1
|
Niu M, Wang YZ, Deng XM, Wu X, Hua ZY, Lv TT. Tryptanthrin alleviate lung fibrosis via suppression of MAPK/NF-κB and TGF-β1/SMAD signaling pathways in vitro and in vivo. Toxicol Appl Pharmacol 2025; 498:117285. [PMID: 40089192 DOI: 10.1016/j.taap.2025.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF), a progressive interstitial lung disease of unknown etiology, remains a therapeutic challenge with limited treatment options. This study investigates the therapeutic potential and molecular mechanisms of Tryptanthrin, a bioactive indole quinazoline alkaloid derived from Isatis tinctoria L., in pulmonary fibrosis. In a bleomycin-induced murine IPF model, Tryptanthrin administration (5 and 10 mg/kg/day for 28 days) significantly improved pulmonary function parameters and attenuated histological evidence of fibrosis. Mechanistic analysis revealed dual pathway modulation: Tryptanthrin suppressed MAPK/NF-κB signaling through inhibition of phosphorylation events, subsequently reducing pulmonary levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Concurrently, it attenuated TGF-β1/Smad pathway activation by decreasing TGF-β1 expression and Smad2/3 phosphorylation, thereby downregulating fibrotic markers including COL1A1, α-smooth muscle actin (α-SMA), and fibronectin in lung tissues. Complementary in vitro studies using Lipopolysaccharide (LPS) or TGF-β1-stimulated NIH3T3 fibroblasts confirmed these anti-inflammatory and anti-fibrotic effects through analogous pathway inhibition. Our findings demonstrate that Tryptanthrin exerts therapeutic effects against pulmonary fibrosis via coordinated modulation of both inflammatory (MAPK/NF-κB) and fibrotic (TGF-β1/Smad) signaling cascades, suggesting its potential as a novel multi-target therapeutic agent for IPF management.
Collapse
Affiliation(s)
- Min Niu
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China.
| | | | - Xiang-Min Deng
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Xin Wu
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Zheng-Ying Hua
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Ting-Ting Lv
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| |
Collapse
|
2
|
Bhardwaj P, Maruthi M. Hyperglycaemia-induced fibrotic and inflammatory gene expression alterations in lung epithelial cells: Implications for pulmonary fibrosis development. Gene 2025; 959:149520. [PMID: 40254080 DOI: 10.1016/j.gene.2025.149520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
Hyperglycaemia has a significant long-term impact on multiple organ systems, including renal, cardiovascular, central nervous, hepatic and ocular systems, leading to the gradual loss of their functional abilities. Numerous studies have elucidated the pathophysiology, etiology, and consequences of hyperglycaemia on these organs. The pulmonary system is also considered as a target of hyperglycaemia, several factors cause lung injury which leads to the development of pulmonary fibrosis, a chronic fibrotic disease with usual interstitial pneumonia patterns. Nevertheless, the effects of hyperglycaemia on the development of pulmonary fibrosis remain poorly understood. We intend to understand the cellular and morphological changes, and the progression of fibrosis in lung epithelial cells subjected to hyperglycaemia. Our experimental data indicate that hyperglycaemia induces fibrotic and inflammatory alterations in cultured lung epithelial cells. These alterations are facilitated by the upregulation of genes related to fibrosis and inflammation, promoting cell proliferation and migration. Further research is required to comprehensively elucidate the impact of hyperglycaemia during lung injury progression of fibrosis, these findings may reveal novel mechanisms that may help in the assessment and treatment of lung ailments in people with hyperglycaemia.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana
| | - Mulaka Maruthi
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana.
| |
Collapse
|
3
|
Fan Y, Gao L, Huang Y, Zhao L, Zhao Y, Wang X, Mo D, Lu H, Wang D. Effects and Significance of Dicliptera chinensis Polysaccharide on the Expression of Transforming Growth Factor β1/Connective Tissue Growth Factor Pathway in the Masseter and Head and Neck Skin of Rats With Radiation-Induced Fibrosis. Int Dent J 2025; 75:784-796. [PMID: 38991877 PMCID: PMC11976479 DOI: 10.1016/j.identj.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE To investigate whether Dicliptera chinensis polysaccharide (DCP) can alleviate radiation-induced fibrosis of masseter and head and neck skin. METHODS SD rats were divided into the control, the irradiation (IR), the IR + low dose DCP (200 mg/kg), and the IR + high dose DCP (400 mg/kg) groups. The head and neck of rats in the last 3 groups received a single dose of 18 Gy X-ray. At 1st, 2nd, 4th week (w) after radiation, haematoxylin and eosin staining were performed on masseter and skin to observe the histopathological changes; immunohistochemistry staining was performed to observe the pathological changes of the skin; Masson staining was performed on masseter and skin to observe the collagen deposition; western blot analysis was used on masseter to calculate the relative transforming growth factor β1 (TGF-β1), connective tissue growth factor (CTGF) expressions; ELISA was used to detect the contents of TGF-β1 and CTGF in skin and the contents of type I and type III collagens in masseter and skin. RESULTS In terms of skin, compared to the IR group, the IR + high-dose DCP group exhibited relatively smaller changes in skin structure, lower levels of TGF-β1 and CTGF; thinner skin thickness was observed at the 4th w after radiation; and the positive rates of collagen fibre and the optical densities of type I and type III collagens were lower at the 2nd and 4th w. For the masseter, compared to the IR group, the morphological changes were improved and the expression levels of TGF-β1 and CTGF proteins decreased in the 2 DCP dose groups at 2nd and 4th w. CONCLUSION DCP can reduce the formation and accumulation of type I and type III collagens after IR and ameliorate radiation-induced fibrosis of masseter and skin by down-regulating the expressions of TGF-β1 and CTGF.
