1
|
Li Y, Zhu Z, Camargo CA, Espinola JA, Hasegawa K, Liang L. Epigenomic and proteomic analyses provide insights into early-life immune regulation and asthma development in infants. Nat Commun 2025; 16:3556. [PMID: 40229234 PMCID: PMC11997043 DOI: 10.1038/s41467-025-57288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/17/2025] [Indexed: 04/16/2025] Open
Abstract
Infants with severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) face increased risks of respiratory diseases in childhood. We conduct epigenome-wide association studies in a multi-ethnic cohort of these infants. We identify 61 differentially methylated regions in infant blood (<1 year of age) associated with recurrent wheezing by age 3 (170 cases, 318 non-cases) and/or asthma by age 6 (112 cases, 394 non-cases). These differentially methylated regions are enriched in the enhancers of peripheral blood neutrophils. Several differentially methylated regions exhibit interaction with rhinovirus infection and/or specific blood cell types. In the same blood samples, circulating levels of 104 proteins correlate with the differentially methylated regions, and many proteins show phenotypic association with asthma. Through Mendelian randomization, we find causal evidence supporting a protective role of higher plasma ST2 (also known as IL1RL1) protein against asthma. DNA methylation is also associated with ST2 protein level in infant blood. Taken together, our findings suggest the contribution of DNA methylation to asthma development through regulating early-life systemic immune responses.
Collapse
Affiliation(s)
- Yijun Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Akenroye A, Boyce JA, Kita H. Targeting alarmins in asthma: From bench to clinic. J Allergy Clin Immunol 2025; 155:1133-1148. [PMID: 39855362 DOI: 10.1016/j.jaci.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Over the past 2 decades, mechanistic studies of allergic and type 2 (T2)-mediated airway inflammation have led to multiple approved therapies for the treatment of moderate-to-severe asthma. The approval and availability of these monoclonal antibodies targeting IgE, a T2 cytokine (IL-5) and/or cytokine receptors (IL-5Rα, IL-4Rα) has been central to the progresses made in the management of moderate-to-severe asthma over this period. However, there are persistent gaps in clinician's ability to provide precise care, given that many patients with T2-high asthma do not respond to IgE- or T2 cytokine-targeting therapies and that patients with T2-low asthma have few therapeutic options. The new frontier of precision medicine in asthma, as well as in other allergic diseases, includes the targeting of epithelium-derived cytokines known as alarmins, including thymic stromal lymphopoietin, IL-25, IL-33, and their receptors. The effects of these alarmins, which can act upstream of immune cells, involve both the innate and adaptive systems and hold potential for the treatment of both T2-high and -low disease. Tezepelumab, an anti-thymic stromal lymphopoietin antibody, has already been approved for the treatment of severe asthma. In this review, we discuss our current understanding of alarmin biology with a primary focus on allergic airway diseases. We link the mechanistic corollaries to the clinical implications and advances in drug development targeting alarmins, with a particular focus on currently approved treatments, those under study, and future potential targets in alarmin signaling pathways.
Collapse
Affiliation(s)
- Ayobami Akenroye
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| | - Joshua A Boyce
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology, the Department of Medicine, and the Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn
| |
Collapse
|
3
|
Biddie SC, Weykopf G, Hird EF, Friman ET, Bickmore WA. DNA-binding factor footprints and enhancer RNAs identify functional non-coding genetic variants. Genome Biol 2024; 25:208. [PMID: 39107801 PMCID: PMC11304670 DOI: 10.1186/s13059-024-03352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have revealed a multitude of candidate genetic variants affecting the risk of developing complex traits and diseases. However, the highlighted regions are typically in the non-coding genome, and uncovering the functional causative single nucleotide variants (SNVs) is challenging. Prioritization of variants is commonly based on genomic annotation with markers of active regulatory elements, but current approaches still poorly predict functional variants. To address this, we systematically analyze six markers of active regulatory elements for their ability to identify functional variants. RESULTS We benchmark against molecular quantitative trait loci (molQTL) from assays of regulatory element activity that identify allelic effects on DNA-binding factor occupancy, reporter assay expression, and chromatin accessibility. We identify the combination of DNase footprints and divergent enhancer RNA (eRNA) as markers for functional variants. This signature provides high precision, but with a trade-off of low recall, thus substantially reducing candidate variant sets to prioritize variants for functional validation. We present this as a framework called FINDER-Functional SNV IdeNtification using DNase footprints and eRNA. CONCLUSIONS We demonstrate the utility to prioritize variants using leukocyte count trait and analyze variants in linkage disequilibrium with a lead variant to predict a functional variant in asthma. Our findings have implications for prioritizing variants from GWAS, in development of predictive scoring algorithms, and for functionally informed fine mapping approaches.
