1
|
Zhao H, Lv Y, Xu J, Song X, Wang Q, Zhai X, Ma X, Qiu J, Cui L, Sun Y. The activation of microglia by the complement system in neurodegenerative diseases. Ageing Res Rev 2025; 104:102636. [PMID: 39647582 DOI: 10.1016/j.arr.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Neurodegenerative diseases (NDDs) are a group of neurological disorders characterized by the progressive loss of neuronal structure and function, leading to cognitive and behavioral impairments. Despite significant research advancements, there is currently no definitive cure for NDDs. With global aging on the rise, the burden of these diseases is becoming increasingly severe, highlighting the urgency of understanding their pathogenesis and developing effective therapeutic strategies. Microglia, specialized macrophages in the central nervous system, play a dual role in maintaining neural homeostasis. They are involved in clearing cellular debris and apoptotic cells, but in their activated state, they release inflammatory factors that contribute significantly to neuroinflammation. The complement system (CS), a critical component of the innate immune system, assists in clearing damaged cells and proteins. However, excessive or uncontrolled activation of the CS can lead to chronic neuroinflammation, exacerbating neuronal damage. This review aims to explore the roles of microglia and the CS in the progression of NDDs, with a specific focus on the mechanisms through which the CS activates microglia by modulating mitochondrial function. Understanding these interactions may provide insights into potential therapeutic targets for mitigating neuroinflammation and slowing neurodegeneration.
Collapse
Affiliation(s)
- He Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Yayun Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jiasen Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Qi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Zhai
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaohui Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| |
Collapse
|
2
|
Navneet S, Ishii M, Rohrer B. Altered Elastin Turnover, Immune Response, and Age-Related Retinal Thinning in a Transgenic Mouse Model With RPE-Specific HTRA1 Overexpression. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39028977 PMCID: PMC11262478 DOI: 10.1167/iovs.65.8.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
Purpose A single-nucleotide polymorphism in HTRA1 has been linked to age-related macular degeneration (AMD). Here we investigated the potential links between age-related retinal changes, elastin turnover, elastin autoantibody production, and complement C3 deposition in a mouse model with RPE-specific human HTRA1 overexpression. Methods HTRA1 transgenic mice and age-matched CD1 wild-type mice were analyzed at 6 weeks and 4, 6, and 12 to 14 months of age using in vivo retinal imaging by optical coherence tomography (OCT) and fundus photography, as well as molecular readouts, focusing on elastin and elastin-derived peptide quantification, antielastin autoantibody, and total Ig antibody measurements and immunohistochemistry to examine elastin, IgG, and C3 protein levels in retinal sections. Results OCT imaging indicated thinning of inner nuclear layer as an early phenotype in HTRA1 mice, followed by age and age/genotype-related thinning of the photoreceptor layer, RPE, and total retina. HTRA1 mice exhibited reduced elastin protein levels in the RPE/choroid and increased elastin breakdown products in the retina and serum. A corresponding age-dependent increase of serum antielastin IgG and IgM autoantibodies and total Ig antibody levels was observed. In the RPE/choroid, these changes were associated with an age-related increase of IgG and C3 deposition. Conclusions Our results confirm that RPE-specific overexpression of human HTRA1 induces certain AMD-like phenotypes in mice. This includes altered elastin turnover, immune response, and complement deposition in the RPE/choroid in addition to age-related outer retinal and photoreceptor layer thinning. The identification of elastin-derived peptides and corresponding antielastin autoantibodies, together with increased C3 deposition in the RPE/choroid, provides a rationale for an overactive complement system in AMD irrespective of the underlying genetic risk.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Masaaki Ishii
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, South Carolina, United States
| |
Collapse
