1
|
Ko TS, Greenwood JC, Morgan RW, Abella BS, Shofer FS, Mason M, Weintraub D, Bungatavula D, Lewis A, Ranieri NR, Yodh AG, Baker WB, Forti RM, Kao SH, Shin SS, Kilbaugh TJ, Jang DH. Attenuation of mitochondrial dysfunction in a ventricular fibrillation swine model of cardiac arrest treated with carbon monoxide. Resuscitation 2025:110647. [PMID: 40383501 DOI: 10.1016/j.resuscitation.2025.110647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality. Despite aggressive supportive care and use of targeted temperature management, half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. Development of neuroprotective therapeutics is critical to improving outcomes. One promising readily available agent that has shown benefit is carbon monoxide (CO). METHODS We utilize a swine model of ventricular fibrillation (VF) arrest to assess the therapeutic effect of CO on cellular measures. All animals underwent VF arrest followed by cardiopulmonary resuscitation until achievement of return of spontaneous circulation (ROSC) or the 20 min mark. One hour following ROSC, animals were randomized to the Cardiac Arrest group (VF alone) versus the CO group (VF treated with CO). Animals in the CO group were administered low dose CO of 200 ppm for two hours. At three hours post-ROSC period, all animals were euthanized for tissue and blood collection for mitochondrial respiration (cortical and hippocampal tissue) and the downstream biomolecular analysis. RESULTS The primary findings were an overall improvement in mitochondrial respiration and ATP concentrations in the brain from animals in the Carbon Monoxide group. In addition, we also report the use of cell-free DNA as a biomarker to localize the site of tissue injury and our non-invasive optical measuring device to assess cerebral metabolism. CONCLUSIONS CO may be a potential therapeutic to attenuate cellular injury in post-arrest.
Collapse
Affiliation(s)
- Tiffany S Ko
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - John C Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan W Morgan
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Benjamin S Abella
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - McKenna Mason
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Devora Weintraub
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Alistair Lewis
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Department of Chemistry, University of Pennsylvania
| | - Nicolina R Ranieri
- School of Biomedical Engineering, Science and Health Systems at Drexel University, Philadelphia, PA, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Wesley B Baker
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rodrigo M Forti
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Shih-Han Kao
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Samuel S Shin
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Todd J Kilbaugh
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Resuscitation Science Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
2
|
Danielak A, Magierowski M. Obesity and mitochondrial uncoupling - an opportunity for the carbon monoxide-based pharmacology of metabolic diseases. Pharmacol Res 2025; 215:107741. [PMID: 40252782 DOI: 10.1016/j.phrs.2025.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Obesity, a chronic and progressive disease with a complex etiology, remains a significant global health challenge. Despite advancements in lifestyle interventions, pharmacological therapies, and bariatric surgery, substantial barriers to effective and sustained obesity management persist. Resistance to weight loss and gradual weight regain are commonly reported, limiting the long-term success of both non-pharmacological and pharmacological strategies. A possible contributor is metabolic adaptation, a phenomenon characterized by reduced metabolic rate and energy expenditure following weight loss, which hinders therapeutic efficacy. To address these challenges, increasing attention has been directed toward strategies that counteract maladaptive mechanisms by modulating metabolic rate and enhancing energy expenditure. One promising approach involves mitochondrial uncoupling, where electron transport and oxygen consumption are disconnected from ATP synthesis, promoting energy dissipation. Preclinical studies have demonstrated the potential of various chemical compounds with uncoupling activity as anti-obesity agents. Additionally, carbon monoxide (CO) has emerged as a significant gaseous signaling molecule in human physiology, with anti-inflammatory, antioxidative, and cytoprotective properties. Advances in CO-based pharmacology have led to the development of controlled-release CO donors, enabling precise therapeutic application. Experimental studies suggest that CO modulates mitochondrial bioenergetics, induces mild mitochondrial uncoupling, and regulates mitochondrial biogenesis. By integrating these findings, this review uniquely connects scientific threads, offering a comprehensive synthesis of current knowledge while proposing innovative directions in mitochondrial, metabolic and CO-based pharmacological research. It highlights the potential of CO-based pharmacology to regulate metabolic rate, support weight loss, and address obesity-related dysfunctions, thus suggesting novel pathways for advancing obesity treatment.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Center for Biomedicine and Interdisciplinary Sciences, Jagiellonian University - Medical College, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University - Medical College, Krakow, Poland
| | - Marcin Magierowski
- Center for Biomedicine and Interdisciplinary Sciences, Jagiellonian University - Medical College, Krakow, Poland.
| |
Collapse
|
3
|
Bauer N, Mao Q, Vashistha A, Seshadri A, Nancy Du YC, Otterbein L, Tan C, de Caestecker MP, Wang B. Compelling Evidence: A Critical Update on the Therapeutic Potential of Carbon Monoxide. Med Res Rev 2025. [PMID: 40302550 DOI: 10.1002/med.22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Carbon monoxide (CO) is an endogenous signaling molecule. It is produced via heme degradation by heme oxygenase (HMOX), releasing stoichiometric amounts of CO, iron, and biliverdin (then bilirubin). The HMOX-CO axis has long been shown to offer beneficial effects by modulating inflammation, proliferation and cell death as they relate to tissue and organ protection. Recent years have seen a large number of studies examining CO pharmacology, its molecular targets, cellular mechanisms of action, pharmacokinetics, and detection methods using various delivery modalities including inhaled CO gas, CO solutions, and various types of CO donors. Unfortunately, one widely used donor type includes four commercially available carbonyl complexes with metal or borane, CORM-2 (Ru2+), CORM-3 (Ru2+), CORM-A1 (BH3), and CORM-401 (Mn+), which have been shown to have minimal and/or unpredictable CO production and extensive CO-independent chemical reactivity and biological activity. As a result, not all "CO biological activities" in the literature can be attributed to CO. In this review, we summarize key findings based on CO gas and CO in solution for the certainty of the active principal and to avoid data contamination resulting from the confirmed or potential reactivities and activities of the "carrier" portion of CORMs. Along a similar line, we discuss interesting potential research areas of CO in the brain including a newly proposed CO/HMOX/dopamine axis and the role of CO in cognitive stimulation and circadian rhythm. This review is critical for the future development of the CO field by steering clear of complications caused by chemically reactive donor molecules.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Qiyue Mao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aditi Vashistha
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Anupamaa Seshadri
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, New York, USA
| | - Leo Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Yue L, Yan Y. Metabolic Regulation in Acute Respiratory Distress Syndrome: Implications for Inflammation and Oxidative Stress. Int J Chron Obstruct Pulmon Dis 2025; 20:373-388. [PMID: 39991071 PMCID: PMC11846517 DOI: 10.2147/copd.s491687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe and life-threatening pulmonary condition characterized by intense inflammation and disrupted oxygen exchange, which can lead to multiorgan failure. Recent findings have established ARDS as a systemic inflammatory disorder involving complex interactions between lung injury, systemic inflammation, and oxidative stress. This review examines the pivotal role of metabolic disturbances in the pathogenesis of ARDS, emphasizing their influence on inflammatory responses and oxidative stress. Common metabolic abnormalities in ARDS patients, including disruptions in carbohydrate, amino acid, and lipid metabolism, contribute significantly to the disease's severity. These metabolic dysfunctions interplay with systemic inflammation and oxidative stress, further exacerbating lung injury and worsening patient outcomes. By analyzing the regulatory mechanisms of various metabolites implicated in ARDS, we underscore the potential of targeting metabolic pathways as a therapeutic approach. Such interventions could help attenuate inflammation and oxidative stress, presenting a promising strategy for ARDS treatment. Additionally, we review potential drugs that modulate metabolic pathways, providing valuable insights into the etiology of ARDS and potential therapeutic directions. This comprehensive analysis enhances our understanding of ARDS and highlights the importance of metabolic regulation in the development of effective treatment strategies. Key findings from this review demonstrate that metabolic disturbances, particularly those affecting carbohydrate, amino acid, and lipid metabolism, play critical roles in amplifying inflammation and oxidative stress, underscoring the potential of metabolic-targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Lixia Yue
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| | - Yihe Yan
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| |
Collapse
|
5
|
Alotaibi K, Arulkumaran N, Dyson A, Singer M. Therapeutic strategies to ameliorate mitochondrial oxidative stress in ischaemia-reperfusion injury: A narrative review. Clin Sci (Lond) 2025; 139:CS20242074. [PMID: 39899361 DOI: 10.1042/cs20242074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Mitochondrial reactive oxygen species (mROS) play a crucial physiological role in intracellular signalling. However, high levels of ROS can overwhelm antioxidant defences and lead to detrimental modifications in protein, lipid and DNA structure and function. Ischaemia-reperfusion injury is a multifaceted pathological state characterised by excessive production of mROS. There is a significant clinical need for therapies mitigating mitochondrial oxidative stress. To date, a variety of strategies have been investigated, ranging from enhancing antioxidant reserve capacity to metabolism reduction. While success has been achieved in non-clinical models, no intervention has yet successfully transitioned into routine clinical practice. In this article, we explore the different strategies investigated and discuss the possible reasons for the lack of translation.
