1
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Zhang X, Li S, Lason W, Greco M, Klenerman P, Hinks TSC. MAIT cells protect against sterile lung injury. Cell Rep 2025; 44:115275. [PMID: 39918959 DOI: 10.1016/j.celrep.2025.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, the most abundant unconventional T cells in the lung, can exhibit a wide range of functional responses to different triggers via their T cell receptor (TCR) and/or cytokines. Their role, especially in sterile lung injury, is unknown. Using single-cell RNA sequencing (scRNA-seq), spectral analysis, and adoptive transfer in a bleomycin-induced sterile lung injury, we found that bleomycin activates murine pulmonary MAIT cells and is associated with a protective role against bleomycin-induced lung injury. MAIT cells drive the accumulation of type 1 conventional dendritic cells (cDC1s), limiting tissue damage in a DNGR-1-dependent manner. Human scRNA-seq data revealed that MAIT cells were activated, with increased cDC populations in idiopathic pulmonary fibrosis patients. Thus, MAIT cells enhance defense against sterile lung injury by fostering cDC1-driven anti-fibrotic pathways.
Collapse
Affiliation(s)
- Xiawei Zhang
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Shuailin Li
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Wojciech Lason
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Maria Greco
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
3
|
Martin J, Rittersberger R, Treitler S, Kopp P, Ibraimi A, Koslowski G, Sickinger M, Dabbars A, Schindowski K. Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. IN VITRO MODELS 2024; 3:183-203. [PMID: 39872698 PMCID: PMC11756470 DOI: 10.1007/s44164-024-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Purpose For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies. Methods Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability. Results Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation. Conclusion The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00079-y.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Anit Ibraimi
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Justus-Von-Liebig-Schule, Von-Kilian-Straße 5, 79762 Waldshut-Tiengen, Germany
| | - Gabriel Koslowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Max Sickinger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| |
Collapse
|
4
|
Neumann S, Casjens S, Hoffmeyer F, Rühle K, Gamrad-Streubel L, Haase LM, Rudolph KK, Giesen J, Neumann V, Taeger D, Pallapies D, Birk T, Brüning T, Bünger J. Club cell protein (CC16) in serum as an effect marker for small airway epithelial damage caused by diesel exhaust and blasting fumes in potash mining. Int Arch Occup Environ Health 2024; 97:121-132. [PMID: 38110551 PMCID: PMC10876725 DOI: 10.1007/s00420-023-02035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE The effect marker club cell protein (CC16) is secreted by the epithelium of the small respiratory tract into its lumen and passes into the blood. Increased amounts of CC16 in serum are observed during acute epithelial lung injury due to air pollutants. CC16 in serum was determined as part of this cross-sectional study in underground potash miners on acute and chronic health effects from exposures to diesel exhaust and blasting fumes. METHODS Nitrogen oxides, carbon monoxide, and diesel particulate matter were measured in 672 workers at a German potash mining site on a person-by-person basis over an early shift or midday shift, together with CC16 serum concentrations before and after the respective shift. CC16 concentrations and CC16 shift-differences were evaluated with respect to personal exposure measurements and other quantitative variables by Spearman rank correlation coefficients. CC16 shift-differences were modeled using multiple linear regression. Above-ground workers as reference group were compared to the exposed underground workers. RESULTS Serum concentrations of CC16 were influenced by personal characteristics such as age, smoking status, and renal function. Moreover, they showed a circadian rhythm. While no statistically significant effects of work-related exposure on CC16 concentrations were seen in never smokers, such effects were evident in current smokers. CONCLUSION The small airways of current smokers appeared to be vulnerable to the combination of measured work-related exposures and individual exposure to smoking. Therefore, as health protection of smokers exposed to diesel exhaust and blasting fumes, smoking cessation is strongly recommended.
Collapse
Affiliation(s)
- Savo Neumann
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Frank Hoffmeyer
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Katrin Rühle
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Lisa Gamrad-Streubel
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Lisa-Marie Haase
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Katharina K Rudolph
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Jörg Giesen
- Institute for the Research on Hazardous Substances (IGF), 44789, Bochum, Germany
| | - Volker Neumann
- Institute for the Research on Hazardous Substances (IGF), 44789, Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Dirk Pallapies
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Thomas Birk
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
5
|
Gonzalez-Rubio J, Le-Trilling VTK, Baumann L, Cheremkhina M, Kubiza H, Luengen AE, Reuter S, Taube C, Ruetten S, Duarte Campos D, Cornelissen CG, Trilling M, Thiebes AL. SARS-CoV-2 particles promote airway epithelial differentiation and ciliation. Front Bioeng Biotechnol 2023; 11:1268782. [PMID: 38026867 PMCID: PMC10654538 DOI: 10.3389/fbioe.2023.1268782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: The Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic, enters the human body via the epithelial cells of the airway tract. To trap and eject pathogens, the airway epithelium is composed of ciliated and secretory cells that produce mucus which is expelled through a process called mucociliary clearance. Methods: This study examines the early stages of contact between SARS-CoV-2 particles and the respiratory epithelium, utilizing 3D airway tri-culture models exposed to ultraviolet light-irradiated virus particles. These cultures are composed of human endothelial cells and human tracheal mesenchymal cells in a fibrin hydrogel matrix covered by mucociliated human tracheal epithelial cells. Results: We found that SARS-CoV-2 particles trigger a significant increase in ciliation on the epithelial surface instructed through a differentiation of club cells and basal stem cells. The contact with SARS-CoV-2 particles also provoked a loss of cell-cell tight junctions and impaired the barrier integrity. Further immunofluorescence analyses revealed an increase in FOXJ1 expression and PAK1/2 phosphorylation associated with particle-induced ciliation. Discussion: An understanding of epithelial responses to virus particles may be instrumental to prevent or treat respiratory infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Julian Gonzalez-Rubio
- Department of Biohybrid and Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | | | - Lea Baumann
- Department of Biohybrid and Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Maria Cheremkhina
- Department of Biohybrid and Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Hannah Kubiza
- Department of Biohybrid and Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Anja E. Luengen
- Department of Biohybrid and Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
- Department of Pulmonary Medicine, University Medical Center Essen—Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen—Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen—Ruhrlandklinik, Essen, Germany
| | - Stephan Ruetten
- Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Daniela Duarte Campos
- Bioprinting and Tissue Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Christian G. Cornelissen
- Department of Biohybrid and Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
