1
|
Iova V, Tincu RC, Scrobota I, Tudosie MS. Pt(IV) Complexes as Anticancer Drugs and Their Relationship with Oxidative Stress. Biomedicines 2025; 13:981. [PMID: 40299672 PMCID: PMC12024748 DOI: 10.3390/biomedicines13040981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
Despite continuous research, cancer is still a leading cause of death worldwide; therefore, new methods of cancer management improvement are emerging. It is well known that in the pathophysiology of cancer, oxidative stress (OS) is a significant factor. Nevertheless, there is currently no quick or easy way to identify OS in cancer patients using blood tests. Currently, in cancer treatments, Pt(IV) complexes are preferred to Pt(II) complexes in terms of adverse effects, drug resistance, and administration methods. Intracellular reductants convert Pt(IV) complexes to their Pt(II) analogs, which are Pt compounds with anti-carcinogenic effects. Our aim was to find out if Pt(IV) complexes could be used to assess blood oxidative stress indicators and, consequently, monitor the development of cancer. In this review, we analyzed previous research using the PubMed and Google Scholar public databases to verify the potential use of Pt(IV) complexes in cancer management. We found that two main serum antioxidants, glutathione and ascorbic acid, which are easily measured using conventional methods, react favorably with Pt(IV) complexes. Our research results suggest Pt(IV) complexes as therapeutic anticancer drugs and potential diagnosis agents. However, further research must be conducted to verify this hypothesis.
Collapse
Affiliation(s)
- Vlad Iova
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (V.I.); (R.C.T.); (M.S.T.)
| | - Radu Ciprian Tincu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (V.I.); (R.C.T.); (M.S.T.)
- ICU II Toxicology, Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Ioana Scrobota
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania
| | - Mihail Silviu Tudosie
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (V.I.); (R.C.T.); (M.S.T.)
- ICU II Toxicology, Clinical Emergency Hospital, 014461 Bucharest, Romania
| |
Collapse
|
2
|
Zhang Y, Li T, Miao J, Zhang Z, Yang M, Wang Z, Yang B, Zhang J, Li H, Su Q, Guo J. Gamma-glutamyl transferase 5 overexpression in cerebrovascular endothelial cells improves brain pathology, cognition, and behavior in APP/PS1 mice. Neural Regen Res 2025; 20:533-547. [PMID: 38819065 PMCID: PMC11317949 DOI: 10.4103/nrr.nrr-d-23-01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00030/figure1/v/2024-05-28T214302Z/r/image-tiff In patients with Alzheimer's disease, gamma-glutamyl transferase 5 (GGT5) expression has been observed to be downregulated in cerebrovascular endothelial cells. However, the functional role of GGT5 in the development of Alzheimer's disease remains unclear. This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer's disease, as well as the underlying mechanism. We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer's disease (Aβ1-42-treated hCMEC/D3 and bEnd.3 cells), as well as in the APP/PS1 mouse model. Additionally, injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits. Interestingly, increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-β in the brains of APP/PS1 mice. This effect may be attributable to inhibition of the expression of β-site APP cleaving enzyme 1, which is mediated by nuclear factor-kappa B. Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer's disease pathogenesis, and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice. These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi Province, China
| | - Tian Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhina Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Mingxuan Yang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhuoran Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bo Yang
- Department of Hernia and Abdominal Wall Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiawei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Haiting Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Fenyang, Shanxi Province, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
3
|
Murawska A, Berbeć E, Latarowski K, Roman A, Migdał P. Semi-field studies on biochemical markers of honey bee workers (Apis mellifera) after exposure to pesticides and their mixtures. PLoS One 2025; 20:e0309567. [PMID: 39883617 PMCID: PMC11781695 DOI: 10.1371/journal.pone.0309567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/13/2024] [Indexed: 02/01/2025] Open
Abstract
Due to the fact that many different pesticides are used in crop production and their residues can accumulate in the environment, bees are in contact with various pesticides at the same time. Most studies on their influence on honey bees focus on single substances in concentrations higher than those found in the environment. Our study assessed the chronic effects of commonly used pesticides and their mixtures on selected biochemical markers in worker bee hemolymph. Workers developed in the hive and were provisioned with to pesticides in concentrations corresponding to residues detected in pollen, honey, and/or nectar. Colonies were exposed daily to 0.5L for 7 days by feeding a sugar syrup containing a formulation of acetamiprid (250 ppb) (insecticide), glyphosate (7200 ppb) (herbicide), and tebuconazole (147 ppb) (fungicide) administered alone, in a binary or ternary mixture. Administered alone, acetamiprid significantly decreased the level of urea in the hemolymph of worker honey bees. Glyphosate did not affect significantly the level/activity of any of the biochemical markers. Tebuconazole caused changes in the levels of most of the studied biochemical markers. We found that tebuconazole, which as a fungicide is generally considered safe for bees, may be harmful and more research is required. The impact of fungicides is a crucial element of the assessment of threats to honey bees.
Collapse
Affiliation(s)
- Agnieszka Murawska
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Ewelina Berbeć
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Krzysztof Latarowski
- Department of Human Nutrition, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Adam Roman
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
4
|
Hou AC, Hou JT, Zhou WN, Wei YJ, Ou ZH, Liu CF. Association of Serum Gamma-Glutamyltransferase with In-hospital Heart Failure in Patients with ST-segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Rev Cardiovasc Med 2025; 26:25005. [PMID: 39867197 PMCID: PMC11759973 DOI: 10.31083/rcm25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 01/28/2025] Open
Abstract
Background To explore the association between gamma-glutamyltransferase (GGT) and in-hospital heart failure (HF) in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). Methods A total of 412 patients diagnosed with STEMI and treated with primary PCI were included in our study. Univariate and multivariate logistic regression models were used to evaluate the association between GGT and the risk of in-hospital HF in STEMI patients. The receiver operating characteristic (ROC) curve was used to assess the accuracy of GGT in predicting in-hospital HF. Results The incidence of HF after STEMI increased significantly with increasing GGT tertiles (the first, second, and third tertile groups were 7.97%, 14.49%, and 18.38%, respectively; p = 0.039). Multivariate logistic regression analysis revealed that the risk of HF in the second and third GGT tertile groups was 2.51 times greater (95% CI, 1.06-5.96) and 2.77 times greater (95% CI, 1.13-6.81), respectively, than that in the first GGT tertile group. Each 1-unit increase in the lnGGT level was related to a 1.88-fold increased risk of HF (odds ratio, OR, 1.88; 95% CI, 1.19-2.96; p = 0.007). Restricted cubic splines suggested a linear relationship between GGT and in-hospital HF (p for nonlinearity = 0.158). The area under the curve was 0.607 (95% CI, 0.558-0.654; p = 0.007) when GGT was used to predict in-hospital HF, with a sensitivity of 57.14% and a specificity of 64.04%. Moreover, the incidence of HF significantly increased in-hospital death risk (OR, 7.75; 95% CI, 1.87-32.12; p = 0.005). Conclusions GGT is positively associated with in-hospital HF and is an independent risk factor for in-hospital HF in STEMI patients.
Collapse
Affiliation(s)
- An-Cheng Hou
- Department of Cardiology, Linyi People’s Hospital, Shandong Second Medical University, 276000 Linyi, Shandong, China
| | - Jian-Tong Hou
- Department of Cardiology, Linyi People’s Hospital, Shandong Second Medical University, 276000 Linyi, Shandong, China
| | - Wei-Ning Zhou
- Department of Pathology, Linyi People’s Hospital, Shandong Second Medical University, 276000 Linyi, Shandong, China
| | - Yan-Jin Wei
- Department of Cardiology, Linyi People’s Hospital, Shandong Second Medical University, 276000 Linyi, Shandong, China
| | - Zhi-Hong Ou
- Department of Cardiology, Linyi People’s Hospital, Shandong Second Medical University, 276000 Linyi, Shandong, China
| | - Cun-Fei Liu
- Department of Cardiology, Linyi People’s Hospital, Shandong Second Medical University, 276000 Linyi, Shandong, China
| |
Collapse
|
5
|
Kitsugi K, Chida T, Hanaoka T, Umemura M, Yamashita M, Ito J, Ohta K, Noritake H, Suda T, Kawata K. Elevated serum neprilysin levels in patients with chronic hepatitis C and metabolic dysfunction-associated steatotic liver disease: hepatic oxidative stress as an underlying mechanism. Mol Biol Rep 2024; 52:81. [PMID: 39722039 DOI: 10.1007/s11033-024-10152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Neprilysin (NEP) is a metalloprotease that has become a therapeutic target for the treatment of heart failure and hypertension. However, the significance of NEP in chronic liver diseases has rarely been investigated. In this study, we investigated the serum NEP levels in patients with chronic liver disease and their relationship with clinical parameters. METHODS AND RESULTS Thirty-seven patients with chronic hepatitis C (CHC) who achieved sustained virologic response (SVR) after antiviral treatment and 73 patients with metabolic dysfunction-associated steatotic liver disease (MASLD) were enrolled. Serum neprilysin levels were measured using an enzyme-linked immunosorbent assay. The median NEP levels were 2.2 ng/mL in CHC and 4.1 ng/mL in MASLD, with the latter being significantly higher. Notably, in patients with MASLD, a significant correlation was observed between NEP and gamma-glutamyltransferase (GGT) levels at baseline. In contrast, there was no significant correlation between NEP levels and progression of liver fibrosis in either group. In the MASLD group, obesity and lifestyle diseases were significantly more prevalent, and the patients exhibited significantly higher NEP levels. In patients with CHC, NEP levels significantly decreased after SVR. NEP mRNA expression in liver tissues was significantly downregulated following SVR. Furthermore, a significant correlation was observed between the degree of NEP and GGT improvement. CONCLUSIONS Elevated NEP levels were observed in both CHC and MASLD groups. Considering the association between NEP levels and obesity, lifestyle diseases, and GGT levels, this suggests that oxidative stress may be involved in the elevation of NEP levels in patients with CHC and MASLD.
