1
|
Aoyama M, Kishimoto Y, Saita E, Ohmori R, Nakamura M, Kondo K, Momiyama Y. High plasma levels of fortilin are associated with cardiovascular events in patients undergoing coronary angiography. Heart Vessels 2025; 40:219-226. [PMID: 39342070 DOI: 10.1007/s00380-024-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Excessive apoptosis and its insufficient clearance is characteristic of atherosclerotic plaques. Fortilin has potent antiapoptotic property and is abundantly expressed in atherosclerotic plaques. Fortilin-deficient mice had less atherosclerosis with more macrophage apoptosis. Recently, we reported that plasma fortilin levels were high in patients with coronary artery disease (CAD). However, its prognostic value has not been elucidated. We investigated plasma fortilin levels and major adverse cardiovascular events (MACE) in 404 patients (mean age 68 ± 12 years; 276 males) undergoing coronary angiography for suspected CAD. MACE was defined as cardiovascular death, myocardial infarction, unstable angina, heart failure, stroke, or coronary revascularization. Of the 404 patients, 218 (54%) had CAD. Plasma fortilin levels were higher in patients with CAD than without CAD (median 74.9 vs. 70.9 pg/mL, p < 0.05). During a mean follow-up of 5.7 ± 4.2 years, MACE was observed in 59 (15%) patients. Notably, patients with MACE had higher fortilin levels (median 83.0 vs. 71.4 pg/mL) and more often had fortilin level > 80.0 pg/mL (54% vs. 36%) than those without MACE (p < 0.025). A Kaplan-Meier analysis showed lower event-free survival in patients with fortilin > 80.0 pg/mL than in those with ≤ 80.0 pg/mL (p < 0.001). In multivariate Cox proportional hazards analysis, fortilin level (> 80.0 pg/mL) was an independent predictor of MACE (hazard ratio: 2.29, 95%CI: 1.36-3.85, p < 0.002). Among the 218 patients with CAD, fortilin level was also a significant predictor of MACE (hazard ratio: 2.48; 95%CI: 1.34-4.61, p < 0.005). Thus, high plasma fortilin levels were found to be associated with cardiovascular events in patients with CAD as well as those undergoing coronary angiography.
Collapse
Affiliation(s)
- Masayuki Aoyama
- Department of Cardiology, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Setsunan University, Osaka, Japan
| | - Emi Saita
- Department of Food Culture, BAIKA Women's University, Osaka, Japan
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University, Tochigi, Japan
| | - Masato Nakamura
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | | | - Yukihiko Momiyama
- Department of Cardiology, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| |
Collapse
|
2
|
Chen X, Guo H, Li X, Liu Y, Li X, Cui Z, Ma H, He J, Zeng Z, Zhang H. Elevated Serum Extracellular Vesicle-Packaged SPARC in Hypertension: A Cross-Sectional Study in a Middle-Aged and Elderly Population. J Clin Hypertens (Greenwich) 2025; 27:e14954. [PMID: 39632586 PMCID: PMC11773675 DOI: 10.1111/jch.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Elevated blood pressure has previously been associated with increased levels of circulating extracellular vesicles (EVs). However, studies on the relevance of EV cargos to hypertension are limited. Secreted protein acidic and rich in cysteine (SPARC) is involved in many metabolic diseases and endothelial dysfunction pathological processes. This study aimed to explore the association of serum EV-derived SPARC with hypertension incidence. We conducted a cross-sectional study on 125 Chinese, including 76 hypertension patients and 49 normotensive patients. Serum EVs were prepared via ultracentrifugation. The concentrations of serum EV-derived SPARC and serum SPARC were measured by Luminex Assay. The correlations between serum EV-derived SPARC and clinical variables were analyzed. Multivariate logistic regression analysis determined the association of serum EV-derived SPARC levels with hypertension. Interaction subgroup analysis was used to evaluate the interaction of the relevant baselines on the association between serum EV-derived SPARC levels and hypertension. Our findings revealed that the levels of SPARC derived from serum EVs were markedly elevated in individuals with hypertension, averaging 20.60 ng/mL (p < 0.01), when contrasted with the levels observed in normotensive subjects, which were 14.25 ng/mL (p < 0.01) in average. Multivariate logistic regression analysis revealed that serum EV-derived SPARC levels were positively associated with hypertension (odds ratio [OR] 1.095; 95% confidence interval [CI] = 1.031-1.163; p value, 0.003), after adjusting for confounding factors. Interaction subgroup analysis demonstrated that no significant interaction with hypertension was observed for any particular covariate. The present study reveals that the elevated levels of serum EV-derived SPARC were independently associated with hypertension.
Collapse
Affiliation(s)
- Xueying Chen
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Han Guo
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Xinwei Li
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Yang Liu
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Xinxin Li
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Zhengshuo Cui
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Huijuan Ma
- Department of HypertensionBeijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Jianxun He
- Beijing Anzhen Hospital Laboratory DepartmentBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Zhechun Zeng
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| | - Huina Zhang
- Beijing An Zhen HospitalCapital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel DiseaseBeijingChina
| |
Collapse
|
3
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Miao G, Yang Y, Yang X, Chen D, Liu L, Lei X. The multifaceted potential of TPT1 as biomarker and therapeutic target. Heliyon 2024; 10:e38819. [PMID: 39397949 PMCID: PMC11471257 DOI: 10.1016/j.heliyon.2024.e38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Protein Translationally-Controlled 1 (TPT1) is a highly conserved gene found across eukaryotic species. The protein encoded by TPT1 is ubiquitously expressed both intracellularly and extracellularly across various tissues, and its levels are influenced by various external factors. TPT1 interacts with several key proteins, including p53, MCL1, and immunoglobulins, highlighting its crucial role in cellular processes. The dysregulation of TPT1 expression has been documented in a wide range of diseases, indicating its potential as a valuable biomarker. Additionally, targeting TPT1 presents a promising approach for treating and preventing various conditions. This review will assess the potential of TPT1 as a biomarker and evaluate the effectiveness of current strategies designed to inhibit TPT1 in disease contexts.
Collapse
Affiliation(s)
- Gelan Miao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yulian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xuelian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
5
|
Jadamba B, Jin Y, Lee H. Harmonising cellular conversations: decoding the vital roles of extracellular vesicles in respiratory system intercellular communications. Eur Respir Rev 2024; 33:230272. [PMID: 39537245 PMCID: PMC11558538 DOI: 10.1183/16000617.0272-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) released by various cells play crucial roles in intercellular communication within the respiratory system. This review explores the historical context and significance of research into extracellular vesicles. Categorised into exosomes (sized 30-150 nm), microvesicles (sized 50-1000 nm) and apoptotic bodies (sized 500-2000nm), based on their generation mechanisms, extracellular vesicles carry diverse cargoes of biomolecules, including proteins, lipids and nucleic acids. Respiratory ailments are the primary contributors to both mortality and morbidity across various populations globally, significantly impacting public health. Recent studies have underscored the pivotal role of extracellular vesicles, particularly their cargo content, in mediating intercellular communication between lung cells in respiratory diseases. This comprehensive review provides insights into extracellular vesicle mechanisms and emphasises their significance in major respiratory conditions, including acute lung injury, COPD, pulmonary hypertension, pulmonary fibrosis, asthma and lung cancer.
