1
|
Xu G, Jiang Y, Tu Z, Li Y, Xu X, Tong R, Jiang N, Xie K, Chen D, Wu J. Diverse RNA methylation patterns in neutrophils: key drivers in hepatocellular carcinoma. Clin Transl Oncol 2025; 27:2527-2543. [PMID: 39621240 DOI: 10.1007/s12094-024-03756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 05/17/2025]
Abstract
BACKGROUND Neutrophils, crucial in the immune system, have recently been implicated in promoting malignancy. RNA methylation, an essential epigenetic feature, plays a key role in tumor microenvironment (TME) reprogramming. However, the relationship between neutrophils and RNA methylation in hepatocellular carcinoma (HCC) remains unclear. METHODS We analyzed single-cell sequencing data from HCC, focusing on cell subtype and TME construction. RNA methylation "writers" were selected, and their expression in neutrophils was evaluated. Two neutrophil subtypes (high/low RNA methylation) were identified. Differentially expressed genes (DEGs) between these subtypes were confirmed, leading to the identification of 6 molecular subtypes via consensus clustering. A prognostic scoring system was developed using LASSO Cox regression, resulting in a novel neutrophil RNA methylation (NRM) scoring system to assess TME heterogeneity and clinical features. RESULTS TRPM3, specifically expressed in HCC-infiltrating neutrophils, may regulate RNA modification in tumor pathogenesis. HCC patients were stratified into low/high-NRM score groups, further refined into an advanced NRM (a-NRM) score by incorporating lncRNA data. High a-NRM scores correlated with advanced TNM stage, higher pathological grade, and increased suppressive immune cells. A nomogram incorporating the a-NRM score demonstrated a concordance index indicative of good predictive performance. CONCLUSIONS The a-NRM score is a reliable predictor of prognosis and could guide treatment selection in HCC patients, enhancing clinical response to immunotherapy. TRPM3 also presents as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Guangming Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhenhua Tu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yu Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaofeng Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Nan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kai Xie
- Department of Anesthesiology, Shaoxing People's Hospital, Zhejiang University, Shaoxing, 312000, China
| | - Diyu Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, China.
| |
Collapse
|
2
|
Bauer TM, Moon J, Shadiow J, Buckley S, Gallagher KA. Mechanisms of Impaired Wound Healing in Type 2 Diabetes: The Role of Epigenetic Factors. Arterioscler Thromb Vasc Biol 2025; 45:632-642. [PMID: 40109262 PMCID: PMC12018132 DOI: 10.1161/atvbaha.124.321446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Despite decades of research, impaired extremity wound healing in type 2 diabetes remains a significant driver of patient morbidity, mortality, and health care costs. Advances in surgical and medical therapies, including the advent of endovascular interventions for peripheral artery disease and topical therapies developed to promote wound healing, have not reduced the frequency of lower leg amputations for nonhealing wounds in type 2 diabetes. This brief report is aimed at reviewing the roles of various cell types in tissue repair and summarizing the known dysfunctions of these cell types in diabetic foot ulcers. Recent advances in our understanding of the epigenetic regulation in immune cells identified to be altered in type 2 diabetes are summarized, and particular attention is paid to the developing research defining the epigenetic regulation of structural cells, including keratinocytes, fibroblasts, and endothelial cells. Gaps in knowledge are highlighted, and potential future directions are suggested based on the current state of the field.