Collapse
Affiliation(s)
- Khalid Alotaibi
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, U.K
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, U.K
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, U.K
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, U.K
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, U.K
| |
Collapse
|
6
|
Serhan CN, Levy BD. Proresolving Lipid Mediators in the Respiratory System. Annu Rev Physiol 2025; 87:491-512. [PMID: 39303274 PMCID: PMC11810588 DOI: 10.1146/annurev-physiol-020924-033209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lung inflammation, infection, and injury can lead to critical illness and death. The current means to pharmacologically treat excessive uncontrolled lung inflammation needs improvement because many treatments are or will become immunosuppressive. The inflammatory response evolved to protect the host from microbes, injury, and environmental insults. This response brings phagocytes from the bloodstream to the tissue site to phagocytize and neutralize bacterial invaders and enables airway antimicrobial functions. This physiologic response is ideally self-limited with initiation and resolution phases. Polyunsaturated essential fatty acids are precursors to potent molecules that govern both phases. In the initiation phase, arachidonic acid is converted to prostaglandins and leukotrienes that activate leukocytes to transmigrate from postcapillary venules. The omega-3 fatty acids (e.g., DHA and EPA) are precursors to resolvins, protectins, and maresins, which are families of chemically distinct mediators with potent functions in resolution of acute and chronic inflammation in the respiratory system.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
7
|
Witt E, Petersen EB, Alzayadneh E, Courtney RJ, Brouillette MJ, Wang Q, Sakyi MY, Watson NAD, Rivas D, Bi J, Culver L, Balk K, Reis C, Uaroon S, McClintic KA, Hatfield S, Worthington KS, Sander EA, Traverso G, Otterbein LE, Goetz JE, Fredericks DC, Byrne JD. Composite Hyaluronic Acid Gas-Entrapping Materials to Promote Wound Healing. Biomacromolecules 2025; 26:201-208. [PMID: 39746190 PMCID: PMC11733945 DOI: 10.1021/acs.biomac.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Tissue repair is often impaired in pathological states, highlighting the need for innovative wound-healing technologies. This study introduces composite hyaluronic acid gas-entrapping materials (GEMs) delivering carbon monoxide (CO) to promote wound healing in pigs. These composite materials facilitate burst release followed by sustained release of CO over 48 h. In a porcine full-thickness wound model, CO-GEMs significantly accelerated wound closure compared to the standard-of-care dressing (Tegaderm). Wound area closure with CO-GEMs was 68.6% vs 56.8% on day 14, 41.0% vs 25.1% on day 28, and 26.9% vs 11.8% on day 42, effectively reducing healing time by 14 days. Histological analysis revealed increased epithelialization and neovascularization with reduced inflammation. These findings demonstrate the potential of CO-GEMs as a topical therapeutic to enhance tissue repair in clinically relevant models, supporting further testing for wound-healing applications.
Collapse
Affiliation(s)
- Emily Witt
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Emily B. Petersen
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Eyas Alzayadneh
- Department
of Pathology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan J. Courtney
- Carver
College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marc J. Brouillette
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Qi Wang
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Carver
College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Maxwell Y. Sakyi
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Nicole A. D. Watson
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Dominic Rivas
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Jianling Bi
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Lindsey Culver
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Kyle Balk
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Colin Reis
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Slyn Uaroon
- Department
of Otolaryngology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kaitlyn A. McClintic
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Samual Hatfield
- Carver
College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kristan S. Worthington
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Edward A. Sander
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Giovanni Traverso
- Division
of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Leo E. Otterbein
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- College
of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jessica E. Goetz
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Douglas C. Fredericks
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - James D. Byrne
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Hong Q, Zhu S, Yu Y, Ren Y, Jin L, Wang H, Zhang H, Guo K. The emerging role of mtDNA release in sepsis: Current evidence and potential therapeutic targets. J Cell Physiol 2024; 239:e31331. [PMID: 38888012 DOI: 10.1002/jcp.31331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Sepsis is a systemic inflammatory reaction caused by infection, and severe sepsis can develop into septic shock, eventually leading to multiorgan dysfunction and even death. In recent years, studies have shown that mitochondrial damage is closely related to the occurrence and development of sepsis. Recent years have seen a surge in concern over mitochondrial DNA (mtDNA), as anomalies in this material can lead to cellular dysfunction, disruption of aerobic respiration, and even death of the cell. In this review, we discuss the latest findings on the mechanisms of mitochondrial damage and the molecular mechanisms controlling mitochondrial mtDNA release. We also explored the connection between mtDNA misplacement and inflammatory activation. Additionally, we propose potential therapeutic targets of mtDNA for sepsis treatment.
Collapse
Affiliation(s)
- Qianya Hong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
9
|
Cardoso-Pires C, Vieira HLA. Carbon monoxide and mitochondria: Cell energy and fate control. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167446. [PMID: 39079605 DOI: 10.1016/j.bbadis.2024.167446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
Carbon monoxide (CO) is a ubiquitously produced endogenous gas in mammalian cells and is involved in stress response being considered as a cytoprotective and homeostatic factor. In the present review, the underlying mechanisms of CO are discussed, in particular CO's impact on cellular metabolism affecting cell fate and function. One of the principal signaling molecules of CO is reactive oxygen species (ROS), particularly hydrogen peroxide, which is mainly generated at the mitochondrial level. Likewise, CO acts on mitochondria modulating oxidative phosphorylation and mitochondria quality control, namely mitochondrial biogenesis (mitobiogenesis) and mitophagy. Other metabolic pathways are also involved in CO's mode of action such as glycolysis and pentose phosphate pathway. The review ends with some new perspectives on CO Biology research. Carboxyhemoglobin (COHb) formation can also be implicated in the CO mode of action, as well as its potential biological role. Finally, other organelles such as peroxisomes hold the potential to be targeted and modulated by CO.
Collapse
Affiliation(s)
- Catarina Cardoso-Pires
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
10
|
Hwang N, Ghanta S, Li Q, Lamattina AM, Murzin E, Lederer JA, El-Chemaly S, Chung SW, Liu X, Perrella MA. Carbon monoxide-induced autophagy enhances human mesenchymal stromal cell function via paracrine actions in murine polymicrobial sepsis. Mol Ther 2024; 32:2232-2247. [PMID: 38734903 PMCID: PMC11286814 DOI: 10.1016/j.ymthe.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a life-threatening process due to organ dysfunction resulting from severe infections. Mesenchymal stromal cells (MSCs) are being investigated as therapy for sepsis, along with conditioning regimens to improve their function. Carbon monoxide (CO) gas, which is cytoprotective at low doses, induces autophagy and is a mediator of inflammation. We evaluated CO-induced autophagy in human MSCs (hMSCs), and its impact on cell function in murine cecal ligation and puncture. Conditioning of hMSCs with CO ex vivo resulted in enhanced survival and bacterial clearance in vivo, and neutrophil phagocytosis of bacteria in vitro. Decreased neutrophil infiltration and less parenchymal cell death in organs were associated with increased macrophage efferocytosis of apoptotic neutrophils, promoting resolution of inflammation. These CO effects were lost when the cells were exposed to autophagy inhibition prior to gas exposure. When assessing paracrine actions of CO-induced autophagy, extracellular vesicles (EVs) were predominantly responsible. CO had no effect on EV production, but altered their miRNA cargo. Increased expression of miR-145-3p and miR-193a-3p by CO was blunted with disruption of autophagy, and inhibitors of these miRNAs led to a loss of neutrophil phagocytosis and macrophage efferocytosis. Collectively, CO-induced autophagy enhanced hMSC function during sepsis via paracrine actions of MSC-derived EVs.
Collapse
Affiliation(s)
- Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Jackson Health System, Miami, FL, USA
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ekaterina Murzin
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Bansal S, Liu D, Mao Q, Bauer N, Wang B. Carbon Monoxide as a Potential Therapeutic Agent: A Molecular Analysis of Its Safety Profiles. J Med Chem 2024; 67:9789-9815. [PMID: 38864348 PMCID: PMC11215727 DOI: 10.1021/acs.jmedchem.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Carbon monoxide (CO) is endogenously produced in mammals, with blood concentrations in the high micromolar range in the hemoglobin-bound form. Further, CO has shown therapeutic effects in various animal models. Despite its reputation as a poisonous gas at high concentrations, we show that CO should have a wide enough safety margin for therapeutic applications. The analysis considers a large number of factors including levels of endogenous CO, its safety margin in comparison to commonly encountered biomolecules or drugs, anticipated enhanced safety profiles when delivered via a noninhalation mode, and the large amount of safety data from human clinical trials. It should be emphasized that having a wide enough safety margin for therapeutic use does not mean that it is benign or safe to the general public, even at low doses. We defer the latter to public health experts. Importantly, this Perspective is written for drug discovery professionals and not the general public.
Collapse
Affiliation(s)
| | | | | | - Nicola Bauer
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
12
|
Dhege CT, Kumar P, Choonara YE. Pulmonary drug delivery devices and nanosystems as potential treatment strategies for acute respiratory distress syndrome (ARDS). Int J Pharm 2024; 657:124182. [PMID: 38697584 DOI: 10.1016/j.ijpharm.2024.124182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Despite advances in drug delivery technologies, treating acute respiratory distress syndrome (ARDS) is challenging due to pathophysiological barriers such as lung injury, oedema fluid build-up, and lung inflammation. Active pharmaceutical ingredients (API) can be delivered directly to the lung site of action with the use of aerosol-based drug delivery devices, and this circumvents the hepatic first-pass effect and improves the bioavailability of drugs. This review discusses the various challenges and barriers for pulmonary drug delivery, current interventions for delivery, considerations for effective drug delivery, and the use of nanoparticle drug delivery carriers as potential strategies for delivering therapeutics in ARDS. Nanosystems have the added benefit of entrapping drugs, increase pulmonary drug bioavailability, and using biocompatible and biodegradable excipients that can facilitate targeted and/or controlled delivery. These systems provide an alternative to existing conventional systems. An effective way to deliver drugs for the treatment of ARDS can be by using colloidal systems that are aerosolized or inhaled. Drug distribution to the deeper pulmonary tissues is necessary due to the significant endothelial cell destruction that is prevalent in ARDS. The particle size of nanoparticles (<0.5 μm) makes them ideal candidates for treating ARDS as they can reach the alveoli. A look into the various potential benefits and limitations of nanosystems used for other lung disorders is also considered to indicate how they may be useful for the potential treatment of ARDS.