Collapse
Affiliation(s)
- Kensuke Kitsugi
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
- Department of Regional Medical Care Support, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Tomohiko Hanaoka
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masahiro Umemura
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Maho Yamashita
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Jun Ito
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuyoshi Ohta
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidenao Noritake
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takafumi Suda
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuhito Kawata
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
6
|
Pálešová N, Bláhová L, Janoš T, Řiháčková K, Pindur A, Šebejová L, Čupr P. Exposure to benzotriazoles and benzothiazoles in Czech male population and its associations with biomarkers of liver function, serum lipids and oxidative stress. Int Arch Occup Environ Health 2024; 97:523-536. [PMID: 38546760 PMCID: PMC11130049 DOI: 10.1007/s00420-024-02059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Benzotriazoles and benzothiazoles (BTs) are high-production volume chemicals as well as widely distributed emerging pollutants with potential health risk. However, information about human exposure to BTs and associated health outcomes is limited. OBJECTIVE We aimed to characterise exposure to BTs among Czech men, including possible occupational exposure among firefighters, its predictors, and its associations with liver function, serum lipids and oxidative stress. METHODS 165 participants (including 110 firefighters) provided urine and blood samples that were used to quantify the urinary levels of 8 BTs (high-performance liquid chromatography-tandem mass spectrometry), and 4 liver enzymes, cholesterol, low-density lipoprotein, and 8-hydroxy-2'-deoxyguanosine. Linear regression was used to assess associations with population characteristics and biomarkers of liver function, serum lipids and oxidative stress. Regression models were adjusted for potential confounding variables and false discovery rate procedure was applied to account for multiplicity. RESULTS The BTs ranged from undetected up to 46.8 ng/mL. 2-hydroxy-benzothiazole was the most predominant compound (detection frequency 83%; median 1.95 ng/mL). 1-methyl-benzotriazole (1M-BTR) was measured in human samples for the first time, with a detection frequency 77% and median 1.75 ng/mL. Professional firefighters had lower urinary 1M-BTR compared to non-firefighters. Urinary 1M-BTR was associated with levels of γ-glutamyl transferase (β = - 17.54%; 95% CI: - 26.127, - 7.962). CONCLUSION This is the first study to investigate BT exposure in Central Europe, including potentially exposed firefighters. The findings showed a high prevalence of BTs in the study population, the relevance of 1M-BTR as a new biomarker of exposure, and an urgent need for further research into associated adverse health outcomes.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Training Centre of Fire Rescue Service, General Directorate of Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Zhang T, Yao C, Zhou X, Liu S, Qi L, Zhu S, Zhao C, Hu D, Shen W. Glutathione‑degrading enzymes in the complex landscape of tumors (Review). Int J Oncol 2024; 65:72. [PMID: 38847236 PMCID: PMC11173371 DOI: 10.3892/ijo.2024.5660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Glutathione (GSH)‑degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ‑glutamyl transpeptidase (GGT) and intracellular GSH‑specific γ‑glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH‑degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH‑degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xu Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, P.R. China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shiguo Zhu
- School of Basic Medical Sciences, Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
8
|
Iqbal H, Ilyas K, Akash MSH, Rehman K, Hussain A, Iqbal J. Real-time fluorescent monitoring of phase I xenobiotic-metabolizing enzymes. RSC Adv 2024; 14:8837-8870. [PMID: 38495994 PMCID: PMC10941266 DOI: 10.1039/d4ra00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.
Collapse
Affiliation(s)
- Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara Okara Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22044 Pakistan
| |
Collapse
|
9
|
Allam AA, Khedr MA, Elkholy SS, Yassin TAER, Fouad OA. Bile duct matrix metalloproteinase-7 expression: a new modality for diagnosis of biliary atresia. EGYPTIAN LIVER JOURNAL 2024; 14:17. [DOI: 10.1186/s43066-024-00320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Biliary atresia (BA) is an obliterative cholangiopathy of infancy that results in cholestasis and liver fibrosis. This fibrosis is due to an imbalance in extracellular matrix (ECM) breakdown and deposition. The mechanism by which the progressive injury occurs is not fully elucidated. Matrix metalloproteinases (MMPs) are involved in ECM turnover but also have non-ECM-related functions. Matrix metalloproteinase 7 (MMP7) has been suggested as a promising biomarker in diagnosing BA.
Objective
The aim of this study was to assess the hepatic expression of MMP-7 in infants with BA.
Patients and methods
The study was a retrospective-prospective case–control study that included 50 patients who were categorized into two groups, BA group (25 patients) and non-BA cholestatic patients as a control group (25 patients). Liver biochemistry, liver biopsy, histopathology, and immunohistochemical staining for primary antibody MMP-7 were performed for all studied patients.
Results
Bile duct MMP7 expression was significantly higher in infants with BA than in non-BA cholestasis (P = 0.003), While the hepatic MMP-7 intensity did not differ significantly between both groups (P > 0.05). Bile duct expression of MMP-7 had a significant positive correlation with the BA Score (P = 0.017), while hepatic MMP-7 intensity had a significant positive correlation with alanine transaminase levels (P = 0.007) and a significant negative correlation with γ glutamyl transferase in the BA group (P = 0. 038). There was no statistically significant difference among different stages of fibrosis as regards the median of the hepatic MMP-7 intensity score and MMP-7 bile duct expression in infants with BA. There was no statistically significant difference between infants with successful and failed Kasai as regard the hepatic MMP-7 intensity and its bile duct expression.
Conclusion
Bile duct expression of MMP-7 measured by immunohistochemistry is useful for the diagnosis of BA, but it is limited in predicting the stage of liver fibrosis and the outcome of Kasai portoenterostomy (KPE).
Collapse
|
10
|
Lin N, Erdos T, Louie C, Desai R, Lin N, Ayzenberg G, Venketaraman V. The Role of Glutathione in the Management of Cell-Mediated Immune Responses in Individuals with HIV. Int J Mol Sci 2024; 25:2952. [PMID: 38474196 PMCID: PMC10932396 DOI: 10.3390/ijms25052952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Human immunodeficiency virus (HIV) is a major cause of death worldwide. Without appropriate antiretroviral therapy, the infection can develop into acquired immunodeficiency syndrome (AIDS). AIDS leads to the dysregulation of cell-mediated immunity resulting in increased susceptibility to opportunistic infections and excessive amounts of inflammatory cytokines. HIV-positive individuals also demonstrate diminished glutathione (GSH) levels which allows for increased viral replication and increased pro-inflammatory cytokine release, further contributing to the high rates of mortality seen in patients with HIV. Adequate GSH supplementation has reduced inflammation and slowed the decline of CD4+ T cell counts in HIV-positive individuals. We aim to review the current literature regarding the role of GSH in cell-mediated immune responses in individuals with HIV- and AIDS-defining illnesses.
Collapse
Affiliation(s)
- Nicole Lin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Thomas Erdos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Carson Louie
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Raina Desai
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Naomi Lin
- Creighton University School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Gregory Ayzenberg
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| |
Collapse
|
11
|
Liu J, Lai S, Wu P, Wang J, Wang J, Wang J, Zhang Y. Systematic oxidative stress indices predicts prognosis in patients with urothelial carcinoma of the upper urinary tract after radical nephroureterectomy. Eur J Med Res 2023; 28:469. [PMID: 37898799 PMCID: PMC10612206 DOI: 10.1186/s40001-023-01295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/17/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Oxidative stress plays an important role in the occurrence and development of malignancy. However, the relationship between oxidative stress and upper urinary tract urothelial carcinoma (UTUC) prognosis remains elusive. This study aimed to evaluate the prognostic value of systematic oxidative stress indices as a predictor of patient outcomes in UTUC after radical nephroureterectomy. METHODS Clinical data for 483 patients with UTUC who underwent radical nephroureterectomy were analyzed. Patients were categorized according to an optimal value of systematic oxidative stress indices (SOSIs), including fibrinogen (Fib), gamma-glutamyl transpeptidase (γ-GGT), creatinine (CRE), lactate dehydrogenase (LDH) and albumin (ALB). Kaplan-Meier analyses were used to investigate associations of SOSIs with overall survival (OS) and progression-free survival (PFS). Moreover, associations between SOSIs and OS and PFS were assessed with univariate and multivariate analyses. RESULTS High values of Fib, γ-GGT, CRE, and LDH, and low values of ALB were associated with reduced OS. SOSIs status correlated with age, tumor site, surgical approach, hydronephrosis, tumor size, T stage, and lymph node status. The Kaplan-Meier survival analysis showed a significant discriminatory ability for death and progression risks in the two groups based on SOSIs. Multivariate Cox proportional hazards models showed that SOSIs were an independent prognostic indicator for OS (p = 0.007) and PFS (p = 0.021). SOSIs and clinical variables were selected to establish a nomogram for OS. The 1-, 3-, and 5-year AUC values were 0.77, 0.78, and 0.81, respectively. Calibration curves of the nomogram showed high consistencies between the predicted and observed survival probability. Decision curve analysis curves showed that the nomogram could well predict the 1-year, 3-year, and 5-year OS. CONCLUSIONS SOSIs are an independent unfavorable predictor of OS and PFS in patients diagnosed with UTUC undergoing RNU. Therefore, incorporating SOSIs into currently available clinical parameters may improve clinical decision-making.
Collapse
Affiliation(s)
- Jianyong Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Beijing Hospital Continence Center, Beijing, People's Republic of China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Pengjie Wu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Beijing Hospital Continence Center, Beijing, People's Republic of China
| | - Jiawen Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Beijing Hospital Continence Center, Beijing, People's Republic of China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China.
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Beijing Hospital Continence Center, Beijing, People's Republic of China.
| | - Jianlong Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China.
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Beijing Hospital Continence Center, Beijing, People's Republic of China.
| | - Yaoguang Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China.
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Beijing Hospital Continence Center, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Kim K, Jung H, Di Giovanna E, Jun TJ, Kim YH. Increased risk of ischemic stroke associated with elevated gamma-glutamyl transferase level in adult cancer survivors: a population-based cohort study. Sci Rep 2023; 13:16837. [PMID: 37803039 PMCID: PMC10558526 DOI: 10.1038/s41598-023-43839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Adult cancer survivors may have an increased risk of developing ischemic stroke, potentially influenced by cancer treatment-related factors and shared risk factors with stroke. However, the association between gamma-glutamyl transferase (GGT) levels and the risk of ischemic stroke in this population remains understudied. Therefore, our study aimed to examine the relationship between GGT levels and the risk of ischemic stroke using a population-based cohort of adult cancer survivors. A population-based cohort of adult cancer survivors was derived from the National Health Insurance Service-Health Screening Cohort between 2003 and 2005 who survived after diagnosis of primary cancer and participated in the biennial national health screening program between 2009 and 2010. Cox proportional hazards model adjusted for sociodemographic factors, health status and behavior, and clinical characteristics was used to investigate the association between GGT level and ischemic stroke in adult cancer survivors. Among 3095 adult cancer survivors, 80 (2.58%) incident cases of ischemic stroke occurred over a mean follow-up of 8.2 years. Compared to the lowest GGT quartile, the hazard ratios (HRs) for ischemic stroke were 1.56 (95% CI 0.75-3.26), 2.36 (95% CI 1.12-4.99), and 2.40 (95% CI 1.05-5.46) for the second, third, and fourth sex-specific quartiles, respectively (Ptrend = 0.013). No significant effect modification was observed by sex, insurance premium, and alcohol consumption. High GGT level is associated with an increased risk of ischemic stroke in adult cancer survivors independent of sex, insurance premium, and alcohol consumption.