Collapse
Affiliation(s)
- Budjav Jadamba
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
6
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
7
|
Conti M, Minniti M, Tiné M, De Francesco M, Gaeta R, Nieri D, Semenzato U, Biondini D, Camera M, Cosio MG, Saetta M, Celi A, Bazzan E, Neri T. Extracellular Vesicles in Pulmonary Hypertension: A Dangerous Liaison? BIOLOGY 2023; 12:1099. [PMID: 37626985 PMCID: PMC10451884 DOI: 10.3390/biology12081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
The term pulmonary hypertension (PH) refers to different conditions, all characterized by increased pressure and resistance in the pulmonary arterial bed. PH has a wide range of causes (essentially, cardiovascular, pulmonary, or connective tissue disorders); however, idiopathic (i.e., without a clear cause) PH exists. This chronic, progressive, and sometimes devastating disease can finally lead to right heart failure and eventually death, through pulmonary vascular remodeling and dysfunction. The exact nature of PH pathophysiology is sometimes still unclear. Extracellular vesicles (EVs), previously known as apoptotic bodies, microvesicles, and exosomes, are small membrane-bound vesicles that are generated by almost all cell types and can be detected in a variety of physiological fluids. EVs are involved in intercellular communication, thus influencing immunological response, inflammation, embryogenesis, aging, and regenerative processes. Indeed, they transport chemokines, cytokines, lipids, RNA and miRNA, and other biologically active molecules. Although the precise functions of EVs are still not fully known, there is mounting evidence that they can play a significant role in the pathophysiology of PH. In this review, after briefly recapping the key stages of PH pathogenesis, we discuss the current evidence on the functions of EVs both as PH biomarkers and potential participants in the distinct pathways of disease progression.
Collapse
Affiliation(s)
- Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Marianna Minniti
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Mariaenrica Tiné
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Miriam De Francesco
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Roberta Gaeta
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Dario Nieri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
- Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20138 Milan, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| |
Collapse
|
8
|
Santamaria G, Cioce M, Rizzuto A, Fazio VM, Viglietto G, Lucibello M. Harnessing the value of TCTP in breast cancer treatment resistance: an opportunity for personalized therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:447-467. [PMID: 37842235 PMCID: PMC10571059 DOI: 10.20517/cdr.2023.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023]
Abstract
Early identification of breast cancer (BC) patients at a high risk of progression may aid in therapeutic and prognostic aims. This is especially true for metastatic disease, which is responsible for most cancer-related deaths. Growing evidence indicates that the translationally controlled tumor protein (TCTP) may be a clinically relevant marker for identifying poorly differentiated aggressive BC tumors. TCTP is an intriguing protein with pleiotropic functions, which is involved in multiple signaling pathways. TCTP may also be involved in stress response, cell growth and proliferation-related processes, underlying its potential role in the initiation of metastatic growth. Thus, TCTP marks specific cancer cell sub-populations with pronounced stress adaptation, stem-like and immune-evasive properties. Therefore, we have shown that in vivo phospho-TCTP levels correlate with the response of BC cells to anti-HER2 agents. In this review, we discuss the clinical relevance of TCTP for personalized therapy, specific TCTP-targeting strategies, and currently available therapeutic agents. We propose TCTP as an actionable clinically relevant target that could potentially improve patient outcomes.
Collapse
Affiliation(s)
- Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- These authors contributed equally
| | - Mario Cioce
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
- These authors contributed equally
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Vito Michele Fazio
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Maria Lucibello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- Department of Biomedical Sciences, Institute for Biomedical Research and Innovation, National Research Council of Italy (CNR), Catanzaro 88100, Italy
| |
Collapse
|
9
|
Ren Y, Zhang H. Emerging role of exosomes in vascular diseases. Front Cardiovasc Med 2023; 10:1090909. [PMID: 36937921 PMCID: PMC10017462 DOI: 10.3389/fcvm.2023.1090909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes are biological small spherical lipid bilayer vesicles secreted by most cells in the body. Their contents include nucleic acids, proteins, and lipids. Exosomes can transfer material molecules between cells and consequently have a variety of biological functions, participating in disease development while exhibiting potential value as biomarkers and therapeutics. Growing evidence suggests that exosomes are vital mediators of vascular remodeling. Endothelial cells (ECs), vascular smooth muscle cells (VSMCs), inflammatory cells, and adventitial fibroblasts (AFs) can communicate through exosomes; such communication is associated with inflammatory responses, cell migration and proliferation, and cell metabolism, leading to changes in vascular function and structure. Essential hypertension (EH), atherosclerosis (AS), and pulmonary arterial hypertension (PAH) are the most common vascular diseases and are associated with significant vascular remodeling. This paper reviews the latest research progress on the involvement of exosomes in vascular remodeling through intercellular information exchange and provides new ideas for understanding related diseases.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Pandamooz S, Jurek B, Dianatpour M, Haerteis S, Limm K, Oefner PJ, Dargahi L, Borhani-Haghighi A, Miyan JA, Salehi MS. The beneficial effects of chick embryo extract preconditioning on hair follicle stem cells: A promising strategy to generate Schwann cells. Cell Prolif 2023:e13397. [PMID: 36631409 DOI: 10.1111/cpr.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.,Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2023; 61:2200879. [PMID: 36028254 DOI: 10.1183/13993003.00879-2022] [Citation(s) in RCA: 811] [Impact Index Per Article: 405.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France, Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gabor Kovacs
- University Clinic of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Marius M Hoeper
- Respiratory Medicine, Hannover Medical School, Hanover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), member of the German Centre of Lung Research (DZL), Hanover, Germany
| | - Roberto Badagliacca
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Roma, Italy
- Dipartimento Cardio-Toraco-Vascolare e Chirurgia dei Trapianti d'Organo, Policlinico Umberto I, Roma, Italy
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, Dept of Paediatric Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Margarita Brida
- Department of Sports and Rehabilitation Medicine, Medical Faculty University of Rijeka, Rijeka, Croatia
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton and Harefield Hospitals, Guys and St Thomas's NHS Trust, London, UK
| | - Jørn Carlsen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J S Coats
- Faculty of Medicine, University of Warwick, Coventry, UK
- Faculty of Medicine, Monash University, Melbourne, Australia
| | - Pilar Escribano-Subias
- Pulmonary Hypertension Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBER-CV (Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pisana Ferrari
- ESC Patient Forum, Sophia Antipolis, France
- AIPI, Associazione Italiana Ipertensione Polmonare, Bologna, Italy
| | - Diogenes S Ferreira
- Alergia e Imunologia, Hospital de Clinicas, Universidade Federal do Parana, Curitiba, Brazil