Collapse
Affiliation(s)
- Tyler M. Bauer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jadie Moon
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sam Buckley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A. Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Song J, Wu Y, Chen Y, Sun X, Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep 2025; 31:2. [PMID: 39422035 PMCID: PMC11551531 DOI: 10.3892/mmr.2024.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non‑coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yuqing Wu
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xu Sun
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Zhaohui Zhang
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
4
|
Wang J, Feng J, Ni Y, Wang Y, Zhang T, Cao Y, Zhou M, Zhao C. Histone modifications and their roles in macrophage-mediated inflammation: a new target for diabetic wound healing. Front Immunol 2024; 15:1450440. [PMID: 39229271 PMCID: PMC11368794 DOI: 10.3389/fimmu.2024.1450440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Impaired wound healing is one of the main clinical complications of type 2 diabetes (T2D) and a major cause of lower limb amputation. Diabetic wounds exhibit a sustained inflammatory state, and reducing inflammation is crucial to diabetic wounds management. Macrophages are key regulators in wound healing, and their dysfunction would cause exacerbated inflammation and poor healing in diabetic wounds. Gene regulation caused by histone modifications can affect macrophage phenotype and function during diabetic wound healing. Recent studies have revealed that targeting histone-modifying enzymes in a local, macrophage-specific manner can reduce inflammatory responses and improve diabetic wound healing. This article will review the significance of macrophage phenotype and function in wound healing, as well as illustrate how histone modifications affect macrophage polarization in diabetic wounds. Targeting macrophage phenotype with histone-modifying enzymes may provide novel therapeutic strategies for the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
6
|
Kamal R, Awasthi A, Pundir M, Thakur S. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol 2024; 975:176645. [PMID: 38759707 DOI: 10.1016/j.ejphar.2024.176645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Diabetic wounds (DWs) are open sores that can occur anywhere on a diabetic patient's body. They are often complicated by infections, hypoxia, oxidative stress, hyperglycemia, and reduced growth factors and nucleic acids. The healing process involves four phases: homeostasis, inflammation, proliferation, and remodeling, regulated by various cellular and molecular events. Numerous genes and signaling pathways such as VEGF, TGF-β, NF-κB, PPAR-γ, MMPs, IGF, FGF, PDGF, EGF, NOX, TLR, JAK-STAT, PI3K-Akt, MAPK, ERK, JNK, p38, Wnt/β-catenin, Hedgehog, Notch, Hippo, FAK, Integrin, and Src pathways are involved in these events. These pathways and genes are often dysregulated in DWs leading to impaired healing. The present review sheds light on the pathogenesis, healing process, signaling pathways, and genes involved in DW. Further, various therapeutic strategies that target these pathways and genes via nanotechnology are also discussed. Additionally, clinical trials on DW related to gene therapy are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Mandeep Pundir
- School of Pharmaceutical Sciences, RIMT University, Punjab, 142001, India; Chitkara College of Pharmacy, Chitkara University, Punjab, 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
7
|
Audu CO, Wolf SJ, Joshi AD, Moon JY, Melvin WJ, Sharma SB, Davis FM, Obi AT, Wasikowski R, Tsoi LC, Barrett EC, Mangum KD, Bauer TM, Kunkel SL, Moore BB, Gallagher KA. Histone demethylase JARID1C/KDM5C regulates Th17 cells by increasing IL-6 expression in diabetic plasmacytoid dendritic cells. JCI Insight 2024; 9:e172959. [PMID: 38912581 PMCID: PMC11383169 DOI: 10.1172/jci.insight.172959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-β and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.
Collapse
Affiliation(s)
- Christopher O Audu
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Sonya J Wolf
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jadie Y Moon
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sriganesh B Sharma
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank M Davis
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel Wasikowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily C Barrett
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kevin D Mangum
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tyler M Bauer
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven L Kunkel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, School of Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Yoo L, Mendoza D, Richard AJ, Stephens JM. KAT8 beyond Acetylation: A Survey of Its Epigenetic Regulation, Genetic Variability, and Implications for Human Health. Genes (Basel) 2024; 15:639. [PMID: 38790268 PMCID: PMC11121512 DOI: 10.3390/genes15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Lysine acetyltransferase 8, also known as KAT8, is an enzyme involved in epigenetic regulation, primarily recognized for its ability to modulate histone acetylation. This review presents an overview of KAT8, emphasizing its biological functions, which impact many cellular processes and range from chromatin remodeling to genetic and epigenetic regulation. In many model systems, KAT8's acetylation of histone H4 lysine 16 (H4K16) is critical for chromatin structure modification, which influences gene expression, cell proliferation, differentiation, and apoptosis. Furthermore, this review summarizes the observed genetic variability within the KAT8 gene, underscoring the implications of various single nucleotide polymorphisms (SNPs) that affect its functional efficacy and are linked to diverse phenotypic outcomes, ranging from metabolic traits to neurological disorders. Advanced insights into the structural biology of KAT8 reveal its interaction with multiprotein assemblies, such as the male-specific lethal (MSL) and non-specific lethal (NSL) complexes, which regulate a wide range of transcriptional activities and developmental functions. Additionally, this review focuses on KAT8's roles in cellular homeostasis, stem cell identity, DNA damage repair, and immune response, highlighting its potential as a therapeutic target. The implications of KAT8 in health and disease, as evidenced by recent studies, affirm its importance in cellular physiology and human pathology.