- Clinic for Pneumology and Internal Intensive Care Medicine (Medical Clinic V), RWTH Aachen University Hospital, Aachen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Lena Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Kim S, Xu Z, Forno E, Qin Y, Park HJ, Yue M, Yan Q, Manni ML, Acosta-Pérez E, Canino G, Chen W, Celedón JC. Cis- and trans-eQTM analysis reveals novel epigenetic and transcriptomic immune markers of atopic asthma in airway epithelium. J Allergy Clin Immunol 2023; 152:887-898. [PMID: 37271320 PMCID: PMC10592527 DOI: 10.1016/j.jaci.2023.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Expression quantitative trait methylation (eQTM) analyses uncover associations between DNA methylation markers and gene expression. Most eQTM analyses of complex diseases have focused on cis-eQTM pairs (within 1 megabase). OBJECTIVES This study sought to identify cis- and trans-methylation markers associated with gene expression in airway epithelium from youth with and without atopic asthma. METHODS In this study, the investigators conducted both cis- and trans-eQTM analyses in nasal (airway) epithelial samples from 158 Puerto Rican youth with atopic asthma and 100 control subjects without atopy or asthma. The investigators then attempted to replicate their findings in nasal epithelial samples from 2 studies of children, while also examining whether their results in nasal epithelium overlap with those from an eQTM analysis in white blood cells from the Puerto Rican subjects. RESULTS This study identified 9,108 cis-eQTM pairs and 2,131,500 trans-eQTM pairs. Trans-associations were significantly enriched for transcription factor and microRNA target genes. Furthermore, significant cytosine-phosphate-guanine sites (CpGs) were differentially methylated in atopic asthma and significant genes were enriched for genes differentially expressed in atopic asthma. In this study, 50.7% to 62.6% of cis- and trans-eQTM pairs identified in Puerto Rican youth were replicated in 2 smaller cohorts at false discovery rate-adjusted P < .1. Replicated genes in the trans-eQTM analysis included biologically plausible asthma-susceptibility genes (eg, HDC, NLRP3, ITGAE, CDH26, and CST1) and are enriched in immune pathways. CONCLUSIONS Studying both cis- and trans-epigenetic regulation of airway epithelial gene expression can identify potential causal and regulatory pathways or networks for childhood asthma. Trans-eQTM CpGs may regulate gene expression in airway epithelium through effects on transcription factor and microRNA target genes.
Collapse
Affiliation(s)
- Soyeon Kim
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Zhongli Xu
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Yidi Qin
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Hyun Jung Park
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, NY
| | - Michelle L Manni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
7
|
Cha J, Choi S. Gene-Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. Int J Mol Sci 2023; 24:12266. [PMID: 37569643 PMCID: PMC10419280 DOI: 10.3390/ijms241512266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a complex heterogeneous disease caused by gene-environment interactions. Although numerous genome-wide association studies have been conducted, these interactions have not been systemically investigated. We sought to identify genetic factors associated with the asthma phenotype in 66,857 subjects from the Health Examination Study, Cardiovascular Disease Association Study, and Korea Association Resource Study cohorts. We investigated asthma-associated gene-environment (smoking status) interactions at the level of single nucleotide polymorphisms, genes, and gene sets. We identified two potentially novel (SETDB1 and ZNF8) and five previously reported (DM4C, DOCK8, MMP20, MYL7, and ADCY9) genes associated with increased asthma risk. Numerous gene ontology processes, including regulation of T cell differentiation in the thymus (GO:0033081), were significantly enriched for asthma risk. Functional annotation analysis confirmed the causal relationship between five genes (two potentially novel and three previously reported genes) and asthma through genome-wide functional prediction scores (combined annotation-dependent depletion, deleterious annotation of genetic variants using neural networks, and RegulomeDB). Our findings elucidate the genetic architecture of asthma and improve the understanding of its biological mechanisms. However, further studies are necessary for developing preventive treatments based on environmental factors and understanding the immune system mechanisms that contribute to the etiology of asthma.
Collapse
Affiliation(s)
- Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
8
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Han Y, Zhu Y, Almuntashiri S, Wang X, Somanath PR, Owen CA, Zhang D. Extracellular vesicle-encapsulated CC16 as novel nanotherapeutics for treatment of acute lung injury. Mol Ther 2023; 31:1346-1364. [PMID: 36635966 PMCID: PMC10188639 DOI: 10.1016/j.ymthe.2023.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Acute lung injury (ALI) is still associated with high mortality. Growing evidence suggests that Club Cell Protein 16 (CC16) plays a protective role against ALI. However, the doses of recombinant CC16 (rCC16) used in preclinical studies are supraphysiological for clinical applications. Extracellular vesicles (EVs) are nanovesicles endogenously generated by mammalian cells. Our study demonstrated that CC16 is released via small EVs and EV-encapsulated CC16 (sEV-CC16) and has anti-inflammatory activities, which protect mice from lipopolysaccharide (LPS) or bacteria-induced ALI. Additionally, sEV-CC16 can activate the DNA damage repair signaling pathways. Consistent with this activity, we observed more severe DNA damage in lungs from Cc16 knockout (KO) than wild-type (WT) mice. Mechanistically, we elucidated that CC16 suppresses nuclear factor κB (NF-κB) signaling activation by binding to heat shock protein 60 (HSP60). We concluded that sEV-CC16 could be a potential therapeutic agent for ALI by inhibiting the inflammatory and DNA damage responses by reducing NF-κB signaling.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
10
|
Brütsch SM, Madzharova E, Pantasis S, Wüstemann T, Gurri S, Steenbock H, Gazdhar A, Kuhn G, Angel P, Bellusci S, Brinckmann J, Auf dem Keller U, Werner S, Bordoli MR. Mesenchyme-derived vertebrate lonesome kinase controls lung organogenesis by altering the matrisome. Cell Mol Life Sci 2023; 80:89. [PMID: 36920550 PMCID: PMC10017657 DOI: 10.1007/s00018-023-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Vertebrate lonesome kinase (VLK) is the only known secreted tyrosine kinase and responsible for the phosphorylation of a broad range of secretory pathway-resident and extracellular matrix proteins. However, its cell-type specific functions in vivo are still largely unknown. Therefore, we generated mice lacking the VLK gene (protein kinase domain containing, cytoplasmic (Pkdcc)) in mesenchymal cells. Most of the homozygous mice died shortly after birth, most likely as a consequence of their lung abnormalities and consequent respiratory failure. E18.5 embryonic lungs showed a reduction of alveolar type II cells, smaller bronchi, and an increased lung tissue density. Global mass spectrometry-based quantitative proteomics identified 97 proteins with significantly and at least 1.5-fold differential abundance between genotypes. Twenty-five of these had been assigned to the extracellular region and 15 to the mouse matrisome. Specifically, fibromodulin and matrilin-4, which are involved in extracellular matrix organization, were significantly more abundant in lungs from Pkdcc knockout embryos. These results support a role for mesenchyme-derived VLK in lung development through regulation of matrix dynamics and the resulting modulation of alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Salome M Brütsch
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Sophia Pantasis
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Till Wüstemann
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, 3010, Bern, Switzerland.,Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Gisela Kuhn
- Department of Health Sciences and Technology, Institute of Biomechanics, ETH Zurich, 8093, Zurich, Switzerland
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Saverio Bellusci
- German Lung Research Center (DCL), Giessen, Germany.,Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Aulweg 130, 35392, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany.,Department of Dermatology, University of Lübeck, 23562, Lübeck, Germany
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland.