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
- Department of Pneumology, Kerckhoff Klinik, Bad Nauheim, Germany
- Department of Medicine, Imperial College London, London, UK
| | - George Giannakoulas
- Cardiology Department, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Eckhard Mayer
- Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Gergely Meszaros
- ESC Patient Forum, Sophia Antipolis, France
- European Lung Foundation (ELF), Sheffield, UK
| | - Blin Nagavci
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Karen M Olsson
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Hannover, Germany
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Royal Papworth Hospital, Cambridge, UK
| | | | - Göran Rådegran
- Department of Cardiology, Clinical Sciences Lund, Faculty of Medicine, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Gerald Simonneau
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Centre de Référence de l'Hypertension Pulmonaire, Hopital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Olivier Sitbon
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Mark Toshner
- Dept of Medicine, Heart Lung Research Institute, University of Cambridge, Royal Papworth NHS Trust, Cambridge, UK
| | - Jean-Luc Vachiery
- Department of Cardiology, Pulmonary Vascular Diseases and Heart Failure Clinic, HUB Hôpital Erasme, Brussels, Belgium
| | | | - Marion Delcroix
- Clinical Department of Respiratory Diseases, Centre of Pulmonary Vascular Diseases, University Hospitals of Leuven, Leuven, Belgium
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Department of Cardiology, Pulmonology and Intensive Care Medicine), and Cologne Cardiovascular Research Center (CCRC), Heart Center at the University Hospital Cologne, Köln, Germany
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| |
Collapse
|
12
|
Huang N, Wang D, Zhu TT, Ge XY, Liu H, Yao MZ, Guo YZ, Peng J, Wang Q, Zhang Z, Hu CP. Plasma exosomes confer hypoxic pulmonary hypertension by transferring LOX-1 cargo to trigger phenotypic switching of pulmonary artery smooth muscle cells. Biochem Pharmacol 2023; 207:115350. [PMID: 36435201 DOI: 10.1016/j.bcp.2022.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
The pulmonary vascular remodeling (PVR), the pathological basis of pulmonary hypertension (PH), entails pulmonary artery smooth muscle cells (PASMCs) phenotypic switching, but appreciation of the underlying mechanisms is incomplete. Exosomes, a novel transfer machinery enabling delivery of its cargos to recipient cells, have been recently implicated in cardiovascular diseases including PH. The two critical questions of whether plasma-derived exosomes drive PASMCs phenotypic switching and what cargo the exosomes transport, however, remain unclear. Herein, by means of transmission electron microscopy and protein detection, we for the first time, characterized lectin like oxidized low-density lipoprotein receptor-1 (LOX-1) as a novel cargo of plasma-derived exosomes in PH. With LOX-1 knockout (Olr1-/-) rats-derived exosomes, we demonstrated that exosomal LOX-1 could be transferred into PASMCs and thus elicited cell phenotypic switching. Of importance, Olr1-/- rats exhibited no cell phenotypic switching and developed less severe PH, but administration of wild type rather than Olr1-/- exosomes to Olr1-/- rats recapitulated the phenotype of PH with robust PASMCs phenotypic switching. We also revealed that exosomal LOX-1 triggered PASMCs phenotypic switching, PVR and ultimately PH via ERK1/2-KLF4 signaling axis. This study has generated proof that plasma-derived exosomes confer PH by delivering LOX-1 into PASMCs. Hence, exosomal LOX-1 represents a novel exploitable target for PH prevention and treatment.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan 450052, China
| | - Di Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Tian-Tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453000, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan 453000, China
| | - Xiao-Yue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hong Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Mao-Zhong Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yan-Zi Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China
| | - Qing Wang
- The Interventional Radiology & Vascular Surgery Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
13
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles Therapy for Pulmonary Hypertension: A Comprehensive Review of Preclinical Studies. J Interv Cardiol 2022; 2022:5451947. [PMID: 36419957 PMCID: PMC9652076 DOI: 10.1155/2022/5451947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Pulmonary hypertension (PH) is a type of clinical pathophysiological syndrome characterized by a progressive increase in pulmonary vascular resistance and subsequent progressive failure of the right heart function, and is a common complication of many diseases. Mesenchymal stem cells (MSCs) autonomously home to sites damaged by disease, repair damaged tissues, and participate in the regulation of systemic inflammation and immune responses, which have good clinical application prospects. Extracellular vesicles (EVs), such as exosomes and microvesicles, participate in various biological activities by regulating intercellular communication. Exosomes secreted into the extracellular environment also affect the host immune system. MSC-derived extracellular vesicles (MSC-EVs), as a mediator in the paracrine processes of MSCs, carry biologically active substances such as proteins, lipids, mRNA, and micro-RNA. MSC-EVs therapies, safer than cell-based treatments, have been shown to be effective in modulating macrophages to support anti-inflammatory phenotypes, which are strongly related to histological and functional benefits in preclinical models of pulmonary hypertension. The main effects of active substances and their potential medical value have attracted wide attention from researchers. This article reviews the role and relevant mechanisms of MSC-EVs in the treatment of pulmonary hypertension in recent studies and provides a basis for their future clinical applications.
Collapse
|
14
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43:3618-3731. [PMID: 36017548 DOI: 10.1093/eurheartj/ehac237] [Citation(s) in RCA: 1740] [Impact Index Per Article: 580.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Yoon EJ, Choi Y, Kim TM, Choi EK, Kim YB, Park D. The Neuroprotective Effects of Exosomes Derived from TSG101-Overexpressing Human Neural Stem Cells in a Stroke Model. Int J Mol Sci 2022; 23:9532. [PMID: 36076942 PMCID: PMC9455780 DOI: 10.3390/ijms23179532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although tissue-type plasminogen activator was approved by the FDA for early reperfusion of occluded vessels, there is a need for an effective neuroprotective drug for stroke patients. In this study, we established tumor susceptibility gene (TSG)101-overexpressing human neural stem cells (F3.TSG) and investigated whether they showed enhanced secretion of exosomes and whether treatment with exosomes during reperfusion alleviated ischemia-reperfusion-mediated brain damage. F3.TSG cells secreted higher amounts of exosomes than the parental F3 cells. In N2A cells subjected to oxygen-glucose deprivation (OGD), treatment with exosomes or coculture with F3.TSG cells significantly attenuated lactate dehydrogenase release, the mRNA expression of proinflammatory factors, and the protein expression of DNA-damage-related proteins. In a middle cerebral artery occlusion (MCAO) rat model, treatment with exosomes, F3 cells, or F3.TSG cells after 2 h of occlusion followed by reperfusion reduced the infarction volume and suppressed inflammatory cytokines, DNA-damage-related proteins, and glial fibrillary acidic protein, and upregulated several neurotrophic factors. Thus, TSG101-overexpressing neural stem cells showed enhanced exosome secretion; exosome treatment protected against MCAO-induced brain damage via anti-inflammatory activities, DNA damage pathway inhibition, and growth/trophic factor induction. Therefore, exosomes and F3.TSG cells can affect neuroprotection and functional recovery in acute stroke patients.