Collapse
Affiliation(s)
- Lindsey Yoo
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Mendoza
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
9
|
Hu W, Zhang X, Sheng H, Liu Z, Chen Y, Huang Y, He W, Luo G. The mutual regulation between γδ T cells and macrophages during wound healing. J Leukoc Biol 2024; 115:840-851. [PMID: 37493223 DOI: 10.1093/jleuko/qiad087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Macrophages are the main cells shaping the local microenvironment during wound healing. As the prime T cells in the skin, γδ T cells participate in regulating microenvironment construction, determining their mutual regulation helps to understand the mechanisms of wound healing, and explore innovative therapeutic options for wound repair. This review introduced their respective role in wound healing firstly, and then summarized the regulatory effect of γδ T cells on macrophages, including chemotaxis, polarization, apoptosis, and pyroptosis. Last, the retrograde regulation on γδ T cells by macrophages was also discussed. The main purpose is to excavate novel interventions for treating wound and provide new thought for further research.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Hao Sheng
- Urology Department, Second Affiliated Hospital, Third Military Medical University (Army Medical University), XinQiao District, Chongqing 400037, China
| | - Zhongyang Liu
- Department of Plastic Surgery, First Affiliated Hospital, Zhengzhou University, ErQi District, Zhengzhou, Henan 450000, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| |
Collapse
|
10
|
Ju CC, Liu XX, Liu LH, Guo N, Guan LW, Wu JX, Liu DW. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024; 10:e28086. [PMID: 38533007 PMCID: PMC10963386 DOI: 10.1016/j.heliyon.2024.e28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
Collapse
Affiliation(s)
- Cong-Cong Ju
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiao-Xiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Li-hua Liu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Guo
- Nanchang University, Nanchang, Jiangxi, PR China
| | - Le-wei Guan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jun-xian Wu
- Nanchang University, Nanchang, Jiangxi, PR China
| | - De-Wu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| |
Collapse
|
11
|
Sun D, Chang Q, Lu F. Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels. J Tissue Eng 2024; 15:20417314241265202. [PMID: 39071896 PMCID: PMC11283672 DOI: 10.1177/20417314241265202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Pierre TH, Toren E, Kepple J, Hunter CS. Epigenetic Regulation of Pancreas Development and Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:1-30. [PMID: 39283480 DOI: 10.1007/978-3-031-62232-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tanya Hans Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Xiong Y, Chu X, Yu T, Knoedler S, Schroeter A, Lu L, Zha K, Lin Z, Jiang D, Rinkevich Y, Panayi AC, Mi B, Liu G, Zhao Y. Reactive Oxygen Species-Scavenging Nanosystems in the Treatment of Diabetic Wounds. Adv Healthc Mater 2023; 12:e2300779. [PMID: 37051860 DOI: 10.1002/adhm.202300779] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Diabetic wounds are characterized by drug-resistant bacterial infections, biofilm formation, impaired angiogenesis and perfusion, and oxidative damage to the microenvironment. Given their complex nature, diabetic wounds remain a major challenge in clinical practice. Reactive oxygen species (ROS), which have been shown to trigger hyperinflammation and excessive cellular apoptosis, play a pivotal role in the pathogenesis of diabetic wounds. ROS-scavenging nanosystems have recently emerged as smart and multifunctional nanomedicines with broad synergistic applicability. The documented anti-inflammatory and pro-angiogenic ability of ROS-scavenging treatments predestines these nanosystems as promising options for the treatment of diabetic wounds. Yet, in this context, the therapeutic applicability and efficacy of ROS-scavenging nanosystems remain to be elucidated. Herein, the role of ROS in diabetic wounds is deciphered, and the properties and strengths of nanosystems with ROS-scavenging capacity for the treatment of diabetic wounds are summarized. In addition, the current challenges of such nanosystems and their potential future directions are discussed through a clinical-translational lens.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Tao Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625, Hanover, Lower Saxony, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
14
|
Tan Y, Kang J, Li H, Zhong A, Liu Y, Zhang Z, Huang R, Cheng X, Peng W. Diabetes mellitus induces a novel inflammatory network involving cancer progression: Insights from bioinformatic analysis and in vitro validation. Front Immunol 2023; 14:1149810. [PMID: 37033970 PMCID: PMC10076825 DOI: 10.3389/fimmu.2023.1149810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Background Patients with diabetes mellitus (DM) have a higher incidence of malignant tumors than people without diabetes, but the underlying molecular mechanisms are still unclear. Methods To investigate the link between DM and cancer, we screened publicly available databases for diabetes and cancer-related genes (DCRGs) and constructed a diabetes-based cancer-associated inflammation network (DCIN). We integrated seven DCRGs into the DCIN and analyzed their role in different tumors from various perspectives. We also investigated drug sensitivity and single-cell sequencing data in colon adenocarcinoma as an example. In addition, we performed in vitro experiments to verify the expression of DCRGs and the arachidonic acid metabolic pathway. Results Seven identified DCRGs, including PPARG, MMP9, CTNNB1, TNF, TGFB1, PTGS2, and HIF1A, were integrated to construct a DCIN. The bioinformatics analysis showed that the expression of the seven DCRGs in different tumors was significantly different, which had varied effects on diverse perspectives. Single-cell sequencing analyzed in colon cancer showed that the activity of the DCRGs was highest in Macrophage and the lowest in B cells among all cell types in adenoma and carcinoma tissue. In vitro experiments showed that the DCRGs verified by western bolt and PEG2 verified by ELISA were all highly expressed in COAD epithelial cells stimulated by high glucose. Conclusion This study, for the first time, constructed a DCIN, which provides novel insights into the underlying mechanism of how DM increases tumor occurrence and development. Although further research is required, our results offer clues for new potential therapeutic strategies to prevent and treat malignant tumors.