Collapse
Affiliation(s)
- Clarence T Dhege
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
13
|
Witt E, Leach AJ, Bi J, Hatfield S, Cotoia AT, McGovern MK, Cafi AB, Rhodes AC, Cook AN, Uaroon S, Parajuli B, Kim J, Feig V, Scheiflinger A, Nwosu I, Jimenez M, Coleman MC, Buchakjian MR, Bosch DE, Tift MS, Traverso G, Otterbein LE, Byrne JD. Modulation of diabetic wound healing using carbon monoxide gas-entrapping materials. DEVICE 2024; 2:100320. [PMID: 38911126 PMCID: PMC11192243 DOI: 10.1016/j.device.2024.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Diabetic wound healing is uniquely challenging to manage due to chronic inflammation and heightened microbial growth from elevated interstitial glucose. Carbon monoxide (CO), widely acknowledged as a toxic gas, is also known to provide unique therapeutic immune modulating effects. To facilitate delivery of CO, we have designed hyaluronic acid-based CO-gas-entrapping materials (CO-GEMs) for topical and prolonged gas delivery to the wound bed. We demonstrate that CO-GEMs promote the healing response in murine diabetic wound models (full-thickness wounds and pressure ulcers) compared to N2-GEMs and untreated controls.
Collapse
Affiliation(s)
- Emily Witt
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander J Leach
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jianling Bi
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Samual Hatfield
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alicia T Cotoia
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Megan K McGovern
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Arielle B Cafi
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ashley C Rhodes
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Austin N Cook
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Slyn Uaroon
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Bishal Parajuli
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jinhee Kim
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, ON M5S 1A8, Canada
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Vivian Feig
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexandra Scheiflinger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ikenna Nwosu
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Miguel Jimenez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, ON M5S 1A8, Canada
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Marisa R Buchakjian
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Dustin E Bosch
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael S Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - James D Byrne
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
14
|
Greenwood JC, Morgan RW, Abella BS, Shofer FS, Baker WB, Lewis A, Ko TS, Forti RM, Yodh AG, Kao SH, Shin SS, Kilbaugh TJ, Jang DH. Carbon monoxide as a cellular protective agent in a swine model of cardiac arrest protocol. PLoS One 2024; 19:e0302653. [PMID: 38748750 PMCID: PMC11095756 DOI: 10.1371/journal.pone.0302653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.
Collapse
Affiliation(s)
- John C. Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ryan W. Morgan
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Benjamin S. Abella
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Frances S. Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Wesley B. Baker
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Alistair Lewis
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Tiffany S. Ko
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Rodrigo M. Forti
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Shih-Han Kao
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Samuel S. Shin
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Todd J. Kilbaugh
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
15
|
Xu Y, Lv L, Wang Q, Yao Q, Kou L, Zhang H. Emerging application of nanomedicine-based therapy in acute respiratory distress syndrome. Colloids Surf B Biointerfaces 2024; 237:113869. [PMID: 38522285 DOI: 10.1016/j.colsurfb.2024.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious lung injuries caused by various factors, leading to increased permeability of the alveolar-capillary barrier, reduced stability of the alveoli, inflammatory response, and hypoxemia. Despite several decades of research since ARDS was first formally described in 1967, reliable clinical treatment options are still lacking. Currently, supportive therapy and mechanical ventilation are prioritized, and there is no medication that can be completely effective in clinical treatment. In recent years, nanomedicine has developed rapidly and has exciting preclinical treatment capabilities. Using a drug delivery system based on nanobiotechnology, local drugs can be continuously released in lung tissue at therapeutic levels, reducing the frequency of administration and improving patient compliance. Furthermore, this novel drug delivery system can target specific sites and reduce systemic side effects. Currently, many nanomedicine treatment options for ARDS have demonstrated efficacy. This review briefly introduces the pathophysiology of ARDS, discusses various research progress on using nanomedicine to treat ARDS, and anticipates future developments in related fields.
Collapse
Affiliation(s)
- Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Leyao Lv
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
16
|
Trieu M, Qadir N. Adjunctive Therapies in Acute Respiratory Distress Syndrome. Crit Care Clin 2024; 40:329-351. [PMID: 38432699 DOI: 10.1016/j.ccc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Despite significant advances in understanding acute respiratory distress syndrome (ARDS), mortality rates remain high. The appropriate use of adjunctive therapies can improve outcomes, particularly for patients with moderate to severe hypoxia. In this review, the authors discuss the evidence basis behind prone positioning, recruitment maneuvers, neuromuscular blocking agents, corticosteroids, pulmonary vasodilators, and extracorporeal membrane oxygenation and considerations for their use in individual patients and specific clinical scenarios. Because the heterogeneity of ARDS poses challenges in finding universally effective treatments, an individualized approach and continued research efforts are crucial for optimizing the utilization of adjunctive therapies and improving patient outcomes.
Collapse
Affiliation(s)
- Megan Trieu
- Division of Pulmonary Critical Care Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, 9300 Campus Point Drive, #7381, La Jolla, CA 92037-1300, USA
| | - Nida Qadir
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Room 43-229 CHS, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Aribindi K, Lim M, Lakshminrusimha S, Albertson T. Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs 2024; 33:243-277. [PMID: 38316432 DOI: 10.1080/13543784.2024.2315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Acute Respiratory Distress Syndrome (ARDS) is a heterogeneous form of lung injury with severe hypoxemia and bilateral infiltrates after an inciting event that results in diffuse lung inflammation with a high mortality rate. While research in COVID-related ARDS has resulted in several pharmacotherapeutic agents that have undergone successful investigation, non-COVID ARDS studies have not resulted in many widely accepted pharmacotherapeutic agents despite exhaustive research. AREAS COVERED The aim of this review is to discuss adjuvant pharmacotherapies targeting non-COVID Acute Lung Injury (ALI)/ARDS and novel therapeutics in COVID associated ALI/ARDS. In ARDS, variable data may support selective use of neuromuscular blocking agents, corticosteroids and neutrophil elastase inhibitors, but are not yet universally used. COVID-ALI/ARDS has data supporting the use of IL-6 monoclonal antibodies, corticosteroids, and JAK inhibitor therapy. EXPERT OPINION Although ALI/ARDS modifying pharmacological agents have been identified in COVID-related disease, the data in non-COVID ALI/ARDS has been less compelling. The increased use of more specific molecular phenotyping based on physiologic parameters and biomarkers, will ensure equipoise between groups, and will likely allow more precision in confirming pharmacological agent efficacy in future studies.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
- Department of Medicine, Veterans Affairs North California Health Care System, Mather, CA, USA
| | - Michelle Lim
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Timothy Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
18
|
Bi J, Witt E, McGovern MK, Cafi AB, Rosenstock LL, Pearson AB, Brown TJ, Karasic TB, Absler LC, Machkanti S, Boyce H, Gallo D, Becker SL, Ishida K, Jenkins J, Hayward A, Scheiflinger A, Bodeker KL, Kumar R, Shaw SK, Jabbour SK, Lira VA, Henry MD, Tift MS, Otterbein LE, Traverso G, Byrne JD. Oral Carbon Monoxide Enhances Autophagy Modulation in Prostate, Pancreatic, and Lung Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308346. [PMID: 38084435 PMCID: PMC10916612 DOI: 10.1002/advs.202308346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Indexed: 01/22/2024]
Abstract
Modulation of autophagy, specifically its inhibition, stands to transform the capacity to effectively treat a broad range of cancers. However, the clinical efficacy of autophagy inhibitors has been inconsistent. To delineate clinical and epidemiological features associated with autophagy inhibition and a positive oncological clinical response, a retrospective analysis of patients is conducted treated with hydroxychloroquine, a known autophagy inhibitor. A direct correlation between smoking status and inhibition of autophagy with hydroxychloroquine is identified. Recognizing that smoking is associated with elevated circulating levels of carbon monoxide (CO), it is hypothesized that supplemental CO can amplify autophagy inhibition. A novel, gas-entrapping material containing CO in a pre-clinical model is applied and demonstrated that CO can dramatically increase the cytotoxicity of autophagy inhibitors and significantly inhibit the growth of tumors when used in combination. These data support the notion that safe, therapeutic levels of CO can markedly enhance the efficacy of autophagy inhibitors, opening a promising new frontier in the quest to improve cancer therapies.
Collapse
|
19
|
Price DR, Garcia JGN. A Razor's Edge: Vascular Responses to Acute Inflammatory Lung Injury/Acute Respiratory Distress Syndrome. Annu Rev Physiol 2024; 86:505-529. [PMID: 38345908 PMCID: PMC11259086 DOI: 10.1146/annurev-physiol-042222-030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Historically considered a metabolically inert cellular layer separating the blood from the underlying tissue, the endothelium is now recognized as a highly dynamic, metabolically active tissue that is critical to organ homeostasis. Under homeostatic conditions, lung endothelial cells (ECs) in healthy subjects are quiescent, promoting vasodilation, platelet disaggregation, and anti-inflammatory mechanisms. In contrast, lung ECs are essential contributors to the pathobiology of acute respiratory distress syndrome (ARDS), as the quiescent endothelium is rapidly and radically altered upon exposure to environmental stressors, infectious pathogens, or endogenous danger signals into an effective and formidable regulator of innate and adaptive immunity. These dramatic perturbations, produced in a tsunami of inflammatory cascade activation, result in paracellular gap formation between lung ECs, sustained lung edema, and multi-organ dysfunction that drives ARDS mortality. The astonishing plasticity of the lung endothelium in negotiating this inflammatory environment and efforts to therapeutically target the aberrant ARDS endothelium are examined in further detail in this review.