Collapse
Affiliation(s)
- Eun-Jung Yoon
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
- Department of Counseling, Health, and Kinesiology, College of Education and Human Development, Texas A&M University-San Antonio, One University Way, San Antonio, TX 78224, USA
| | - Yunseo Choi
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| |
Collapse
|
16
|
High Plasma Levels of Fortilin in Patients with Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms23168923. [PMID: 36012185 PMCID: PMC9408986 DOI: 10.3390/ijms23168923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/19/2022] Open
Abstract
Excessive apoptosis is known to be a common feature of atherosclerotic lesions. Fortilin is recognized to have potent antiapoptotic properties. An increased fortilin expression was demonstrated in atherosclerotic lesions, and fortilin knockout mice developed less atherosclerosis. However, no study has reported blood fortilin levels in patients with coronary artery disease (CAD). We investigated plasma fortilin levels in 384 patients undergoing coronary angiography. CAD severity was evaluated as the numbers of stenotic vessels and segments. CAD was found in 208 patients (one-vessel (1VD), n = 86; two-vessel (2VD), n = 68; and three-vessel disease (3VD), n = 54). Plasma C-reactive protein (CRP) levels were higher in patients with CAD than without CAD (median 0.60 vs. 0.45 mg/L, p < 0.01). Notably, fortilin levels were higher in patients with CAD than without CAD (75.1 vs. 69.7 pg/mL, p < 0.02). A stepwise increase in fortilin was found according to the number of stenotic vessels: 69.7 in CAD(−), 71.1 in 1VD, 75.7 in 2VD, and 84.7 pg/mL in 3VD (p < 0.01). Fortilin levels also correlated with the number of stenotic segments (r = 0.16) and CRP levels (r = 0.24) (p < 0.01). In a multivariate analysis, fortilin levels were independently associated with 3VD. The odds ratio for 3VD was 1.93 (95%CI = 1.01−3.71) for a high fortilin level (>70.0 pg/mL). Thus, plasma fortilin levels in patients with CAD, especially those with 3VD, were found to be high and to be associated with the severity of CAD.
Collapse
|
17
|
Lithopoulos MA, Strueby L, O'Reilly M, Zhong S, Möbius MA, Eaton F, Fung M, Hurskainen M, Cyr-Depauw C, Suen C, Xu L, Collins JJP, Vadivel A, Stewart DJ, Burger D, Thébaud B. Pulmonary and Neurologic Effects of Mesenchymal Stromal Cell Extracellular Vesicles in a Multifactorial Lung Injury Model. Am J Respir Crit Care Med 2022; 205:1186-1201. [PMID: 35286238 DOI: 10.1164/rccm.202012-4520oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials mesenchymal stromal cell therapies demonstrate promise as a therapeutic for bronchopulmonary dysplasia. OBJECTIVES To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. METHODS Mice at postnatal day 7/8 were injected intraperitoneally with lipopolysaccharide and ventilated with 40% oxygen at postnatal day 9/10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone/hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. MEASUREMENTS AND MAIN RESULTS The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. Additionally, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. CONCLUSIONS Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Marissa A Lithopoulos
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Lannae Strueby
- University of Saskatchewan, 7235, Department of Pediatrics, Saskatoon, Saskatchewan, Canada
| | - Megan O'Reilly
- University of Alberta, 3158, Department of Pediatrics, Edmonton, Alberta, Canada
| | - Shumei Zhong
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Marius A Möbius
- Universitätsklinikum Carl Gustav Carus, 39063, Department of Neonatalogy and Pediatric Critical Care Medicine, Dresden, Germany
| | - Farah Eaton
- University of Alberta, 3158, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, Alberta, Canada
| | - Moses Fung
- University of Alberta, 3158, Department of Pediatrics, Edmonton, Alberta, Canada
| | - Maria Hurskainen
- Helsinki University Central Hospital, 159841, Department of Pediatric Cardiology, Helsinki, Finland.,University of Helsinki, 3835, Pediatric Research Center, Helsinki, Finland
| | - Chanèle Cyr-Depauw
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Colin Suen
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Liqun Xu
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Jennifer J P Collins
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Arul Vadivel
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Dylan Burger
- University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, 10055, Kidney Research Centre, Chronic Disease Program, Ottawa, Ontario, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, 274065, Ottawa, Ontario, Canada;
| |
Collapse
|
18
|
Jadli AS, Parasor A, Gomes KP, Shandilya R, Patel VB. Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger. Front Cardiovasc Med 2021; 8:767488. [PMID: 34869682 PMCID: PMC8632805 DOI: 10.3389/fcvm.2021.767488] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) represent a major global health problem, due to their continued high incidences and mortality. The last few decades have witnessed new advances in clinical research which led to increased survival and recovery in CVD patients. Nevertheless, elusive and multifactorial pathophysiological mechanisms of CVD development perplexed researchers in identifying efficacious therapeutic interventions. Search for novel and effective strategies for diagnosis, prevention, and intervention for CVD has shifted research focus on extracellular vesicles (EVs) in recent years. By transporting molecular cargo from donor to recipient cells, EVs modulate gene expression and influence the phenotype of recipient cells, thus EVs prove to be an imperative component of intercellular signaling. Elucidation of the role of EVs in intercellular communications under physiological conditions implied the enormous potential of EVs in monitoring and treatment of CVD. The EVs secreted from the myriad of cells in the cardiovascular system such as cardiomyocytes, cardiac fibroblasts, cardiac progenitor cells, endothelial cells, inflammatory cells may facilitate the communication in physiological and pathological conditions. Understanding EVs-mediated cellular communication may delineate the mechanism of origin and progression of cardiovascular diseases. The current review summarizes exosome-mediated paracrine signaling leading to cardiovascular disease. The mechanistic role of exosomes in cardiovascular disease will provide novel avenues in designing diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ananya Parasor
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ruchita Shandilya
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Arishe OO, Priviero F, Wilczynski SA, Webb RC. Exosomes as Intercellular Messengers in Hypertension. Int J Mol Sci 2021; 22:ijms222111685. [PMID: 34769116 PMCID: PMC8583750 DOI: 10.3390/ijms222111685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
People living with hypertension have a higher risk of developing heart diseases, and hypertension remains a top cause of mortality. In hypertension, some detrimental changes occur in the arterial wall, which include physiological and biochemical changes. Furthermore, this disease is characterized by turbulent blood flow, increased fluid shear stress, remodeling of the blood vessels, and endothelial dysfunction. As a complex disease, hypertension is thought to be caused by an array of factors, its etiology consisting of both environmental and genetic factors. The Mosaic Theory of hypertension states that many factors, including genetics, environment, adaptive, neural, mechanical, and hormonal perturbations are intertwined, leading to increases in blood pressure. Long-term efforts by several investigators have provided invaluable insight into the physiological mechanisms responsible for the pathogenesis of hypertension, and these include increased activity of the sympathetic nervous system, overactivation of the renin-angiotensin-aldosterone system (RAAS), dysfunction of the vascular endothelium, impaired platelet function, thrombogenesis, vascular smooth muscle and cardiac hypertrophy, and altered angiogenesis. Exosomes are extracellular vesicles released by all cells and carry nucleic acids, proteins, lipids, and metabolites into the extracellular environment. They play a role in intercellular communication and are involved in the pathophysiology of diseases. Since the discovery of exosomes in the 1980s, numerous studies have been carried out to understand the biogenesis, composition, and function of exosomes. In this review, we will discuss the role of exosomes as intercellular messengers in hypertension.