Collapse
Affiliation(s)
- Yejun Tan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Jin Kang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqiong Liu
- Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
17
|
Chen C, Liu T, Tang Y, Luo G, Liang G, He W. Epigenetic regulation of macrophage polarization in wound healing. BURNS & TRAUMA 2023; 11:tkac057. [PMID: 36687556 PMCID: PMC9844119 DOI: 10.1093/burnst/tkac057] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/16/2022] [Indexed: 06/01/2023]
Abstract
The immune microenvironment plays a critical role in regulating skin wound healing. Macrophages, the main component of infiltrating inflammatory cells, play a pivotal role in shaping the immune microenvironment in the process of skin wound healing. Macrophages comprise the classic proinflammatory M1 subtype and anti-inflammatory M2 population. In the early inflammatory phase of skin wound closure, M1-like macrophages initiate and amplify the local inflammatory response to disinfect the injured tissue. In the late tissue-repairing phase, M2 macrophages are predominant in wound tissue and limit local inflammation to promote tissue repair. The biological function of macrophages is tightly linked with epigenomic organization. Transcription factors are essential for macrophage polarization. Epigenetic modification of transcription factors determines the heterogeneity of macrophages. In contrast, transcription factors also regulate the expression of epigenetic enzymes. Both transcription factors and epigenetic enzymes form a complex network that regulates the plasticity of macrophages. Here, we describe the latest knowledge concerning the potential epigenetic mechanisms that precisely regulate the biological function of macrophages and their effects on skin wound healing.
Collapse
Affiliation(s)
| | | | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Gaoxing Luo
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| | - Guangping Liang
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| | - Weifeng He
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| |
Collapse
|
18
|
Yang H, Zhao X, Liu J, Jin M, Liu X, Yan J, Yao X, Mao X, Li N, Liang B, Xie W, Zhang K, Zhao J, Liu L, Huang G. TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity. Oncogene 2023; 42:35-48. [PMID: 36352097 DOI: 10.1038/s41388-022-02528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
The heterogeneity and drug resistance of colorectal cancer (CRC) often lead to treatment failure. Isocitrate dehydrogenase 1 (IDH1), a rate-limiting enzyme in the tricarboxylic acid cycle, regulates the intracellular redox environment and mediates tumor cell resistance to chemotherapeutic drugs. The aim of this study was to elucidate the mechanism underlying the involvement of IDH1 acetylation in the development of CRC drug resistance under induction of TNFα. We found TNFα disrupted the interaction between SIRT1 and IDH1 and increased the level of acetylation at K115 of IDH1. Hyperacetylation of K115 was accompanied by protein ubiquitination, which increased its susceptibility to degradation compared to IDH1 K115R. TNFα-mediated hyperacetylation of K115 sensitized the CRC cells to 5FU and reduced the NADPH/NADP ratio to that of intracellular ROS. Furthermore, TNFα and 5FU inhibited CRC tumor growth in vivo, while the K115R-expressing tumor tissues developed 5FU resistance. In human CRC tissues, K115 acetylation was positively correlated with TNFα infiltration, and K115 hyperacetylation was associated with favorable prognosis compared to chemotherapy-induced deacetylation. Therefore, TNFα-induced hyperacetylation at the K115 site of IDH1 promotes antitumor redox homeostasis in CRC cells, and can be used as a marker to predict the response of CRC patients to chemotherapy.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiyu Liu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
| | - Xufeng Yao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinyi Mao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Nan Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wei Xie
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China. .,Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
19
|
Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, Sun P, Yang Y, Cui J, Yang M, Zhang Y, Wang D, Wu J, Zhang M, Yu B. Histone Lactylation Boosts Reparative Gene Activation Post-Myocardial Infarction. Circ Res 2022; 131:893-908. [PMID: 36268709 DOI: 10.1161/circresaha.122.320488] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inflammation resolution and cardiac repair initiation after myocardial infarction (MI) require timely activation of reparative signals. Histone lactylation confers macrophage homeostatic gene expression signatures via transcriptional regulation. However, the role of histone lactylation in the repair response post-MI remains unclear. We aimed to investigate whether histone lactylation induces reparative gene expression in monocytes early and remotely post-MI. METHODS Single-cell transcriptome data indicated that reparative genes were activated early and remotely in bone marrow and circulating monocytes before cardiac recruitment. Western blotting and immunofluorescence staining revealed increases in histone lactylation levels, including the previously identified histone H3K18 lactylation in monocyte-macrophages early post-MI. Through joint CUT&Tag and RNA-sequencing analyses, we identified Lrg1, Vegf-a, and IL-10 as histone H3K18 lactylation target genes. The increased modification and expression levels of these target genes post-MI were verified by chromatin immunoprecipitation-qPCR