Collapse
Affiliation(s)
- Yiyang Fan
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China; Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Linjing Gao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yude Huang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Lixiang Zhao
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Yanfei Zhao
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Xian Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Dongqin Mo
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Haoyu Lu
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Daiyou Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China.
| |
Collapse
|
4
|
Elieh-Ali-Komi D, Shafaghat F, Alipoor SD, Kazemi T, Atiakshin D, Pyatilova P, Maurer M. Immunomodulatory Significance of Mast Cell Exosomes (MC-EXOs) in Immune Response Coordination. Clin Rev Allergy Immunol 2025; 68:20. [PMID: 39976807 PMCID: PMC11842441 DOI: 10.1007/s12016-025-09033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Mast cells (MCs) communicate with other cells by direct cell-to-cell interaction, secreting mediators, and releasing exosomes (EXOs). MC-exosomes (MC-EXOs) contain proteins, lipids, mRNAs, and noncoding RNAs (ncRNAs), exhibit typical EXO markers such as heat shock proteins, tetraspanins, tumor susceptibility gene 101 protein (TSG101), and ALG-2-interacting protein X (ALIX), and are released constitutively or following MC degranulation. MC-EXOs also have signature MC markers like FcεRI and KIT (CD117), which allows for their identification and comparison with other EXO populations. Following their release, MC-EXOs may interact with the recipient cell(s) directly or be internalized and then release their protein and nucleic acid content. This may contribute to the regulation of immune responses and other biological processes and reprogramming of recipient cells. MC-EXO proteins may integrate and become a functional part of the recipient cell membrane. The mRNA transferred by MC-EXOs is functional and the transfer of exosomal RNA to other MCs results in the expression of donor MC proteins in the recipient MCs. Moreover, MCs may function as the recipients of EXOs that are released by other non-immune and immune cells, altering the secretome of MCs. In this review, we focus on how MC-EXOs modulate the biology of other cells and vice versa; and we highlight the role of MC-EXOs in the pathogenesis of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamila D Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-Structural Analysis Innovative Technologies, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St, 117198, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036, Voronezh, Russia
| | - Polina Pyatilova
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
5
|
Shin KWD, Atalay MV, Cetin-Atalay R, O'Leary EM, Glass ME, Szafran JCH, Woods PS, Meliton AY, Shamaa OR, Tian Y, Mutlu GM, Hamanaka RB. mTOR signaling regulates multiple metabolic pathways in human lung fibroblasts after TGF-β and in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2025; 328:L215-L228. [PMID: 39745695 DOI: 10.1152/ajplung.00189.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal disease characterized by the transforming growth factor (TGF-β)-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lungs with scar tissue. We and others have shown that TGF-β-mediated activation of the mechanistic target of rapamycin complex 1 (mTORC1) and downstream upregulation of activating transcription factor 4 (ATF4) promotes metabolic reprogramming in lung fibroblasts characterized by upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-β. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-β-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts, whereas mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single-cell RNA-seq datasets and found increased expression of ATF4 and mTOR-regulated genes in pathologic fibroblast populations from the lungs of patients with IPF. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.NEW & NOTEWORTHY Here, we used transcriptomic and metabolomic approaches to develop a more complete understanding of the role that mTOR, and its downstream effector ATF4, play in promoting metabolic reprogramming in lung fibroblasts. We identify novel metabolic pathways that may promote pathologic phenotypes, and we provide evidence from single-cell RNA-seq datasets that similar metabolic reprogramming occurs in patient lungs.
Collapse
Affiliation(s)
- Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - M Volkan Atalay
- Department of Information Systems and Supply Chain Management, Loyola University Chicago, Chicago, Illinois, United States
| | - Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Erin M O'Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Mariel E Glass
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
6
|
Lian H, Zhang Y, Zhu Z, Wan R, Wang Z, Yang K, Ma S, Wang Y, Xu K, Cheng L, Zhao W, Li Y, Wang L, Yu G. Fatty acid synthase inhibition alleviates lung fibrosis via β-catenin signal in fibroblasts. Life Sci Alliance 2025; 8:e202402805. [PMID: 39567194 PMCID: PMC11579593 DOI: 10.26508/lsa.202402805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and lethal interstitial lung disease with an unclear etiology and limited treatment options. Fatty acid synthase (FASN) plays various roles in metabolic-related diseases. This study demonstrates that FASN expression is increased in fibroblasts from the lung tissues of patients with idiopathic pulmonary fibrosis and in bleomycin-treated mice. In MRC-5 cells, the inhibition of FASN using shRNA or the pharmacological inhibitor C75 resulted in the increased mRNA and protein expression of glycogen synthase kinase 3β and Axin1, both negative regulators of the Wnt/β-catenin signaling pathway, and promoted autophagy. This outcome led to a decrease in β-catenin protein and mRNA levels, effectively inhibiting the proliferation, migration, and differentiation of lung fibroblasts into myofibroblasts, while inducing the differentiation of fibroblasts into adipofibroblasts. In vivo experiments showed that C75 alleviated bleomycin-induced lung fibrosis in mice by inhibiting β-catenin. In conclusion, these findings suggest that inhibiting FASN in fibroblasts may diminish the activity of the Wnt/β-catenin signaling pathway, providing a potential therapeutic avenue for pulmonary fibrosis.
Collapse
Affiliation(s)
- Hui Lian
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yujie Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Zhao Zhu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Zhixia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Kun Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Wenyu Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yajun Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
7
|
Magdaleno C, Tschumperlin DJ, Rajasekaran N, Varadaraj A. SOCS domain targets ECM assembly in lung fibroblasts and experimental lung fibrosis. Sci Rep 2024; 14:31855. [PMID: 39738247 PMCID: PMC11686354 DOI: 10.1038/s41598-024-83187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts. Our results demonstrate that fibroblasts differentiated using TGFβ, followed by transduction with the SOCS domain, exhibit significantly reduced levels of the contractile myofibroblast-marker, α-SMA. Furthermore, in support of its role to retard differentiation, we find that lung fibroblasts expressing the SOCS domain present with significantly reduced levels of α-SMA and fibrillar fibronectin after differentiation with TGFβ. We show that adenoviral delivery of the SOCS domain in the fibrotic phase of experimental lung fibrosis in mice, significantly reduces collagen accumulation in disease lungs. These data underscore a novel function for the SOCS domain and its potential in ameliorating pathologic matrix deposition in lung fibroblasts and experimental lung fibrosis.