|
3
|
Zhang Q, Xiong Y, Li R, Wang X, Lin X, Tong Y. Targeting cGAS-STING signaling protects retinal ganglion cells from DNA damage-induced cell loss and promotes visual recovery in glaucoma. Aging (Albany NY) 2024; 16:9813-9823. [PMID: 38848144 PMCID: PMC11210238 DOI: 10.18632/aging.205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/13/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Glaucoma is an optic neurodegenerative disease. Retinal ganglion cells (RGCs) are the fundamental neurons in the trabecular meshwork, and their loss is the main pathological reason for glaucoma. The present study was to investigate mechanisms that regulate RGCs survival. METHODS A mouse model of glaucoma was established by injecting hypertonic saline into the limbal veins. RGCs apoptosis was detected by using flow cytometry. Protein expressions in RGCs in response to DNA damage inducer cisplatin treatment were detected by immunofluorescence and western blot. The expressions of inflammatory cytokines were determined using ELISA and real-time PCR. RESULTS In the hypertonic saline-injected mice, we found visual function was impaired followed by the increased expression of γH2AX and activation of cGAS-STING signaling. We found that DNA damage inducer cisplatin treatment incurred significant DNA damage, cell apoptosis, and inflammatory response. Mechanistically, cisplatin treatment triggered activation of the cGAS-STING signaling by disrupting mitochondrial function. Suppression of cGAS-STING ameliorated inflammation and protected visual function in glaucoma mice. CONCLUSIONS The data demonstrated that cGAS-STING signaling is activated in the damaged retinal ganglion cells, which is associated with increased inflammatory responses, DNA damage, and mitochondrial dysfunction. Targeting the cGAS-STING signaling pathway represents a potential way to alleviate glaucoma-related visual function.
Collapse
Affiliation(s)
- Qiuli Zhang
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Yinghuan Xiong
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Ruizhuang Li
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xiuqin Wang
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xu Lin
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Ya’ni Tong
- Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| |
Collapse
|
4
|
Lindell M, Kar D, Sedova A, Kim YJ, Packer OS, Schmidt-Erfurth U, Sloan KR, Marsh M, Dacey DM, Curcio CA, Pollreisz A. Volumetric Reconstruction of a Human Retinal Pigment Epithelial Cell Reveals Specialized Membranes and Polarized Distribution of Organelles. Invest Ophthalmol Vis Sci 2023; 64:35. [PMID: 38133501 PMCID: PMC10746928 DOI: 10.1167/iovs.64.15.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Despite the centrality of the retinal pigment epithelium (RPE) in vision and retinopathy our picture of RPE morphology is incomplete. With a volumetric reconstruction of human RPE ultrastructure, we aim to characterize major membranous features including apical processes and their interactions with photoreceptor outer segments, basolateral infoldings, and the distribution of intracellular organelles. Methods A parafoveal retinal sample was acquired from a 21-year-old male organ donor. With serial block-face scanning electron microscopy, a tissue volume from the inner-outer segment junction to basal RPE was captured. Surface membranes and complete internal ultrastructure of an individual RPE cell were achieved with a combination of manual and automated segmentation methods. Results In one RPE cell, apical processes constitute 69% of the total cell surface area, through a dense network of over 3000 terminal branches. Single processes contact several photoreceptors. Basolateral infoldings facing the choriocapillaris resemble elongated filopodia and comprise 22% of the cell surface area. Membranous tubules and sacs of endoplasmic reticulum represent 20% of the cell body volume. A dense basal layer of mitochondria extends apically to partly overlap electron-dense pigment granules. Pores in the nuclear envelope form a distinct pattern of rows aligned with chromatin. Conclusions Specialized membranes at the apical and basal side of the RPE cell body involved in intercellular uptake and transport represent over 90% of the total surface area. Together with the polarized distribution of organelles within the cell body, these findings are relevant for retinal clinical imaging, therapeutic approaches, and disease pathomechanisms.