| | - Mattia R Bordoli
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
11
|
Kasai Y, Morino T, Nakayama T, Yamamoto K, Kojima H. Analysis of the potential of human cultured nasal epithelial cell sheets to differentiate into airway epithelium. FASEB Bioadv 2023; 5:89-100. [PMID: 36876298 PMCID: PMC9983074 DOI: 10.1096/fba.2022-00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding the expected efficacy and safety of a new regenerative therapy requires analysis of the fate of the transplanted cell graft. We have shown that transplantation of autologous cultured nasal epithelial cell sheets onto the middle ear mucosa can improve middle ear aeration and hearing. However, it remains unknown whether cultured nasal epithelial cell sheets have the potential to gain mucociliary function in the environment of the middle ear because sampling cell sheets after transplantation is challenging. The present study re-cultured cultured nasal epithelial cell sheets in different culture media and evaluated whether the sheets have the potential to differentiate into airway epithelium. Before re-cultivation, cultured nasal epithelial cell sheets fabricated in keratinocyte culture medium (KCM) contained no FOXJ1-positive and acetyl-α-tubulin-positive multiciliated cells or MUC5AC-positive mucus cells. Interestingly, multiciliated cells and mucus cells were observed when the cultured nasal epithelial cell sheets were re-cultured in conditions that promote differentiation of airway epithelium. However, multiciliated cells, mucus cells and CK1-positive keratinized cells were not observed when cultured nasal epithelial cell sheets were re-cultured in conditions that promote epithelial keratinization. These findings support the suggestion that cultured nasal epithelial cell sheets have the ability to differentiate and gain mucociliary function in response to an appropriate environment (possibly including the environment found in the middle ear) but are unable to develop into an epithelial type that differs from its origins.
Collapse
Affiliation(s)
- Yoshiyuki Kasai
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Tsunetaro Morino
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Tsuguhisa Nakayama
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
- Department of Otorhinolaryngology, Head and Neck SurgeryDokkyo Medical UniversityTochigiJapan
| | - Kazuhisa Yamamoto
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Hiromi Kojima
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
12
|
Chu M, Gao H, Esparza P, Pajulas A, Wang J, Kharwadkar R, Gao H, Kaplan MH, Tepper RS. Chronic developmental hypoxia alters rat lung immune cell transcriptomes during allergic airway inflammation. Physiol Rep 2023; 11:e15600. [PMID: 36750205 PMCID: PMC9904961 DOI: 10.14814/phy2.15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023] Open
Abstract
Populations that are born and raised at high altitude develop under conditions of chronic developmental hypoxia (CDH), which results in pulmonary adaptations of increased lung volume and diffusion capacity to increase gas exchange. It is not clear how CDH may alter allergic inflammation in the lung. In this study, we sought to characterize the impact of CDH on immune cell populations in the rat lung during a murine model of asthma. Rats were bred and raised in either hypoxic (15% oxygen, CDH) or normobaric room air (20% oxygen). At 3-weeks of age, animals were sensitized to ovalbumin (OVA) or physiologic saline (phosphate-buffered saline [PBS]) as a control, followed by three consecutive days of intra-nasal OVA or PBS at 6-weeks of age. We then assessed airway reactivity and allergic-associated cytokine levels. This was followed by single-cell transcriptomic profiling of lung cell populations. In scRNA-seq analysis, we assessed differentially expressed genes, differentially enriched functional pathways, immune cell exhaustion/activation markers, and immune cell secretory products. Our results show that while OVA heightened airway reactivity, CDH suppressed airway reactivity in OVA-challenged and control animals. Through scRNA-seq analysis, we further demonstrate that CDH alters the transcriptional landscape in the lung and alters transcriptional programs in immune cells. These data define CDH-dependent changes in the lung that impact airway reactivity.