Collapse
Affiliation(s)
- Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| | - Hyeyun Jung
- The Institute of Clinical Sciences, Imperial College London, London, UK
| | - Edvige Di Giovanna
- Department of Diagnostic and Interventional Radiology, Ammerland-Klinik, Westerstede, Lower Saxony, Germany
| | - Tae Joon Jun
- Big Data Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.
| | - Young-Hak Kim
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
13
|
Niemelä O, Bloigu A, Bloigu R, Aalto M, Laatikainen T. Associations between Liver Enzymes, Lifestyle Risk Factors and Pre-Existing Medical Conditions in a Population-Based Cross-Sectional Sample. J Clin Med 2023; 12:4276. [PMID: 37445311 DOI: 10.3390/jcm12134276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
While alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) enzymes are commonly used indicators of liver dysfunction recent studies have suggested that these may also serve as predictive biomarkers in the assessment of extrahepatic morbidity. In order to shed further light on the interactions between serum liver enzyme abnormalities, factors of lifestyle and health status we examined ALT and GGT activities in a population-based sample of 8743 adult individuals (4048 men, 4695 women from the National FINRISK 2002 Study, mean age 48.1 ± 13.1 years) with different levels of alcohol drinking, smoking, physical activity, body weight and the presence or absence of various pre-existing medical conditions. The assessments also included laboratory tests for inflammation, lipid status and fatty liver index (FLI), a proxy for fatty liver. The prevalence of ALT and GGT abnormalities were significantly influenced by alcohol use (ALT: p < 0.0005 for men; GGT: p <0.0005 for both genders), smoking (GGT: p <0.0005 for men, p =0.002 for women), adiposity (p < 0.0005 for all comparisons), physical inactivity (GGT: p <0.0005; ALT: p <0.0005 for men, p <0.05 for women) and coffee consumption (p <0.0005 for GGT in both genders; p <0.001 for ALT in men). The total sum of lifestyle risk factor scores (LRFS) influenced the occurrence of liver enzyme abnormalities in a rather linear manner. Significantly higher LRFS were observed in the subgroups of individuals with pre-existing medical conditions when compared with those having no morbidities (p <0.0005). In logistic regression analyses adjusted for the lifestyle factors, both ALT and GGT associated significantly with fatty liver, diabetes and hypertension. GGT levels also associated with coronary heart disease, angina pectoris, cardiac insufficiency, cerebrovascular disease, asthma and depression. Combinations of abnormal ALT and GGT activities significantly increased the odds for hypertension coinciding with abnormalities in biomarkers of inflammation, lipid status and FLI. The data indicates that ALT and GGT activities readily respond to unfavorable factors of lifestyle associating also with a wide array of pre-existing medical conditions. The data supports close links between both hepatic and extrahepatic morbidities and lifestyle risk factors and may open new insights on a more comprehensive use of liver enzymes in predictive algorithms for assessing mechanistically anchored disease conditions.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, 60220 Seinäjoki, Finland
| | - Aini Bloigu
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
| | - Risto Bloigu
- Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mauri Aalto
- Department of Psychiatry, Seinäjoki Central Hospital and Tampere University, 33100 Tampere, Finland
| | - Tiina Laatikainen
- Department of Public Health and Social Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
- Joint Municipal Authority for North Karelia Social and Health Services, 80210 Joensuu, Finland
| |
Collapse
|
14
|
Abstract
The medical disorders of alcoholism rank among the leading public health problems worldwide and the need for predictive and prognostic risk markers for assessing alcohol use disorders (AUD) has been widely acknowledged. Early-phase detection of problem drinking and associated tissue toxicity are important prerequisites for timely initiations of appropriate treatments and improving patient's committing to the objective of reducing drinking. Recent advances in clinical chemistry have provided novel approaches for a specific detection of heavy drinking through assays of unique ethanol metabolites, phosphatidylethanol (PEth) or ethyl glucuronide (EtG). Carbohydrate-deficient transferrin (CDT) measurements can be used to indicate severe alcohol problems. Hazardous drinking frequently manifests as heavy episodic drinking or in combinations with other unfavorable lifestyle factors, such as smoking, physical inactivity, poor diet or adiposity, which aggravate the metabolic consequences of alcohol intake in a supra-additive manner. Such interactions are also reflected in multiple disease outcomes and distinct abnormalities in biomarkers of liver function, inflammation and oxidative stress. Use of predictive biomarkers either alone or as part of specifically designed biological algorithms helps to predict both hepatic and extrahepatic morbidity in individuals with such risk factors. Novel approaches for assessing progression of fibrosis, a major determinant of prognosis in AUD, have also been made available. Predictive algorithms based on the combined use of biomarkers and clinical observations may prove to have a major impact on clinical decisions to detect AUD in early pre-symptomatic stages, stratify patients according to their substantially different disease risks and predict individual responses to treatment.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Seinäjoki, Finland.
| |
Collapse
|
15
|
Yang L, Xu Y, Dong J, Lu Y, Zhu HL, Li Z. Imaging of a novel ratio γ-glutamyl transpeptidase fluorescent probe in living cells and biopsies. Talanta 2023; 259:124504. [PMID: 37027933 DOI: 10.1016/j.talanta.2023.124504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Herein, a novel fluorescent probe, GTP, was developed for monitoring the GGT (γ-glutamyl transpeptidase) level in living cells and biopsies. It consisted of the typical recognition group γ-Glu (γ-Glutamylcysteine) and the fluorophore (E)-4-(4-aminostyryl)-1-methylpyridin-1-ium iodide. With a ratio response between the signal intensity at 560 nm and 500 nm (RI560/I500), it could be important complement for the turn-on ones. With the linear range of 0-50 U/L, the limit of detection was calculated as 0.23 μM. The detection system showed the strongest response near pH 7.4, and exhibited steady fluorescence signals for at least 48 h. With high selectivity, good anti-interference and low cytotoxicity, GTP was suitable for physiological applications. By monitoring the GGT level with the ratio values in the green and blue channels, the probe GTP could distinguish cancer cells from normal cells. Furthermore, in the mouse tissues and humanization tissue samples, the probe GTP could also recognize the tumor tissues from the normal ones.
Collapse
|
16
|
Xu L, Chen L, Zhang B, Liu Z, Liu Q, Liang H, Chen Y, Chen X, Leng C, Zhang B. Alkaline phosphatase combined with γ-glutamyl transferase is an independent predictor of prognosis of hepatocellular carcinoma patients receiving programmed death-1 inhibitors. Front Immunol 2023; 14:1115706. [PMID: 36761721 PMCID: PMC9905229 DOI: 10.3389/fimmu.2023.1115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Immunotherapy plays an increasingly critical role in the systemic treatment of HCC. This current study aimed to establish a novel prognostic predictor of Programmed death 1 (PD-1) inhibitor therapy in hepatocellular carcinoma (HCC) independent of Child-Pugh grade. Methods Our study screened patients with HCC who received PD-1 inhibitors at Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology from January 2018 to December 2020. ALG grade was determined by the patient's serum ALP and GGT levels before the initiation of PD-1 inhibitors. The endpoints of our study were overall survival (OS) and progression free survival (PFS). Follow-up ended at May 31, 2022. Results Eighty- five patients (77 with Child-Pugh grade A, 8 with Child-Pugh grade B at baseline) were enrolled according to the inclusion criteria. Patients with Child-Pugh grade A achieved longer PFS and OS than those with Child-Pugh grade B. Patients with ALG grade 3 at baseline showed worse tumor response and poorer survival, and ALG grade could stratify patients with Child-Pugh grade A into subgroups with significantly different prognosis. Conclusions ALG grade, combining ALP and GGT, is a novel and readily available prognostic marker and the predictive effect of ALG grade on patient prognosis is independent of Child-Pugh grade.
Collapse
Affiliation(s)
- Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhichen Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifa Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Xiaoping Chen, ; Chao Leng, ; Bixiang Zhang,
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Xiaoping Chen, ; Chao Leng, ; Bixiang Zhang,
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Xiaoping Chen, ; Chao Leng, ; Bixiang Zhang,
| |
Collapse
|
17
|
Kim MJ, Kim MS, Lee HB, Roh JH, Jeon JH. Relationship between the High Fatty Liver Index and Risk of Fracture. Gut Liver 2023; 17:119-129. [PMID: 35892266 PMCID: PMC9840917 DOI: 10.5009/gnl210571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background/Aims The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased rapidly as a consequence of more sedentary lifestyles and a Westernized diet. Fracture is a major clinical problem in older people, but few large-scale cohort studies have evaluated the relationship between NAFLD and fracture. Therefore, we aimed to determine whether the fatty liver index (FLI), which represents the severity of NAFLD, can predict fracture risk. Methods We analyzed the relationship between the FLI and incident fracture using multivariate Cox proportional hazards models and data for 180,519 individuals who underwent National Health check-ups in the Republic of Korea between 2009 and 2014. Results A total of 2,720 participants (1.5%) were newly diagnosed with fracture during the study period (median 4.6 years). The participants were grouped according to FLI quartiles (Q1, 0 to <5.653; Q2, 5.653 to <15.245; Q3, 15.245 to <37.199; and Q4 ≥37.199). The cumulative fracture incidence was significantly higher in the highest FLI group than in the lowest FLI group (Q4, 986 [2.2%] and Q1, 323 [0.7%]; p<0.001). The adjusted hazard ratio indicated that the highest FLI group was independently associated with a higher incidence of fracture (hazard ratio for Q4 vs Q1, 2.956; 95% confidence interval, 2.606 to 3.351; p<0.001). FLI was significantly associated with a higher incidence of fracture, independent of the baseline characteristics of the participants. Conclusions Our data imply that the higher the FLI of a Korean patient is, the higher their risk of osteoporotic fracture, independent of key confounding factors. (Gut Liver, Published online July 27, 2022).