Collapse
Affiliation(s)
- Maximilian Lindell
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Aleksandra Sedova
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Orin S. Packer
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | | | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mike Marsh
- Object Research Systems, Montreal, Quebec, Canada
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 PMCID: PMC11659964 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
6
|
Navneet S, Brandon C, Simpson K, Rohrer B. Exploring the Therapeutic Potential of Elastase Inhibition in Age-Related Macular Degeneration in Mouse and Human. Cells 2023; 12:1308. [PMID: 37174708 PMCID: PMC10177483 DOI: 10.3390/cells12091308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Abnormal turnover of the extracellular matrix (ECM) protein elastin has been linked to AMD pathology. Elastin is a critical component of Bruch's membrane (BrM), an ECM layer that separates the retinal pigment epithelium (RPE) from the underlying choriocapillaris. Reduced integrity of BrM's elastin layer corresponds to areas of choroidal neovascularization (CNV) in wet AMD. Serum levels of elastin-derived peptides and anti-elastin antibodies are significantly elevated in AMD patients along with the prevalence of polymorphisms of genes regulating elastin turnover. Despite these results indicating significant associations between abnormal elastin turnover and AMD, very little is known about its exact role in AMD pathogenesis. Here we report on results that suggest that elastase enzymes could play a direct role in the pathogenesis of AMD. We found significantly increased elastase activity in the retinas and RPE cells of AMD mouse models, and AMD patient-iPSC-derived RPE cells. A1AT, a protease inhibitor that inactivates elastase, reduced CNV lesion sizes in mouse models. A1AT completely inhibited elastase-induced VEGFA expression and secretion, and restored RPE monolayer integrity in ARPE-19 monolayers. A1AT also mitigated RPE thickening, an early AMD phenotype, in HTRA1 overexpressing mice, HTRA1 being a serine protease with elastase activity. Finally, in an exploratory study, examining archival records from large patient data sets, we identified an association between A1AT use, age and AMD risk. Our results suggest that repurposing A1AT may have therapeutic potential in modifying the progression to AMD.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kit Simpson
- Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Rohrer B, Parsons N, Annamalai B, Nicholson C, Obert E, Jones B, Dick AD. Elastin Layer in Bruch's Membrane as a Target for Immunization or Tolerization to Modulate Pathology in the Mouse Model of Smoke-Induced Ocular Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:67-71. [PMID: 37440016 DOI: 10.1007/978-3-031-27681-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Age-related macular degeneration (AMD) is associated with an overactive complement system and an increase in circulating antibodies. Our search for potential neoantigens that can trigger complement activation in disease has led us to investigate elastin. A loss of the elastin layer (EL) of Bruch's membrane (BrM) has been reported in aging and AMD together with an increase of serum elastin-derived peptides and α-elastin antibodies. In the mouse model of cigarette smoke exposure (CSE), damage in BrM, loss of the EL, and vision loss are dependent on complement activation. We have examined the hypothesis that CSE generates immunogenic elastin neoepitopes that trigger an increase in α-elastin IgG and IgM antibodies, which can then bind to the neoepitopes in the target cells or membranes, triggering complement activation. Specifically, we showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin) exacerbated ocular pathology and vision loss in CSE mice. In contrast, mice receiving peptide immunotherapy (PIT) with ox-elastin did not lose vision over the smoking period and exhibited a more preserved BrM. Immunization and PIT correlated with humoral immunity and complement activation and IgG/IgM deposition in the RPE/BrM/choroid. Finally, PIT modulated immune markers IFNγ and IL-4. The data further support the hypothesis that complement activation, triggered by immune complex formation in target tissues, plays a role in ocular damage in the CSE model. As PIT with ox-elastin peptides reduces damage, we discuss the possibility that AMD progression might be preventable.
Collapse
Affiliation(s)
- Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Crystal Nicholson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
8
|
Navneet S, Rohrer B. Elastin turnover in ocular diseases: A special focus on age-related macular degeneration. Exp Eye Res 2022; 222:109164. [PMID: 35798060 PMCID: PMC9795808 DOI: 10.1016/j.exer.2022.109164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA.