Collapse
Affiliation(s)
- Michelle Chu
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Huanling Gao
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Patricia Esparza
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Abigail Pajulas
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Jocelyn Wang
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Rakshin Kharwadkar
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Hongyu Gao
- Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisIndianaUSA
| | - Mark H. Kaplan
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Robert S. Tepper
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
13
|
Martinu T, Todd JL, Gelman AE, Guerra S, Palmer SM. Club Cell Secretory Protein in Lung Disease: Emerging Concepts and Potential Therapeutics. Annu Rev Med 2023; 74:427-441. [PMID: 36450281 PMCID: PMC10472444 DOI: 10.1146/annurev-med-042921-123443] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Club cell secretory protein (CCSP), also known as secretoglobin 1A1 (gene name SCGB1A1), is one of the most abundant proteins in the lung, primarily produced by club cells of the distal airway epithelium. At baseline, CCSP is found in large concentrations in lung fluid specimens and can also be detected in the blood and urine. Obstructive lung diseases are generally associated with reduced CCSP levels, thought to be due to decreased CCSP production or club cell depletion. Conversely, several restrictive lung diseases have been found to have increased CCSP levels both in the lung and in the circulation, likely related to club cell dysregulation as well as increasedlung permeability. Recent studies demonstrate multiple mechanisms by which CCSP dampens acute and chronic lung inflammation. Given these anti-inflammatory effects, CCSP represents a novel potential therapeutic modality in lung disease.
Collapse
Affiliation(s)
- Tereza Martinu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada;
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Scott M Palmer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
14
|
Wang Z, He Y, Li Q, Zhao Y, Zhang G, Luo Z. Network analyses of upper and lower airway transcriptomes identify shared mechanisms among children with recurrent wheezing and school-age asthma. Front Immunol 2023; 14:1087551. [PMID: 36776870 PMCID: PMC9911682 DOI: 10.3389/fimmu.2023.1087551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Background Predicting which preschool children with recurrent wheezing (RW) will develop school-age asthma (SA) is difficult, highlighting the critical need to clarify the pathogenesis of RW and the mechanistic relationship between RW and SA. Despite shared environmental exposures and genetic determinants, RW and SA are usually studied in isolation. Based on network analysis of nasal and tracheal transcriptomes, we aimed to identify convergent transcriptomic mechanisms in RW and SA. Methods RNA-sequencing data from nasal and tracheal brushing samples were acquired from the Gene Expression Omnibus. Combined with single-cell transcriptome data, cell deconvolution was used to infer the composition of 18 cellular components within the airway. Consensus weighted gene co-expression network analysis was performed to identify consensus modules closely related to both RW and SA. Shared pathways underlying consensus modules between RW and SA were explored by enrichment analysis. Hub genes between RW and SA were identified using machine learning strategies and validated using external datasets and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential value of hub genes in defining RW subsets was determined using nasal and tracheal transcriptome data. Results Co-expression network analysis revealed similarities in the transcriptional networks of RW and SA in the upper and lower airways. Cell deconvolution analysis revealed an increase in mast cell fraction but decrease in club cell fraction in both RW and SA airways compared to controls. Consensus network analysis identified two consensus modules highly associated with both RW and SA. Enrichment analysis of the two consensus modules indicated that fatty acid metabolism-related pathways were shared key signals between RW and SA. Furthermore, machine learning strategies identified five hub genes, i.e., CST1, CST2, CST4, POSTN, and NRTK2, with the up-regulated hub genes in RW and SA validated using three independent external datasets and qRT-PCR. The gene signatures of the five hub genes could potentially be used to determine type 2 (T2)-high and T2-low subsets in preschoolers with RW. Conclusions These findings improve our understanding of the molecular pathogenesis of RW and provide a rationale for future exploration of the mechanistic relationship between RW and SA.
Collapse
Affiliation(s)
- Zhili Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu He
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinyuan Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guangli Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Wang M, Tang K, Gao P, Lu Y, Wang S, Wu X, Zhao J, Xie J. Club cell 10-kDa protein (CC10) as a surrogate for identifying type 2 asthma phenotypes. J Asthma 2023; 60:203-211. [PMID: 35168451 DOI: 10.1080/02770903.2022.2040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Club cell 10-kDa protein (CC10) is a documented biomarker for airway obstructive diseases. Primarily produced by nonciliated club cells in the distal airway and in nasal epithelial cells, CC10 suppresses Th2 cell differentiation and Th2 cytokine production. In this study, we aimed to determine whether CC10 can also be used as an alternative biomarker for identifying Type 2 (T2) asthma. 74 patients with asthma, and 24 healthy controls were enrolled in the study. T2-high asthma was defined as elevation in two or more biomarkers, such as sputum eosinophilia ≥ 3%, high blood eosinophils ≥ 300/µL, or high FeNO ≥ 30 ppb. T2-low asthma was defined as no elevation in biomarkers. Enzyme-linked immunosorbent assay (ELISA) was used to assess the CC10 levels in plasma. The plasma CC10 level in patients with T2-high asthma was lower than that of patients with T2-low asthma and healthy controls (P < 0.05). To distinguish between T2-high and T2-low phenotype in patients with asthma, a receiver-operating characteristic (ROC) analysis was performed. It showed a sensitivity of 58.1% and specificity of 78.0% when using 22.74 ng/ml of plasma CC10. Correlation analysis indicated that the plasma CC10 level was inversely correlated with sputum eosinophil, blood eosinophil, and FeNO, and positively correlated with log PD20. However, no correlation with sputum neutrophil percentages, macrophage percentages, IgE, or lung function was found. Plasma CC10 is potentially useful in predicting T2-high and T2-low asthma. Lower plasma CC10 was associated with enhanced airway hyperresponsiveness, and Type 2 inflammation.