Collapse
Affiliation(s)
- Carina Magdaleno
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
- Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Narendiran Rajasekaran
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
| | - Archana Varadaraj
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
8
|
Chang X, Han YM, Li QL, Wang C, Guo B, Jiang HL. Spatiotemporally cascade-driven "Lipo micelles" enhance extracellular matrix penetration and remodel intercellular crosstalk in pulmonary fibrosis. J Control Release 2024; 376:861-879. [PMID: 39489465 DOI: 10.1016/j.jconrel.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Pulmonary fibrosis (PF) is an inevitable phase of many respiratory diseases with high mortality and limited effective treatments in the clinic. In PF, aberrant extracellular matrix (ECM) deposition is a significant pathological structural alteration that blocks intercellular crosstalk and hinders the deep penetration of therapeutics into lung tissues, reducing the effectiveness of conventional treatment strategies. Herein, a penetrating enhancer (Lipomicelles) composed of thermosensitive liposome shells loaded with collagenase IV and micellar cores containing thioketal bonds encapsulated with curcumin and decorated with cyclic RGDfc, is developed to alleviate PF. Specifically, Lipomicelles exhibit a cascade-responsive pattern to achieve precision delivery of curcumin through thermosensitivity, enhanced ECM penetration, site-specific targeting, and rapid release in injured alveolar epithelial type II cells (CellAEC2s). Subsequently, intercellular crosstalk is remodeled through the curcumin-mediated repair of CellAEC2s, combined with collagenase IV-mediated ECM degradation to inhibit myofibroblasts, ultimately achieving PF reversal. This work provides an innovative approach to enhance ECM penetration of therapeutics before remodeling intercellular crosstalk, addressing multi-phase PF therapy.
Collapse
Affiliation(s)
- Xin Chang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Yu-Mo Han
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Qiu-Ling Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chao Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Bin Guo
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu 210009, China..
| |
Collapse
|
9
|
Hamanaka RB, Shin KWD, Atalay MV, Cetin-Atalay R, Shah H, Houpy Szafran JC, Woods PS, Meliton AY, Shamaa OR, Tian Y, Cho T, Mutlu GM. Role of Arginine and its Metabolism in TGF-β-Induced Activation of Lung Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.618293. [PMID: 39554075 PMCID: PMC11565920 DOI: 10.1101/2024.11.01.618293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Arginine is a conditionally essential amino acid with known roles in protein production, nitric oxide synthesis, biosynthesis of proline and polyamines, and regulation of intracellular signaling pathways. Arginine biosynthesis and catabolism have been linked to TGF-β-induced activation of fibroblasts in the context of pulmonary fibrosis; however, a thorough study on the metabolic and signaling roles of arginine in the process of fibroblast activation has not been conducted. Here, we used metabolic dropouts and labeling strategies to determine how activated fibroblasts utilize arginine. We found that arginine limitation leads to activation of GCN2 while inhibiting TGF-β-induced mTORC1 activation and collagen protein production. Extracellular citrulline could rescue the effect of arginine deprivation in an ASS1-dependent manner. Using metabolic tracers of arginine and its precursors, we found little evidence of arginine synthesis or catabolism in lung fibroblasts treated with TGF-β. Extracellular ornithine or glutamine were the primary sources of ornithine and polyamines, not arginine. Our findings suggest that the major role for arginine in lung fibroblasts is for charging of arginyl-tRNAs and for promotion of mTOR signaling. Highlights Arginine depletion inhibits TGF-β-induced transcription in human lung fibroblasts (HLFs).Arginine is not significantly catabolized in HLFs either through NOS or ARG dependent pathways.Extracellular glutamine and ornithine are the primary sources of polyamines in lung fibroblasts.The primary role of arginine in lung fibroblasts is for signaling through mTOR and GNC2.
Collapse
|
10
|
Su X, Sun Y, Shi Y, Kong X, Liu T, Dong H, Yu X, Xue T, Zhang C, Zhang X. Arginine-Proline Metabolism as a Mediator in the Association Between Coal Dust Exposure and Lung Function: A Retrospective Analysis. J Occup Environ Med 2024; 66:826-833. [PMID: 38935365 DOI: 10.1097/jom.0000000000003171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To investigate the mediating role of the activation degree of arginine-proline metabolism in the association of coal dust and decreased lung function. METHODS Cumulative dust exposure (CDE) represented coal dust exposure, whereas the hydroxyproline-to-arginine concentration ratio (Hyp/Arg) in bronchoalveolar lavage fluid gauged arginine-proline metabolism activation. Pulmonary function indicators, including predicted value of forced vital capacity (FVC%pred), forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC%), and the ratio of actual to predicted value of FEV1 (FEV1%pred), diffusing capacity of the lungs for carbon monoxide (DLCO%pred), difference value between alveolar air and arterial partial oxygen pressure (P (A-a) O 2 ), and 6-minute walking distance test (6MWT), were assessed. RESULTS Findings revealed a significant association between elevated CDE and increased Hyp/Arg, increased P (A-a) O 2 , decreased 6MWT, DLCO%pred, and decreased FVC%pred. However, no statistically significant association was found between CDE and FEV1%pred or FEV1/FVC%. The mediating effect of Hyp/Arg was significant for CDE's impact on P (A-a) O 2 and DLCO%pred but not on 6MWT and FVC%pred. CONCLUSIONS These results highlight the role of Hyp/Arg in mediating the association between CDE and lung function parameters, shedding light on potential therapeutic avenues for mitigating coal dust-induced lung function impairment.
Collapse
Affiliation(s)
- Xuesen Su
- From The First College of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China (X.S., T.L., H.D., C.Z.), Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China (Y. Sun); Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China (Y. Shi., X.K., X.Y., T.X., X.Z.); The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, Taiyuan, Shanxi, People's Republic of China (X.S., Y. Sun, Y. Shi, X.K., T.L., H.D., X.Y., T.X., C.Z., X.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
12
|
Lichtenberg J, Leonard CE, Sterling HR, Santos Agreda V, Hwang PY. Using Microfluidics to Align Matrix Architecture and Generate Chemokine Gradients Promotes Directional Branching in a Model of Epithelial Morphogenesis. ACS Biomater Sci Eng 2024; 10:4865-4877. [PMID: 39007451 PMCID: PMC11322918 DOI: 10.1021/acsbiomaterials.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The mechanical cue of fiber alignment plays a key role in the development of various tissues in the body. The ability to study the effect of these stimuli in vitro has been limited previously. Here, we present a microfluidic device capable of intrinsically generating aligned fibers using the microchannel geometry. The device also features tunable interstitial fluid flow and the ability to form a morphogen gradient. These aspects allow for the modeling of complex tissues and to differentiate cell response to different stimuli. To demonstrate the abilities of our device, we incorporated luminal epithelial cysts into our device and induced growth factor stimulation. We found the mechanical cue of fiber alignment to play a dominant role in cell elongation and the ability to form protrusions was dependent on cadherin-3. Together, this work serves as a springboard for future potential with these devices to answer questions in developmental biology and complex diseases such as cancers.