| |
Collapse
|
9
|
Akter T, Annamalai B, Obert E, Simpson KN, Rohrer B. Dabigatran and Wet AMD, Results From Retinal Pigment Epithelial Cell Monolayers, the Mouse Model of Choroidal Neovascularization, and Patients From the Medicare Data Base. Front Immunol 2022; 13:896274. [PMID: 35784301 PMCID: PMC9248746 DOI: 10.3389/fimmu.2022.896274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Age-related macular degeneration (AMD), the leading cause of irreversible blindness in elderly Caucasian populations, includes destruction of the blood-retina barrier (BRB) generated by the retinal pigment epithelium-Bruch's membrane complex (RPE/BrM), and complement activation. Thrombin is likely to get access to those structures upon BRB integrity loss. Here we investigate the potential role of thrombin in AMD by analyzing effects of the thrombin inhibitor dabigatran. Material and Methods MarketScan data for patients aged ≥65 years on Medicare was used to identify association between AMD and dabigatran use. ARPE-19 cells grown as mature monolayers were analyzed for thrombin effects on barrier function (transepithelial resistance; TER) and downstream signaling (complement activation, expression of connective tissue growth factor (CTGF), and secretion of vascular endothelial growth factor (VEGF)). Laser-induced choroidal neovascularization (CNV) in mouse is used to test the identified downstream signaling. Results Risk of new wet AMD diagnosis was reduced in dabigatran users. In RPE monolayers, thrombin reduced TER, generated unique complement C3 and C5 cleavage products, led to C3d/MAC deposition on cell surfaces, and increased CTGF expression via PAR1-receptor activation and VEGF secretion. CNV lesion repair was accelerated by dabigatran, and molecular readouts suggest that downstream effects of thrombin include CTGF and VEGF, but not the complement system. Conclusions This study provides evidence of association between dabigatran use and reduced exudative AMD diagnosis. Based on the cell- and animal-based studies, we suggest that thrombin modulates wound healing and CTGF and VEGF expression, making dabigatran a potential novel treatment option in AMD.
Collapse
Affiliation(s)
- Tanjina Akter
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | | | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | - Kit N. Simpson
- Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, United States
| |
Collapse
|
10
|
Rohrer B, Parsons N, Annamalai B, Nicholson C, Obert E, Jones BW, Dick AD. Peptide-based immunotherapy against oxidized elastin ameliorates pathology in mouse model of smoke-induced ocular injury. Exp Eye Res 2021; 212:108755. [PMID: 34487725 PMCID: PMC9753162 DOI: 10.1016/j.exer.2021.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD), the leading cause of blindness in western populations, is associated with an overactive complement system, and an increase in circulating antibodies against certain epitopes, including elastin. As loss of the elastin layer of Bruch's membrane (BrM) has been reported in aging and AMD, we previously showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin), exacerbated ocular pathology in the smoke-induced ocular pathology (SIOP) model. Here we asked whether ox-elastin peptide-based immunotherapy (PIT) ameliorates damage. METHODS C57BL/6J mice were injected with ox-elastin peptide at two doses via weekly subcutaneous administration, while exposed to cigarette smoke for 6 months. FcγR-/- and uninjected C57BL/6J mice served as controls. Retinal morphology was assessed by electron microscopy, and complement activation, antibody deposition and mechanisms of immunological tolerance were assessed by Western blotting and ELISA. RESULTS Elimination of Fcγ receptors, preventing antigen/antibody-dependent cytotoxicity, protected against SIOP. Mice receiving PIT with low dose ox-elastin (LD-PIT) exhibited reduced humoral immunity, reduced complement activation and IgG/IgM deposition in the RPE/choroid, and largely a preserved BrM. While there is no direct evidence of ox-elastin pathogenicity, LD-PIT reduced IFNγ and increased IL-4 within RPE/choroid. High dose PIT was not protective. CONCLUSIONS These data further support ox-elastin role in ocular damage in part via elastin-specific antibodies, and support the corollary that PIT with ox-elastin attenuates ocular pathology. Overall, damage is associated with complement activation, antibody-dependent cell-mediated cytotoxicity, and altered cytokine signature.
Collapse
Affiliation(s)
- Bärbel Rohrer
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA; Departments of Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA; Departments of Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, 29401, USA.
| | - Nathaniel Parsons
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Balasubramaniam Annamalai
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Crystal Nicholson
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Elisabeth Obert
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan W Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Andrew D Dick
- University of Bristol, Bristol BS8 1TD, UK and University College London-Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 9EL, UK.