Collapse
Affiliation(s)
- Olufunke Omolola Arishe
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29209, USA; (F.P.); (S.A.W.); (R.C.W.)
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-706-394-3582
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29209, USA; (F.P.); (S.A.W.); (R.C.W.)
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | - Stephanie A. Wilczynski
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29209, USA; (F.P.); (S.A.W.); (R.C.W.)
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29209, USA; (F.P.); (S.A.W.); (R.C.W.)
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
20
|
Margaroli C, Russell D. Extracellular Vesicles: Progress and Challenges in the Study of Human Immunodeficiency Virus and Cocaine-associated Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2021; 65:341-342. [PMID: 34166601 PMCID: PMC8525209 DOI: 10.1165/rcmb.2021-0222ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Camilla Margaroli
- Department of Medicine University of Alabama at Birmingham School of Medicine Birmingham, Alabama
| | - Derek Russell
- Department of Medicine University of Alabama at Birmingham Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center Birmingham, Alabama
| |
Collapse
|
21
|
Evans CE, Cober ND, Dai Z, Stewart DJ, Zhao YY. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.03957-2020. [PMID: 33509961 DOI: 10.1183/13993003.03957-2020] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that involves pulmonary vasoconstriction, small vessel obliteration, large vessel thickening and obstruction, and development of plexiform lesions. PAH vasculopathy leads to progressive increases in pulmonary vascular resistance, right heart failure and, ultimately, premature death. Besides other cell types that are known to be involved in PAH pathogenesis (e.g. smooth muscle cells, fibroblasts and leukocytes), recent studies have demonstrated that endothelial cells (ECs) have a crucial role in the initiation and progression of PAH. The EC-specific role in PAH is multi-faceted and affects numerous pathophysiological processes, including vasoconstriction, inflammation, coagulation, metabolism and oxidative/nitrative stress, as well as cell viability, growth and differentiation. In this review, we describe how EC dysfunction and cell signalling regulate the pathogenesis of PAH. We also highlight areas of research that warrant attention in future studies, and discuss potential molecular signalling pathways in ECs that could be targeted therapeutically in the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Colin E Evans
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas D Cober
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Zhiyu Dai
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA .,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
22
|
Ando T, Kitaura J. Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells 2021; 10:cells10071697. [PMID: 34359869 PMCID: PMC8305778 DOI: 10.3390/cells10071697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The recent emergence of anti-immunoglobulin E (IgE) drugs and their candidates for humans has endorsed the significance of IgE-dependent pathways in allergic disorders. IgE is distributed locally in the tissues or systemically to confer a sensory mechanism in a domain of adaptive immunity to the otherwise innate type of effector cells, namely, mast cells and basophils. Bound on the high-affinity IgE receptor FcεRI, IgE enables fast memory responses against revisiting threats of venoms, parasites, and bacteria. However, the dysregulation of IgE-dependent reactions leads to potentially life-threatening allergic diseases, such as asthma and anaphylaxis. Therefore, reactivity of the IgE sensor is fine-tuned by various IgE-associating molecules. In this review, we discuss the mechanistic basis for how IgE-dependent mast cell activation is regulated by the IgE-associating molecules, including the newly developed therapeutic candidates.
Collapse
Affiliation(s)
- Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| |
Collapse
|
23
|
Ryanto GRT, Ikeda K, Miyagawa K, Tu L, Guignabert C, Humbert M, Fujiyama T, Yanagisawa M, Hirata KI, Emoto N. An endothelial activin A-bone morphogenetic protein receptor type 2 link is overdriven in pulmonary hypertension. Nat Commun 2021; 12:1720. [PMID: 33741934 PMCID: PMC7979873 DOI: 10.1038/s41467-021-21961-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive fatal disease that is characterized by pathological pulmonary artery remodeling, in which endothelial cell dysfunction is critically involved. We herein describe a previously unknown role of endothelial angiocrine in pulmonary hypertension. By searching for genes highly expressed in lung microvascular endothelial cells, we identify inhibin-β-A as an angiocrine factor produced by pulmonary capillaries. We find that excess production of inhibin-β-A by endothelial cells impairs the endothelial function in an autocrine manner by functioning as activin-A. Mechanistically, activin-A induces bone morphogenetic protein receptor type 2 internalization and targeting to lysosomes for degradation, resulting in the signal deficiency in endothelial cells. Of note, endothelial cells isolated from the lung of patients with idiopathic pulmonary arterial hypertension show higher inhibin-β-A expression and produce more activin-A compared to endothelial cells isolated from the lung of normal control subjects. When endothelial activin-A-bone morphogenetic protein receptor type 2 link is overdriven in mice, hypoxia-induced pulmonary hypertension was exacerbated, whereas conditional knockout of inhibin-β-A in endothelial cells prevents the progression of pulmonary hypertension. These data collectively indicate a critical role for the dysregulated endothelial activin-A-bone morphogenetic protein receptor type 2 link in the progression of pulmonary hypertension, and thus endothelial inhibin-β-A/activin-A might be a potential pharmacotherapeutic target for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Gusty R T Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Higashinada, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, Kobe, Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Higashinada, Kobe, Japan.
- Department of Epidemiology for Longevity and Regional Health, Kyoto Prefectural University of Medicine, Kamigyou, Kyoto, Japan.
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kamigyou, Kyoto, Japan.