Collapse
Affiliation(s)
- Meijia Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Tang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengfei Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan NO.1 Hospital, Wuhan Hospital of traditional Chinese and Western Medicine, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Lukowski JK, Olson H, Velickovic M, Wang J, Kyle JE, Kim YM, Williams SM, Zhu Y, Huyck HL, McGraw MD, Poole C, Rogers L, Misra R, Alexandrov T, Ansong C, Pryhuber GS, Clair G, Adkins JN, Carson JP, Anderton CR. An optimized approach and inflation media for obtaining complimentary mass spectrometry-based omics data from human lung tissue. Front Mol Biosci 2022; 9:1022775. [PMID: 36465564 PMCID: PMC9709465 DOI: 10.3389/fmolb.2022.1022775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/02/2022] [Indexed: 04/23/2024] Open
Abstract
Human disease states are biomolecularly multifaceted and can span across phenotypic states, therefore it is important to understand diseases on all levels, across cell types, and within and across microanatomical tissue compartments. To obtain an accurate and representative view of the molecular landscape within human lungs, this fragile tissue must be inflated and embedded to maintain spatial fidelity of the location of molecules and minimize molecular degradation for molecular imaging experiments. Here, we evaluated agarose inflation and carboxymethyl cellulose embedding media and determined effective tissue preparation protocols for performing bulk and spatial mass spectrometry-based omics measurements. Mass spectrometry imaging methods were optimized to boost the number of annotatable molecules in agarose inflated lung samples. This optimized protocol permitted the observation of unique lipid distributions within several airway regions in the lung tissue block. Laser capture microdissection of these airway regions followed by high-resolution proteomic analysis allowed us to begin linking the lipidome with the proteome in a spatially resolved manner, where we observed proteins with high abundance specifically localized to the airway regions. We also compared our mass spectrometry results to lung tissue samples preserved using two other inflation/embedding media, but we identified several pitfalls with the sample preparation steps using this preservation method. Overall, we demonstrated the versatility of the inflation method, and we can start to reveal how the metabolome, lipidome, and proteome are connected spatially in human lungs and across disease states through a variety of different experiments.
Collapse
Affiliation(s)
| | - Heather Olson
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Marija Velickovic
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Juan Wang
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Jennifer E. Kyle
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Young-Mo Kim
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Sarah M. Williams
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Ying Zhu
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Heidi L. Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Matthew D. McGraw
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Cory Poole
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Lisa Rogers
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Ravi Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Charles Ansong
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Geremy Clair
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Joshua N. Adkins
- Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - James P. Carson
- Texas Advanced Computing Center (TACC), University of Texas at Austin, Austin, TX, United States
| | | |
Collapse
|
17
|
Manevski M, Yogeswaran S, Rahman I, Devadoss D, Chand HS. E-cigarette synthetic cooling agent WS-23 and nicotine aerosols differentially modulate airway epithelial cell responses. Toxicol Rep 2022; 9:1823-1830. [PMID: 36518432 PMCID: PMC9742947 DOI: 10.1016/j.toxrep.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Electronic cigarette (e-cig) aerosol exposures are strongly associated with pulmonary dysfunctions, and the airway epithelial cells (AECs) of respiratory passages play a pivotal role in understanding this association. However, not much is known about the effect of synthetic cooling agents such as WS-23 on AECs. WS-23 is a synthetic menthol-like cooling agent widely used to enhance the appeal of e-cigs and to suppress the harshness and bitterness of other e-cig constituents. Using primary human AECs, we compared the effects of aerosolized WS-23 with propylene glycol/vegetable glycerin (PG/VG) vehicle control and nicotine aerosol exposures. AECs treated with 3 % WS-23 aerosols showed a significant increase in viable cell numbers compared to PG/VG-vehicle aerosol exposed cells and cell growth was comparable following 2.5 % nicotine aerosol exposure. AEC inflammatory factors, IL-6 and ICAM-1 levels were significantly suppressed by WS-23 aerosols compared to PG/VG-controls. When differentiated AECs were challenged with WS-23 aerosols, there was a significant increase in secretory mucin MUC5AC expression with no discernible change in airway inflammatory SCGB1A1 expression. Compared to PG/VG-controls, WS-23 or nicotine aerosols presented with increased MUC5AC expression, but there was no synergistic effect of WS-23 + nicotine combination exposure. Thus, WS-23 and nicotine aerosols modulate the AEC responses and induce goblet cell hyperplasia, which could impact the airway physiology and susceptibility to respiratory diseases.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Shaiesh Yogeswaran
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S. Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
18
|
Boateng E, Kovacevic D, Oldenburg V, Rådinger M, Krauss-Etschmann S. Role of airway epithelial cell miRNAs in asthma. FRONTIERS IN ALLERGY 2022; 3:962693. [PMID: 36203653 PMCID: PMC9530201 DOI: 10.3389/falgy.2022.962693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 12/07/2022] Open
Abstract
The airway epithelial cells and overlying layer of mucus are the first point of contact for particles entering the lung. The severity of environmental contributions to pulmonary disease initiation, progression, and exacerbation is largely determined by engagement with the airway epithelium. Despite the cellular cross-talk and cargo exchange in the microenvironment, epithelial cells produce miRNAs associated with the regulation of airway features in asthma. In line with this, there is evidence indicating miRNA alterations related to their multifunctional regulation of asthma features in the conducting airways. In this review, we discuss the cellular components and functions of the airway epithelium in asthma, miRNAs derived from epithelial cells in disease pathogenesis, and the cellular exchange of miRNA-bearing cargo in the airways.
Collapse
Affiliation(s)
- Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Correspondence: Eistine Boateng
| | - Draginja Kovacevic
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Vladimira Oldenburg
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
19
|
Winkler AS, Cherubini A, Rusconi F, Santo N, Madaschi L, Pistoni C, Moschetti G, Sarnicola ML, Crosti M, Rosso L, Tremolada P, Lazzari L, Bacchetta R. Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants. ENVIRONMENT INTERNATIONAL 2022; 163:107200. [PMID: 35349910 DOI: 10.1016/j.envint.2022.107200] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) structured organoids are the most advanced in vitro models for studying human health effects, but their application to evaluate the biological effects associated with microplastic exposure was neglected until now. Fibers from synthetic clothes and fabrics are a major source of airborne microplastics, and their release from dryer machines is poorly understood. We quantified and characterized the microplastic fibers (MPFs) released in the exhaust filter of a household dryer and tested their effects on airway organoids (1, 10, and 50 µg mL-1) by optical microscopy, scanning electron microscopy (SEM), confocal microscopy and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). While the presence of MPFs did not inhibit organoid growth, we observed a significant reduction of SCGB1A1 gene expression related to club cell functionality and a polarized cell growth along the fibers. The MPFs did not cause relevant inflammation or oxidative stress but were coated with a cellular layer, resulting in the inclusion of fibers in the organoid. This effect could have long-term implications regarding lung epithelial cells undergoing repair. This exposure study using human airway organoids proved suitability of the model for studying the effects of airborne microplastic contamination on humans and could form the basis for further research regarding the toxicological assessment of emerging contaminants such as micro- or nanoplastics.