Collapse
Affiliation(s)
- David R Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA
| | - Joe G N Garcia
- Center for Inflammation Sciences and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA;
| |
Collapse
|
20
|
Kraft BD, Pavlisko EN, Roggli VL, Piantadosi CA, Suliman HB. Alveolar Mitochondrial Quality Control During Acute Respiratory Distress Syndrome. J Transl Med 2023; 103:100197. [PMID: 37307952 PMCID: PMC10257518 DOI: 10.1016/j.labinv.2023.100197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a leading cause of respiratory failure and death in patients in the intensive care unit. Experimentally, acute lung injury resolution depends on the repair of mitochondrial oxidant damage by the mitochondrial quality control (MQC) pathways, mitochondrial biogenesis, and mitophagy, but nothing is known about this in the human lung. In a case-control autopsy study, we compared the lungs of subjects dying of ARDS (n = 8; cases) and age-/gender-matched subjects dying of nonpulmonary causes (n = 7; controls). Slides were examined by light microscopy and immunofluorescence confocal microscopy, randomly probing for co-localization of citrate synthase with markers of oxidant stress, mitochondrial DNA damage, mitophagy, and mitochondrial biogenesis. ARDS lungs showed diffuse alveolar damage with edema, hyaline membranes, and neutrophils. Compared with controls, a high degree of mitochondrial oxidant damage was seen in type 2 epithelial (AT2) cells and alveolar macrophages by 8-hydroxydeoxyguanosine and malondialdehyde co-staining with citrate synthase. In ARDS, antioxidant protein heme oxygenase-1 and DNA repair enzyme N-glycosylase/DNA lyase (Ogg1) were found in alveolar macrophages but not in AT2 cells. Moreover, MAP1 light chain-3 (LC3) and serine/threonine-protein kinase (Pink1) staining were absent in AT2 cells, suggesting a mitophagy failure. Nuclear respiratory factor-1 staining was missing in the alveolar region, suggesting impaired mitochondrial biogenesis. Widespread hyperproliferation of AT2 cells in ARDS could suggest defective differentiation into type 1 cells. ARDS lungs show profuse mitochondrial oxidant DNA damage but little evidence of MQC activity in AT2 epithelium. Because these pathways are important for acute lung injury resolution, our findings support MQC as a novel pharmacologic target for ARDS resolution.
Collapse
Affiliation(s)
- Bryan D Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.
| | - Elizabeth N Pavlisko
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Victor L Roggli
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Claude A Piantadosi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Hagir B Suliman
- Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
21
|
Meservey A, Krishnan G, Green CL, Morrison S, Rackley CR, Kraft BD. U-Shaped Association Between Carboxyhemoglobin and Mortality in Patients With Acute Respiratory Distress Syndrome on Venovenous Extracorporeal Membrane Oxygenation. Crit Care Explor 2023; 5:e0957. [PMID: 37614802 PMCID: PMC10443764 DOI: 10.1097/cce.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Background Carbon monoxide (CO) is an endogenous signaling molecule that activates cytoprotective programs implicated in the resolution of acute respiratory distress syndrome (ARDS) and survival of critical illness. Because CO levels can be measured in blood as carboxyhemoglobin, we hypothesized that carboxyhemoglobin percent (COHb%) may associate with mortality. OBJECTIVES To examine the relationship between COHb% and outcomes in patients with ARDS requiring venovenous extracorporeal membrane oxygenation (ECMO), a condition where elevated COHb% is commonly observed. DESIGN Retrospective cohort study. SETTING Academic medical center ICU. PATIENTS Patients were included that had ARDS on venovenous ECMO. MEASUREMENTS AND MAIN RESULTS We examined the association between COHb% and mortality using a Cox proportional hazards model. Secondary outcomes including ECMO duration, ventilator weaning, and hospital and ICU length of stay were examined using both subdistribution and causal-specific hazard models for competing risks. We identified 109 consecutive patients for analysis. Mortality significantly decreased per 1 U increase in COHb% below 3.25% (hazard ratio [HR], 0.35; 95% CI, 0.15-0.80; p = 0.013) and increased per 1 U increase above 3.25% (HR, 4.7; 95% CI, 1.5-14.7; p = 0.007) reflecting a nonlinear association (p = 0.006). Each unit increase in COHb% was associated with reduced likelihood of liberation from ECMO and mechanical ventilation, and increased time to hospital and ICU discharge (all p < 0.05). COHb% was significantly associated with hemolysis but not with initiation of hemodialysis or blood transfusions. CONCLUSIONS In patients with ARDS on venovenous ECMO, COHb% is a novel biomarker for mortality exhibiting a U-shaped pattern. Our findings suggest that too little CO (perhaps due to impaired host signaling) or excess CO (perhaps due to hemolysis) is associated with higher mortality. Patients with low COHb% may exhibit the most benefit from future therapies targeting anti-oxidant and anti-inflammatory pathways such as low-dose inhaled CO gas.
Collapse
Affiliation(s)
- Amber Meservey
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Govind Krishnan
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Cynthia L Green
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Samantha Morrison
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
| | - Craig R Rackley
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Bryan D Kraft
- Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
22
|
Liang G, Wang W, He Z. Sepsis associated with acute lung injury over the period 2012-2021: a bibliometric analysis. Front Physiol 2023; 14:1079736. [PMID: 37398906 PMCID: PMC10307965 DOI: 10.3389/fphys.2023.1079736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Sepsis associated with acute lung injury (ALI) is a common acute and severe disease with severe socioeconomic burden. The aim of this study is to explore the literatures of sepsis associated with ALI from a bibliometric perspective. Methods: Articles and reviews related to sepsis associated with ALI published from 2012 to 2021 in the Web of Science Core Collection were retrieved. Countries, affiliations, journals, authors, references, co-citation and keyword analysis in this field were visually analyzed using WOS citation reports, bibliometric.com, CtieSpace and VOSviewer software. Results: Over the last decade (2012-2021), marked progress has been made in the area of sepsis associated with ALI research. 836 papers were enrolled in this study. China accounts for the most contributors. Articles from the United States has the highest average cited. Shanghai Jiao Tong University, University of California System and Huazhong University of Science Technology were the main contributing institutions. Articles in International Immunopharmacology, Inflammation, Shock and Critical Care were cited the most. Matthay MA and Ware LB were the main contributors to this field. Inflammation and NF-κB have always been the focus of sepsis associated with ALI related research, and programmed cell death (including apoptosis, necroptosis and pyroptosis) may be the important direction of future research. Conclusion: Research on the sepsis associated with ALI is flourishing. The research on programmed cell death is a hot spot and may be a promising research field in the coming years.
Collapse
|
23
|
McClintock CR, Mulholland N, Krasnodembskaya AD. Biomarkers of mitochondrial dysfunction in acute respiratory distress syndrome: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:1011819. [PMID: 36590959 PMCID: PMC9795057 DOI: 10.3389/fmed.2022.1011819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is one of the main causes of Intensive Care Unit morbidity and mortality. Metabolic biomarkers of mitochondrial dysfunction are correlated with disease development and high mortality in many respiratory conditions, however it is not known if they can be used to assess risk of mortality in patients with ARDS. Objectives The aim of this systematic review was to examine the link between recorded biomarkers of mitochondrial dysfunction in ARDS and mortality. Methods A systematic review of CINAHL, EMBASE, MEDLINE, and Cochrane databases was performed. Studies had to include critically ill ARDS patients with reported biomarkers of mitochondrial dysfunction and mortality. Information on the levels of biomarkers reflective of energy metabolism and mitochondrial respiratory function, mitochondrial metabolites, coenzymes, and mitochondrial deoxyribonucleic acid (mtDNA) copy number was recorded. RevMan5.4 was used for meta-analysis. Biomarkers measured in the samples representative of systemic circulation were analyzed separately from the biomarkers measured in the samples representative of lung compartment. Cochrane risk of bias tool and Newcastle-Ottawa scale were used to evaluate publication bias (Prospero protocol: CRD42022288262). Results Twenty-five studies were included in the systematic review and nine had raw data available for follow up meta-analysis. Biomarkers of mitochondrial dysfunction included mtDNA, glutathione coupled mediators, lactate, malondialdehyde, mitochondrial genetic defects, oxidative stress associated markers. Biomarkers that were eligible for meta-analysis inclusion were: xanthine, hypoxanthine, acetone, N-pentane, isoprene and mtDNA. Levels of mitochondrial biomarkers were significantly higher in ARDS than in non-ARDS controls (P = 0.0008) in the blood-based samples, whereas in the BAL the difference did not reach statistical significance (P = 0.14). mtDNA was the most frequently measured biomarker, its levels in the blood-based samples were significantly higher in ARDS compared to non-ARDS controls (P = 0.04). Difference between mtDNA levels in ARDS non-survivors compared to ARDS survivors did not reach statistical significance (P = 0.05). Conclusion Increased levels of biomarkers of mitochondrial dysfunction in the blood-based samples are positively associated with ARDS. Circulating mtDNA is the most frequently measured biomarker of mitochondrial dysfunction, with significantly elevated levels in ARDS patients compared to non-ARDS controls. Its potential to predict risk of ARDS mortality requires further investigation. Systematic review registration [https://www.crd.york.ac.uk/prospero], identifier [CRD42022288262].