Collapse
Affiliation(s)
- Jessanne
Y. Lichtenberg
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
| | - Corinne E. Leonard
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
| | - Hazel R. Sterling
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
| | - Valentina Santos Agreda
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
| | - Priscilla Y. Hwang
- Department
of Biomedical Engineering, Virginia Commonwealth
University, Richmond, Virginia 23220, United States
- Massey
Comprehensive Cancer Center, Virginia Commonwealth
University School of Medicine, Richmond, Virginia 23298, United States
| |
Collapse
|
13
|
Shin KWD, Atalay MV, Cetin-Atalay R, O'Leary EM, Glass ME, Szafran JCH, Woods PS, Meliton AY, Shamaa OR, Tian Y, Mutlu GM, Hamanaka RB. ATF4 and mTOR regulate metabolic reprogramming in TGF-β-treated lung fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598694. [PMID: 38915485 PMCID: PMC11195155 DOI: 10.1101/2024.06.12.598694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that fibroblast activation is supported by metabolic reprogramming, including the upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. How fibroblast metabolic reprogramming is regulated downstream of TGF-β is incompletely understood. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote increased expression of the enzymes required for de novo glycine synthesis; however, whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-β. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression, but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-β-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts while mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single cell RNAseq data sets and found increased expression of ATF4 and mTOR metabolic targets in pathologic fibroblast populations from the lungs of IPF patients. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.
Collapse
Affiliation(s)
- Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | | | - Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Erin M O'Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Mariel E Glass
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
14
|
Xie D, Wang P, Chen W, Lin J, Wu M, Wang Y, Xia H, Cheng C, Ye F, Syed BM, Liu Q. Urea cycle promotion via ammonia-upregulated CPS1 is involved in arsenite-induced pulmonary fibrosis through enhancing collagen synthesis. Chem Biol Interact 2024; 396:111029. [PMID: 38703806 DOI: 10.1016/j.cbi.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.
Collapse
Affiliation(s)
- Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Weiyong Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Chen PC, Yen MH, Hsiao SY, Kao WC, Wang MT, Chiou PC, Chao CC. Melatonin prevents pulmonary fibrosis caused by PM 2.5 exposure by targeting epithelial-mesenchymal transition. Toxicol Appl Pharmacol 2024; 487:116949. [PMID: 38688425 DOI: 10.1016/j.taap.2024.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Pulmonary fibrosis is a lung disorder characterized by the accumulation of abnormal extracellular matrix, scar tissue formation, and tissue stiffness. Type II alveolar epithelial cells (AEII) play a critical role in repairing lung tissue after injury, and repeated injury to these cells is a key factor in the development of pulmonary fibrosis. Chronic exposure to PM2.5, a type of air pollution, has been shown to increase the incidence and severity of pulmonary fibrosis by enhancing the activation of EMT in lung epithelial cells. Melatonin, a hormone with antioxidant properties, has been shown to prevent EMT and reduce fibrosis in previous studies. However, the mechanism through which melatonin targets EMT to prevent pulmonary fibrosis caused by PM2.5 exposure has not been extensively discussed before. In this current study, we found that melatonin effectively prevented pulmonary fibrosis caused by prolonged exposure to PM2.5 by targeting EMT. The study demonstrated changes in cellular morphology and expression of EMT markers. Furthermore, the cell migratory potential induced by prolonged exposure to PM2.5 was greatly reduced by melatonin treatment. Finally, in vivo animal studies showed reduced EMT markers and improved pulmonary function. These findings suggest that melatonin has potential clinical use for the prevention of pulmonary fibrosis.
Collapse
Affiliation(s)
- Po-Chun Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Translational medicine center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ming-Hong Yen
- Department of Chest Surgery, Cathay General Hospital, New Taipei City, Taiwan
| | - Sheng-Yen Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Chen Kao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Mei-Ting Wang
- Division of Physical Medicine and Rehabilitation, Fu Jen Catholic University Hospital, Taipei, Taiwan, ROC
| | - Pei-Chen Chiou
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
16
|
Staab-Weijnitz CA. A NEAT Discovery Hints at Altered Golgi Signaling in Lung Fibrosis. Am J Respir Cell Mol Biol 2024; 70:155-156. [PMID: 38060429 PMCID: PMC10914770 DOI: 10.1165/rcmb.2023-0384ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Affiliation(s)
- Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center Helmholtz Zentrum München GmbH, Member of the German Center for Lung Research Munich, Germany
| |
Collapse
|
17
|
Magdaleno C, Tschumperlin DJ, Rajasekaran N, Varadaraj A. SOCS domain targets ECM assembly in lung fibroblasts and experimental lung fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580347. [PMID: 38469152 PMCID: PMC10926664 DOI: 10.1101/2024.02.14.580347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts. Our results demonstrate that fibroblasts differentiated using TGFß, followed by transduction with the SOCS domain, exhibit significantly reduced levels of the contractile myofibroblast-marker, α-SMA. Furthermore, in support of its role to retard differentiation, we find that lung fibroblasts expressing the SOCS domain present with significantly reduced levels of α-SMA and fibrillar fibronectin after differentiation with TGFß. We show that adenoviral delivery of the SOCS domain in the fibrotic phase of experimental lung fibrosis in mice, significantly reduces collagen accumulation in disease lungs. These data underscore a novel function for the SOCS domain and its potential in ameliorating pathologic matrix deposition in lung fibroblasts and experimental lung fibrosis.
