significantly suppress lung IFN-gamma expression, and lung IFN-gamma expression was upregulated in both CRA-sensitized mice and unsensitized mice over the course of MAV-1 infection. Despite CRA-induced differences in pulmonary inflammation, MAV-1 viral loads in lung and spleen and MAV-1 gene expression in the lung did not differ between CRA-sensitized and unsensitized mice. Our data therefore suggest that MAV-1 pathogenesis is not affected directly or indirectly by the Th2 polarization associated with allergic airway disease.
Collapse
|
43
|
Curran DR, Cohn L. Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am J Respir Cell Mol Biol 2009; 42:268-75. [PMID: 19520914 DOI: 10.1165/rcmb.2009-0151tr] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mucous cell metaplasia is induced in response to harmful insults and provides front-line protection to clear the airway of toxic substances and cellular debris. In chronic airway diseases mucous metaplasia persists and results in airway obstruction and contributes significantly to morbidity and mortality. Mucus hypersecretion involves increased expression of mucin genes, and increased mucin production and release. The past decade has seen significant advances in our understanding of the molecular mechanisms by which these events occur. Inflammation stimulates epidermal growth factor receptor activation and IL-13 to induce both Clara and ciliated cells to transition into goblet cells through the coordinated actions of FoxA2, TTF-1, SPDEF, and GABA(A)R. Ultimately, these steps lead to up-regulation of MUC5AC expression, and increased mucin in goblet cell granules that fuse to the plasma membrane through actions of MARCKS, SNAREs, and Munc proteins. Blockade of mucus in exacerbations of asthma and chronic obstructive pulmonary disease may affect morbidity. Development of new therapies to target mucus production and secretion are now possible given the advances in our understanding of molecular mechanisms of mucous metaplasia. We now have a greater incentive to focus on inhibition of mucus as a therapy for chronic airway diseases.
Collapse
Affiliation(s)
- David R Curran
- Section of Pulmonary and Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
44
|
Ahn HJ, Kim JY, Nam HW. IL-4 independent nuclear translocalization of STAT6 in HeLa cells by entry of Toxoplasma gondii. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47:117-24. [PMID: 19488417 DOI: 10.3347/kjp.2009.47.2.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 02/04/2023]
Abstract
Toxoplasma gondii provokes rapid and sustained nuclear translocation of the signal transducer and activator of transcription 6 (STAT6) in HeLa cells. We observed activation of STAT6 as early as 2 hr after infection with T. gondii by the nuclear translocation of fluorescence expressed from exogenously transfected pDsRed2-STAT6 plasmid and by the detection of phosphotyrosine-STAT6 in Western blot. STAT6 activation occurred only by infection with live tachyzoites but not by co-culture with killed tachyzoites or soluble T. gondii extracts. STAT6 phosphorylation was inhibited by small interfering RNA of STAT6 (siSTAT6). In view of the fact that STAT6 is a central mediator of IL-4 induced gene expression, activation of STAT6 by T. gondii infection resembles that infected host cells has been stimulated by IL-4 treatment. STAT1 was affected to increase the transcription and expression by the treatment of siSTAT6. STAT6 activation was not affected by any excess SOCS's whereas that with IL-4 was inhibited by SOCS-1 and SOCS-3. T. gondii infection induced Eotaxin-3 gene expression which was reduced by IFN-gamma. These results demonstrate that T. gondii exploits host STAT6 to take away various harmful reactions by IFN-gamma. This shows, for the first time, IL-4-like action by T. gondii infection modulates microbicidal action by IFN-gamma in infected cells.
Collapse
Affiliation(s)
- Hye-Jin Ahn
- Department of Parasitology and Catholic Institute of Parasitic Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
45
|
White SR, Martin LD, Abe MK, Marroquin BA, Stern R, Fu X. Insulin receptor substrate-1/2 mediates IL-4-induced migration of human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L164-73. [PMID: 19447894 DOI: 10.1152/ajplung.90453.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Migration of airway epithelial cells (AEC) is an integral component of airway mucosal repair after injury. The inflammatory cytokine IL-4, abundant in chronic inflammatory airways diseases such as asthma, stimulates overproduction of mucins and secretion of chemokines from AEC; these actions enhance persistent airway inflammation. The effect of IL-4 on AEC migration and repair after injury, however, is not known. We examined migration in primary human AEC differentiated in air-liquid interface culture for 3 wk. Wounds were created by mechanical abrasion and followed to closure using digital microscopy. Concurrent treatment with IL-4 up to 10 ng/ml accelerated migration significantly in fully differentiated AEC. As expected, IL-4 treatment induced phosphorylation of the IL-4 receptor-associated protein STAT (signal transducer and activator of transcription)6, a transcription factor known to mediate several IL-4-induced AEC responses. Expressing a dominant negative STAT6 cDNA delivered by lentivirus infection, however, failed to block IL-4-stimulated migration. In contrast, decreasing expression of either insulin receptor substrate (IRS)-1 or IRS-2 using a silencing hairpin RNA blocked IL-4-stimulated AEC migration completely. These data demonstrate that IL-4 can accelerate migration of differentiated AEC after injury. This reparative response does not require STAT6 activation, but rather requires IRS-1 and/or IRS-2.