and reverse transcription-qPCR. RESULTS We demonstrated that histone lactylation regulates the anti-inflammatory and pro-angiogenic dual activities of monocyte-macrophages by facilitating reparative gene transcription and confirmed that histone lactylation favors a reparative environment and improves cardiac function post-MI. Furthermore, we explored the potential positive role of monocyte histone lactylation in reperfused MI. Mechanistically, we provided new evidence that monocytes undergo metabolic reprogramming in the early stage of MI and demonstrated that dysregulated glycolysis and MCT1 (monocarboxylate transporter 1)-mediated lactate transport promote histone lactylation. Finally, we revealed the catalytic effect of IL (interleukin)-1β-dependent GCN5 (general control non-depressible 5) recruitment on histone H3K18 lactylation and elucidated its potential role as an upstream regulatory element in the regulation of monocyte histone lactylation and downstream reparative gene expression post-MI. CONCLUSIONS Histone lactylation promotes early remote activation of the reparative transcriptional response in monocytes, which is essential for the establishment of immune homeostasis and timely activation of the cardiac repair process post-MI.
Collapse
Affiliation(s)
- Naixin Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Weiwei Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Xiaoqi Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Ge Mang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Jianfeng Chen
- Experimental Animal Centre (J. Chen), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiangyu Yan
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Zhonghua Tong
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Qiannan Yang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Mengdi Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Liangqi Chen
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Ping Sun
- Department of Ultrasound (P.S.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Yupeng Yang
- Guoke Biotechnology Co., Ltd., Changping District, Beijing, China (Y.Y.)
| | - Jingxuan Cui
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Mian Yang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Yafei Zhang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Dongni Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Jian Wu
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Maomao Zhang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Bo Yu
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| |
Collapse
|
20
|
Yu H, Wang Y, Wang D, Yi Y, Liu Z, Wu M, Wu Y, Zhang Q. Landscape of the epigenetic regulation in wound healing. Front Physiol 2022; 13:949498. [PMID: 36035490 PMCID: PMC9403478 DOI: 10.3389/fphys.2022.949498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Wound healing after skin injury is a dynamic and highly coordinated process involving a well-orchestrated series of phases, including hemostasis, inflammation, proliferation, and tissue remodeling. Epigenetic regulation refers to genome-wide molecular events, including DNA methylation, histone modification, and non-coding RNA regulation, represented by microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Epigenetic regulation is pervasively occurred in the genome and emerges as a new role in gene expression at the post-transcriptional level. Currently, it is well-recognized that epigenetic factors are determinants in regulating gene expression patterns, and may provide evolutionary mechanisms that influence the wound microenvironments and the entire healing course. Therefore, this review aims to comprehensively summarize the emerging roles and mechanisms of epigenetic remodeling in wound healing. Moreover, we also pose the challenges and future perspectives related to epigenetic modifications in wound healing, which would bring novel insights to accelerated wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Yiping Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Qi Zhang
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| |
Collapse
|
21
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Yang H, Sun Y, Li Q, Jin F, Dai Y. Diverse Epigenetic Regulations of Macrophages in Atherosclerosis. Front Cardiovasc Med 2022; 9:868788. [PMID: 35425818 PMCID: PMC9001883 DOI: 10.3389/fcvm.2022.868788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Emerging research on epigenetics has resulted in many novel discoveries in atherosclerosis (AS), an inflammaging-associated disease characterized by chronic inflammation primarily driven by macrophages. The bulk of evidence has demonstrated the central role of epigenetic machinery in macrophage polarization to pro- (M1-like) or anti-inflammatory (M2-like) phenotype. An increasing number of epigenetic alterations and their modifiers involved in reprogramming macrophages by regulating DNA methylation or histone modifications (e.g., methylation, acetylation, and recently lactylation) have been identified. They may act to determine or skew the direction of macrophage polarization in AS lesions, thereby representing a promising target. Here we describe the current understanding of the epigenetic machinery involving macrophage polarization, to shed light on chronic inflammation-driving onset and progression of inflammaging-associated diseases, using AS as a prototypic example, and discuss the challenge for developing effective therapies targeting the epigenetic modifiers against these diseases, particularly highlighting a potential strategy based on epigenetically-governed repolarization from M1-like to M2-like phenotype.