Collapse
Affiliation(s)
- Carina Magdaleno
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Narendiran Rajasekaran
- Correspondence to: Archana Varadaraj, PO Box 5698, Science and Health Building, Rm430, Flagstaff, AZ, 86011, USA. Tel: (928) 523-6394, Fax: (928) 523-8111, ; Narendiran Rajasekaran, PO Box 5698, Science and Health Building, Rm430, Flagstaff, AZ, 86011, USA. Tel: (928) 523-6394, Fax: (928) 523-8111,
| | - Archana Varadaraj
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
18
|
Dhanisha SS, Drishya S, Guruvayoorappan C. Encapsulating Naringenin in biomimetic proteolipid vesicles abrogates cancer metastasis by targeting apoptotic signaling axis. Food Chem 2024; 434:137445. [PMID: 37741236 DOI: 10.1016/j.foodchem.2023.137445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/03/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
Naringenin (NG) belongs to the class of flavanones having impressive pharmacological properties. Unfortunately, the in vivo bioavailability of NG is very low due to its higher hydrophobicity, which limits its practical use. Thus, in this study, we tried to develop NG-loaded macrophage membrane-coated liposome-based biomimetic nanoparticles with distinct physicochemical compositions and biological attributes for improving their bioavailability at the target site. The developed biomimetic nanoparticle (BNP) has shown good biocompatibility, stability, satisfactory particle size, pH-responsive drug (NG) release kinetics, and higher cellular uptake in vitro. The anti-metastatic efficacy of NGBNP has confirmed in syngeneic athymic BALB/c nude experimental models. By western blot analysis, semi-quantitative PCR, real-time PCR, and IHC, we conclude that NGBNP gets localized on the metastatic niche via its surface receptor α4, β1 integrin, and VCAM1 of metastatic cells and reduces the number of metastatic colonies in the lungs via regulating the apoptotic signaling axis.
Collapse
Affiliation(s)
- Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|
19
|
Moazzam M, Zhang M, Hussain A, Yu X, Huang J, Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol Ther 2024; 32:284-312. [PMID: 38204162 PMCID: PMC10861989 DOI: 10.1016/j.ymthe.2024.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Five small interfering RNA (siRNA)-based therapeutics have been approved by the Food and Drug Administration (FDA), namely patisiran, givosiran, lumasiran, inclisiran, and vutrisiran. Besides, siRNA delivery to the target site without toxicity is a big challenge for researchers, and naked-siRNA delivery possesses several challenges, including membrane impermeability, enzymatic degradation, mononuclear phagocyte system (MPS) entrapment, fast renal excretion, endosomal escape, and off-target effects. The siRNA therapeutics can silence any disease-specific gene, but their intracellular and extracellular barriers limit their clinical applications. For this purpose, several modifications have been employed to siRNA for better transfection efficiency. Still, there is a quest for better delivery systems for siRNA delivery to the target site. In recent years, nanoparticles have shown promising results in siRNA delivery with minimum toxicity and off-target effects. Patisiran is a lipid nanoparticle (LNP)-based siRNA formulation for treating hereditary transthyretin-mediated amyloidosis that ultimately warrants the use of nanoparticles from different classes, especially lipid-based nanoparticles. These nanoparticles may belong to different categories, including lipid-based, polymer-based, and inorganic nanoparticles. This review briefly discusses the lipid, polymer, and inorganic nanoparticles and their sub-types for siRNA delivery. Finally, several clinical trials related to siRNA therapeutics are addressed, followed by the future prospects and conclusions.
Collapse
Affiliation(s)
- Muhammad Moazzam
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaotong Yu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China.
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics Co. Ltd., Suzhou 215127, China.
| |
Collapse
|
20
|
Robinson CM, Duggan A, Forrester A. ER exit in physiology and disease. Front Mol Biosci 2024; 11:1352970. [PMID: 38314136 PMCID: PMC10835805 DOI: 10.3389/fmolb.2024.1352970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The biosynthetic secretory pathway is comprised of multiple steps, modifications and interactions that form a highly precise pathway of protein trafficking and secretion, that is essential for eukaryotic life. The general outline of this pathway is understood, however the specific mechanisms are still unclear. In the last 15 years there have been vast advancements in technology that enable us to advance our understanding of this complex and subtle pathway. Therefore, based on the strong foundation of work performed over the last 40 years, we can now build another level of understanding, using the new technologies available. The biosynthetic secretory pathway is a high precision process, that involves a number of tightly regulated steps: Protein folding and quality control, cargo selection for Endoplasmic Reticulum (ER) exit, Golgi trafficking, sorting and secretion. When deregulated it causes severe diseases that here we categorise into three main groups of aberrant secretion: decreased, excess and altered secretion. Each of these categories disrupts organ homeostasis differently, effecting extracellular matrix composition, changing signalling events, or damaging the secretory cells due to aberrant intracellular accumulation of secretory proteins. Diseases of aberrant secretion are very common, but despite this, there are few effective therapies. Here we describe ER exit sites (ERES) as key hubs for regulation of the secretory pathway, protein quality control and an integratory hub for signalling within the cell. This review also describes the challenges that will be faced in developing effective therapies, due to the specificity required of potential drug candidates and the crucial need to respect the fine equilibrium of the pathway. The development of novel tools is moving forward, and we can also use these tools to build our understanding of the acute regulation of ERES and protein trafficking. Here we review ERES regulation in context as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire M Robinson
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aislinn Duggan
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alison Forrester
- Research Unit of Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
21
|
Togami K, Kanehira Y, Yumita Y, Ozaki H, Wang R, Tada H, Chono S. Heterogenous Intrapulmonary Distribution of Aerosolized Model Compounds in Mice with Bleomycin-Induced Pulmonary Fibrosis. J Aerosol Med Pulm Drug Deliv 2023; 36:289-299. [PMID: 37843890 DOI: 10.1089/jamp.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background: A distinctive pathological feature of idiopathic pulmonary fibrosis (IPF) is the aberrant accumulation of extracellular matrix components in the alveoli in abnormal remodeling and reconstruction following scarring of the alveolar structure. The current antifibrotic agents used for IPF therapy frequently result in systemic side effects because these agents are distributed, through the blood, to many different tissues after oral administration. In contrast to oral administration, the intrapulmonary administration of aerosolized drugs is believed to be an efficient method for their direct delivery to the focus sites in the lungs. However, how fibrotic lesions alter the distribution of aerosolized drugs following intrapulmonary administration remains largely unknown. In this study, we evaluate the intrapulmonary distribution characteristics of aerosolized model compounds in mice with bleomycin-induced pulmonary fibrosis through imaging the organs and alveoli. Methods: Aerosolized model compounds were administered to mice with bleomycin-induced pulmonary fibrosis using a Liquid MicroSprayer®. The intrapulmonary distribution characteristics of aerosolized model compounds were evaluated through several imaging techniques, including noninvasive lung imaging using X-ray computed tomography, ex vivo imaging using zoom fluorescence microscopy, frozen tissue section observation, and three-dimensional imaging with tissue-clearing treatment using confocal laser microscopy. Results: In fibrotic lungs, the aerosolized model compounds were heterogeneously distributed. In observations of frozen tissue sections, model compounds were observed only in the fibrotic foci near airless spaces called honeycombs. In three-dimensional imaging of cleared tissue from fibrotic lungs, the area of the model compound in the alveolar space was smaller than in healthy lungs. Conclusion: The intrapulmonary deposition of extracellular matrix associated with pulmonary fibrosis limits the intrapulmonary distribution of aerosolized drugs. The development of delivery systems for antifibrotic agents to improve the distribution characteristics in fibrotic foci is necessary for effective IPF therapy.