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Min-Su Kim
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| | - Han-Byul Lee
- Department of Statistics, Kyungpook National University, Daegu, Korea
| | - Jae-Hyung Roh
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
18
|
Antihelminthic effect of thymoquinone against biliary amphistome, Gigantocotyle explanatum. Exp Parasitol 2022; 243:108421. [DOI: 10.1016/j.exppara.2022.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
|
19
|
Nguyen L, Schultz DC, Terzyan SS, Rezaei M, Songb J, Li C, You Y, Hanigan MH. Design and evaluation of novel analogs of 2-amino-4-boronobutanoic acid (ABBA) as inhibitors of human gamma-glutamyl transpeptidase. Bioorg Med Chem 2022; 73:116986. [PMID: 36208545 DOI: 10.1016/j.bmc.2022.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
Inhibitors of gamma-glutamyl transpeptidase (GGT1, aka gamma-glutamyl transferase) are needed for the treatment of cancer, cardiovascular illness and other diseases. Compounds that inhibit GGT1 have been evaluated in the clinic, but no inhibitor has successfully demonstrated specific and systemic GGT1 inhibition. All have severe side effects. L-2-amino-4‑boronobutanoic acid (l-ABBA), a glutamate analog, is the most potent GGT1 inhibitor in vitro. In this study, we have solved the crystal structure of human GGT1 (hGGT1) with ABBA bound in the active site. The structure was interrogated to identify interactions between the enzyme and the inhibitor. Based on these data, a series of novel ABBA analogs were designed and synthesized. Their inhibitory activity against the hydrolysis and transpeptidation activities of hGGT1 were determined. The lead compounds were crystalized with hGGT1 and the structures solved. The kinetic data and structures of the complexes provide new insights into the critical role of protein structure dynamics in developing compounds for inhibition of hGGT1.
Collapse
Affiliation(s)
- Luong Nguyen
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Simon S Terzyan
- Laboratory of Biomolecular Structure and Function, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Mohammad Rezaei
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Jinhua Songb
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Marie H Hanigan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
20
|
Niemelä O, Aalto M, Bloigu A, Bloigu R, Halkola AS, Laatikainen T. Alcohol Drinking Patterns and Laboratory Indices of Health: Does Type of Alcohol Preferred Make a Difference? Nutrients 2022; 14:4529. [PMID: 36364789 PMCID: PMC9658819 DOI: 10.3390/nu14214529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
Although excessive alcohol consumption is a highly prevalent public health problem the data on the associations between alcohol consumption and health outcomes in individuals preferring different types of alcoholic beverages has remained unclear. We examined the relationships between the amounts and patterns of drinking with the data on laboratory indices of liver function, lipid status and inflammation in a national population-based health survey (FINRISK). Data on health status, alcohol drinking, types of alcoholic beverages preferred, body weight, smoking, coffee consumption and physical activity were recorded from 22,432 subjects (10,626 men, 11,806 women), age range 25-74 years. The participants were divided to subgroups based on the amounts of regular alcohol intake (abstainers, moderate and heavy drinkers), patterns of drinking (binge or regular) and the type of alcoholic beverage preferred (wine, beer, cider or long drink, hard liquor or mixed). Regular drinking was found to be more typical in wine drinkers whereas the subjects preferring beer or hard liquor were more often binge-type drinkers and cigarette smokers. Alcohol use in all forms was associated with increased frequencies of abnormalities in the markers of liver function, lipid status and inflammation even at rather low levels of consumption. The highest rates of abnormalities occurred, however, in the subgroups of binge-type drinkers preferring beer or hard liquor. These results demonstrate that adverse consequences of alcohol occur even at moderate average drinking levels especially in individuals who engage in binge drinking and in those preferring beer or hard liquor. Further emphasis should be placed on such patterns of drinking in policies aimed at preventing alcohol-induced adverse health outcomes.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, 60220 Seinäjoki, Finland
| | - Mauri Aalto
- Department of Psychiatry, Seinäjoki Central Hospital, Tampere University, 33100 Tampere, Finland
| | - Aini Bloigu
- Center for Life Course Health Research, University of Oulu, 90570 Oulu, Finland
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland
| | - Anni S. Halkola
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, 60220 Seinäjoki, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), 00271 Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland
- Joint Municipal Authority for North Karelia Social and Health Services, 80210 Joensuu, Finland
| |
Collapse
|
21
|
Li L, Liu Z, Quan J, Sun J, Lu J, Zhao G. Comprehensive proteomic analysis to elucidate the anti-heat stress effects of nano-selenium in rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113736. [PMID: 35689887 DOI: 10.1016/j.ecoenv.2022.113736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Because of the continuous intensification of global warming, extreme climate fluctuations, and high-density farming, cold-water rainbow trout (Oncorhynchus mykiss) are exposed to conditions of heat stress, which has severely impacted their survival and yield. Nano-selenium (nano-Se) shows higher biological activity and lower toxicity and has emerged as an ideal and ecological Se formulation. Herein rainbow trout were fed either a basal diet (control group) or basal diet plus 5 mg/kg nano-Se (treatment group). Samples were collected before (18 °C for 9 days; CG18, Se18) and after (24 °C for 8 h; CG24, Se24) heat stress. The DIA/SWATH approach was then applied to compare changes at the proteome level. We found 223 and 269 differentially abundant proteins in the CG18-CG24 and Se18-Se24 groups, respectively, which mainly included apoptosis-, heat stress-, and lipid-related proteins. In comparison with the CG18-CG24 group, the Se18-Se24 group showed higher abundance of molecular chaperone, such as Hsp70, Hsp90a.1, Hspa8, Hsp30, DNAJA4, Dnajb1, Bag2 and Ahsa1; on nano-Se supplementation, the heat stress-induced decline in the abundance of the selenoprotein MsrB2 was partially restored. Furthermore, nano-Se supplementation downregulated the abundance of lipid-related (CYP51, EBP, DHCR7, DHCR24, and APOB) and pro-apoptotic (caspase-8 and Bad) proteins. Protein-protein interaction analyses suggested that nano-Se inhibits apoptosis by upregulating the expression of Hsp70, Hsp90a.1, Hspa8, and Dnajb1; further, Hsp70/Hspa8 and MsrB2 appear to play a synergistic role in antioxidant defense under heat stress. Overall, our findings provide novel insights into nano-Se-mediated tolerance of heat stress, demonstrating that nano-Se exerts its anti-heat stress effects in rainbow trout by promoting protein repair, enhancing recovery of antioxidant enzyme activity, and alleviating lipid metabolism and apoptosis.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
22
|
Abarikwu SO, Mgbudom-Okah CJ, Njoku RCC, Okonkwo CJ, Onuoha CC, Wokoma AFS. Gallic acid ameliorates busulfan-induced testicular toxicity and damage in mature rats. Drug Chem Toxicol 2022; 45:1881-1890. [PMID: 33730944 DOI: 10.1080/01480545.2021.1892949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Here, we studied the protective effect of gallic acid (GAL) as a potent anti-oxidant and anti-inflammatory agent against damage caused by busulfan (BUS) in the testes of adult rats. The adult Wistar rats were assigned as control, BUS: was intraperitoneally (i.p.) treated with busulfan (15 mg/kg, day 7 and 14), GAL + BUS: was co-treated with busulfan (i.p., 15 mg/kg, day 7 and 14) and orally treated (per os) with gallic acid (60 days, 20 mg/kg) and GAL: was treated with gallic acid (per os, 60 days, 20 mg/kg). The results showed that GAL co-treatment increased the numbers of spermatogonia (Type A and B), spermatocytes (primary and secondary) and round spermatids, along with the tubular diameter, epithelial height and gonado-somatic index. In addition, BUS-induced increase in 3β-hydroxysteroid dehydrogenase and γ-glutamyl transpeptidase activities were inhibited on GAL co-treatment. Similarly, BUS-induced decrease in gluthathione concentration, catalase and superoxide dismutase activities along with increase in myeloperoxidase activity and malondialdehyde concentration were significantly normalized to control values on GAL co-treatment. Busulfan-induced elimination of tubular germ cells was completely prevented by GAL. Overall, GAL may inhibit BUS-mediated spermatogenesis arrest via decreasing inflammatory-mediated oxidative stress in a rat experimental model.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | | | - Chinedu J Okonkwo
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Adaba F S Wokoma
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
23
|
Xing M, Gao M, Li J, Han P, Mei L, Zhao L. Characteristics of peripheral blood Gamma-glutamyl transferase in different liver diseases. Medicine (Baltimore) 2022; 101:e28443. [PMID: 35029891 PMCID: PMC8735790 DOI: 10.1097/md.0000000000028443] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Gamma-glutamyl transferase (GGT) is a marker of oxidative stress and cholestasis. Because of its low specificity, clinicians usually ignore its diagnostic value.To compare and analyze the clinical features of GGT in primary biliary cholangitis (PBC), drug-induced liver injury (DILI), alcoholic liver disease (ALD), and non-alcoholic fatty liver disease (NAFLD) from the perspective of different causes instead of the severity of the disease.We observed the distribution characteristics and the rate of abnormality of GGT in the above 4 diseases. The relationship between GGT and alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total serum bilirubin, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol was analyzed using Spearman correlation.The highest level of GGT was up to 1000.00 to 2000.00 U/L in PBC and DILI, and the highest level of GGT was more than 2000.00 U/L in ALD, yet the difference was not statistically significant (P > .05). The highest level of GGT was only about 200.00 U/L in NAFLD and was the lowest in 4 liver diseases. Also, GGT was positively correlated with ALP, TC in PBC and DILI. Also, in ALD, GGT was positively correlated with ALT, AST, ALP, TG, and TC. In NAFLD, GGT was positively correlated with ALT, AST, and TG.The abnormal GGT in PBC and cholestasis DILI was associated with cholestasis; in ALD, it was associated with oxidative stress and cholestasis, and in NAFLD, it was associated with oxidative stress. GGT levels had different characteristics in different liver diseases, which were closely related to the pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Mindan Xing
- Nankai University School of Medicine, No. 94 Weijin Road, Tianjin, China
| | - Min Gao
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, No. 7, Sudi South Road, Nankai District, Tianjin, China
| | - Jia Li
- Nankai University School of Medicine, No. 94 Weijin Road, Tianjin, China
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, No. 7, Sudi South Road, Nankai District, Tianjin, China
| | - Ping Han
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, No. 7, Sudi South Road, Nankai District, Tianjin, China
| | - Ling Mei
- Graduate School, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, China
| | - Lili Zhao
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, No. 7, Sudi South Road, Nankai District, Tianjin, China
| |
Collapse
|
24
|
Gao X, Li L, Luo L. Decomposition of the total effect for two mediators: A natural mediated interaction effect framework. JOURNAL OF CAUSAL INFERENCE 2022; 10:18-44. [PMID: 35633840 PMCID: PMC9139468 DOI: 10.1515/jci-2020-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mediation analysis has been used in many disciplines to explain the mechanism or process that underlies an observed relationship between an exposure variable and an outcome variable via the inclusion of mediators. Decompositions of the total effect (TE) of an exposure variable into effects characterizing mediation pathways and interactions have gained an increasing amount of interest in the last decade. In this work, we develop decompositions for scenarios where two mediators are causally sequential or non-sequential. Current developments in this area have primarily focused on either decompositions without interaction components or with interactions but assuming no causally sequential order between the mediators. We propose a new concept called natural mediated interaction (MI) effect that captures the two-way and three-way interactions for both scenarios and extends the two-way MIs in the literature. We develop a unified approach for decomposing the TE into the effects that are due to mediation only, interaction only, both mediation and interaction, neither mediation nor interaction within the counterfactual framework. Finally, we compare our proposed decomposition to an existing method in a non-sequential two-mediator scenario using simulated data, and illustrate the proposed decomposition for a sequential two-mediator scenario using a real data analysis.