Collapse
Affiliation(s)
- Hongmei Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Shamiya Y, Ravi SP, Coyle A, Chakrabarti S, Paul A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov Today 2021; 27:1156-1166. [PMID: 34839040 DOI: 10.1016/j.drudis.2021.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a chronic disease characterized by increased blood glucose levels, leading to damage of the nerves blood vessels, subsequently manifesting as organ failures, wounds, or ulcerations. Wounds in patients with diabetes are further complicated because of reduced cytokine responses, infection, poor vascularization, and delayed healing processes. Surface-functionalized and bioengineered nanoparticles (NPs) have recently gained attention as emerging treatment modalities for wound healing in diabetes. Here, we review emerging therapeutic NPs to treat diabetic wounds and highlight their discrete delivery mechanisms and sites of action. We further critically assess the current challenges of these nanoengineered materials for successful clinical translation and discuss their potential for growth in the clinical marketplace.
Collapse
Affiliation(s)
- Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada; School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
24
|
Guo X, Cui C, Song J, He Q, Zang N, Hu H, Wang X, Li D, Wang C, Hou X, Li X, Liang K, Yan F, Chen L. Mof acetyltransferase inhibition ameliorates glucose intolerance and islet dysfunction of type 2 diabetes via targeting pancreatic α-cells. Mol Cell Endocrinol 2021; 537:111425. [PMID: 34391847 DOI: 10.1016/j.mce.2021.111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Previously, we reported that Mof was highly expressed in α-cells, and its knockdown led to ameliorated fasting blood glucose (FBG) and glucose tolerance in non-diabetic mice, attributed by reduced total α-cell but enhanced prohormone convertase (PC)1/3-positive α-cell mass. However, how Mof and histone 4 lysine 16 acetylation (H4K16ac) control α-cell and whether Mof inhibition improves glucose handling in type 2 diabetes (T2DM) mice remain unknown. METHODS Mof overexpression and chromatin immunoprecipitation sequence (ChIP-seq) based on H4K16ac were applied to determine the effect of Mof on α-cell transcriptional factors and underlying mechanism. Then we administrated mg149 to α-TC1-6 cell line, wild type, db/db and diet-induced obesity (DIO) mice to observe the impact of Mof inhibition in vitro and in vivo. In vitro, western blotting and TUNEL staining were used to examine α-cell apoptosis and function. In vivo, glucose tolerance, hormone levels, islet population, α-cell ratio and the co-staining of glucagon and PC1/3 or PC2 were examined. RESULTS Mof activated α-cell-specific transcriptional network. ChIP-seq results indicated that H4K16ac targeted essential genes regulating α-cell differentiation and function. Mof activity inhibition in vitro caused impaired α-cell function and enhanced apoptosis. In vivo, it contributed to ameliorated glucose intolerance and islet dysfunction, characterized by decreased fasting glucagon and elevated post-challenge insulin levels in T2DM mice. CONCLUSION Mof regulates α-cell differentiation and function via acetylating H4K16ac and H4K16ac binding to Pax6 and Foxa2 promoters. Mof inhibition may be a potential interventional target for T2DM, which led to decreased α-cell ratio but increased PC1/3-positive α-cells.