Collapse
Affiliation(s)
- Anna Sophie Winkler
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Francesco Rusconi
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Nadia Santo
- Unitech NOLIMITS, Imaging Facility, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Laura Madaschi
- Unitech NOLIMITS, Imaging Facility, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Clelia Pistoni
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giorgia Moschetti
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Via Francesco Sforza 35, 20122 Milan, Italy
| | - Maria Lucia Sarnicola
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Via Francesco Sforza 35, 20122 Milan, Italy
| | - Mariacristina Crosti
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Via Francesco Sforza 35, 20122 Milan, Italy
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, University of Milan and Thoracic Surgery and Transplantation Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Paolo Tremolada
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy.
| | - Renato Bacchetta
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
20
|
Diver S, Sridhar S, Khalfaoui LC, Russell RJ, Emson C, Griffiths JM, de los Reyes M, Yin D, Colice G, Brightling CE. FeNO differentiates epithelial gene expression clusters: exploratory analysis from the MESOS randomised controlled trial. J Allergy Clin Immunol 2022; 150:830-840. [DOI: 10.1016/j.jaci.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022]
|
21
|
Warren R, Dylag AM, Behan M, Domm W, Yee M, Mayer-Pröschel M, Martinez-Sobrido L, O'Reilly MA. Ataxia telangiectasia mutated is required for efficient proximal airway epithelial cell regeneration following influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2022; 322:L581-L592. [PMID: 35196880 PMCID: PMC8993527 DOI: 10.1152/ajplung.00378.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Children and young adults with mutant forms of ataxia telangiectasia mutated (ATM), a kinase involved in DNA damage signaling and mitochondrial homeostasis, suffer from recurrent respiratory infections, immune deficiencies, and obstructive airways disease associated with disorganized airway epithelium. We previously showed in mice how Atm was required to mount a protective immune memory response to influenza A virus [IAV; Hong Kong/X31 (HKx31), H3N2]. Here, Atm wildtype (WT) and knockout (Atm-null) mice were used to investigate how Atm is required to regenerate the injured airway epithelium following IAV infection. When compared with WT mice, naive Atm-null mice had increased airway resistance and reduced lung compliance that worsened during infection before returning to naïve levels by 56 days postinfection (dpi). Although Atm-null lungs appeared pathologically normal before infection by histology, they developed an abnormal proximal airway epithelium after infection that contained E-cadherin+, Sox2+, and Cyp2f2+ cells lacking secretoglobin family 1 A member 1 (Scgb1a1) protein expression. Patchy and low expression of Scgb1a1 were eventually observed by 56 dpi. Genetic lineage tracing in HKx31-infected mice revealed club cells require Atm to rapidly and efficiently restore Scgb1a1 expression in proximal airways. Since Scgb1a1 is an immunomodulatory protein that protects the lung against a multitude of respiratory challenges, failure to efficiently restore its expression may contribute to the respiratory diseases seen in individuals with ataxia telangiectasia.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew M Dylag
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Molly Behan
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
22
|
Ulrich BJ, Kharwadkar R, Chu M, Pajulas A, Muralidharan C, Koh B, Fu Y, Gao H, Hayes TA, Zhou HM, Goplen NP, Nelson AS, Liu Y, Linnemann AK, Turner MJ, Licona-Limón P, Flavell RA, Sun J, Kaplan MH. Allergic airway recall responses require IL-9 from resident memory CD4 + T cells. Sci Immunol 2022; 7:eabg9296. [PMID: 35302861 PMCID: PMC9295820 DOI: 10.1126/sciimmunol.abg9296] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.
Collapse
Affiliation(s)
- Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rakshin Kharwadkar
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michelle Chu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Charanya Muralidharan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Byunghee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tristan A Hayes
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Nick P Goplen
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Rochester, MN 55902, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amelia K Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew J Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Mexico City 04020, Mexico
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Rochester, MN 55902, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Using intracellular SCGB1A1-sorted, formalin-fixed club cells for successful transcriptomic analysis. Biochem Biophys Res Commun 2022; 604:151-157. [PMID: 35305419 DOI: 10.1016/j.bbrc.2022.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
As opposed to surface marker staining, certain cell types can only be recognized by intracellular markers. Intracellular staining for use in cell sorting remains challenging. Fixation and permeabilization steps for intracellular staining and the presence of RNases notably affect preservation of high-quality mRNA. We report the work required for the optimization of a successful protocol for microarray analysis of intracellular target-sorted, formalin-fixed human bronchial club cells. Cells obtained from differentiated air-liquid interface cultures were stained with the most characteristic intracellular markers for club cell (SCGB1A1+) sorting. A benchmarked intracellular staining protocol was carried out before flow cytometry. The primary outcome was the extraction of RNA sufficient quality for microarray analysis as assessed by Bioanalyzer System. Fixation with 4% paraformaldehyde coupled with 0.1% Triton/0.1% saponin permeabilization obtained optimal results for SCGB1A1 staining. Addition of RNase inhibitors throughout the protocol and within the appropriate RNA extraction kit (Formalin-Fixed-Paraffin-Embedded) dramatically improved RNA quality, resulting in samples eligible for microarray analysis. The protocol resulted in successful cell sorting according to specific club cell intracellular marker without using cell surface marker. The protocol also preserved RNA of sufficient quality for subsequent microarray transcriptomic analysis, and we were able to generate transcriptomic signature of club cells.
Collapse
|
24
|
Mootz M, Jakwerth CA, Schmidt‐Weber CB, Zissler UM. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 2022; 77:767-777. [PMID: 34343347 DOI: 10.1111/all.15033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.