Collapse
Affiliation(s)
- Xin Gao
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, 87131, USA; Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Li Li
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Li Luo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Internal Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
25
|
Sun S, Zheng S, Shen C, Dong R, Dong K, Jiang J, Yang Y, Chen G. Low gamma-glutamyl transpeptidase levels at presentation are associated with severity of liver illness and poor outcome in biliary atresia. Front Pediatr 2022; 10:956732. [PMID: 36210948 PMCID: PMC9537731 DOI: 10.3389/fped.2022.956732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the clinical features and prognosis of biliary atresia (BA) with normal or minimally elevated gamma-glutamyl transpeptidase (GGT). METHODS The clinical data of patients with BA in our hospital between 2012 and 2017 were retrospectively studied. The patients were divided into a low-GGT group (GGT ≤ 300 IU/L) and a high-GGT group (GGT > 300 IU/L) according to the preoperative GGT level. The perioperative clinical parameters, the postoperative jaundice clearance within 6 months, and the 2-year native liver survival were compared among the groups. RESULTS A total of 1,998 children were included in this study, namely, 496 in the low-GGT group and 1,502 in the high-GGT group. The ages and weights at the surgery in the low-GGT group were significantly lower than those in the high-GGT group (64.71 ± 21.35 vs. 68.64 ± 22.42 days, P = 0.001; 4.67 ± 1.03 vs. 4.89 ± 0.98 kg, P < 0.001). The levels of serum ALP, ALT, and AST in the low-GGT group were significantly higher than those in the high-GGT group before and 2 weeks after the surgery (ALP: 647.52 ± 244.10 vs. 594.14 ± 228.33 U/L, P < 0.001; ALT: 119.62 ± 97.14 vs. 96.01 ± 66.28 U/L, P < 0.001; AST: 218.00 ± 173.82 vs. 160.71 ± 96.32 U/L; P < 0.001). The INR of the low-GGT group was higher than that of the high-GGT group (1.05 ± 0.34 vs. 0.98 ± 0.20, P < 0.001), while FIB was lower than the high-GGT group (2.54 ± 0.67 vs. 2.73 ± 1.44 g/L; P = 0.006). The decreasing amplitude of TB and DB within 2 weeks after surgery in the low-GGT group was smaller than those in the high-GGT group (TB: 51.62 ± 71.22 vs. 61.67 ± 53.99 μmol/L, P = 0.003; DB: 33.22 ± 35.57 vs. 40.20 ± 35.93 μmol/L, P < 0.001). The jaundice clearance rate in the low-GGT group was significantly lower than that in the high-GGT group at 1, 3, and 6 months after surgery (17.70 vs. 26.05%; 35.17 vs. 48.58%; 38.62 vs. 54.64%, P < 0.001). In addition, the 2-year native liver survival rate in the low-GGT group was significantly lower than that of the high-GGT group (52.5 vs. 66.3%, P < 0.001 HR 1.80, 95% CI 1.38-2.33). CONCLUSION Compared to patients with high GGT, patients with normal or minimally elevated pre-operative GGT in BA were found to have poorer pre-operative liver function parameters, and post-operatively had lower jaundice clearance rates and worse 2-year native liver survival. This suggests a lower GGT at presentation in biliary atresia could be a sign of more severe liver injury.
Collapse
Affiliation(s)
- Song Sun
- Surgical Department, Children's Hospital of Fudan University, Shanghai, China
| | - Shan Zheng
- Surgical Department, Children's Hospital of Fudan University, Shanghai, China
| | - Chun Shen
- Surgical Department, Children's Hospital of Fudan University, Shanghai, China
| | - Rui Dong
- Surgical Department, Children's Hospital of Fudan University, Shanghai, China
| | - Kuiran Dong
- Surgical Department, Children's Hospital of Fudan University, Shanghai, China
| | - Jingying Jiang
- Surgical Department, Children's Hospital of Fudan University, Shanghai, China
| | - Yifan Yang
- Surgical Department, Children's Hospital of Fudan University, Shanghai, China
| | - Gong Chen
- Surgical Department, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
26
|
Reimann B, Vrijens K, Roels HA, Wang C, Cosemans C, Van Overmeire I, Nawrot TS, Plusquin M. In utero exposure to parabens and early childhood BMI z-scores - Associations between placental ethyl paraben, longitudinal BMI trajectories and cord blood metabolic biomarkers. ENVIRONMENT INTERNATIONAL 2021; 157:106845. [PMID: 34474324 PMCID: PMC8484768 DOI: 10.1016/j.envint.2021.106845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 08/20/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Parabens are used as antimicrobial preservatives in personal care products. Few studies have dealt with adverse health outcomes, transplacental transfer, and obesogenic effects of prenatal exposure to parabens. We examined the association between placental paraben levels and cord blood metabolic biomarkers, considering modulating effects of maternal pre-pregnancy BMI and underlying epigenetic mechanisms, and investigated longitudinal effects of in utero paraben exposure on early childhood trajectories of BMI z-scores. METHODS Placental concentrations of four parabens [methyl (MeP), ethyl (EtP), propyl (PrP), and butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 229 placentas of the ENVIRONAGE birth cohort. The association with cord blood metabolic biomarkers [glucose, insulin, γ-glutamyltransferase (GGT), high-density and low-density lipoprotein (HDL and LDL)] was analyzed in multiple regression models with two different sets of, a priori selected potential confounders, additionally stratified for different maternal BMI groups and assessed by causal mediation analysis. The association between placental paraben concentration and differential DNA methylation of CpGs annotated to GGT and longitudinal measurements of BMI z-scores were investigated with adjusted linear mixed models. RESULTS The geometric means of placental MeP, EtP, PrP, and BuP levels above the limit of detection (LOD) were 4.42, 1.32, 1.51, and 0.35 ng/g respectively, with only EtP showing sufficient (88%) measurements above LOD for further analyses. An interquartile ratio (IQR) increase in placental EtP was associated with an increase of 12.61 % (95% CI: 1.80 24.57) in the geometric mean of cord GGT activity, and with a decrease of -3.64 % (95% CI: -6.80 to -0.39) in the geometric mean of cord glucose. Placental EtP levels were significantly associated with hypermethylation of cg08612779 annotated to GGT7 after correcting for multiple testing (ß = 0.0017, p = 0.049). An interquartile ratio (IQR) increment in placental EtP was associated with a decrease in longitudinal BMI z-score of 0.27 points (95% CI: -0.46 to -0.088). CONCLUSION Prenatal EtP exposure may affect early childhood BMI. The association of placental EtP with cord blood GGT and glucose levels provides a starting point for further research on mechanisms of paraben-related metabolic processes in utero.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Ilse Van Overmeire
- Sciensano, Chemical and Physical Health Risks, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
27
|
Altered microbiota-host metabolic cross talk preceding neutropenic fever in patients with acute leukemia. Blood Adv 2021; 5:3937-3950. [PMID: 34478486 PMCID: PMC8945620 DOI: 10.1182/bloodadvances.2021004973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
In 2 cohorts of patients with acute leukemia, Akkermansia expansion in the gut predicted a higher risk for neutropenic fever. Metabolomics analysis suggested oxidative stress as the mediating pathway, thus offering potential targets for personalized prophylaxis.
Despite antibiotic prophylaxis, most patients with acute leukemia receiving mucotoxic chemotherapy develop neutropenic fever (NF), many cases of which remain without a documented etiology. Antibiotics disrupt the gut microbiota, with adverse clinical consequences, such as Clostridioides difficile infection. A better understanding of NF pathogenesis could inform the development of novel therapeutics without deleterious effects on the microbiota. We hypothesized that metabolites absorbed from the gut to the bloodstream modulate pyrogenic and inflammatory pathways. Longitudinal profiling of the gut microbiota in 2 cohorts of patients with acute leukemia showed that Akkermansia expansion in the gut was associated with an increased risk for NF. As a prototype mucolytic genus, Akkermansia may influence the absorption of luminal metabolites; thus, its association with NF supported our metabolomics hypothesis. Longitudinal profiling of the serum metabolome identified a signature associated with gut Akkermansia and 1 with NF. Importantly, these 2 signatures overlapped in metabolites in the γ-glutamyl cycle, suggesting oxidative stress as a mediator involved in Akkermansia-related NF. In addition, the level of gut microbial–derived indole compounds increased after Akkermansia expansion and decreased before NF, suggesting their role in mediating the anti-inflammatory effects of Akkermansia, as seen predominantly in healthy individuals. These results suggest that Akkermansia regulates microbiota-host metabolic cross talk by modulating the mucosal interface. The clinical context, including factors influencing microbiota composition, determines the type of metabolites absorbed through the gut barrier and their net effect on the host. Our findings identify novel aspects of NF pathogenesis that could be targets for precision therapeutics. This trial was registered at www.clinicaltrials.gov as #NCT03316456.
Collapse
|
28
|
Barko PC, Williams DA. Untargeted analysis of the serum metabolome in cats with exocrine pancreatic insufficiency. PLoS One 2021; 16:e0257856. [PMID: 34591942 PMCID: PMC8483406 DOI: 10.1371/journal.pone.0257856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
Exocrine pancreatic insufficiency (EPI) causes chronic digestive dysfunction in cats, but its pathogenesis and pathophysiology are poorly understood. Untargeted metabolomics is a promising analytic methodology that can reveal novel metabolic features and biomarkers of clinical disease syndromes. The purpose of this preliminary study was to use untargeted analysis of the serum metabolome to discover novel aspects of the pathobiology of EPI in cats. Serum samples were collected from 5 cats with EPI and 8 healthy controls. The diagnosis of EPI was confirmed by measurement of subnormal serum feline trypsin-like immunoreactivity (fTLI). Untargeted quantification of serum metabolite utilized ultra-high-performance liquid chromatography-tandem mass spectroscopy. Cats with EPI had significantly increased serum quantities of long-chain fatty acids, polyunsaturated fatty acids, mevalonate pathway intermediates, and endocannabinoids compared with healthy controls. Diacylglycerols, phosphatidylethanolamines, amino acid derivatives, and microbial metabolites were significantly decreased in cats with EPI compared to healthy controls. Diacyclglycerols and amino acid metabolites were positively correlated, and sphingolipids and long-chain fatty acids were negatively correlated with serum fTLI, respectively. These results suggest that EPI in cats is associated with increased lipolysis of peripheral adipose stores, dysfunction of the mevalonate pathway, and altered amino acid metabolism. Differences in microbial metabolites indicate that feline EPI is also associated with enteric microbial dysbiosis. Targeted studies of the metabolome of cats with EPI are warranted to further elucidate the mechanisms of these metabolic derangements and their influence on the pathogenesis and pathophysiology of EPI in cats.