Collapse
Affiliation(s)
- Steven R White
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Zhao Y, Natarajan V. Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell Signal 2009; 21:367-77. [PMID: 18996473 PMCID: PMC2660380 DOI: 10.1016/j.cellsig.2008.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 09/27/2008] [Accepted: 10/21/2008] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces diverse cellular responses, including cell proliferation, migration, and cytokine release. LPA can be generated intracellularly and extracellularly through multiple synthetic pathways by action of various enzymes, such as phospholipase A(1/2) (PLA(1/2)), phospholipase D (PLD), acylglycerol kinase (AGK), and lysophospholipase D (lysoPLD). Metabolism of LPA is regulated by a family of lipid phosphate phosphatases (LPPs). Significant amounts of LPA have been detected in various biological fluids, including serum, saliva, and bronchoalveolar lavage fluid (BALF). The most significant effects of LPA appear to be through activation of the G-protein-coupled receptors (GPCRs), termed LPA(1-6). LPA regulates gene expression through activation of several transcriptional factors, such as nuclear factor-kappaB (NF-kappaB), AP-1, and C/EBPbeta. In addition to GPCRs, cross-talk between LPA receptors and receptor tyrosine kinases (RTKs) partly regulates LPA-induced intracellular signaling and cellular responses. Airway epithelial cells participate in innate immunity through the release of cytokines, chemokines, lipid mediators, other inflammatory mediators and an increase in barrier function in response to a variety of inhaled stimuli. Expression of LPA receptors has been demonstrated in airway epithelial cells. This review summarizes our recent observations of the role of LPA/LPA-Rs in regulation of airway epithelium, especially in relation to the secretion of pro- and anti-inflammatory mediators and regulation of airway barrier function.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
47
|
Yamada A, Suzuki D, Miyazono A, Oshima K, Kamiya A, Zhao B, Takami M, Donnelly RP, Itabe H, Yamamoto M, Kimura S, Kamijo R. IFN-gamma down-regulates Secretoglobin 3A1 gene expression. Biochem Biophys Res Commun 2009; 379:964-8. [PMID: 19135978 PMCID: PMC2792195 DOI: 10.1016/j.bbrc.2008.12.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 12/30/2008] [Indexed: 11/21/2022]
Abstract
STAT1 mediates Interferon (IFN)-dependent positive and negative regulation of inflammatory gene expression in lung. In this study, we examined the effect of IFN-gamma on the expression of SCGB3A1 which is thought to play crucial roles in inflammation and epithelial cell differentiation in lung. We found that expression of SCGB3A1 was down-regulated by IFN-gamma in a time- and dose-dependent manner in the murine transformed Clara Cells (mtCC) line. IFN-gamma induced the phosphorylation of STAT1, which binds to a STAT-binding element (SBE) in the SCGB3A1 gene promoter, leading to decreased transcriptional activation of this gene.
Collapse
Affiliation(s)
- Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dai Suzuki
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Agasa Miyazono
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
- Department of Periodontology, School of Dentistry, Showa University, Ohta, Tokyo 145-8515, Japan
| | - Kumiko Oshima
- Department of Biological Chemistry, School of Pharmacy, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Akihide Kamiya
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Baohong Zhao
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Raymond P. Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Hiroyuki Itabe
- Department of Biological Chemistry, School of Pharmacy, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, School of Dentistry, Showa University, Ohta, Tokyo 145-8515, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
48
|
Poritz LS, Zhang WJ, Thompson J, Boyer M, Clark C, Koltun WA. Impaired IL-4 phosphorylation of STAT6 in EBV transformed B-cells. J Surg Res 2009; 162:290-8. [PMID: 19540524 DOI: 10.1016/j.jss.2009.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 12/16/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND The Interleukin-4 signal transducer and activator of transcription 6 (IL-4-STAT6) signaling pathway plays a pivotal role in regulation of gene transcription. We have previously identified a defective STAT6 activational phenotype in response to IL-4 in patients from our familial Inflammatory Bowel Disease registry. This has been termed Stat6(null) and Stat6(high) is the normal phenotype. The purpose of this study was to investigate the defect in Stat6 activation in Stat6(null) cells. METHODS Stat6(null) and Stat6(high) Epstein Barr virus transformed cell lines were stimulated with 10 ng/mL of IL-4 for 0, 10, 30, or 60 min and cytoplasmic and nuclear proteins harvested. Western blot for STAT6, phosphorylated STAT6 (pSTAT6), Janus Kinase (Jak)1 and Jak3 was performed. Cells were also cultured for 48 h and interferon gamma (IFNgamma) measured in the supernatant. Additional cells were cultured with 20 ng/mL of IFNgamma for 90 min or 5 ug of antibody to IFNgamma for 48 h, and then stimulated with IL-4. RESULTS There were no differences in cytoplasmic STAT6 in Stat6(null)versus Stat6(high) cells. In Stat6(high) cells, STAT6 was rapidly phosphorylated and translocated to the nucleus. In Stat6(null) cells there was minimal phosphorylation and translocation of pSTAT6 to the nucleus. Spontaneous secretion of IFNgamma by Stat6(null) cells was significantly higher than Stat6(null) cells. Addition of IFNgamma decreased pSTAT6 in Stat6(high) cells to Stat6(null) levels while blocking IFNgamma increased baseline pSTAT6 in Stat6(null) cells to levels similar to Stat6(high) cells. CONCLUSION This suggests that the spontaneously produced IFNgamma in the Stat6(null) cell lines suppresses STAT6 function and creates the Stat6(null) phenotype.