Collapse
Affiliation(s)
- Martine Mootz
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
- Technical University of Munich (TUM)TUM School of MedicineKlinikum Rechts der Isar Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| |
Collapse
|
25
|
Involvement and therapeutic implications of airway epithelial barrier dysfunction in type 2 inflammation of asthma. Chin Med J (Engl) 2022; 135:519-531. [PMID: 35170505 PMCID: PMC8920422 DOI: 10.1097/cm9.0000000000001983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Type 2 inflammation is a complex immune response and primary mechanism for several common allergic diseases including allergic rhinitis, allergic asthma, atopic dermatitis, and chronic rhinosinusitis with nasal polyps. It is the predominant type of immune response against helminths to prevent their tissue infiltration and induce their expulsion. Recent studies suggest that epithelial barrier dysfunction contributes to the development of type 2 inflammation in asthma, which may partly explain the increasing prevalence of asthma in China and around the globe. The epithelial barrier hypothesis has recently been proposed and has received great interest from the scientific community. The development of leaky epithelial barriers leads to microbial dysbiosis and the translocation of bacteria to inter- and sub-epithelial areas and the development of epithelial tissue inflammation. Accordingly, preventing the impairment and promoting the restoration of a deteriorated airway epithelial barrier represents a promising strategy for the treatment of asthma. This review introduces the interaction between type 2 inflammation and the airway epithelial barrier in asthma, the structure and molecular composition of the airway epithelial barrier, and the assessment of epithelial barrier integrity. The role of airway epithelial barrier disruption in the pathogenesis of asthma will be discussed. In addition, the possible mechanisms underlying the airway epithelial barrier dysfunction induced by allergens and environmental pollutants, and current treatments to restore the airway epithelial barrier are reviewed.
Collapse
|
26
|
van den Berg S, Hashimoto S, Golebski K, Vijverberg SJH, Kapitein B. Severe acute asthma at the pediatric intensive care unit: can we link the clinical phenotypes to immunological endotypes? Expert Rev Respir Med 2021; 16:25-34. [PMID: 34709100 DOI: 10.1080/17476348.2021.1997597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The clinical phenotype of severe acute asthma at the pediatric intensive care unit (PICU) is highly heterogeneous. However, current treatment is still based on a 'one-size-fits-all approach'. AREAS COVERED We aim to give a comprehensive description of the clinical characteristics of pediatric patients with severe acute asthma admitted to the PICU and available immunological biomarkers, providing the first steps toward precision medicine for this patient population. A literature search was performed using PubMed for relevant studies on severe acute (pediatric) asthma. EXPERT OPINION Omics technologies should be used to investigate the relationship between cellular molecules and pathways, and their clinical phenotypes. Inflammatory phenotypes might guide bedside decisions regarding the use of corticosteroids, neutrophil modifiers and/or type of beta-agonist. A next step toward precision medicine should be inclusion of these patients in clinical trials on biologics.
Collapse
Affiliation(s)
- Sarah van den Berg
- Department of Respiratory Medicine, Amsterdam Institute for Infection and Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Departmentof Pediatric Pulmonology, Amsterdam Public Health Institute, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone Hashimoto
- Department of Respiratory Medicine, Amsterdam Institute for Infection and Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Departmentof Pediatric Pulmonology, Amsterdam Public Health Institute, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Korneliusz Golebski
- Department of Respiratory Medicine, Amsterdam Institute for Infection and Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam Institute for Infection and Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Departmentof Pediatric Pulmonology, Amsterdam Public Health Institute, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Berber Kapitein
- Departmentof Pediatric Pulmonology, Amsterdam Public Health Institute, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Couto M, Bernard A, Delgado L, Drobnic F, Kurowski M, Moreira A, Rodrigues‐Alves R, Rukhadze M, Seys S, Wiszniewska M, Quirce S. Health effects of exposure to chlorination by-products in swimming pools. Allergy 2021; 76:3257-3275. [PMID: 34289125 DOI: 10.1111/all.15014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Concerns have been raised regarding the potential negative effects on human health of water disinfectants used in swimming pools. Among the disinfection options, the approaches using chlorine-based products have been typically preferred. Chlorine readily reacts with natural organic matter that are introduced in the water mainly through the bathers, leading to the formation of potentially harmful chlorination by-products (CBPs). The formation of CBPs is of particular concern since some have been epidemiologically associated with the development of various clinical manifestations. The higher the concentration of volatile CBPs in the water, the higher their concentration in the air above the pool, and different routes of exposure to chemicals in swimming pools (water ingestion, skin absorption, and inhalation) contribute to the individual exposome. Some CBPs may affect the respiratory and skin health of those who stay indoor for long periods, such as swimming instructors, pool staff, and competitive swimmers. Whether those who use chlorinated pools as customers, particularly children, may also be affected has been a matter of debate. In this article, we discuss the current evidence regarding the health effects of both acute and chronic exposures in different populations (work-related exposures, intensive sports, and recreational attendance) and identify the main recommendations and unmet needs for research in this area.
Collapse
Affiliation(s)
- Mariana Couto
- Centro de Alergia Hospital CUF Descobertas Lisboa Portugal
| | - Alfred Bernard
- Louvain Centre for Toxicology and Applied Pharmacology Institute of Experimental and Clinical Research (IREC) Catholic University of Louvain Brussels Belgium
| | - Luís Delgado
- Basic and Clinical Immunology Department of Pathology Faculty of Medicine University of Porto Porto Portugal
- Serviço de ImunoalergologiaCentro Hospitalar de São João E.P.E. Porto Portugal
- Center for Health Technology and Services Research (CINTESIS@RISE) Faculty of Medicine University of Porto Porto Portugal
| | | | - Marcin Kurowski
- Department of Immunology and Allergy Medical University of Łódź Łódź Poland
| | - André Moreira
- Basic and Clinical Immunology Department of Pathology Faculty of Medicine University of Porto Porto Portugal
- Serviço de ImunoalergologiaCentro Hospitalar de São João E.P.E. Porto Portugal
- Epidemiology Research Unit‐ Instituto de Saúde Pública Universidade do Porto Porto Portugal
| | | | - Maia Rukhadze
- Center of Allergy & Immunology Teaching University Geomedi LLC Tbilisi Georgia
| | - Sven Seys
- Laboratory of Clinical Immunology Department of Clinical Immunology KU Leuven Leuven Belgium
| | - Marta Wiszniewska
- Department of Occupational Diseases and Environmental Health Nofer Institute of Occupational Medicine Lodz Poland
| | - Santiago Quirce
- Department of Allergy La Paz University HospitalIdiPAZ, and Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
28
|
Zissler UM, Jakwerth CA, Guerth F, Lewitan L, Rothkirch S, Davidovic M, Ulrich M, Oelsner M, Garn H, Schmidt‐Weber CB, Chaker AM. Allergen-specific immunotherapy induces the suppressive secretoglobin 1A1 in cells of the lower airways. Allergy 2021; 76:2461-2474. [PMID: 33528894 DOI: 10.1111/all.14756] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.