Collapse
Affiliation(s)
- Kohei Togami
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Yukimune Kanehira
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Yuki Yumita
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hiroaki Ozaki
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Rui Wang
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hitoshi Tada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Sumio Chono
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| |
Collapse
|
22
|
Meliton AY, Cetin-Atalay R, Tian Y, Szafran JCH, Shin KWD, Cho T, Sun KA, Woods PS, Shamaa OR, Chen B, Muir A, Mutlu GM, Hamanaka RB. Mitochondrial One-Carbon Metabolism is Required for TGF-β-Induced Glycine Synthesis and Collagen Protein Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566074. [PMID: 37986788 PMCID: PMC10659399 DOI: 10.1101/2023.11.07.566074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A hallmark of Idiopathic Pulmonary Fibrosis is the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by lung fibroblasts requires de novo synthesis of glycine, the most abundant amino acid in collagen protein. TGF-β upregulates the expression of the enzymes of the de novo serine/glycine synthesis pathway in lung fibroblasts through mTORC1 and ATF4-dependent transcriptional programs. SHMT2, the final enzyme of the de novo serine/glycine synthesis pathway, transfers a one-carbon unit from serine to tetrahydrofolate (THF), producing glycine and 5,10-methylene-THF (meTHF). meTHF is converted back to THF in the mitochondrial one-carbon (1C) pathway through the sequential actions of MTHFD2 (which converts meTHF to 10-formyl-THF), and either MTHFD1L, which produces formate, or ALDH1L2, which produces CO2. It is unknown how the mitochondrial 1C pathway contributes to glycine biosynthesis or collagen protein production in fibroblasts, or fibrosis in vivo. Here, we demonstrate that TGF-β induces the expression of MTHFD2, MTHFD1L, and ALDH1L2 in human lung fibroblasts. MTHFD2 expression was required for TGF-β-induced cellular glycine accumulation and collagen protein production. Combined knockdown of both MTHFD1L and ALDH1L2 also inhibited glycine accumulation and collagen protein production downstream of TGF-β; however knockdown of either protein alone had no inhibitory effect, suggesting that lung fibroblasts can utilize either enzyme to regenerate THF. Pharmacologic inhibition of MTHFD2 recapitulated the effects of MTHFD2 knockdown in lung fibroblasts and ameliorated fibrotic responses after intratracheal bleomycin instillation in vivo. Our results provide insight into the metabolic requirements of lung fibroblasts and provide support for continued development of MTHFD2 inhibitors for the treatment of IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Takugo Cho
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Alexander Muir
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
23
|
Luo H, Yan J, Zhou X. Constructing an extracellular matrix-related prognostic model for idiopathic pulmonary fibrosis based on machine learning. BMC Pulm Med 2023; 23:397. [PMID: 37858084 PMCID: PMC10585847 DOI: 10.1186/s12890-023-02699-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Multiple research has revealed that the extracellular matrix (ECM) may be associated with the development and prognosis of IPF, however, the underlying mechanisms remain incompletely understood. METHODS We included GSE70866 dataset from the GEO database and established an ECM-related prognostic model utilizing LASSO, Random forest and Support vector machines algorithms. To compare immune cell infiltration levels between the high and low risk groups, we employed the ssGSEA algorithm. Enrichment analysis was conducted to explore pathway differences between the high-risk and low-risk groups. Finally, the model genes were validated using an external validation set consisting of IPF cases, as well as single-cell data analysis. RESULTS Based on machine learning algorithms, we constructed an ECM-related risk model. IPF patients in the high-risk group had a worse overall survival rate than those in the low-risk group. The model's AUC predictive values were 0.786, 0.767, and 0.768 for the 1-, 2-, and 3-year survival rates, respectively. The validation cohort validated these findings, demonstrating our model's effective prognostication. Chemokine-related pathways were enriched through enrichment analysis. Moreover, immune cell infiltration varied significantly between the two groups. Finally, the validation results indicate that the expression levels of all the model genes exhibited significant differential expression. CONCLUSIONS Based on CST6, PPBP, CSPG4, SEMA3B, LAMB2, SERPINB4 and CTF1, our study developed and validated an ECM-related risk model that accurately predicts the outcome of IPF patients.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Jisong Yan
- Department of Tuberculosis and Respiratory, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China.