Collapse
Affiliation(s)
- Xinghong Guo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Nan Zang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaojie Wang
- Department of Pharmacology, Basic Medicine School of Shandong University, Jinan, 250012, Shandong, China
| | - Danyang Li
- Department of Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Life Science School of Shandong University, Qingdao, 266237, Shandong, China
| | - Kai Liang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China; Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China; Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China.
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China; Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China.
| |
Collapse
|
25
|
Coronavirus induces diabetic macrophage-mediated inflammation via SETDB2. Proc Natl Acad Sci U S A 2021; 118:2101071118. [PMID: 34479991 PMCID: PMC8463849 DOI: 10.1073/pnas.2101071118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has disproportionately affected patients with comorbidities, namely, obesity and type 2 diabetes. Macrophages (Mφs) are a key innate immune cell primarily responsible for the harmful, hyperinflammatory “cytokine storm” in patients that develop severe COVID-19. We describe a mechanism for this Mφ-mediated cytokine storm in response to coronavirus. In response to coronavirus infection, expression of the chromatin-modifying enzyme, SETDB2, decreases in Mφs, leading to increased transcription of inflammatory cytokines. Further, we find SETDB2 is regulated by an interferon beta (IFNβ)/JaK/STAT3 mechanism, and that exogenous administration of IFNβ can reverse inflammation, particularly in diabetic Mφs via an increase in SETDB2. Together, these results suggest therapeutic targeting of the IFNβ/SETDB2 axis in diabetic patients with COVID-19 may decrease pathologic inflammation. COVID-19 induces a robust, extended inflammatory “cytokine storm” that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNβ directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNβ reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNβ/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.
Collapse
|
26
|
Jin F, Li J, Guo J, Doeppner TR, Hermann DM, Yao G, Dai Y. Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis. EUROPEAN HEART JOURNAL OPEN 2021; 1:oeab022. [PMID: 35919269 PMCID: PMC9241575 DOI: 10.1093/ehjopen/oeab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022]
Abstract
Epigenomic and epigenetic research has been providing several new insights into a variety of diseases caused by non-resolving inflammation, including cardiovascular diseases. Atherosclerosis (AS) has long been recognized as a chronic inflammatory disease of the arterial walls, characterized by local persistent and stepwise accelerating inflammation without resolution, also known as uncontrolled inflammation. The pathogenesis of AS is driven primarily by highly plastic macrophages via their polarization to pro- or anti-inflammatory phenotypes as well as other novel subtypes recently identified by single-cell sequencing. Although emerging evidence has indicated the key role of the epigenetic machinery in the regulation of macrophage plasticity, the investigation of epigenetic alterations and modifiers in AS and related inflammation is still in its infancy. An increasing number of the epigenetic modifiers (e.g. TET2, DNMT3A, HDAC3, HDAC9, JMJD3, KDM4A) have been identified in epigenetic remodelling of macrophages through DNA methylation or histone modifications (e.g. methylation, acetylation, and recently lactylation) in inflammation. These or many unexplored modifiers function to determine or switch the direction of macrophage polarization via transcriptional reprogramming of gene expression and intracellular metabolic rewiring upon microenvironmental cues, thereby representing a promising target for anti-inflammatory therapy in AS. Here, we review up-to-date findings involving the epigenetic regulation of macrophages to shed light on the mechanism of uncontrolled inflammation during AS onset and progression. We also discuss current challenges for developing an effective and safe anti-AS therapy that targets the epigenetic modifiers and propose a potential anti-inflammatory strategy that repolarizes macrophages from pro- to anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 1 Dong Dan Dahua Road, Dong Cheng District, Beijing 100730, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, 1163 Xinmin Street, Changchun 130021, Jilin, China
| | - Thorsten R Doeppner
- Department of Neurology, University of Göttingen Medical School, Robert-Koch-Str. 40 37075, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130041, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, Institute of Translational Medicine, The First Hospital of Jilin University, 519 Dong Min Zhu Street, Changchun, Jilin 130061, China
| |
Collapse
|
27
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
28
|
Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS, Tomic-Canic M. Epigenetic regulation of cellular functions in wound healing. Exp Dermatol 2021; 30:1073-1089. [PMID: 33690920 DOI: 10.1111/exd.14325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Stringent spatiotemporal regulation of the wound healing process involving multiple cell types is associated with epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, as well as non-coding RNAs. Here, we discuss the epigenetic changes that occur during wound healing and the rapidly expanding understanding of how these mechanisms affect healing resolution in both acute and chronic wound milieu. We provide a focussed overview of current research into epigenetic regulators that contribute to wound healing by specific cell type. We highlight the role of epigenetic regulators in the molecular pathophysiology of chronic wound conditions. The understanding of how epigenetic regulators can affect cellular functions during normal and impaired wound healing could lead to novel therapeutic approaches, and we outline questions that can provide guidance for future research on epigenetic-based interventions to promote healing. Dissecting the dynamic interplay between cellular subtypes involved in wound healing and epigenetic parameters during barrier repair will deepen our understanding of how to improve healing outcomes in patients affected by chronic non-healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivien Chen
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jamie L Burgess
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S Mervis
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Pinto SAG, Nagai MYO, Alvares-Saraiva A, Peres GB, Waisse S, Perez EC, Bonamin LV. Silicea terra and Zincum metallicum Modulate the Activity of Macrophages Challenged with BCG In Vitro. HOMEOPATHY 2020; 110:52-61. [PMID: 33348418 DOI: 10.1055/s-0040-1716367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The homeopathic medicines Silicea terra (Sil) and Zincum metallicum (Zinc) modulate macrophage activity and were assessed in an experimental study in-vitro for their effects on macrophage-BCG (Bacillus Calmette-Guérin) interaction. METHODS RAW 264.7 macrophages were infected with BCG, treated with different potencies of Sil and Zinc (6cH, 30cH and 200cH) or vehicle, and assessed 24 and 48 h later for bacilli internalization, hydrogen peroxide (H2O2) and cytokine production, and lysosomal activity. RESULTS Treatment with vehicle was associated with non-specific inhibition of H2O2 production to the levels exhibited by uninfected macrophages. Sil 200cH induced significant reduction of H2O2 production (p < 0.001) compared with the vehicle and all other treatments, as well as higher lysosomal activity (p ≤ 0.001) and increased IL-10 production (p ≤ 0.05). Such effects were considered specific for this remedy and potency. The number of internalized bacilli was inversely proportional to Zinc potencies, with statistically significant interaction between dilution and treatment (p = 0.003). Such linear-like behavior was not observed for Sil dilutions: peak internalization occurred with the 30cH dilution, accompanied by cellular degeneration, and IL-6 and IL-10 increased (p ≤ 0.05) only in the cells treated with Sil 6cH. CONCLUSION Sil and Zinc presented different patterns of potency-dependent effect on macrophage activity. Bacterial digestion and a balanced IL-6/IL-10 production were related to Sil 6cH, though reduced oxidative stress with increased lysosomal activity was related to Sil 200cH. Degenerative effects were exclusively related to Sil 30cH, and potency-dependent phagocytosis was related only to Zinc.
Collapse
Affiliation(s)
- Sandra Augusta G Pinto
- Research Center, Graduation Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Mirian Yaeko O Nagai
- Research Center, Graduation Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Anuska Alvares-Saraiva
- Research Center, Graduation Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Giovani B Peres
- Research Center, Graduation Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Silvia Waisse
- Pontificia Universidade Católica de São Paulo, Graduation Program in History of Science, São Paulo, Brazil
| | - Elizabeth C Perez
- Research Center, Graduation Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| | - Leoni Villano Bonamin
- Research Center, Graduation Program in Environmental and Experimental Pathology, Universidade Paulista-UNIP, São Paulo, Brazil
| |
Collapse
|
31
|
Huizinga GP, Singer BH, Singer K. The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection. Endocrinology 2020; 161:bqaa154. [PMID: 32880654 PMCID: PMC7499583 DOI: 10.1210/endocr/bqaa154] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has forced us to consider the physiologic role of obesity in the response to infectious disease. There are significant disparities in morbidity and mortality by sex, weight, and diabetes status. Numerous endocrine changes might drive these varied responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including hormone and immune mediators, hyperglycemia, leukocyte responses, cytokine secretion, and tissue dysfunction. Studies of patients with severe COVID-19 disease have revealed the importance of innate immune responses in driving immunopathology and tissue injury. In this review we will describe the impact of the metabolically induced inflammation (meta-inflammation) that characterizes obesity on innate immunity. We consider that obesity-driven dysregulation of innate immune responses may drive organ injury in the development of severe COVID-19 and impair viral clearance.
Collapse
Affiliation(s)
- Gabrielle P Huizinga
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Michigan Center for Integrative Research in Critical Care, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kanakadurga Singer
- Department of Pediatrics and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|