Collapse
Affiliation(s)
- Patrick C. Barko
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - David A. Williams
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
29
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, Wu C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021; 277:121110. [PMID: 34482088 DOI: 10.1016/j.biomaterials.2021.121110] [Citation(s) in RCA: 562] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.
Collapse
Affiliation(s)
- Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
Cui K, He L, Zhao Y, Mu W, Lin J, Liu F. Comparative Analysis of Botrytis cinerea in Response to the Microbial Secondary Metabolite Benzothiazole Using iTRAQ-Based Quantitative Proteomics. PHYTOPATHOLOGY 2021; 111:1313-1326. [PMID: 33325724 DOI: 10.1094/phyto-11-20-0503-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benzothiazole is a microbial volatile compound with strong antifungal activity against the phytopathogenic fungus Botrytis cinerea, but its mode of action against fungi remains largely unknown. Understanding the molecular mechanisms underlying its activity could aid the design and synthesis of similar compounds against pathogenic fungi. Based on the results of morphological and antifungal activity assays, B. cinerea was exposed to 2.5 µl/liter of benzothiazole for 12, 24, and 48 h, and an isobaric tags for relative and absolute quantitation-based quantitative proteomic analysis showed that 378 out of 5,110 identified proteins were differentially expressed proteins (DEPs). The majority of these DEPs were associated with carbohydrate metabolism, oxidation reduction processes, and energy production. Further analysis showed that benzothiazole inhibited mitochondrial membrane organization and decreased the mitochondrial membrane potential of B. cinerea. In addition, the key enzymes of the glyoxylate cycle were downregulated after benzothiazole treatment, and a biochemical analysis indicated that inhibition of the glyoxylate cycle by benzothiazole blocked nutrient availability and interfered with adenosine triphosphate generation. This study provides markers for future research of the molecular responses of B. cinerea to benzothiazole stress.
Collapse
Affiliation(s)
- Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Yunhe Zhao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| |
Collapse
|
31
|
A connexin/ifi30 pathway bridges HSCs with their niche to dampen oxidative stress. Nat Commun 2021; 12:4484. [PMID: 34301940 PMCID: PMC8302694 DOI: 10.1038/s41467-021-24831-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/10/2021] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) represent a by-product of metabolism and their excess is toxic for hematopoietic stem and progenitor cells (HSPCs). During embryogenesis, a small number of HSPCs are produced from the hemogenic endothelium, before they colonize a transient organ where they expand, for example the fetal liver in mammals. In this study, we use zebrafish to understand the molecular mechanisms that are important in the caudal hematopoietic tissue (equivalent to the mammalian fetal liver) to promote HSPC expansion. High levels of ROS are deleterious for HSPCs in this niche, however this is rescued by addition of antioxidants. We show that Cx41.8 is important to lower ROS levels in HSPCs. We also demonstrate a new role for ifi30, known to be involved in the immune response. In the hematopoietic niche, Ifi30 can recycle oxidized glutathione to allow HSPCs to dampen their levels of ROS, a role that could be conserved in human fetal liver. Reactive oxygen species (ROS) are metabolic by-products which in excess can be toxic for hematopoietic stem and progenitor cells (HSPCs). Here the authors show that toxic ROS are transferred by expanding HSPCs to the zebrafish developmental niche via connexin Cx41.8, where Ifi30 promotes their detoxification.
Collapse
|
32
|
Hu Y, Yu L, Fan H, Huang G, Wu Q, Nie Y, Liu S, Yan L, Wei F. Genomic Signatures of Coevolution between Nonmodel Mammals and Parasitic Roundworms. Mol Biol Evol 2021; 38:531-544. [PMID: 32960966 PMCID: PMC7826172 DOI: 10.1093/molbev/msaa243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antagonistic coevolution between host and parasite drives species evolution. However, most of the studies only focus on parasitism adaptation and do not explore the coevolution mechanisms from the perspective of both host and parasite. Here, through the de novo sequencing and assembly of the genomes of giant panda roundworm, red panda roundworm, and lion roundworm parasitic on tiger, we investigated the genomic mechanisms of coevolution between nonmodel mammals and their parasitic roundworms and those of roundworm parasitism in general. The genome-wide phylogeny revealed that these parasitic roundworms have not phylogenetically coevolved with their hosts. The CTSZ and prolyl 4-hydroxylase subunit beta (P4HB) immunoregulatory proteins played a central role in protein interaction between mammals and parasitic roundworms. The gene tree comparison identified that seven pairs of interactive proteins had consistent phylogenetic topology, suggesting their coevolution during host–parasite interaction. These coevolutionary proteins were particularly relevant to immune response. In addition, we found that the roundworms of both pandas exhibited higher proportions of metallopeptidase genes, and some positively selected genes were highly related to their larvae’s fast development. Our findings provide novel insights into the genetic mechanisms of coevolution between nonmodel mammals and parasites and offer the valuable genomic resources for scientific ascariasis prevention in both pandas.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Lijun Yu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yonggang Nie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Shuai Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Yan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
33
|
Takeuchi I, Kawamata R, Makino K. Effects of GGsTop ® on Collagen and Glutathione in the Oral Mucosa Using a Rat Model of 5-Fluorouracil-Induced Oral Mucositis. In Vivo 2021; 35:175-180. [PMID: 33402464 DOI: 10.21873/invivo.12246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM To evaluate the usefulness of GGsTop® for oral mucositis, a quantitative study focusing on oral mucosal tissues is necessary. In this study, we aimed to quantify collagen and glutathione using a rat model of 5-fluorouracil-induced oral mucositis. MATERIALS AND METHODS Changes in ulcer area and erythrocyte count were measured to confirm the usefulness of GGsTop® for oral mucositis. The effect of GGsTop on collagen was evaluated by observing oral mucosal tissue sections and measuring the collagen concentration in the tissues. The total glutathione concentration and the oxidized glutathione concentration were measured, and the concentration of the reduced form was calculated. RESULTS GGsTop® shortened the treatment period for oral mucositis without affecting the white blood cell count. In addition, GGsTop® promoted collagen production and alleviated oxidative stress conditions. CONCLUSION GGsTop affects collagen and glutathione in the treatment of oral mucositis.
Collapse
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.,Center for Drug Delivery Research, Tokyo University of Science, Chiba, Japan
| | - Riko Kawamata
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan; .,Center for Drug Delivery Research, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
34
|
Wang H, Li L, Zhang S. Non-linear relationship between gamma-glutamyl transferase and type 2 diabetes mellitus risk: secondary analysis of a prospective cohort study. J Int Med Res 2021; 48:300060520937911. [PMID: 32662704 PMCID: PMC7361500 DOI: 10.1177/0300060520937911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the association between gamma-glutamyl transferase (GGT) and type 2 diabetes mellitus (T2DM) risk. METHODS This was a secondary analysis based on a publicly available DRYAD dataset that included 15 444 study participants that received medical examinations at a single centre in Japan between 2004 and 2015. Crude, minimally-adjusted and fully-adjusted regression models were used to evaluate the relationship between GGT levels and T2DM risk. RESULTS The study participants (mean ± SD age of 43.72 ± 8.90 years; 8415 of 15 444 [54.49%] were male) were followed-up for a median of 1968 days (5.39 years). After adjusting for potential covariates, a non-linear relationship between the baseline GGT level and T2DM incidence was observed. The inflection point for T2DM risk was 10 IU/l GGT; below this point, the T2DM incidence increased by 1.18-fold per unit change in GGT. Above this point, the association between GGT and the incidence rate of T2DM became nonsignificant. CONCLUSION Baseline GGT exhibited a non-linear association with T2DM incidence. Elevated GGT levels should be incorporated into routine screening for individuals at high risk of T2DM, allowing for early intervention targeting GGT to potentially reduce T2DM-related morbidity.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province, China
| | - Lixia Li
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province, China
| | - Shouyan Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province, China
| |
Collapse
|
35
|
Raj Rai S, Bhattacharyya C, Sarkar A, Chakraborty S, Sircar E, Dutta S, Sengupta R. Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021. [DOI: 10.1002/slct.202100773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sristi Raj Rai
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | | | - Anwita Sarkar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Surupa Chakraborty
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Esha Sircar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| |
Collapse
|
36
|
Park H, Lee E, Kim Y, Jung HY, Kim KM, Kwon O. Metabolic Profiling Analysis Reveals the Potential Contribution of Barley Sprouts against Oxidative Stress and Related Liver Cell Damage in Habitual Alcohol Drinkers. Antioxidants (Basel) 2021; 10:antiox10030459. [PMID: 33804285 PMCID: PMC8000388 DOI: 10.3390/antiox10030459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic excessive alcohol consumption is associated with multiple liver defects, such as steatosis and cirrhosis, mainly attributable to excessive reactive oxygen species (ROS) production. Barley sprouts (Hordeum vulgare L.) contain high levels of polyphenols that may serve as potential antioxidants. This study aimed to investigate whether barley sprouts extract powder (BSE) relieves alcohol-induced oxidative stress and related hepatic damages in habitual alcohol drinkers with fatty liver. In a 12-week randomized controlled trial with two arms (placebo or 480 mg/day BSE; n = 76), we measured clinical markers and metabolites at the baseline and endpoint to understand the complex molecular mechanisms. BSE supplementation reduced the magnitude of ROS generation and lipid peroxidation and improved the glutathione antioxidant system. Subsequent metabolomic analysis identified alterations in glutathione metabolism, amino acid metabolism, and fatty acid synthesis pathways, confirming the role of BSE in glutathione-related lipid metabolism. Finally, the unsupervised machine learning algorithm indicated that subjects with lower glutathione reductase at the baseline were responders for liver fat content, and those with higher fatigue and lipid oxidation were responders for γ-glutamyl transferase. These findings suggest that BSE administration may protect against hepatic injury by reducing oxidative stress and changing the metabolism in habitual alcohol drinkers with fatty liver.
Collapse
Affiliation(s)
- Hyerin Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (H.P.); (Y.K.); (H.Y.J.)
| | - Eunok Lee
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Yunsoo Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (H.P.); (Y.K.); (H.Y.J.)
| | - Hye Yoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (H.P.); (Y.K.); (H.Y.J.)
| | - Kwang-Min Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 16449, Korea;
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (H.P.); (Y.K.); (H.Y.J.)