| |
Collapse
|
11
|
Panneels V, Diaz A, Imsand C, Guizar-Sicairos M, Müller E, Bittermann AG, Ishikawa T, Menzel A, Kaech A, Holler M, Grimm C, Schertler G. Imaging of retina cellular and subcellular structures using ptychographic hard X-ray tomography. J Cell Sci 2021; 134:272479. [PMID: 34494099 DOI: 10.1242/jcs.258561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022] Open
Abstract
Ptychographic hard X-ray computed tomography (PXCT) is a recent method allowing imaging with quantitative electron-density contrast. Here, we imaged, at cryogenic temperature and without sectioning, cellular and subcellular structures of a chemically fixed and stained wild-type mouse retina, including axons and synapses, with complete isotropic 3D information over tens of microns. Comparison with tomograms of degenerative retina from a mouse model of retinitis pigmentosa illustrates the potential of this method for analyzing disease processes like neurodegeneration at sub-200 nm resolution. As a non-destructive imaging method, PXCT is very suitable for correlative imaging. Within the outer plexiform layer containing the photoreceptor synapses, we identified somatic synapses. We used a small region inside the X-ray-imaged sample for further high-resolution focused ion beam/scanning electron microscope tomography. The subcellular structures of synapses obtained with the X-ray technique matched the electron microscopy data, demonstrating that PXCT is a powerful scanning method for tissue volumes of more than 60 cells and sensitive enough for identification of regions as small as 200 nm, which remain available for further structural and biochemical investigations.
Collapse
Affiliation(s)
- Valerie Panneels
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Ana Diaz
- Division of Photon Science, Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Cornelia Imsand
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| | - Manuel Guizar-Sicairos
- Division of Photon Science, Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Elisabeth Müller
- Division of Biology and Chemistry, Laboratory for Nanoscale Biology, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Anne Greet Bittermann
- ScopeM, Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Takashi Ishikawa
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland.,Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas Menzel
- Division of Photon Science, Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, 8006 Zurich, Switzerland
| | - Mirko Holler
- Division of Photon Science, Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| | - Gebhard Schertler
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland.,Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Annamalai B, Parsons N, Nicholson C, Joseph K, Coughlin B, Yang X, Jones BW, Tomlinson S, Rohrer B. Natural immunoglobulin M-based delivery of a complement alternative pathway inhibitor in mouse models of retinal degeneration. Exp Eye Res 2021; 207:108583. [PMID: 33878326 PMCID: PMC8504679 DOI: 10.1016/j.exer.2021.108583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Age-related macular degeneration is a slowly progressing disease. Studies have tied disease risk to an overactive complement system. We have previously demonstrated that pathology in two mouse models, the choroidal neovascularization (CNV) model and the smoke-induced ocular pathology (SIOP) model, can be reduced by specifically inhibiting the alternative complement pathway (AP). Here we report on the development of a novel injury-site targeted inhibitor of the alternative pathway, and its characterization in models of retinal degeneration. METHODS Expression of the danger associated molecular pattern, a modified annexin IV, in injured ARPE-19 cells was confirmed by immunohistochemistry and complementation assays using B4 IgM mAb. Subsequently, a construct was prepared consisting of B4 single chain antibody (scFv) linked to a fragment of the alternative pathway inhibitor, fH (B4-scFv-fH). ARPE-19 cells stably expressing B4-scFv-fH were microencapsulated and administered intravitreally or subcutaneously into C57BL/6 J mice, followed by CNV induction or smoke exposure. Progression of CNV was analyzed using optical coherence tomography, and SIOP using structure-function analyses. B4-scFv-fH targeting and AP specificity was assessed by Western blot and binding experiments. RESULTS B4-scFv-fH was secreted from encapsulated RPE and inhibited complement in RPE monolayers. B4-scFv-fH capsules reduced CNV and SIOP, and western blotting for breakdown products of C3α, IgM and IgG confirmed a reduction in complement activation and antibody binding in RPE/choroid. CONCLUSIONS Data supports a role for natural antibodies and neoepitope expression in ocular disease, and describes a novel strategy to target AP-specific complement inhibition to diseased tissue in the eye. PRECIS AMD risk is tied to an overactive complement system, and ocular injury is reduced by alternative pathway (AP) inhibition in experimental models. We developed a novel inhibitor of the AP that targets an injury-specific danger associated molecular pattern, and characterized it in disease models.