| |
Collapse
|
24
|
Luangmonkong T, Parichatikanond W, Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem Pharmacol 2023; 215:115740. [PMID: 37567319 DOI: 10.1016/j.bcp.2023.115740] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| |
Collapse
|
25
|
Sakamoto N, Okuno D, Tokito T, Yura H, Kido T, Ishimoto H, Tanaka Y, Mukae H. HSP47: A Therapeutic Target in Pulmonary Fibrosis. Biomedicines 2023; 11:2387. [PMID: 37760828 PMCID: PMC10525413 DOI: 10.3390/biomedicines11092387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by a progressive decline in lung function and poor prognosis. The deposition of the extracellular matrix (ECM) by myofibroblasts contributes to the stiffening of lung tissue and impaired oxygen exchange in IPF. Type I collagen is the major ECM component and predominant collagen protein deposited in chronic fibrosis, suggesting that type I collagen could be a target of drugs for fibrosis treatment. Heat shock protein 47 (HSP47), encoded by the serpin peptidase inhibitor clade H, member 1 gene, is a stress-inducible collagen-binding protein. It is an endoplasmic reticulum-resident molecular chaperone essential for the correct folding of procollagen. HSP47 expression is increased in cellular and animal models of pulmonary fibrosis and correlates with pathological manifestations in human interstitial lung diseases. Various factors affect HSP47 expression directly or indirectly in pulmonary fibrosis models. Overall, understanding the relationship between HSP47 expression and pulmonary fibrosis may contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Daisuke Okuno
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takatomo Tokito
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hirokazu Yura
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
26
|
He X, Jarrell ZR, Smith MR, Ly VT, Hu X, Sueblinvong V, Liang Y, Orr M, Go YM, Jones DP. Low-dose vanadium pentoxide perturbed lung metabolism associated with inflammation and fibrosis signaling in male animal and in vitro models. Am J Physiol Lung Cell Mol Physiol 2023; 325:L215-L232. [PMID: 37310758 PMCID: PMC10396228 DOI: 10.1152/ajplung.00303.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
- Atlanta Department of Veterans Affairs Healthcare System, Decatur, Georgia, United States
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
27
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
28
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
29
|
Yang J, Liang C, Liu L, Wang L, Yu G. High-Fat Diet Related Lung Fibrosis-Epigenetic Regulation Matters. Biomolecules 2023; 13:biom13030558. [PMID: 36979493 PMCID: PMC10046645 DOI: 10.3390/biom13030558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Pulmonary fibrosis (PF) is an interstitial lung disease characterized by the destruction of the pulmonary parenchyma caused by excessive extracellular matrix deposition. Despite the well-known etiological factors such as senescence, aberrant epithelial cell and fibroblast activation, and chronic inflammation, PF has recently been recognized as a metabolic disease and abnormal lipid signature was observed both in serum and bronchoalveolar lavage fluid (BALF) of PF patients and mice PF model. Clinically, observational studies suggest a significant link between high-fat diet (HFD) and PF as manifested by high intake of saturated fatty acids (SFAs) and meat increases the risk of PF and mice lung fibrosis. However, the possible mechanisms between HFD and PF remain unclear. In the current review we emphasize the diversity effects of the epigenetic dysregulation induced by HFD on the fibrotic factors such as epithelial cell injury, abnormal fibroblast activation and chronic inflammation. Finally, we discuss the potential ways for patients to improve their conditions and emphasize the prospect of targeted therapy based on epigenetic regulation for scientific researchers or drug developers.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Chenxi Liang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Lulu Liu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
30
|
Shetty S, Idell S. Caveolin-1-Related Intervention for Fibrotic Lung Diseases. Cells 2023; 12:554. [PMID: 36831221 PMCID: PMC9953971 DOI: 10.3390/cells12040554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease (ILD) for which there are no effective treatments. Lung transplantation is the only viable option for patients with end-stage PF but is only available to a minority of patients. Lung lesions in ILDs, including IPF, are characterized by alveolar epithelial cell (AEC) senescence and apoptosis and accumulation of activated myofibroblasts and/or fibrotic lung (fL) fibroblasts (fLfs). These composite populations of fLfs show a high rate of basal proliferation, resist apoptosis and senescence, and have increased migration and invasiveness. They also more readily deposit ECM proteins. These features eventuate in progressive destruction of alveolar architecture and loss of lung function in patients with PF. The identification of new, safer, and more effective therapy is therefore mandatory for patients with IPF or related ILDs. We found that increased caveolin-1 and tumor suppressor protein, p53 expression, and apoptosis in AECs occur prior to and then with the proliferation of fLfs in fibrotic lungs. AECs with elevated p53 typically undergo apoptosis. fLfs alternatively demonstrate strikingly low basal levels of caveolin-1 and p53, while mouse double minute 2 homolog (mdm2) levels and mdm2-mediated degradation of p53 protein are markedly increased. The disparities in the expression of p53 in injured AECs and fLfs appear to be due to increased basal expression of caveolin-1 in apoptotic AECs with a relative paucity of caveolin-1 and increased mdm2 in fLfs. Therefore, targeting caveolin-1 using a caveolin 1 scaffolding domain peptide, CSP7, represents a new and promising approach for patients with IPF, perhaps other forms of progressive ILD or even other forms of organ injury characterized by fibrotic repair. The mechanisms of action differ in the injured AECs and in fLfs, in which differential signaling enables the preservation of AEC viability with concurrent limitation of fLf expansion and collagen secretion. The findings in three models of PF indicate that lung scarring can be nearly abrogated by airway delivery of the peptide. Phase 1 clinical trial testing of this approach in healthy volunteers has been successfully completed; Phase 1b in IPF patients is soon to be initiated and, if successful, will be followed by phase 2 testing in short order. Apart from the treatment of IPF, this intervention may be applicable to other forms of tissue injury characterized by fibrotic repair.