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: ; Tel./Fax: +82-2-3277-6860
| |
Collapse
|
37
|
Evaluation of 99mTc-labeled glutathione as a colon cancer targeting probe. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Bjørklund G, Doşa MD, Maes M, Dadar M, Frye RE, Peana M, Chirumbolo S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol Res 2021; 166:105437. [PMID: 33493659 DOI: 10.1016/j.phrs.2021.105437] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
This paper reviews the potential role of glutathione (GSH) in autism spectrum disorder (ASD). GSH plays a key role in the detoxification of xenobiotics and maintenance of balance in intracellular redox pathways. Recent data showed that imbalances in the GSH redox system are an important factor in the pathophysiology of ASD. Furthermore, ASD is accompanied by decreased concentrations of reduced GSH in part caused by oxidation of GSH into glutathione disulfide (GSSG). GSSG can react with protein sulfhydryl (SH) groups, thereby causing proteotoxic stress and other abnormalities in SH-containing enzymes in the brain and blood. Moreover, alterations in the GSH metabolism via its effects on redox-independent mechanisms are other processes associated with the pathophysiology of ASD. GSH-related regulation of glutamate receptors such as the N-methyl-D-aspartate receptor can contribute to glutamate excitotoxicity. Synergistic and antagonistic interactions between glutamate and GSH can result in neuronal dysfunction. These interactions can involve transcription factors of the immune pathway, such as activator protein 1 and nuclear factor (NF)-κB, thereby interacting with neuroinflammatory mechanisms, ultimately leading to neuronal damage. Neuronal apoptosis and mitochondrial dysfunction are recently outlined as significant factors linking GSH impairments with the pathophysiology of ASD. Moreover, GSH regulates the methylation of DNA and modulates epigenetics. Existing data support a protective role of the GSH system in ASD development. Future research should focus on the effects of GSH redox signaling in ASD and should explore new therapeutic approaches by targeting the GSH system.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University of Constanta, Campus, 900470, Constanta, Romania.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Richard E Frye
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
39
|
Abou-Zeid SM, Ahmed AI, Awad A, Mohammed WA, Metwally MMM, Almeer R, Abdel-Daim MM, Khalil SR. Moringa oleifera ethanolic extract attenuates tilmicosin-induced renal damage in male rats via suppression of oxidative stress, inflammatory injury, and intermediate filament proteins mRNA expression. Biomed Pharmacother 2021; 133:110997. [PMID: 33197759 DOI: 10.1016/j.biopha.2020.110997] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
Tilmicosin (Til) is a popular macrolide antibiotic, widely used in veterinary practice. The present study was designed to address the efficacy of Moringa oleifera ethanolic extract (MOE) in protecting against Tilmicosin (Til) - induced nephrotoxicity in Sprague Dawley rats. Animals were treated once with Til (75 mg/kg bw, subcutaneously), and/or MOE for 7 days (400 or 800 mg/kg bw, by oral gavage). Til-treatment was associated with significantly increased serum levels of creatinine, urea, sodium, potassium and GGT activity, as well as decreased total protein and albumin concentrations. Renal tissue hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were elevated, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes were diminished. The levels of renal tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and the mRNA expression of intermediate filament protein encoding genes (desmin, nestin and vimentin) in the kidney were up- regulated with histopathological alterations in renal glomeruli, tubules and interstitial tissue. These toxic effects were markedly ameliorated by co-treatment of MOE with Til, in a dose dependent manner. Taken together, these results indicate that MO at 800 mg/kg protects against Til-induced renal injury, likely by its potent antioxidant and anti-inflammatory properties, which make it suitable to be used as a protective supplement with Til therapy.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt.
| | - Amany I Ahmed
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Wafaa A Mohammed
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Mohamed M M Metwally
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| |
Collapse
|
40
|
Luo D, Li H, Hu J, Zhang M, Zhang S, Wu L, Han B. Development and Validation of Nomograms Based on Gamma-Glutamyl Transpeptidase to Platelet Ratio for Hepatocellular Carcinoma Patients Reveal Novel Prognostic Value and the Ratio Is Negatively Correlated With P38MAPK Expression. Front Oncol 2020; 10:548744. [PMID: 33344225 PMCID: PMC7744698 DOI: 10.3389/fonc.2020.548744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Early prediction of recurrence and death risks is significant to the treatment of hepatocellular carcinoma (HCC) patients. We aimed to develop and validate prognosis nomogram models based on the gamma-glutamyl transpeptidase (GGT)-to-platelet (PLT) ratio (GPR) for HCC and to explore the relationship between the GPR and inflammation-related signaling pathways. Methods All data were obtained from 2000 to 2012 in the Affiliated Hospital of Qingdao University. In the training cohort, factors included in the nomograms were determined by univariate and multivariate analyses. In the training and validation cohorts, the concordance index (C-index) and calibration curves were used to assess predictive accuracy, and receiver operating characteristic curves were used to assess discriminative ability. Clinical utility was evaluated using decision curve analysis. Moreover, improvement of the predictive accuracy of the nomograms was evaluated by calculating the decision curve analysis, the integrated discrimination improvement, and the net reclassification improvement. Finally, the relationship between the GPR and inflammation-related signaling pathways was evaluated using the independent-samples t-test. Results A larger tumor size and higher GPR were common independent risk factors for both disease-free survival (DFS) and overall survival (OS) in HCC (P < 0.05). Good agreement between our nomogram models' predictions and actual observations was detected by the C-index and calibration curves. Our nomogram models showed significantly better performance in predicting the HCC prognosis compared to other models (P < 0.05). Online webserver and scoring system tables were built based on the proposed nomogram for convenient clinical use. Notably, including the GPR greatly improved the predictive ability of our nomogram models (P < 0.05). In the validation cohort, p38 mitogen-activated protein kinase (P38MAPK) expression was significantly negatively correlated with the GPR (P < 0.01) and GGT (P = 0.039), but was not correlated with PLT levels (P = 0.063). And we found that P38MAPK can regulate the expression of GGT by quantitative real-time PCR and Western blotting experiments. Conclusions The dynamic nomogram based on the GPR provides accurate and effective prognostic predictions for HCC, and P38MAPK-GGT may be a suitable therapeutic target to improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Dingan Luo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Hu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Buinitskaya Y, Gurinovich R, Wlodaver CG, Kastsiuchenka S. Centrality of G6PD in COVID-19: The Biochemical Rationale and Clinical Implications. Front Med (Lausanne) 2020; 7:584112. [PMID: 33195336 PMCID: PMC7643021 DOI: 10.3389/fmed.2020.584112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: COVID-19 is a novel and devastating disease. Its manifestations vary from asymptomatic to lethal. Moreover, mortality rates differ based on underlying health conditions and ethnicity. We investigated the biochemical rationale behind these observations using machine reasoning by the sci.AI system (https://sci.ai/). Facts were extracted and linked from publications available in nlm.nih.gov and Europe PMC to form the dataset which was validated by medical experts. Results: Based on the analysis of experimental and clinical data, we synthesized detailed biochemical pathways of COVID-19 pathogenesis which were used to explain epidemiological and clinical observations. Clinical manifestations and biomarkers are highlighted to monitor the course of COVID-19 and navigate treatment. As depicted in the Graphical Abstract, SARS-CoV-2 triggers a pro-oxidant (PO) response leading to the production of reactive oxygen species (ROS) as a normal innate defense. However, SARS-CoV-2's unique interference with the antioxidant (AO) system, through suppression of nitric oxide (NO) production in the renin- angiotensin-aldosterone system (RAAS), leads to an excessive inflammatory PO response. The excessive PO response becomes critical in cohorts with a compromised AO system such as patients with glucose-6-phosphate dehydrogenase deficiency (G6PDd) where NO and glutathione (GSH) mechanisms are impaired. G6PDd develops in patients with metabolic syndrome. It is mediated by aldosterone (Ald) which also increases specifically in COVID-19. Conclusion: G6PD is essential for an adequate immune response. Both G6PDd and SARS-CoV-2 compromise the AO system through the same pathways rendering G6PDd the Achilles' heel for COVID-19. Thus, the evolutionary antimalarial advantage of the G6PDd cohort can be a disadvantage against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Clifford G Wlodaver
- Oklahoma University Health Sciences Center, Oklahoma City, OK, United States
| | - Siarhei Kastsiuchenka
- Anesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
42
|
Bjørklund G, Peana M, Maes M, Dadar M, Severin B. The glutathione system in Parkinson's disease and its progression. Neurosci Biobehav Rev 2020; 120:470-478. [PMID: 33068556 DOI: 10.1016/j.neubiorev.2020.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Redox dysfunctions and neuro-oxidative stress play a major role in the pathophysiology and progression of Parkinson's disease (PD). Glutathione (GSH) and the reduced/oxidized glutathione (GSH/GSSG) ratio are lowered in oxidative stress conditions and may lead to increased oxidative toxicity. GSH is involved not only in neuro-immune and neuro-oxidative processes, including thiol redox signaling, but also in cell proliferation and differentiation and in the regulation of cell death, including apoptotic pathways. Lowered GSH metabolism and a low GSH/GSSG ratio following oxidative stress are associated with mitochondrial dysfunctions and constitute a critical factor in the neuroinflammatory and neurodegenerative processes accompanying PD. This review provides indirect evidence that GSH redox signaling is associated with the pathophysiology of PD. Nevertheless, it has not been delineated whether GSH redox imbalances are a causative factor in PD or whether PD-associated pathways cause the GSH redox imbalances in PD. The results show that antioxidant approaches, including neuroprotective and anti-neuroinflammatory agents, which neutralize reactive oxygen species, may have therapeutic efficacy in the treatment of PD and its progression.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Beatrice Severin
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
43
|