Collapse
Affiliation(s)
- Catherine R. McClintock
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | | | | |
Collapse
|
24
|
Okuda C, Sakai H. Effect of carbon monoxide administration using haemoglobin-vesicles on the hippocampal tissue. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:1-9. [PMID: 35084281 DOI: 10.1080/21691401.2022.2027428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Carbon monoxide (CO) is a toxic gas that causes neuropathy. However, CO is endogenously produced in small amounts showing various beneficial effects. We hypothesized that CO-bound haemoglobin-vesicle (HbV) administration would reduce cerebral ischaemia-reperfusion injury without causing neuropathy. Three experiments were conducted. First, rats were exposed to CO inhalation to create a CO-poisoning group, and they were sacrificed on 0, 7, 14, and 21 days after CO exposure. Histopathologically, hippocampal damage was prominent at 14 days. Second, the rats were administered with CO-HbV equivalent to 50 or 25% of circulating blood volume (CO-HbV50 or CO-HbV25 group). Rats were sacrificed 14 days after administration. Third, rats put into haemorrhagic shock by 50% of circulating blood withdrawal were resuscitated using saline, autologous blood, and CO-HbV. They were sacrificed 14 days after resuscitation. Hippocampal damage assessment clarified that almost no necrotic cells were observed in the CO-HbV50 group. Necrotic cells in the CO-HbV25 group were comparable to those found for the control group. In rats resuscitated from haemorrhagic shock, the hippocampal damage in the group using CO-HbV was the mildest. Administration of CO-HbV did not lead to marked hippocampal damage. Furthermore, CO-HbV was effective at preventing cerebral ischaemia-reperfusion injury after haemorrhagic shock.
Collapse
Affiliation(s)
- Chie Okuda
- Department of Chemistry, Nara Medical University, Kashihara, Japan
- Department of Anesthesiology, Nara Medical University, Kashihara, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| |
Collapse
|
25
|
Red-light responsive photoCORM activated in aqueous acid solution. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Choi HI, Zeb A, Kim MS, Rana I, Khan N, Qureshi OS, Lim CW, Park JS, Gao Z, Maeng HJ, Kim JK. Controlled therapeutic delivery of CO from carbon monoxide-releasing molecules (CORMs). J Control Release 2022; 350:652-667. [PMID: 36063960 DOI: 10.1016/j.jconrel.2022.08.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/06/2023]
Abstract
Carbon monoxide (CO) has been regarded as a "silent killer" for its toxicity toward biological systems. However, a low concentration of endogenously produced CO has shown a number of therapeutic benefits such as anti-inflammatory, anti-proliferative, anti-apoptosis, and cytoprotective activities. Carbon monoxide-releasing molecules (CORMs) have been developed as alternatives to direct CO inhalation, which requires a specialized setting for strict dose control. CORMs are efficient CO donors, with central transition metals (such as ruthenium, iron, cobalt, and manganese) surrounded by CO as a ligand. CORMs can stably store and subsequently release their CO payload in the presence of certain triggers including solvent, light, temperature, and ligand substitution. However, CORMs require appropriate delivery strategies to improve short CO release half-life and target specificity. Herein, we highlighted the therapeutic potential of inhalation and CORMs-delivered CO. The applications of conjugate and nanocarrier systems for controlling CO release and improving therapeutic efficacy of CORMs are also described in detail. The review concludes with some of the hurdles that limit clinical translation of CORMs. Keeping in mind the tremendous potential and growing interest in CORMs, this review would be helpful for designing controlled CO release systems for clinical applications.
Collapse
Affiliation(s)
- Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Alam Zeb
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, Republic of Korea; Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Min-Su Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Isra Rana
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Omer Salman Qureshi
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College University, Lahore, Pakistan
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy, Institute of Drug Research and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea.
| |
Collapse
|
27
|
Benowitz NL, Goniewicz ML, Halpern-Felsher B, Krishnan-Sarin S, Ling PM, O'Connor RJ, Pentz MA, Robertson RM, Bhatnagar A. Tobacco product use and the risks of SARS-CoV-2 infection and COVID-19: current understanding and recommendations for future research. THE LANCET. RESPIRATORY MEDICINE 2022; 10:900-915. [PMID: 35985357 PMCID: PMC9381032 DOI: 10.1016/s2213-2600(22)00182-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/27/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
Abstract
Heterogeneity in the clinical presentation of SARS-CoV-2 infection and COVID-19 progression underscores the urgent need to identify individual-level susceptibility factors that affect infection vulnerability and disease severity. Tobacco product use is a potential susceptibility factor. In this Personal View, we provide an overview of the findings of peer-reviewed, published studies relating tobacco product use to SARS-CoV-2 infection and COVID-19 outcomes, with most studies focusing on cigarette smoking in adults. Findings pertaining to the effects of tobacco product use on the incidence of SARS-CoV-2 infection are inconsistent. However, evidence supports a role for cigarette smoking in increasing the risk of poor COVID-19 outcomes, including hospital admission, progression in disease severity, and COVID-19-related mortality. We discuss the potential effects of tobacco use behaviour on SARS-CoV-2 transmission and infection, and highlight the pathophysiological changes associated with cigarette smoking that could promote SARS-CoV-2 infection and increased disease severity. We consider the biological mechanisms by which nicotine and other tobacco product constituents might affect immune and inflammatory responses to SARS-CoV-2 infection. Finally, we identify current knowledge gaps and suggest priorities for research to address acute and post-acute health outcomes of COVID-19 during and after the pandemic.
Collapse
Affiliation(s)
- Neal L Benowitz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Pamela M Ling
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Richard J O'Connor
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Ann Pentz
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rose Marie Robertson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aruni Bhatnagar
- Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
28
|
Long G, Gong R, Wang Q, Zhang D, Huang C. Role of released mitochondrial DNA in acute lung injury. Front Immunol 2022; 13:973089. [PMID: 36059472 PMCID: PMC9433898 DOI: 10.3389/fimmu.2022.973089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a form of acute-onset hypoxemic respiratory failure characterised by an acute, diffuse, inflammatory lung injury, and increased alveolar-capillary permeability, which is caused by a variety of pulmonary or nonpulmonary insults. Recently, aberrant mitochondria and mitochondrial DNA(mtDNA) level are associated with the development of ALI/ARDS, and plasma mtDNA level shows the potential to be a promising biomarker for clinical diagnosis and evaluation of lung injury severity. In mechanism, the mtDNA and its oxidised form, which are released from impaired mitochondria, play a crucial role in the inflammatory response and histopathological changes in the lung. In this review, we discuss mitochondrial outer membrane permeabilisation (MOMP), mitochondrial permeability transition pore(mPTP), extracellular vesicles (EVs), extracellular traps (ETs), and passive release as the principal mechanisms for the release of mitochondrial DNA into the cytoplasm and extracellular compartments respectively. Further, we explain how the released mtDNA and its oxidised form can induce inflammatory cytokine production and aggravate lung injury through the Toll-like receptor 9(TLR9) signalling, cytosolic cGAS-stimulator of interferon genes (STING) signalling (cGAS-STING) pathway, and inflammasomes activation. Additionally, we propose targeting mtDNA-mediated inflammatory pathways as a novel therapeutic approach for treating ALI/ARDS.
Collapse
Affiliation(s)
- Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Dingyu Zhang, ; Chaolin Huang,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Dingyu Zhang, ; Chaolin Huang,
| |
Collapse
|
29
|
Byrne JD, Gallo D, Boyce H, Becker SL, Kezar KM, Cotoia AT, Feig VR, Lopes A, Csizmadia E, Longhi MS, Lee JS, Kim H, Wentworth AJ, Shankar S, Lee GR, Bi J, Witt E, Ishida K, Hayward A, Kuosmanen JLP, Jenkins J, Wainer J, Aragon A, Wong K, Steiger C, Jeck WR, Bosch DE, Coleman MC, Spitz DR, Tift M, Langer R, Otterbein LE, Traverso G. Delivery of therapeutic carbon monoxide by gas-entrapping materials. Sci Transl Med 2022; 14:eabl4135. [PMID: 35767653 DOI: 10.1126/scitranslmed.abl4135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.
Collapse
Affiliation(s)
- James D Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Radiation Oncology Residency Program, Boston, MA 02114, USA.,Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hannah Boyce
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristi M Kezar
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Alicia T Cotoia
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Vivian R Feig
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Lopes
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Eva Csizmadia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jung Seung Lee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Intelligent Precision Healthcare Convergence, SKKU Institute of Convergence, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyunjoon Kim
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam J Wentworth
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ghee Rye Lee
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianling Bi
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Emily Witt
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Keiko Ishida
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes L P Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Josh Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jacob Wainer
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Aya Aragon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaitlyn Wong
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Steiger
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - William R Jeck
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Dustin E Bosch
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
30
|
Kwong AM, Luke PPW, Bhattacharjee RN. Carbon monoxide mechanism of protection against renal ischemia and reperfusion injury. Biochem Pharmacol 2022; 202:115156. [PMID: 35777450 DOI: 10.1016/j.bcp.2022.115156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Carbon monoxide is quickly moving past its historic label as a molecule once feared, to a therapeutic drug that modulates inflammation. The development of carbon monoxide releasing molecules and utilization of heme oxygenase-1 inducers have shown carbon monoxide to be a promising therapy in reducing renal ischemia and reperfusion injury and other inflammatory diseases. In this review, we will discuss the developments and application of carbon monoxide releasing molecules in renal ischemia and reperfusion injury, and transplantation. We will review the anti-inflammatory mechanisms of carbon monoxide in respect to mitigating apoptosis, suppressing dendritic cell maturation and signalling, inhibiting toll-like receptor activation, promoting anti-inflammatory responses, and the effects on renal vasculature.