Collapse
Affiliation(s)
- Lisa S Poritz
- Department of Surgery, The Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Guo J, Lu W, Shimoda LA, Semenza GL, Georas SN. Enhanced interferon-gamma gene expression in T Cells and reduced ovalbumin-dependent lung eosinophilia in hypoxia-inducible factor-1-alpha-deficient mice. Int Arch Allergy Immunol 2009; 149:98-102. [PMID: 19127065 DOI: 10.1159/000189191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 09/03/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND There is growing evidence that hypoxia-inducible transcription factors are involved in the pathophysiology of asthma. Hypoxia-inducible factor-1alpha (HIF-1alpha) in particular controls the expression of many hypoxia regulated genes, but whether HIF-1alpha directly contributes to allergen-driven immune responses is not known. METHODS Partially HIF-1alpha-deficient mice (HIF-1alpha(+/-)) or wild-type littermate controls were used in all experiments. Spleen CD4+ T cells were stimulated with anti-CD3 plus anti-CD28 antibodies and cytokine secretion was measured in vitro. Mice were sensitized by intraperitoneal injection of ovalbumin (Ova) plus alum, and then challenged by intranasal Ova followed by bronchoalveolar lavage (BAL) and isolation of spleen cells. BAL cells were counted and the differential determined using cytospin, and splenocytes were incubated with Ova to measure recall cytokine production. RESULTS Interferon-gamma secretion was significantly higher in anti-CD3 plus anti-CD28 stimulated CD4+ T cells obtained from HIF-1alpha(+/-) mice compared to wild-type controls. HIF-1alpha(+/-) mice were protected from lung eosinophilia 72 h after allergen challenge, in association with enhanced secretion of interferon-gamma in recall responses of splenocytes. CONCLUSIONS HIF-1alpha contributes to allergic immune responses and lung eosinophilia in a mouse model of asthma.
Collapse
Affiliation(s)
- Jia Guo
- Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester 14642, NY, USA
| | | | | | | | | |
Collapse
|
50
|
IFN-gamma, IL-4 and IL-13 modulate responsiveness of human airway smooth muscle cells to IL-13. Respir Res 2008; 9:84. [PMID: 19116009 PMCID: PMC2628656 DOI: 10.1186/1465-9921-9-84] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 12/30/2008] [Indexed: 01/13/2023] Open
Abstract
Background IL-13 is a critical mediator of allergic asthma and associated airway hyperresponsiveness. IL-13 acts through a receptor complex comprised of IL-13Rα1 and IL-4Rα subunits with subsequent activation of signal transducer and activator of transcription 6 (STAT6). The IL-13Rα2 receptor may act as a decoy receptor. In human airway smooth muscle (HASM) cells, IL-13 enhances cellular proliferation, calcium responses to agonists and induces eotaxin production. We investigated the effects of pre-treatment with IL-4, IL-13 and IFN-γ on the responses of HASM cells to IL-13. Methods Cultured HASM were examined for expression of IL-13 receptor subunits using polymerase chain reaction, immunofluorescence microscopy and flow cytometry. Effects of cytokine pre-treatment on IL-13-induced cell responses were assessed by looking at STAT6 phosphorylation using Western blot, eotaxin secretion and calcium responses to histamine. Results IL-13Rα1, IL-4Rα and IL-13Rα2 subunits were expressed on HASM cells. IL-13 induced phosphorylation of STAT6 which reached a maximum by 30 minutes. Pre-treatment with IL-4, IL-13 and, to a lesser degree, IFN-γ reduced peak STAT6 phosphorylation in response to IL-13. IL-13, but not IFN-γ, pre-treatment abrogated IL-13-induced eotaxin secretion. Pre-treatment with IL-4 or IL-13 abrogated IL-13-induced augmentation of the calcium transient evoked by histamine. Cytokine pre-treatment did not affect expression of IL-13Rα1 and IL-4Rα but increased expression of IL-13Rα2. An anti-IL-13Rα2 neutralizing antibody did not prevent the cytokine pre-treatment effects on STAT6 phosphorylation. Cytokine pre-treatment increased SOCS-1, but not SOCS-3, mRNA expression which was not associated with significant increases in protein expression. Conclusion Pre-treatment with IL-4 and IL-13, but not IFN-γ, induced desensitization of the HASM cells to IL-13 as measured by eotaxin secretion and calcium transients to histamine. The mechanism of IL-4 and IL-13 induced desensitization does not appear to involve either downregulation of receptor expression or induction of the IL-13Rα2 or the SOCS proteins.
Collapse
|