Corti A, Bonetti J, Dominici S, Piaggi S, Fierabracci V, Foddis R, Pompella A. Induction of Gamma-Glutamyltransferase Activity and Consequent Pro-oxidant Reactions in Human Macrophages Exposed to Crocidolite Asbestos. Toxicol Sci 2020; 177:476-482. [PMID: 31388672 DOI: 10.1093/toxsci/kfz175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Asbestos is the main causative agent of malignant pleural mesothelioma. The variety known as crocidolite (blue asbestos) owns the highest pathogenic potential, due to the dimensions of its fibers as well as to its content of iron. The latter can in fact react with macrophage-derived hydrogen peroxide in the so called Fenton reaction, giving rise to highly reactive and mutagenic hydroxyl radical. On the other hand, hydroxyl radical can as well originate after thiol-dependent reduction of iron, a process capable of starting its redox cycling. Previous studies showed that glutathione (GSH) is one such thiol, and that cellular gamma-glutamyltransferase (GGT) can efficiently potentiate GSH-dependent iron redox cycling and consequent oxidative stress. As GGT is expressed in macrophages and is released upon their activation, the present study was aimed at verifying the hypothesis that GSH/GGT-dependent redox reactions may participate in the oxidative stress following the activation of macrophages induced by crocidolite asbestos. Experiments in acellular systems confirmed that GGT-mediated metabolism of GSH can potentiate crocidolite-dependent production of superoxide anion, through the production of highly reactive dipeptide thiol cysteinyl-glycine. Cultured THP-1 macrophagic cells, as well as isolated monocytes obtained from healthy donors and differentiated to macrophages in vitro, were investigated as to their expression of GGT and the effects of exposure to crocidolite. The results show that crocidolite asbestos at subtoxic concentrations (50-250 ng/1000 cells) can upregulate GGT expression, which raises the possibility that macrophage-initiated, GSH/GGT-dependent pro-oxidant reactions may participate in the pathogenesis of tissue damage and inflammation consequent to crocidolite intoxication.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa 56126, Italy
| | | | - Silvia Dominici
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa 56126, Italy
| | - Simona Piaggi
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa 56126, Italy
| | - Vanna Fierabracci
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa 56126, Italy
| | - Rudy Foddis
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa 56126, Italy
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa 56126, Italy
| |
Collapse
|
44
|
Abarikwu SO, Mgbudom-Okah CJ, Onuah CL. The protective effect of rutin against busulfan-induced testicular damage in adult rats. Drug Chem Toxicol 2020; 45:1035-1043. [PMID: 32757678 DOI: 10.1080/01480545.2020.1803905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Here, we studied the protective effect of rutin (RUT) against testicular damage caused by busulfan (BUS) in rats. Adult male Wistar rats were intraperitoneally injected with BUS (4 mg/kg body weight at day 7 and 14), and then treated with RUT (30 mg/kg body weight) by gavage thrice weekly for 60 days. The results showed that BUS-induced increase in 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly decreased by RUT, whereas 17β-HSD activity and plasma testosterone concentration remained unaffected (p > 0.05). It was also observed that RUT inhibited BUS-induced increase in nitrite concentrations and myeloperoxidase enzyme activities in the plasma and testes (p < 0.05). Similarly, BUS-induced decrease in glutathione and increase in malondialdehyde concentrations in the testes were significantly normalized to control values by RUT. Finally, RUT administration showed some tendency to improve the architecture of the seminiferous epithelium of the rat's testes after BUS treatment. Overall, RUT inhibited BUS-induced oxidative damage and inflammation in the testis of an experimental rat model.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Chigozie L Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
45
|
Dalle-Donne I, Garavaglia ML, Colombo G, Astori E, Lionetti MC, La Porta CAM, Santucci A, Rossi R, Giustarini D, Milzani A. Cigarette smoke and glutathione: Focus on in vitro cell models. Toxicol In Vitro 2020; 65:104818. [PMID: 32135238 DOI: 10.1016/j.tiv.2020.104818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
Abstract
Cigarette smoke (CS) is one of the most important preventable risk factors for the development of respiratory diseases, cardiovascular diseases, stroke, and various types of cancer. Due to its high intracellular concentration and central role in maintaining the cellular redox state, glutathione (GSH) is one of the key players in several enzymatic and non-enzymatic reactions necessary for protecting cells against CS-induced oxidative stress. A plethora of in vitro cell models have been used over the years to assess the effects of CS on intracellular GSH and its disulphide forms, i.e. glutathione disulphide (GSSG) and S-glutathionylated proteins. In this review, we described the effects of cell exposure to CS on cellular GSH and formation of its oxidized forms and adducts (GSH-conjugates). We also discussed the limitations and relevance of in vitro cell models of exposure to CS and critically assessed the congruence between smokers and in vitro cell models. What emerges clearly is that results obtained in vitro should be interpreted with extreme caution, bearing in mind the limitations of the specific cell model used. Despite this, in vitro cell models remain important tools in the assessment of CS-induced oxidative damage.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy.
| | - Maria L Garavaglia
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Maria C Lionetti
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| |
Collapse
|
46
|
Huang J, Pu K. Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew Chem Int Ed Engl 2020; 59:11717-11731. [PMID: 32134156 DOI: 10.1002/anie.202001783] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 01/01/2023]
Abstract
Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650-900 nm, conventional optical imaging often has a poor signal-to-background ratio and shallow penetration depth, which limits its ability in deep-tissue in vivo imaging. Second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging modalities mitigate these issues by their respective advantages of minimized light scattering, eliminated external excitation, and ultrasound detection. To enable disease detection, activatable molecular probes (AMPs) with the ability to change their second near-infrared fluorescence, chemiluminescence, or photoacoustic signals in response to a biomarker have been developed. This Minireview summarizes the molecular design strategies, sensing mechanisms, and imaging applications of AMPs. The potential challenges and perspectives of AMPs in deep-tissue imaging are also discussed.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
47
|
Huang J, Pu K. Activatable Molecular Probes for Second Near‐Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001783] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
48
|
Cysteine becomes conditionally essential during hypobaric hypoxia and regulates adaptive neuro-physiological responses through CBS/H 2S pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165769. [PMID: 32184133 DOI: 10.1016/j.bbadis.2020.165769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/02/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Brain is well known for its disproportionate oxygen consumption and high energy-budget for optimal functioning. The decrease in oxygen supply to brain, thus, necessitates rapid activation of adaptive pathways - the absence of which manifest into vivid pathological conditions. Amongst these, oxygen sensing in glio-vascular milieu and H2S-dependent compensatory increase in cerebral blood flow (CBF) is a major adaptive response. We had recently demonstrated that the levels of H2S were significantly decreased during chronic hypobaric hypoxia (HH)-induced neuro-pathological effects. The mechanistic basis of this phenomenon, however, remained to be deciphered. We, here, describe experimental evidence for marked limitation of cysteine during HH - both in animal model as well as human volunteers ascending to high altitude. We show that the preservation of brain cysteine level, employing cysteine pro-drug (N-acetyl-L-cysteine, NAC), markedly curtailed effects of HH - not only on endogenous H2S levels but also, impairment of spatial reference memory in our animal model. We, further, present multiple lines of experimental evidence that the limitation of cysteine was causally governed by physiological propensity of brain to utilize cysteine, in cystathionine beta synthase (CBS)-dependent manner, past its endogenous replenishment potential. Notably, decrease in the levels of brain cysteine manifested despite positive effect (up-regulation) of HH on endogenous cysteine maintenance pathways and thus, qualifying cysteine as a conditionally essential nutrient (CEN) during HH. In brief, our data supports an adaptive, physiological role of CBS-mediated cysteine-utilization pathway - activated to increase endogenous levels of H2S - for optimal responses of brain to hypobaric hypoxia.
Collapse
|
49
|
Normal Gamma Glutamyl Transferase Levels at Presentation Predict Poor Outcome in Biliary Atresia. J Pediatr Gastroenterol Nutr 2020; 70:350-355. [PMID: 31738295 DOI: 10.1097/mpg.0000000000002563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Gamma-glutamyl transferase levels (GGT) are typically elevated in biliary atresia (BA), but normal GGT levels have been observed. This cohort of "normal GGT" BA has neither been described nor has the prognostic value of GGT level on outcomes in BA. We aimed to describe outcomes of a single-centre Australian cohort of infants with BA and assess the impact of GGT level at presentation on outcomes in BA. METHODS Infants diagnosed with BA between 1991 and 2017 were retrospectively analysed. Outcomes were defined as survival with native liver, liver transplantation (LT), and death. Patients were categorized into normal (<200I U/L) or high GGT groups based on a mean of 3 consecutive GGT values done before Kasai portoenterostomy (KPE). Baseline parameters, age at surgery, clearance of jaundice (COJ), and outcomes were compared between the 2 groups. RESULTS One hundred thirteen infants underwent KPE at median 61 (30-149) days. At a median follow-up of 14.2 (0.9-26.3) years, 35% (39/113) patients were surviving with native liver, 55% (62/113) underwent LT and 11% (12/113) died pretransplant. 12.3% (14/113) patients had normal GGT. Age at KPE and time to COJ were similar between normal and high GGT groups. Normal GGT group had shorter time from KPE to LT (11 vs 18 months, P = 0.02), underwent LT at a younger age (14 vs 20 months, P = 0.04), and had poorer transplant-free survival (P = 0.04) than high GGT group. CONCLUSIONS 12.3% of infants with BA had normal GGT levels at diagnosis. Low GGT levels at presentation in BA was associated with a poorer outcome.
Collapse
|
50
|
Ściskalska M, Ołdakowska M, Marek G, Milnerowicz H. Increased risk of acute pancreatitis occurrence in smokers with rs5751901 polymorphisms in GGT1 gene. Int J Med Sci 2020; 17:242-254. [PMID: 32038108 PMCID: PMC6990886 DOI: 10.7150/ijms.38657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: The study was aimed to assess γ‑glutamyltransferase (GGT) activity and concentration as a marker of oxidative stress induced by exposure to tobacco smoke in acute pancreatitis (AP) course. Examination of the relationship between GGT activity/concentration and single-nucleotide polymorphism (SNP rs5751901 and rs2236626) in GGT1 gene was performed. Subjects and methods: We examined SNPs in 38 AP patients and 51 healthy subjects by PCR-RFLP methods. GGT concentration in blood was measured with the use of the ELISA method; GGT activity and GSH concentration were measured by the Szasz and Patterson methods, respectively. Results: In the non-AP smokers group with TC genotype for SNPrs5751901 an increased blood GGT activity compared to smokers with CC genotypes was shown. In the course of AP was observed an elevated GGT activity and the value of GGT activity/GGT concentration ratio in smokers compared to non-smokers, in AP patients with TC genotypes and CC genotypes, respectively, for both SNP: rs5751901 and rs2236626. In the group of smoking AP patients with the CC and TC genotypes in rs5751901 locus and CC and TT genotypes in rs2236626 locus a decreases in GSH concentration during hospitalization were noted. Conclusions: SNP rs5751901 and rs2236626 cause changes in GGT activity. Smoking in the AP course contributes to increased GGT activity and excessive GSH use up in patients with TC and CC genotypes for both SNPs. Exposure to smoke xenobiotics enhances (3-fold) the risk of AP occurrence in individuals with TC genotypes for SNP rs5751901.
Collapse
Affiliation(s)
- Milena Ściskalska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Monika Ołdakowska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Grzegorz Marek
- Second Department of General and Oncological Surgery, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| |
Collapse
|