Collapse
Affiliation(s)
- Aaron M Kwong
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Patrick P W Luke
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Surgery, London Health Sciences Centre, Canada; Matthew Mailing Centre for Translational Transplantation Studies, Canada.
| | - Rabindra N Bhattacharjee
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Surgery, London Health Sciences Centre, Canada; Matthew Mailing Centre for Translational Transplantation Studies, Canada.
| |
Collapse
|
31
|
Saha R, Assouline B, Mason G, Douiri A, Summers C, Shankar-Har M. The Impact of Sample Size Misestimations on the Interpretation of ARDS Trials: Systematic Review and Meta-analysis. Chest 2022; 162:1048-1062. [PMID: 35643115 DOI: 10.1016/j.chest.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Indeterminate randomized controlled trials (RCTs) in ARDS may arise from sample size misspecification, leading to abandonment of efficacious therapies. RESEARCH QUESTIONS If evidence exists for sample size misspecification in ARDS RCTs, has this led to rejection of potentially beneficial therapies? Does evidence exist for prognostic enrichment in RCTs using mortality as a primary outcome? STUDY DESIGN AND METHODS We identified 150 ARDS RCTs commencing recruitment after the 1994 American European Consensus Conference ARDS definition and published before October 31, 2020. We examined predicted-observed sample size, predicted-observed control event rate (CER), predicted-observed average treatment effect (ATE), and the relationship between observed CER and observed ATE for RCTs with mortality and nonmortality primary outcome measures. To quantify the strength of evidence, we used Bayesian-averaged meta-analysis, trial sequential analysis, and Bayes factors. RESULTS Only 84 of 150 RCTs (56.0%) reported sample size estimations. In RCTs with mortality as the primary outcome, CER was overestimated in 16 of 28 RCTs (57.1%). To achieve predicted ATE, interventions needed to prevent 40.8% of all deaths, compared with the original prediction of 29.3%. Absolute reduction in mortality ≥ 10% was observed in 5 of 28 RCTs (17.9%), but predicted in 21 of 28 RCTs (75%). For RCTs with mortality as the primary outcome, no association was found between observed CER and observed ATE (pooled OR: β = -0.04; 95% credible interval, -0.18 to 0.09). We identified three interventions that are not currently standard of care with a Bayesian-averaged effect size of > 0.20 and moderate strength of existing evidence: corticosteroids, airway pressure release ventilation, and noninvasive ventilation. INTERPRETATION Reporting of sample size estimations was inconsistent in ARDS RCTs, and misspecification of CER and ATE was common. Prognostic enrichment strategies in ARDS RCTs based on all-cause mortality are unlikely to be successful. Bayesian methods can be used to prioritize interventions for future effectiveness RCTs.
Collapse
Affiliation(s)
- Rohit Saha
- Critical Care Centre, King's College London, London, United Kingdom; School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Benjamin Assouline
- Service de Médecine Intensive Réanimation, Faculté de Médecine Sorbonne Université, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Georgina Mason
- Critical Care Centre, King's College London, London, United Kingdom
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, King's College London, London, United Kingdom; National Institute for Health Research Comprehensive Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Manu Shankar-Har
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
32
|
Gianni S, Valsecchi C, Berra L. Therapeutic Gases and Inhaled Anesthetics as Adjunctive Therapies in Critically Ill Patients. Semin Respir Crit Care Med 2022; 43:440-452. [PMID: 35533689 DOI: 10.1055/s-0042-1747966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The administration of exogenous oxygen to support adequate gas exchange is the cornerstone of respiratory care. In the past few years, other gaseous molecules have been introduced in clinical practice to treat the wide variety of physiological derangement seen in critical care patients.Inhaled nitric oxide (NO) is used for its unique selective pulmonary vasodilator effect. Recent studies showed that NO plays a pivotal role in regulating ischemia-reperfusion injury and it has antibacterial and antiviral activity.Helium, due to its low density, is used in patients with upper airway obstruction and lower airway obstruction to facilitate gas flow and to reduce work of breathing.Carbon monoxide (CO) is a poisonous gas that acts as a signaling molecule involved in many biologic pathways. CO's anti-inflammatory and antiproliferative effects are under investigation in the setting of acute respiratory distress and idiopathic pulmonary fibrosis.Inhaled anesthetics are widely used in the operative room setting and, with the development of anesthetic reflectors, are now a valid option for sedation management in the intensive care unit.Many other gases such as xenon, argon, and hydrogen sulfide are under investigation for their neuroprotective and cardioprotective effects in post-cardiac arrest syndrome.With all these therapeutic options available, the clinician must have a clear understanding of the physiologic basis, therapeutic potential, and possible adverse events of these therapeutic gases. In this review, we will present the therapeutic gases other than oxygen used in clinical practice and we will describe other promising therapeutic gases that are in the early phases of investigation.
Collapse
Affiliation(s)
- Stefano Gianni
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carlo Valsecchi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis. Exp Mol Med 2022; 54:639-652. [PMID: 35581352 PMCID: PMC9166813 DOI: 10.1038/s12276-022-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Overwhelming neutrophilic inflammation is a leading cause of lung damage in many pulmonary diseases, including cystic fibrosis (CF). The heme oxygenase-1 (HO-1)/carbon monoxide (CO) pathway mediates the resolution of inflammation and is defective in CF-affected macrophages (MΦs). Here, we provide evidence that systemic administration of PP-007, a CO releasing/O2 transfer agent, induces the expression of HO-1 in a myeloid differentiation factor 88 (MyD88) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)-dependent manner. It also rescues the reduced HO-1 levels in CF-affected cells induced in response to lipopolysaccharides (LPS) or Pseudomonas aeruginosa (PA). Treatment of CF and muco-obstructive lung disease mouse models with a single clinically relevant dose of PP-007 leads to effective resolution of lung neutrophilia and to decreased levels of proinflammatory cytokines in response to LPS. Using HO-1 conditional knockout mice, we show that the beneficial effect of PP-007 is due to the priming of circulating monocytes trafficking to the lungs in response to infection to express high levels of HO-1. Finally, we show that PP-007 does not compromise the clearance of PA in the setting of chronic airway infection. Overall, we reveal the mechanism of action of PP-007 responsible for the immunomodulatory function observed in clinical trials for a wide range of diseases and demonstrate the potential use of PP-007 in controlling neutrophilic pulmonary inflammation by promoting the expression of HO-1 in monocytes/macrophages. The activity of an enzyme that is significantly reduced in cystic fibrosis (CF) could be boosted by an existing drug, reducing lung inflammation and associated tissue damage. Chronic inflammation in CF is currently treated using long-term corticosteroids which may leave patients immuno-suppressed, or high-dose ibuprofen, which is not well tolerated. Scientists hope to find alternative therapies targeting chronic inflammation. Emanuela Bruscia, Caterina Di Pietro (Yale University, New Haven, USA) and co-workers examined the mechanisms of action of the first-in-class drug PP-007 (Prolong Pharmaceuticals®) and assessed its potential for controlling inflammation in CF. Patients with CF have reduced expression of the heme oxygenase-1 enzyme in immune cells called monocytes. In CF mouse models, treatment with PP-007 boosted the expression of this enzyme in circulating monocytes. The treatment reduced levels of proinflammatory proteins and associated lung damage.
Collapse
|
34
|
Amorim MR, Foresti R, Benrahla DE, Motterlini R, Branco LGS. CORM-401, an orally active carbon monoxide-releasing molecule, increases body temperature by activating non-shivering thermogenesis in rats. Temperature (Austin) 2022; 9:310-317. [PMID: 36339088 PMCID: PMC9629103 DOI: 10.1080/23328940.2022.2061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Thermoregulation is critical in health and disease and is tightly controlled to maintain body temperature homeostasis. Carbon monoxide (CO), an endogenous gasotransmitter produced during heme degradation by heme oxygenases, has been suggested to play a role in body core temperature (Tb) regulation. However, a direct involvement of CO in thermoregulation has not been confirmed and its mechanism(s) of action remain largely unknown. In the present study we characterized the effects of systemic delivery of CO by administration of an orally active CO-releasing molecule (CORM-401) on Tb regulation in conscious freely moving rats. Specifically, we evaluated the main thermo effectors in rats treated with CORM-401 by assessing: (i) non-shivering thermogenesis, i.e. the increased metabolism of brown fat measured through oxygen consumption and (ii) the rate of heat loss from the tail through calculations of heat loss index. We found that oral administration of CORM-401 (30 mg/kg) resulted in augmented CO delivery into the blood circulation as evidenced a by significant increase in carbon monoxy hemoglobin levels(COHb). In addition, treatment with CORM-401 increased Tb, which was caused by an elevated non-shivering thermogenesis indicated by increased oxygen consumption without significant changes in the tail heat loss. On the other hand, CORM-401 did not affect blood pressure, but significantly decreased heart rate. In summary, the findings of the present study reveal that increased circulating CO levels lead to a rise in Tb, which could have important implications in the emerging role of CO in the modulation of energetic metabolism.