| | - Kazuya Miyagawa
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Higashinada, Kobe, Japan
| | - Ly Tu
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, Kobe, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Higashinada, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, Kobe, Japan
| |
Collapse
|
24
|
Zhang S, Liu J, Zheng K, Chen L, Sun Y, Yao Z, Sun Y, Lin Y, Lin K, Yuan L. Exosomal miR-211 contributes to pulmonary hypertension via attenuating CaMK1/PPAR-γaxis. Vascul Pharmacol 2021; 136:106820. [PMID: 33238205 DOI: 10.1016/j.vph.2020.106820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
AIM Exsomes play a significant role in increasing pathophysiological processes by delivering their content. Recently, a variety of studies have showed exosomal microRNAs (miRNAs) are involved in pulmonary hypertension (PH) notably. In this study, we found that exosomal miR-211 was overexpressed in hypoxia-induced PH rats but its intrinsic regulation was unclear. Therefore, our aim was to reveal the underlying mechanism which overexpressed exosomal miR-211 targeted in the development of PH. METHODS 18 male SD rats were randomly divided into normoxia and hypoxia group, housed in normal or hypoxic chamber for 3 weeks respectively. Then, mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance(PVR), right ventricular hypertrophy index(RV/(LV + S)), the percentage of medial wall area (WA%) and the percentage of medial wall thickness (WT%) were measured. Expression of miR-211 in exosomes was detected by qRT-PCR. Expression of Ca2+/calmodulin-dependent kinase1(CaMK1)and peroxisome proliferator-activated receptors-γ(PPAR-γ)in lung tissue were detected by Western blot(WB); After miR-211 overexpressed exosomes were injected to rats through caudal vein, mPAP, PVR, RV/(LV + S), WA% and WT% were also measured. Sequentially, hypoxia rats were injected with lentivirus riched in miR-211 inhibitor via tail vein, and PH-related indicators were measured. In vitro, after miR-211 was positively or negatively regulated in pulmonary arterial smooth muscle cell (PASMC) by plasmid transfection, proliferation of PASMC was detected by CCK8, as well as the expression of CaMK1 and PPAR- γ. Further, the relationship between CaMK1 and miR-211 was verified by Dual-Luciferase assay. And the regulatory relationship of CaMK1/PPAR- γ aixs was demonstrated in PASMC. RESULTS Evident increases of mPAP, PVR, RVHI, WT% and WA% were observed with hypoxia administration. And the concentration of plasma exosomes in hypoxia rats was increased and positively correlated with the above indexes. miR-211 in exosomes of PH was upregulated while the expression of CaMK1 and PPAR-γ decreased in lung tissues. Further, injection of exosomes overexpressed with miR-211 demonstrated that exosomal miR-211 aggravated PH while inhibition of miR-211 attenuated PH in rats. In vitro, overexpression of miR-211 promoted the proliferation of PASMC and inhibited expression of CaMK1 and PPAR-γ in PASMC. And Dual-luciferase assay demonstrated that CaMK1 was a downstream gene of miR-211. Plasmid transfection experiments indicated that CaMK1 can promote PPAR-γ expression. CONCLUSION Exosomal miR-211 promoted PH via inhibiting CaMK1/PPAR-γ axis, promoting PASMC proliferation in rats.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Jiantao Liu
- School of Second Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Kaidi Zheng
- Department of Biochemistry, Basic Medical Science School, Wenzhou Medical University, Wenzhou, PR China
| | - Luowei Chen
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Yupeng Sun
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Zhengze Yao
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Yiruo Sun
- School of Second Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Yufan Lin
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Kexin Lin
- School of Second Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Linbo Yuan
- Department of Physiology, Basic Medical Science School, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
25
|
Hemnes A, Rothman AMK, Swift AJ, Zisman LS. Role of biomarkers in evaluation, treatment and clinical studies of pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020957234. [PMID: 33282185 PMCID: PMC7682212 DOI: 10.1177/2045894020957234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension is a complex disease resulting from the interplay of myriad biological and environmental processes that lead to remodeling of the pulmonary vasculature with consequent pulmonary hypertension. Despite currently available therapies, there remains significant morbidity and mortality in this disease. There is great interest in identifying and applying biomarkers to help diagnose patients with pulmonary arterial hypertension, inform prognosis, guide therapy, and serve as surrogate endpoints. An extensive literature on potential biomarker candidates is available, but barriers to the implementation of biomarkers for clinical use in pulmonary arterial hypertension are substantial. Various omic strategies have been undertaken to identify key pathways regulated in pulmonary arterial hypertension that could serve as biomarkers including genomic, transcriptomic, proteomic, and metabolomic approaches. Other biologically relevant components such as circulating cells, microRNAs, exosomes, and cell-free DNA have recently been gaining attention. Because of the size of the datasets generated by these omic approaches and their complexity, artificial intelligence methods are being increasingly applied to decipher their meaning. There is growing interest in imaging the lung with various modalities to understand and visualize processes in the lung that lead to pulmonary vascular remodeling including high resolution computed tomography, Xenon magnetic resonance imaging, and positron emission tomography. Such imaging modalities have the potential to demonstrate disease modification resulting from therapeutic interventions. Because right ventricular function is a major determinant of prognosis, imaging of the right ventricle with echocardiography or cardiac magnetic resonance imaging plays an important role in the evaluation of patients and may also be useful in clinical studies of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anna Hemnes
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Andrew J Swift
- University of Sheffield and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | | |
Collapse
|
26
|
Mohan A, Agarwal S, Clauss M, Britt NS, Dhillon NK. Extracellular vesicles: novel communicators in lung diseases. Respir Res 2020; 21:175. [PMID: 32641036 PMCID: PMC7341477 DOI: 10.1186/s12931-020-01423-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The lung is the organ with the highest vascular density in the human body. It is therefore perceivable that the endothelium of the lung contributes significantly to the circulation of extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies. In addition to the endothelium, EVs may arise from alveolar macrophages, fibroblasts and epithelial cells. Because EVs harbor cargo molecules, such as miRNA, mRNA, and proteins, these intercellular communicators provide important insight into the health and disease condition of donor cells and may serve as useful biomarkers of lung disease processes. This comprehensive review focuses on what is currently known about the role of EVs as markers and mediators of lung pathologies including COPD, pulmonary hypertension, asthma, lung cancer and ALI/ARDS. We also explore the role EVs can potentially serve as therapeutics for these lung diseases when released from healthy progenitor cells, such as mesenchymal stem cells.
Collapse
Affiliation(s)
- Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Matthias Clauss
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
27
|
Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020; 9:cells9071632. [PMID: 32645936 PMCID: PMC7407922 DOI: 10.3390/cells9071632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer.
Collapse
|
28
|
Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clin Sci (Lond) 2020; 133:2481-2498. [PMID: 31868216 PMCID: PMC6928565 DOI: 10.1042/cs20190835] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Notch signalling is critically involved in vascular morphogenesis and function. Four Notch isoforms (Notch1–4) regulating diverse cellular processes have been identified. Of these, Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it is critically involved in vascular development and differentiation. Under pathological conditions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes. Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current literature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH.
Collapse
|
29
|
Cool CD, Kuebler WM, Bogaard HJ, Spiekerkoetter E, Nicolls MR, Voelkel NF. The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis-ten years later. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1115-L1130. [PMID: 32023082 PMCID: PMC9847334 DOI: 10.1152/ajplung.00476.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023] Open
Abstract
Severe forms of pulmonary arterial hypertension (PAH) are most frequently the consequence of a lumen-obliterating angiopathy. One pathobiological model is that the initial pulmonary vascular endothelial cell injury and apoptosis is followed by the evolution of phenotypically altered, apoptosis-resistant, proliferating cells and an inflammatory vascular immune response. Although there may be a vasoconstrictive disease component, the increased pulmonary vascular shear stress in established PAH is caused largely by the vascular wall pathology. In this review, we revisit the "quasi-malignancy concept" of severe PAH and examine to what extent the hallmarks of PAH can be compared with the hallmarks of cancer. The cancer model of severe PAH, based on the growth of abnormal vascular and bone marrow-derived cells, may enable the emergence of novel cell-based PAH treatment strategies.