Collapse
Affiliation(s)
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Crystal Nicholson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Kusumam Joseph
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Coughlin
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaofeng Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan W Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
13
|
Annamalai B, Parsons N, Nicholson C, Obert E, Jones B, Rohrer B. Subretinal Rather Than Intravitreal Adeno-Associated Virus-Mediated Delivery of a Complement Alternative Pathway Inhibitor Is Effective in a Mouse Model of RPE Damage. Invest Ophthalmol Vis Sci 2021; 62:11. [PMID: 33830174 PMCID: PMC8039473 DOI: 10.1167/iovs.62.4.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The risk for age-related macular degeneration has been tied to an overactive complement system. Despite combined attempts by academia and industry to develop therapeutics that modulate the complement response, particularly in the late geographic atrophy form of advanced AMD, to date, there is no effective treatment. We have previously demonstrated that pathology in the smoke-induced ocular pathology (SIOP) model, a model with similarities to dry AMD, is dependent on activation of the alternative complement pathway and that a novel complement activation site targeted inhibitor of the alternative pathway can be delivered to ocular tissues via an adeno-associated virus (AAV). Methods Two different viral vectors for specific tissue targeting were compared: AAV5-VMD2-CR2-fH for delivery to the retinal pigment epithelium (RPE) and AAV2YF-smCBA-CR2-fH for delivery to retinal ganglion cells (RGCs). Efficacy was tested in SIOP (6 months of passive smoke inhalation), assessing visual function (optokinetic responses), retinal structure (optical coherence tomography), and integrity of the RPE and Bruch's membrane (electron microscopy). Protein chemistry was used to assess complement activation, CR2-fH tissue distribution, and CR2-fH transport across the RPE. Results RPE- but not RGC-mediated secretion of CR2-fH was found to reduce SIOP and complement activation in RPE/choroid. Bioavailability of CR2-fH in RPE/choroid could be confirmed only after AAV5-VMD2-CR2-fH treatment, and inefficient, adenosine triphosphate-dependent transport of CR2-fH across the RPE was identified. Conclusions Our results suggest that complement inhibition for AMD-like pathology is required basal to the RPE and argues in favor of AAV vector delivery to the RPE or outside the blood-retina barrier.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Crystal Nicholson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bryan Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, Utah, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
- Division of Research, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
14
|
Zaidi SAH, Guzman W, Singh S, Mehrotra S, Husain S. Changes in Class I and IIb HDACs by δ-Opioid in Chronic Rat Glaucoma Model. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 33263714 PMCID: PMC7718808 DOI: 10.1167/iovs.61.14.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose This study determines if δ-opioid receptor agonist (i.e. SNC-121)-induced epigenetic changes via regulation of histone deacetylases (HDACs) for retinal ganglion cell (RGC) neuroprotection in glaucoma model. Methods Intraocular pressure was raised in rat eyes by injecting 2M hypertonic saline into the limbal veins. SNC-121 (1 mg/kg; i.p.) was administered to the animals for 7 days. Retinas were collected at days 7 and 42, post-injury followed by measurement of HDAC activities, mRNA, and protein expression by enzyme assay, quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry. Results The visual acuity, contrast sensitivity, and pattern electroretinograms (ERGs) were declined in ocular hypertensive animals, which were significantly improved by SNC-121 treatment. Class I and IIb HDACs activities were significantly increased at days 7 and 42 in ocular hypertensive animals. The mRNA and protein expression of HDAC 1 was increased by 1.33 ± 0.07-fold and 20.2 ± 2.7%, HDAC 2 by 1.4 ± 0.05-fold and 17.0 ± 2.4%, HDAC 3 by 1.4 ± 0.06-fold and 17.4 ± 3.4%, and HDAC 6 by 1.5 ± 0.09-fold and 15.1 ± 3.3% at day 7, post-injury. Both the mRNA and protein expression of HDACs were potentiated further at day 42 in ocular hypertensive animals. HDAC activities, mRNA, and protein expression were blocked by SNC-121 treatment at days 7 and 42 in ocular hypertensive animals. Conclusions Data suggests that class I and IIb HDACs are activated and upregulated during early stages of glaucoma. Early intervention with δ-opioid receptor activation resulted in the prolonged suppression of class I and IIb HDACs activities and expression, which may, in part, play a crucial role in RGC neuroprotection.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Wendy Guzman
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sudha Singh
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|