Collapse
Affiliation(s)
- Mateus R. Amorim
- Dental School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roberta Foresti
- Faculty of Health, University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | | | - Roberto Motterlini
- Faculty of Health, University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Luiz G. S. Branco
- Dental School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
36
|
Mancuso C. The brain heme oxygenase/biliverdin reductase system as a target in drug research and development. Expert Opin Ther Targets 2022; 26:361-374. [PMID: 35285395 DOI: 10.1080/14728222.2022.2052848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The heme oxygenase/biliverdin reductase (HO/BVR) system is involved in heme metabolism. The inducible isoform of HO (HO-1) and BVR both exert cytoprotective effects by enhancing cell stress response. In this context, some xenobiotics, which target HO-1, including herbal products, behave as neuroprotectants in several experimental models of neurodegeneration. Despite this, no drug having either HO-1 or BVR as a main target is currently available. AREAS COVERED After a description of the brain HO/BVR system, the paper analyzes the main classes of drugs acting on the nervous system, with HO as second-level target, and their neuroprotective potential. Finally, the difficulties that exist for the development of drugs acting on HO/BVR and the possible ways to overcome these hurdles are examined. EXPERT OPINION Although the limited clinical evidence has restricted the translational research on the HO/BVR system, mainly because of the dual nature of its by-products, there has been growing interest in the therapeutic potential of these enzymes. Scientists should boost the translational research on the HO/BVR system which could be supported by the significant evidence provided by preclinical studies.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
37
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
38
|
Tretter V, Hochreiter B, Zach ML, Krenn K, Klein KU. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int J Mol Sci 2021; 23:ijms23010106. [PMID: 35008532 PMCID: PMC8745322 DOI: 10.3390/ijms23010106] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Living organisms use a large repertoire of anabolic and catabolic reactions to maintain their physiological body functions, many of which include oxidation and reduction of substrates. The scientific field of redox biology tries to understand how redox homeostasis is regulated and maintained and which mechanisms are derailed in diverse pathological developments of diseases, where oxidative or reductive stress is an issue. The term “oxidative stress” is defined as an imbalance between the generation of oxidants and the local antioxidative defense. Key mediators of oxidative stress are reactive species derived from oxygen, nitrogen, and sulfur that are signal factors at physiological concentrations but can damage cellular macromolecules when they accumulate. However, therapeutical targeting of oxidative stress in disease has proven more difficult than previously expected. Major reasons for this are the very delicate cellular redox systems that differ in the subcellular compartments with regard to their concentrations and depending on the physiological or pathological status of cells and organelles (i.e., circadian rhythm, cell cycle, metabolic need, disease stadium). As reactive species are used as signaling molecules, non-targeted broad-spectrum antioxidants in many cases will fail their therapeutic aim. Precision medicine is called to remedy the situation.
Collapse
|
39
|
Chu LM, Shaefi S, Byrne JD, Alves de Souza RW, Otterbein LE. Carbon monoxide and a change of heart. Redox Biol 2021; 48:102183. [PMID: 34764047 PMCID: PMC8710986 DOI: 10.1016/j.redox.2021.102183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
The relationship between carbon monoxide and the heart has been extensively studied in both clinical and preclinical settings. The Food and Drug Administration (FDA) is keenly focused on the ill effects of carbon monoxide on the heart when presented with proposals for clinical trials to evaluate efficacy of this gasotransmitter in a various disease settings. This review provides an overview of the rationale that examines the actions of the FDA when considering clinical testing of CO, and contrast that with the continued accumulation of data that clearly show not only that CO can be used safely, but is potently cardioprotective in clinically relevant small and large animal models. Data emerging from Phase I and Phase II clinical trials argues against CO being dangerous to the heart and thus it needs to be redefined and evaluated as any other substance being proposed for use in humans. More than twenty years ago, the belief that CO could be used as a salutary molecule was ridiculed by experts in physiology and medicine. Like all agents designed for use in humans, careful pharmacology and safety are paramount, but continuing to hinder progress based on long-standing dogma in the absence of data is improper. Now, CO is being tested in multiple clinical trials using innovative delivery methods and has proven to be safe. The hope, based on compelling preclinical data, is that it will continue to be evaluated and ultimately approved as an effective therapeutic.
Collapse
Affiliation(s)
- Louis M Chu
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Shazhad Shaefi
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | | | - Rodrigo W Alves de Souza
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Leo E Otterbein
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
40
|
Gasier HG, Suliman HB, Piantadosi CA. The HO-1/CO System and Mitochondrial Quality Control in Skeletal Muscle. Exerc Sport Sci Rev 2021; 50:49-55. [PMID: 34690283 DOI: 10.1249/jes.0000000000000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Inducible heme oxygenase (HO)-1 catalyzes the breakdown of heme to biliverdin, iron and carbon monoxide (CO). CO binds to cytochrome c oxidase and alters mitochondrial redox balance and coordinately regulates mitochondrial quality control (MQC) during oxidant stress and inflammation. The hypothesis presented is that skeletal muscle HO-1/CO system helps modulate components in the MQC cycle during metabolic stress.
Collapse
Affiliation(s)
- Heath G Gasier
- Department of Anesthesiology Department of Pathology Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | |
Collapse
|
41
|
Dugbartey GJ. Emerging role of carbon monoxide in intestinal transplantation. Biomed Pharmacother 2021; 143:112237. [PMID: 34649361 DOI: 10.1016/j.biopha.2021.112237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022] Open
Abstract
Intestinal transplantation has become an established therapeutic option that provides improved quality of life to patients with end-stage intestinal failure when total parenteral nutrition fails. Whereas this challenging life-saving intervention has shown exceptional growth over the past decade, illustrating the evolution of this complex and technical procedure from its preclinical origin in the mid-20th century to become a routine clinical practice today with several recent innovations, its success is hampered by multiple hurdles including technical challenges such as surgical manipulation during intestinal graft procurement, graft preservation and reperfusion damage, resulting in poor graft quality, graft rejection, post-operative infectious complications, and ultimately negatively impacting long-term recipient survival. Therefore, strategies to improve current intestinal transplantation protocol may have a significant impact on post-transplant outcomes. Carbon monoxide (CO), previously considered solely as a toxic gas, has recently been shown to be a physiological signaling molecule at low physiological concentrations with therapeutic potentials that could overcome some of the challenges in intestinal transplantation. This review discusses recent knowledge about CO in intestinal transplantation, the underlying molecular mechanisms of protection during intestinal graft procurement, preservation, transplantation and post-transplant periods. A section of the review also discusses clinical translation of CO and its challenges in the field of solid organ transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
42
|
Yang X, Lu W, Wang M, Tan C, Wang B. "CO in a pill": Towards oral delivery of carbon monoxide for therapeutic applications. J Control Release 2021; 338:593-609. [PMID: 34481027 PMCID: PMC8526413 DOI: 10.1016/j.jconrel.2021.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Along with the impressive achievements in understanding the endogenous signaling roles and mechanism(s) of action of carbon monoxide (CO), much research has demonstrated the potential of using CO as a therapeutic agent for treating various diseases. Because of CO's toxicity at high concentrations and the observed difference in toxicity profiles of CO depending on the route of administration, this review analyzes and presents the benefits of developing orally active CO donors. Such compounds have the potential for improved safety profiles, enhancing the chance for developing CO-based therapeutics. In this review, the difference between inhalation and oral administration in terms of toxicity, CO delivery efficiency, and the potential mechanism(s) of action is analyzed. The evolution from CO gas inhalation to oral administration is also extensively analyzed by summarizing published studies up to date. The concept of "CO in a pill" can be achieved by oral administration of novel formulations of CO gas or appropriate CO donors.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Minjia Wang
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
43
|
Zhang D, Krause BM, Schmalz HG, Wohlfart P, Yard BA, Schubert R. ET-CORM Mediated Vasorelaxation of Small Mesenteric Arteries: Involvement of Kv7 Potassium Channels. Front Pharmacol 2021; 12:702392. [PMID: 34552483 PMCID: PMC8451721 DOI: 10.3389/fphar.2021.702392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Although the vasoactive properties of carbon monoxide (CO) have been extensively studied, the mechanism by which CO mediates vasodilation is not completely understood. Through-out published studies on CO mediated vasodilation there is inconsistency on the type of K+-channels that are activated by CO releasing molecules (CORMs). Since the vasorelaxation properties of enzyme triggered CORMs (ET-CORMs) have not been studied thus far, we first assessed if ET-CORMs can mediate vasodilation of small mesenteric arteries and subsequently addressed the role of soluble guanylate cyclase (sGC) and that of K-channels herein. To this end, 3 different types of ET-CORMs that either contain acetate (rac-1 and rac-4) or pivalate (rac-8) as ester functionality, were tested ex vivo on methoxamine pre-contracted small rat mesenteric arteries in a myograph setting. Pre-contracted mesenteric arteries strongly dilated upon treatment with both types of acetate containing ET-CORMs (rac-1 and rac-4), while treatment with the pivalate containing ET-CORM (rac-8) resulted in no vasodilation. Pre-treatment of mesenteric arteries with the sGC inhibitor ODQ abolished rac-4 mediated vasodilation, similar as for the known sGC activator SNP. Likewise, rac-4 mediated vasodilation did not occur in KCL pretreated mesenteric arteries. Although mesenteric arteries abundantly expressed a variety of K+-channels only Kv7 channels were found to be of functional relevance for rac-4 mediated vasodilation. In conclusion the current results identified Kv7 channels as the main channel by which rac-4 mediates vasodilation. In keeping with the central role of Kv7 in the control of vascular tone and peripheral resistance these promising ex-vivo data warrant further in vivo studies, particularly in models of primary hypertension or cardiac diseases, to assess the potential use of ET-CORMs in these diseases.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, the Second Hospital of Anhui Medical University, Hefei, China
| | | | | | - Paulus Wohlfart
- Diabetes Research, Sanofi Aventis Deutschland GmbH, Frankfurt, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany
| | - Rudolf Schubert
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany.,Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
44
|
Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC. Nrf2 and Heme Oxygenase-1 Involvement in Atherosclerosis Related Oxidative Stress. Antioxidants (Basel) 2021; 10:1463. [PMID: 34573095 PMCID: PMC8466960 DOI: 10.3390/antiox10091463] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis remains the underlying process responsible for cardiovascular diseases and the high mortality rates associated. This chronic inflammatory disease progresses with the formation of occlusive atherosclerotic plaques over the inner walls of vascular vessels, with oxidative stress being an important element of this pathology. Oxidation of low-density lipoproteins (ox-LDL) induces endothelial dysfunction, foam cell activation, and inflammatory response, resulting in the formation of fatty streaks in the atherosclerotic wall. With this in mind, different approaches aim to reduce oxidative damage as a strategy to tackle the progression of atherosclerosis. Special attention has been paid in recent years to the transcription factor Nrf2 and its downstream-regulated protein heme oxygenase-1 (HO-1), both known to provide protection against atherosclerotic injury. In the current review, we summarize the involvement of oxidative stress in atherosclerosis, focusing on the role that these antioxidant molecules exert, as well as the potential therapeutic strategies applied to enhance their antioxidant and antiatherogenic properties.