Collapse
Affiliation(s)
- Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Member of the Helmholtz I&I Initiative Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Larissa Lewitan
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Sandra Rothkirch
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Miodrag Davidovic
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Moritz Ulrich
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry Philipps University MarburgMedical FacultyMember of the German Center of Lung Research Marburg Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Member of the Helmholtz I&I Initiative Munich Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| |
Collapse
|
29
|
Immune-Associated Proteins Are Enriched in Lung Tissue-Derived Extracellular Vesicles during Allergen-Induced Eosinophilic Airway Inflammation. Int J Mol Sci 2021; 22:ijms22094718. [PMID: 33946872 PMCID: PMC8125637 DOI: 10.3390/ijms22094718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Studying the proteomes of tissue-derived extracellular vesicles (EVs) can lead to the identification of biomarkers of disease and can provide a better understanding of cell-to-cell communication in both healthy and diseased tissue. The aim of this study was to apply our previously established tissue-derived EV isolation protocol to mouse lungs in order to determine the changes in the proteomes of lung tissue-derived EVs during allergen-induced eosinophilic airway inflammation. A mouse model for allergic airway inflammation was used by sensitizing the mice intraperitoneal with ovalbumin (OVA), and one week after the final sensitization, the mice were challenged intranasal with OVA or PBS. The animals were sacrificed 24 h after the final challenge, and their lungs were removed and sliced into smaller pieces that were incubated in culture media with DNase I and Collagenase D for 30 min at 37 °C. Vesicles were isolated from the medium by ultracentrifugation and bottom-loaded iodixanol density cushions, and the proteomes were determined using quantitative mass spectrometry. More EVs were present in the lungs of the OVA-challenged mice compared to the PBS-challenged control mice. In total, 4510 proteins were quantified in all samples. Among them, over 1000 proteins were significantly altered (fold change >2), with 614 proteins being increased and 425 proteins being decreased in the EVs from OVA-challenged mice compared to EVs from PBS-challenged animals. The associated cellular components and biological processes were analyzed for the altered EV proteins, and the proteins enriched during allergen-induced airway inflammation were mainly associated with gene ontology (GO) terms related to immune responses. In conclusion, EVs can be isolated from mouse lung tissue, and the EVs’ proteomes undergo changes in response to allergen-induced airway inflammation. This suggests that the composition of lung-derived EVs is altered in diseases associated with inflammation of the lung, which may have implications in type-2 driven eosinophilic asthma pathogenesis.
Collapse
|
30
|
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 2021; 145:1499-1509. [PMID: 32507228 PMCID: PMC7270816 DOI: 10.1016/j.jaci.2020.04.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
The respiratory epithelium provides a physical, functional, and immunologic barrier to protect the host from the potential harming effects of inhaled environmental particles and to guarantee maintenance of a healthy state of the host. When compromised, activation of immune/inflammatory responses against exogenous allergens, microbial substances, and pollutants might occur, rendering individuals prone to develop chronic inflammation as seen in allergic rhinitis, chronic rhinosinusitis, and asthma. The airway epithelium in asthma and upper airway diseases is dysfunctional due to disturbed tight junction formation. By putting the epithelial barrier to the forefront of the pathophysiology of airway inflammation, different approaches to diagnose and target epithelial barrier defects are currently being developed. Using single-cell transcriptomics, novel epithelial cell types are being unraveled that might play a role in chronicity of respiratory diseases. We here review and discuss the current understandings of epithelial barrier defects in type 2-driven chronic inflammation of the upper and lower airways, the estimated contribution of these novel identified epithelial cells to disease, and the current clinical challenges in relation to diagnosis and treatment of allergic rhinitis, chronic rhinosinusitis, and asthma.
Collapse
Affiliation(s)
- Peter W Hellings
- Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, University Hospital Ghent, Laboratory of Upper Airway Research, Ghent, Belgium.
| | - Brecht Steelant
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Crete, Greece
| |
Collapse
|
31
|
Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14:978-990. [PMID: 33608655 PMCID: PMC7893625 DOI: 10.1038/s41385-020-00370-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
The airway epithelium protects us from environmental insults, which we encounter with every breath. Not only does it passively filter large particles, it also senses potential danger and alerts other cells, including immune and nervous cells. Together, these tissues orchestrate the most appropriate response, balancing the need to eliminate the danger with the risk of damage to the host. Each cell subset within the airway epithelium plays its part, and when impaired, may contribute to the development of respiratory disease. Here we highlight recent advances regarding the cellular and functional heterogeneity along the airway epithelium and discuss how we can use this knowledge to design more effective, targeted therapeutics.
Collapse
|
32
|
Saglani S, Wisnivesky JP, Charokopos A, Pascoe CD, Halayko AJ, Custovic A. Update in Asthma 2019. Am J Respir Crit Care Med 2020; 202:184-192. [PMID: 32338992 DOI: 10.1164/rccm.202003-0596up] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Juan P Wisnivesky
- Division of General Internal Medicine and.,Division of Pulmonary and Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Antonios Charokopos
- Division of Pulmonary and Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; and.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; and.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
34
|
Warren R, O'Reilly MA. An Elusive Fox that Suppresses Scgb1a1 in Asthma Has Been Found. Am J Respir Cell Mol Biol 2019; 60:615-617. [PMID: 30726101 PMCID: PMC6543739 DOI: 10.1165/rcmb.2019-0019ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Rachel Warren
- 1 School of Medicine and Dentistry University of Rochester Rochester, New York
| | - Michael A O'Reilly
- 1 School of Medicine and Dentistry University of Rochester Rochester, New York
| |
Collapse
|