Collapse
Affiliation(s)
- Carlyne D Cool
- Department of Pathology, University of Colorado, Anschuetz Campus, Aurora, Colorado
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany
| | - Harm Jan Bogaard
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Norbert F Voelkel
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Ventetuolo CE, Aliotta JM, Braza J, Chichger H, Dooner M, McGuirl D, Mullin CJ, Newton J, Pereira M, Princiotto A, Quesenberry PJ, Walsh T, Whittenhall M, Klinger JR, Harrington EO. Culture of pulmonary artery endothelial cells from pulmonary artery catheter balloon tips: considerations for use in pulmonary vascular disease. Eur Respir J 2020; 55:1901313. [PMID: 31949110 PMCID: PMC7147989 DOI: 10.1183/13993003.01313-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 11/05/2022]
Abstract
Endothelial dysfunction is a hallmark of pulmonary arterial hypertension (PAH) but there are no established methods to study pulmonary artery endothelial cells (PAECs) from living patients. We sought to culture PAECs from pulmonary artery catheter (PAC) balloons used during right-heart catheterisation (RHC) to characterise successful culture attempts and to describe PAEC behaviour.PAECs were grown in primary culture to confluence and endothelial cell phenotype was confirmed. Standard assays for apoptosis, migration and tube formation were performed between passages three to eight. We collected 49 PAC tips from 45 subjects with successful PAEC culture from 19 balloons (39%).There were no differences in subject demographic details or RHC procedural details in successful versus unsuccessful attempts. However, for subjects who met haemodynamic criteria for PAH, there was a higher but nonsignificant (p=0.10) proportion amongst successful attempts (10 out of 19, 53%) versus unsuccessful attempts (nine out of 30, 30%). A successful culture was more likely in subjects with a lower cardiac index (p=0.03) and higher pulmonary vascular resistance (p=0.04). PAECs from a subject with idiopathic PAH were apoptosis resistant compared to commercial PAECs (p=0.04) and had reduced migration compared to PAECs from a subject with portopulmonary hypertension with high cardiac output (p=0.01). PAECs from a subject with HIV-associated PAH formed fewer (p=0.01) and shorter (p=0.02) vessel networks compared to commercial PAECs.Sustained culture and characterisation of PAECs from RHC balloons is feasible, especially in PAH with high haemodynamic burden. This technique may provide insight into endothelial dysfunction during PAH pathogenesis.
Collapse
Affiliation(s)
- Corey E Ventetuolo
- Dept of Medicine, Brown University, Providence, RI, USA
- Dept of Health Services, Policy and Practice, Brown University, Providence, RI, USA
| | | | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Havovi Chichger
- Biomedical Research Group, Dept of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Mark Dooner
- Lifespan Hospital System, Providence, RI, USA
| | | | | | - Julie Newton
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | - Amy Princiotto
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | | | | | | | - Elizabeth O Harrington
- Dept of Medicine, Brown University, Providence, RI, USA
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| |
Collapse
|
31
|
Zhu L, Xiao R, Zhang X, Lang Y, Liu F, Yu Z, Zhang J, Su Y, Lu Y, Wang T, Luo S, Wang J, Liu ML, Dupuis J, Jing ZC, Li T, Xiong W, Hu Q. Spermine on Endothelial Extracellular Vesicles Mediates Smoking-Induced Pulmonary Hypertension Partially Through Calcium-Sensing Receptor. Arterioscler Thromb Vasc Biol 2020; 39:482-495. [PMID: 30626206 DOI: 10.1161/atvbaha.118.312280] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective- This study aims to determine whether and how the enriched metabolites of endothelial extracellular vesicles (eEVs) are critical for cigarette smoke-induced direct injury of endothelial cells and the development of pulmonary hypertension, rarely explored in contrast to long-investigated mechanisms secondary to chronic hypoxemia. Approach and Results- Metabonomic screen of eEVs from cigarette-smoking human subjects reveals prominent elevation of spermine-a polyamine metabolite with potent agonist activity for the extracellular CaSR (calcium-sensing receptor). CaSR inhibition with the negative allosteric modulator Calhex231 or CaSR knockdown attenuates cigarette smoke-induced pulmonary hypertension in rats without emphysematous changes in lungs or chronic hypoxemia. Cigarette smoke exposure increases the generation of spermine-positive eEVs and their spermine content. Immunocytochemical staining and immunogold electron microscopy recognize the spermine enrichment not only within the cytosol but also on the outer surface of eEV membrane. The repression of spermine synthesis, the inhibitory analog of spermine, N1-dansyl-spermine, Calhex231, or CaSR knockdown profoundly suppresses eEV exposure-mobilized cytosolic calcium signaling, pulmonary artery constriction, and smooth muscle cell proliferation. Confocal imaging of immunohistochemical staining demonstrates the migration of spermine-positive eEVs from endothelium into smooth muscle cells in pulmonary arteries of cigarette smoke-exposed rats. The repression of spermine synthesis or CaSR knockout results in attenuated development of pulmonary hypertension induced by an intravascular administration of eEVs. Conclusions- Cigarette smoke enhances eEV generation with spermine enrichment at their outer surface and cytosol, which activates CaSR and subsequently causes smooth muscle cell constriction and proliferation, therefore, directly leading to the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Liping Zhu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Rui Xiao
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Xiuyun Zhang
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Yuheng Lang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., T.W., W.X.)
| | - Fangbo Liu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Zhe Yu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Jiwei Zhang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Union Hospital (J.Z., Y.S.)
| | - Yuan Su
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Union Hospital (J.Z., Y.S.)
| | - Yankai Lu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., T.W., W.X.)
| | - Shengquan Luo
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China (J.W.)
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.-L.L.).,Philadelphia Veterans Administration Medical Center (M.-L.L.)
| | - Jocelyn Dupuis
- Montreal Heart Institute, Québec, Canada (J.D.).,Department of medicine, Université de Montréal, Québec, Canada (J.D.)
| | - Zhi-Cheng Jing
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Z.-C.J.)
| | - Tong Li
- Department of Heart Centre and Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Clinical College, Tianjin Medical University, China (T.L.)
| | - Weining Xiong
- Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.).,Department of Pathology and Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., T.W., W.X.)
| | - Qinghua Hu
- From the Department of Pathophysiology, School of Basic Medicine (L.Z., R.X., X.Z., Y.L., F.L., Z.Y., S.L., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., R.X., X.Z., Y.Lang, F.L., Z.Y., J.Z., Y.S., Y.Lu, T.W., S.L., W.X., Q.H.)
| |
Collapse
|
32
|
Kawakami Y, Kasakura K, Kawakami T. Histamine-Releasing Factor, a New Therapeutic Target in Allergic Diseases. Cells 2019; 8:cells8121515. [PMID: 31779161 PMCID: PMC6952944 DOI: 10.3390/cells8121515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Histamine-releasing activities on human basophils have been studied as potential allergy-causing agents for four decades. An IgE-dependent histamine-releasing factor (HRF) was recently shown to interact with a subset of immunoglobulins. Peptides or recombinant proteins that block the interactions between HRF and IgE have emerged as promising anti-allergic therapeutics, as administration of them prevented or ameliorated type 2 inflammation in animal models of allergic diseases such as asthma and food allergy. Basic and clinical studies support the notion that HRF amplifies IgE-mediated activation of mast cells and basophils. We discuss how secreted HRF promotes allergic inflammation in vitro and in vivo complex disease settings.