Collapse
Affiliation(s)
- Jose Angel Alonso-Piñeiro
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Almudena Gonzalez-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain
| | - Ma Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| |
Collapse
|
45
|
Dugbartey GJ. Carbon monoxide as an emerging pharmacological tool to improve lung and liver transplantation protocols. Biochem Pharmacol 2021; 193:114752. [PMID: 34487717 DOI: 10.1016/j.bcp.2021.114752] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
Carbon monoxide (CO) has long been considered purely as a toxic gas. It binds to hemoglobin at high concentrations and displaces oxygen from its binding site, resulting in carboxyhemoglobin formation, which reduces oxygen-carrying capacity of blood and culminates in tissue hypoxia and its associated complications. Recently, however, CO is quickly moving past its historic notorious tag as a poisonous gas to a physiological signaling molecule with therapeutic potentials in several clinical situations including transplant-induced injury. This review discusses current knowledge of CO gas and CO-releasing molecules (CO-RMs) in preclinical models of lung and liver transplantation, and underlying molecular mechanisms of cyto- and organ protection during organ procurement, preservation, implantation and post-transplant periods. In addition, a discussion of the future of CO in clinical organ transplantation is provided.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
46
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
47
|
Mehta Y, Dixit SB, Zirpe K, Sud R, Gopal PB, Koul PA, Mishra VK, Ansari AS, Chamle VS. Therapeutic Approaches in Modulating the Inflammatory and Immunological Response in Patients With Sepsis, Acute Respiratory Distress Syndrome, and Pancreatitis: An Expert Opinion Review. Cureus 2021; 13:e18393. [PMID: 34692364 PMCID: PMC8526068 DOI: 10.7759/cureus.18393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Immunomodulation has long been an adjunct approach in treating critically ill patients with sepsis, acute respiratory distress syndrome (ARDS), and acute pancreatitis (AP). Hyperactive immune response with immunopathogenesis leads to organ dysfunction and alters the clinical outcomes in critically ill. Though the immune response in the critically ill might have been overlooked, it has gathered greater attention during this novel coronavirus disease 2019 (COVID-19) pandemic. Modulating hyperactive immune response, the cytokine storm, especially with steroids, has shown to improve the outcomes in COVID-19 patients. In this review, we find that immune response pathogenesis in critically ill patients with sepsis, ARDS, and AP is nearly similar. The use of immunomodulators such as steroids, broad-spectrum serine protease inhibitors such as ulinastatin, thymosin alpha, intravenous immunoglobulins, and therapies such as CytoSorb and therapeutic plasma exchange may help in improving the clinical outcomes in these conditions. As the experience of the majority of physicians in using such therapeutics may be limited, we provide our expert comments regarding immunomodulation to optimize outcomes in patients with sepsis/septic shock, ARDS, and AP.
Collapse
Affiliation(s)
- Yatin Mehta
- Institute of Critical Care and Anesthesiology, Medanta - The Medicity, Gurugram, IND
| | | | - Kapil Zirpe
- Neurocritical Care, Grant Medical Foundation, Ruby Hall Clinic, Pune, IND
| | - Randhir Sud
- Institute of Digestive & Hepatobiliary Sciences, Medanta - The Medicity, Gurugram, IND
| | - Palepu B Gopal
- Department of Critical Care, Continental Hospitals, Hyderabad, IND
| | - Parvaiz A Koul
- Department of Pulmonary Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, IND
| | - Vijay K Mishra
- Medica Institute of Critical Care, Bhagwan Mahavir Medica Superspecialty Hospital, Ranchi, IND
| | - Abdul S Ansari
- Department of Critical Care Services, Nanavati Super Specialty Hospital, Mumbai, IND
| | | |
Collapse
|
48
|
De La Cruz LK, Yang X, Menshikh A, Brewer M, Lu W, Wang M, Wang S, Ji X, Cachuela A, Yang H, Gallo D, Tan C, Otterbein L, de Caestecker M, Wang B. Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chem Sci 2021; 12:10649-10654. [PMID: 34447558 PMCID: PMC8356820 DOI: 10.1039/d1sc02711e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide as an endogenous signaling molecule exhibits pharmacological efficacy in various animal models of organ injury. To address the difficulty in using CO gas as a therapeutic agent for widespread applications, we are interested in developing CO prodrugs through bioreversible caging of CO in an organic compound. Specifically, we have explored the decarboxylation-decarbonylation chemistry of 1,2-dicarbonyl compounds. Examination and optimization of factors favorable for maximal CO release under physiological conditions led to organic CO prodrugs using non-calorific sweeteners as leaving groups attached to the 1,2-dicarbonyl core. Attaching a leaving group with appropriate properties promotes the desired hydrolysis-decarboxylation-decarbonylation sequence of reactions that leads to CO generation. One such CO prodrug was selected to recapitulate the anti-inflammatory effects of CO against LPS-induced TNF-α production in cell culture studies. Oral administration in mice elevated COHb levels to the safe and efficacious levels established in various preclinical and clinical studies. Furthermore, its pharmacological efficacy was demonstrated in mouse models of acute kidney injury. These studies demonstrate the potential of these prodrugs with benign carriers as orally active CO-based therapeutics. This represents the very first example of orally active organic CO prodrugs with a benign carrier that is an FDA-approved sweetener with demonstrated safety profiles in vivo.
Collapse
Affiliation(s)
| | - Xiaoxiao Yang
- Department of Chemistry, Georgia State University Atlanta GA 30303 USA
| | - Anna Menshikh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center Nashville TN 37232 USA
| | - Maya Brewer
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center Nashville TN 37232 USA
| | - Wen Lu
- Department of Chemistry, Georgia State University Atlanta GA 30303 USA
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi MS 38677 USA
| | - Siming Wang
- Department of Chemistry, Georgia State University Atlanta GA 30303 USA
| | - Xingyue Ji
- Department of Chemistry, Georgia State University Atlanta GA 30303 USA
| | - Alyssa Cachuela
- Department of Chemistry, Georgia State University Atlanta GA 30303 USA
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center Nashville TN 37232 USA
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02115 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi MS 38677 USA
| | - Leo Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02115 USA
| | - Mark de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center Nashville TN 37232 USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University Atlanta GA 30303 USA
| |
Collapse
|
49
|
Carbon Monoxide Therapy Using Hybrid Carbon Monoxide-Releasing/Nrf2-Inducing Molecules through a Neuroprotective Lens. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Carbon monoxide (CO) has long been known for its toxicity. However, in recent decades, new applications for CO as a therapeutic compound have been proposed, and multiple forms of CO therapy have since been developed and studied. Previous research has found that CO has a role as a gasotransmitter and promotes anti-inflammatory and antioxidant effects, making it an avenue of interest for medicine. Such effects are possible because of the Nrf2/HO1 pathway, which has become a target for therapy development because its activation also leads to CO release. Currently, different forms of treatment involving CO include inhaled CO (iCO), carbon monoxide-releasing molecules (CORMs), and hybrid carbon monoxide-releasing molecules (HYCOs). In this article, we review the progression of CO studies to develop possible therapies, the possible mechanisms involved in the effects of CO, and the current forms of therapy using CO.
Collapse
|
50
|
Prasanna P, Rathee S, Upadhyay A, Sulakshana S. Nanotherapeutics in the treatment of acute respiratory distress syndrome. Life Sci 2021; 276:119428. [PMID: 33785346 PMCID: PMC7999693 DOI: 10.1016/j.lfs.2021.119428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a form of oxygenation failure primarily characterized by rapid inflammation resulting from a direct pulmonary or indirect systemic insult. ARDS has been a major cause of death in the recent COVID-19 outbreak wherein asymptomatic respiratory tract infection progresses to ARDS from pneumonia have emphasized the need for a reliable therapy for the disease. The disease has a high mortality rate of approximately 30-50%. Despite the high mortality rate, a dearth of effective pharmacotherapy exists that demands extensive research in this area. The complex ARDS pathophysiology which remains to be understood completely and the multifactorial etiology of the disease has led to the poor diagnosis, impeded drug-delivery to the deeper pulmonary tissues, and delayed treatment of the ARDS patients. Besides, critically ill patients are unable to tolerate the off-target side effects. The vast domain of nanobiotechnology presents several drug delivery systems offering numerous benefits such as targeted delivery, prolonged drug release, and uniform drug-distribution. The present review presents a brief insight into the ARDS pathophysiology and summarizes conventional pharmacotherapies available to date. Furthermore, the review provides an updated report of major developments in the nanomedicinal approaches for the treatment of ARDS. We also discuss different nano-formulations studied extensively in the ARDS preclinical models along with underlining the advantages as well as challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Arun Upadhyay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sulakshana Sulakshana
- Department of Anesthesiology and Critical Care, Sri Ram Murti Smarak Institute of Medical Sciences (SRMS-IMS), Bareilly, Uttar Pradesh 243202, India.
| |
Collapse
|