Collapse
Affiliation(s)
- Sreerama Shetty
- Texas Lung Injury Institute, Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | | |
Collapse
|
31
|
Beaven E, Kumar R, Bhatt HN, Esquivel SV, Nurunnabi M. Myofibroblast specific targeting approaches to improve fibrosis treatment. Chem Commun (Camb) 2022; 58:13556-13571. [PMID: 36445310 PMCID: PMC9946855 DOI: 10.1039/d2cc04825f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrosis has been shown to develop in individuals with underlying health conditions, especially chronic inflammatory diseases. Fibrosis is often diagnosed in various organs, including the liver, lungs, kidneys, heart, and skin, and has been described as excessive accumulation of extracellular matrix that can affect specific organs in the body or systemically throughout the body. Fibrosis as a chronic condition can result in organ failure and result in death of the individual. Understanding and identification of specific biomarkers associated with fibrosis has emerging potential in the development of diagnosis and targeting treatment modalities. Therefore, in this review, we will discuss multiple signaling pathways such as TGF-β, collagen, angiotensin, and cadherin and outline the chemical nature of the different signaling pathways involved in fibrogenesis as well as the mechanisms. Although it has been well established that TGF-β is the main catalyst initiating and driving multiple pathways for fibrosis, targeting TGF-β can be challenging as this molecule regulates essential functions throughout the body that help to keep the body in homeostasis. We also discuss collagen, angiotensin, and cadherins and their role in fibrosis. We comprehensively discuss the various delivery systems used to target collagen, angiotensin, and cadherins to manage fibrosis. Nevertheless, understanding the steps by which this molecule drives fibrosis development can aid in the development of specific targets of its cascading mechanism. Throughout the review, we will demonstrate the mechanism of fibrosis targeting to improve targeting delivery and therapy.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Stephanie V Esquivel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| |
Collapse
|
32
|
Yang K, Huang N, Sun J, Dai W, Chen M, Zeng J. Transforming growth factor-β induced protein regulates pulmonary fibrosis via the G-protein signaling modulator 2 /Snail axis. Peptides 2022; 155:170842. [PMID: 35872259 DOI: 10.1016/j.peptides.2022.170842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022]
Abstract
Pulmonary fibrosis, a severe condition that can progress to respiratory failure and death, is characterized by aberrant activation/proliferation of fibroblasts and excessive extracellular matrix (ECM) deposition and has limited therapeutic options. Identifying novel mediators of pulmonary fibrosis is currently needed to facilitate the development of more effective therapeutic strategies targeting pulmonary fibrosis. The present study was designed to investigate whether transforming growth factor-β (TGF-β) induced protein (TGFBI), an extracellular matrix protein, regulates pulmonary fibrosis in vitro and in vivo and the possible mechanism of actions. It was found that protein expressions of TGFBI were significantly upregulated and G-protein signaling modulator 2 (GPSM2) expression downregulated in fibrotic lung tissues from bleomycin (BLM)-induced rats and TGF-β1-stimulated human lung IMR-90 fibroblasts. Either silencing TGFBI with specific siRNA or treatment with the TGF-β signaling inhibitor SB431542 significantly inhibited TGF-β1-induced fibrotic effects and dysregulation of GPSM2 and Snail expressions in IMR-90 fibroblasts. Moreover, GPSM2 overexpression also inhibited TGF-β1-induced fibrotic effects and Snail upregulation in IMR-90 fibroblasts. Silencing Snail with specific siRNA attenuated TGF-β1-induced fibrotic effects. Therefore, our findings suggest that the extracellular matrix protein TGFBI mediates pulmonary fibrosis through regulation of the GPSM2/Snail axis, which identifies TGFBI as a novel mediator of pulmonary fibrosis and may be a potential therapeutic target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Kai Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China; Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Na Huang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China; Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Wenjing Dai
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Meifeng Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Jun Zeng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China; Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, China.
| |
Collapse
|
33
|
Saito S, Deskin B, Rehan M, Yadav S, Matsunaga Y, Lasky JA, Thannickal VJ. Novel mediators of idiopathic pulmonary fibrosis. Clin Sci (Lond) 2022; 136:1229-1240. [PMID: 36043396 DOI: 10.1042/cs20210878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Fibrosis involving the lung may occur in many settings, including in association with known environmental agents, connective tissue diseases, and exposure to drugs or radiation therapy. The most common form is referred to as 'idiopathic' since a causal agent or specific association has not been determined; the strongest risk factor for idiopathic pulmonary fibrosis is aging. Emerging studies indicate that targeting certain components of aging biology may be effective in mitigating age-associated fibrosis. While transforming growth factor-β1 (TGF-β1) is a central mediator of fibrosis in almost all contexts, and across multiple organs, it is not feasible to target this canonical pathway at the ligand-receptor level due to the pleiotropic nature of its actions; importantly, its homeostatic roles as a tumor-suppressor and immune-modulator make this an imprudent strategy. However, defining targets downstream of its receptor(s) that mediate fibrogenesis, while relatively dispenable for tumor- and immune-suppressive functions may aid in developing safer and more effective therapies. In this review, we explore molecular targets that, although TGF-β1 induced/activated, may be relatively more selective in mediating tissue fibrosis. Additionally, we explore epigenetic mechanisms with global effects on the fibrogenic process, as well as metabolic pathways that regulate aging and fibrosis.
Collapse
Affiliation(s)
- Shigeki Saito
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Brian Deskin
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Mohammad Rehan
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Joseph A Lasky
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| |
Collapse
|
34
|
Zeitlmayr S, Zierler S, Staab-Weijnitz CA, Dietrich A, Geiger F, Horgen FD, Gudermann T, Breit A. TRPM7 restrains plasmin activity and promotes transforming growth factor-β1 signaling in primary human lung fibroblasts. Arch Toxicol 2022; 96:2767-2783. [PMID: 35864199 PMCID: PMC9302958 DOI: 10.1007/s00204-022-03342-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Sustained exposure of the lung to various environmental or occupational toxins may eventually lead to pulmonary fibrosis, a devastating disease with no cure. Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins such as fibronectin and collagens. The peptidase plasmin degrades the ECM, but protein levels of the plasmin activator inhibitor-1 (PAI-1) are increased in fibrotic lung tissue, thereby dampening plasmin activity. Transforming growth factor-β1 (TGF-β1)-induced activation of SMAD transcription factors promotes ECM deposition by enhancing collagen, fibronectin and PAI-1 levels in pulmonary fibroblasts. Hence, counteracting TGF-β1-induced signaling is a promising approach for the therapy of pulmonary fibrosis. Transient receptor potential cation channel subfamily M Member 7 (TRPM7) supports TGF-β1-promoted SMAD signaling in T-lymphocytes and the progression of fibrosis in kidney and heart. Thus, we investigated possible effects of TRPM7 on plasmin activity, ECM levels and TGF-β1 signaling in primary human pulmonary fibroblasts (pHPF). We found that two structurally unrelated TRPM7 blockers enhanced plasmin activity and reduced fibronectin or PAI-1 protein levels in pHPF under basal conditions. Further, TRPM7 blockade strongly inhibited fibronectin and collagen deposition induced by sustained TGF-β1 stimulation. In line with these data, inhibition of TRPM7 activity diminished TGF-β1-triggered phosphorylation of SMAD-2, SMAD-3/4-dependent reporter activation and PAI-1 mRNA levels. Overall, we uncover TRPM7 as a novel supporter of TGF-β1 signaling in pHPF and propose TRPM7 blockers as new candidates to control excessive ECM levels under pathophysiological conditions conducive to pulmonary fibrosis.
Collapse
Affiliation(s)
- Sarah Zeitlmayr
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.,Faculty of Medicine, Johannes Kepler University, Life Science Park, Huemerstraße 3-5, 4020, Linz, Austria
| | - Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Zentrum München GmbH, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Fabienne Geiger
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.
| |
Collapse
|