Collapse
Affiliation(s)
- Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
| | - Kazumi Kasakura
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Correspondence: ; Tel.: +85-8-752-6814
| |
Collapse
|
33
|
de la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L, Baker AH. Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun Signal 2019; 17:143. [PMID: 31703702 PMCID: PMC6839246 DOI: 10.1186/s12964-019-0449-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Excessive TGF-β signalling has been shown to underlie pulmonary hypertension (PAH). Human pulmonary artery smooth muscle cells (HPASMCs) can release extracellular vesicles (EVs) but their contents and significance have not yet been studied. Here, we aimed to analyse the contents and biological relevance of HPASMC-EVs and their transport to human pulmonary arterial endothelial cells (HPAECs), as well as the potential alteration of these under pathological conditions. METHODS We used low-input RNA-Seq to analyse the RNA cargoes sorted into released HPASMC-EVs under basal conditions. We additionally analysed the effects of excessive TGF-β signalling, using TGF-β1 and BMP4, in the transcriptome of HPASMCs and their EVs. We then, for the first time, optimised Cre-loxP technology for its use with primary cells in vitro, directly visualising HPASMC-to-HPAEC communication and protein markers on cells taking up EVs. Furthermore we could analyse alteration of this transport with excessive TGF-β signalling, as well as by other cytokines involved in PAH: IL-1β, TNF-α and VEGFA. RESULTS We were able to detect transcripts from 2417 genes in HPASMC-EVs. Surprisingly, among the 759 enriched in HPASMC-EVs compared to their donor cells, we found Zeb1 and 2 TGF-β superfamily ligands, GDF11 and TGF-β3. Moreover, we identified 90 genes differentially expressed in EVs from cells treated with TGF-β1 compared to EVs in basal conditions, including a subset involved in actin and ECM remodelling, among which were bHLHE40 and palladin. Finally, using Cre-loxP technology we showed cell-to-cell transfer and translation of HPASMC-EV Cre mRNA from HPASMC to HPAECs, effectively evidencing communication via EVs. Furthermore, we found increased number of smooth-muscle actin positive cells on HPAECs that took up HPASMC-EVs. The uptake and translation of mRNA was also higher in activated HPAECs, when stimulated with TGF-β1 or IL-1β. CONCLUSIONS HPASMC-EVs are enriched in RNA transcripts that encode genes that could contribute to vascular remodelling and EndoMT during development and PAH, and TGF-β1 up-regulates some that could enhance this effects. These EVs are functionally transported, increasingly taken up by activated HPAECs and contribute to EndoMT, suggesting a potential effect of HPASMC-EVs in TGF-β signalling and other related processes during PAH development.
Collapse
Affiliation(s)
- Fernando de la Cuesta
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, EH16 4TJ UK
| | - Ilaria Passalacqua
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, EH16 4TJ UK
| | - Julie Rodor
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, EH16 4TJ UK
| | - Raghu Bhushan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, EH16 4TJ UK
- Present affiliation: Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore, India
| | - Laura Denby
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, EH16 4TJ UK
| | - Andrew H. Baker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, EH16 4TJ UK
| |
Collapse
|
34
|
Banizs AB, Huang T, Nakamoto RK, Shi W, He J. Endocytosis Pathways of Endothelial Cell Derived Exosomes. Mol Pharm 2018; 15:5585-5590. [PMID: 30351959 DOI: 10.1021/acs.molpharmaceut.8b00765] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanosized extracellular vesicles (EVs) possess the natural machinery needed to enter selectively and transmit complex molecular messages efficiently into targeted cells. The intracellular fate of the vesicular cargos depends on the route of internalization. Therefore, understanding the mechanism of attachment and subsequent intake of these vesicles (before and after exerting any modification) is imperative. Here the extent of communication, the uptake kinetics, and the pathways of endothelial EVs into endothelial cells in the presence of specific pharmacological inhibitors were assessed by imaging flow cytometry. The results showed that the uptake of endothelial EVs into endothelial cells was largely an energy-dependent process using predominantly a receptor-mediated, clathrin-dependent pathway.
Collapse
|
35
|
Letsiou E, Bauer N. Endothelial Extracellular Vesicles in Pulmonary Function and Disease. CURRENT TOPICS IN MEMBRANES 2018; 82:197-256. [PMID: 30360780 DOI: 10.1016/bs.ctm.2018.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pulmonary vascular endothelium is involved in the pathogenesis of acute and chronic lung diseases. Endothelial cell (EC)-derived products such as extracellular vesicles (EVs) serve as EC messengers that mediate inflammatory as well as cytoprotective effects. EC-EVs are a broad term, which encompasses exosomes and microvesicles of endothelial origin. EVs are comprised of lipids, nucleic acids, and proteins that reflect not only the cellular origin but also the stimulus that triggered their biogenesis and secretion. This chapter presents an overview of the biology of EC-EVs and summarizes key findings regarding their characteristics, components, and functions. The role of EC-EVs is specifically delineated in pulmonary diseases characterized by endothelial dysfunction, including pulmonary hypertension, acute respiratory distress syndrome and associated conditions, chronic obstructive pulmonary disease, and obstructive sleep apnea.
Collapse
Affiliation(s)
- Eleftheria Letsiou
- Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Natalie Bauer
- Department of Pharmacology & Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States.
| |
Collapse
|
36
|
Exosomal 15-LO2 mediates hypoxia-induced pulmonary artery hypertension in vivo and in vitro. Cell Death Dis 2018; 9:1022. [PMID: 30282973 PMCID: PMC6170379 DOI: 10.1038/s41419-018-1073-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Our previous studies have shown that 15-LO2/15-HETE induced by hypoxia played an important role in pulmonary arterial hypertension (PH). However, the transportations of 15-LO2/15-HETE among the cells remain elusive. In this study, we investigated the specific involvement of 15-LO2-containing exosomes in the overproliferation of pulmonary artery endothelial cells (PAECs) induced by hypoxia and the underlying mechanism. In vitro, 15-LO2 was abundantly expressed and enriched in exosomes secreted from hypoxic PAECs, which subsequently activated the STAT3 signaling pathway, resulting in a robust increase in PAECs proliferation. In vivo treatment with the exosomes inhibitor GW4869 protected the pulmonary vascular homeostasis from dysfunctional and abnormal remodeling. Moreover, 15-LO2 was ubiquitinated under hypoxia, and further inhibition of the ubiquitin-proteasome system significantly suppressed PAECs proliferation, suggesting that ubiquitination of 15-LO2 may contribute to its sorting into exosomes. Overall, these findings indicate a previously unrecognized effect of exosomes and the cargo 15-LO2 in pulmonary vascular homeostasis on the pathogenesis of PH.
Collapse
|
37
|
Jandl K, Gregory CD, Kwapiszewska G. Translationally Controlled Tumor Protein in Extracellular Vehicles: Dangerous Cargo? Am J Respir Cell Mol Biol 2018; 59:407-409. [PMID: 29924940 DOI: 10.1165/rcmb.2018-0160ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Katharina Jandl
- 1 Ludwig Boltzmann Institute for Lung Vascular Research Graz, Austria and
| | - Christopher D Gregory
- 2 MRC Centre for Inflammation Research University of Edinburgh Edinburgh, United Kingdom
| | | |
Collapse
|