Collapse
Affiliation(s)
- Simon C Biddie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- NHS Lothian, Edinburgh, UK.
| | - Giovanna Weykopf
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Zhou Y, Xu Z, Liu Z. Role of IL-33-ST2 pathway in regulating inflammation: current evidence and future perspectives. J Transl Med 2023; 21:902. [PMID: 38082335 PMCID: PMC10714644 DOI: 10.1186/s12967-023-04782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin (IL)-33 is an alarmin of the IL-1 superfamily localized to the nucleus of expressing cells, such as endothelial cells, epithelial cells, and fibroblasts. In response to cellular damage or stress, IL-33 is released and activates innate immune responses in some immune and structural cells via its receptor interleukin-1 receptor like-1 (IL-1RL1 or ST2). Recently, IL-33 has become a hot topic of research because of its role in pulmonary inflammation. The IL-33-ST2 signaling pathway plays a pro-inflammatory role by activating the type 2 inflammatory response, producing type 2 cytokines and chemokines. Elevated levels of IL-33 and ST2 have been observed in chronic pulmonary obstructive disease (COPD). Notably, IL-33 is present in COPD induced by cigarette smoke or acute inflammations. The role of IL-33 in sepsis is becoming increasingly prominent, and understanding its significance in the treatment of sepsis associated with high mortality is critical. In addition to its pro-inflammatory effects, the IL-33-ST2 axis appears to play a role in bacterial clearance and tissue repair. In this review, we focused on the role of the IL-33-ST2 axis in sepsis, asthma, and COPD and summarized the therapeutic targets associated with this axis, providing a basis for future treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78:940-956. [PMID: 36727912 DOI: 10.1111/all.15666] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Asthma is a complex and heterogeneous chronic inflammatory disease of the airways. Alongside environmental factors, asthma susceptibility is strongly influenced by genetics. Given its high prevalence and our incomplete understanding of the mechanisms underlying disease susceptibility, asthma is frequently studied in genome-wide association studies (GWAS), which have identified thousands of genetic variants associated with asthma development. Virtually all these genetic variants reside in non-coding genomic regions, which has obscured the functional impact of asthma-associated variants and their translation into disease-relevant mechanisms. Recent advances in genomics technology and epigenetics now offer methods to link genetic variants to gene regulatory elements embedded within non-coding regions, which have started to unravel the molecular mechanisms underlying the complex (epi)genetics of asthma. Here, we provide an integrated overview of (epi)genetic variants associated with asthma, focusing on efforts to link these disease associations to biological insight into asthma pathophysiology using state-of-the-art genomics methodology. Finally, we provide a perspective as to how decoding the genetic and epigenetic basis of asthma has the potential to transform clinical management of asthma and to predict the risk of asthma development.
Collapse
Affiliation(s)
- Bernard S Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Calderon AA, Dimond C, Choy DF, Pappu R, Grimbaldeston MA, Mohan D, Chung KF. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Respir Rev 2023; 32:32/167/220144. [PMID: 36697211 PMCID: PMC9879340 DOI: 10.1183/16000617.0144-2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
Interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) are alarmins that are released upon airway epithelial injury from insults such as viruses and cigarette smoke, and play critical roles in the activation of immune cell populations such as mast cells, eosinophils and group 2 innate lymphoid cells. Both cytokines were previously understood to primarily drive type 2 (T2) inflammation, but there is emerging evidence for a role for these alarmins to additionally mediate non-T2 inflammation, with recent clinical trial data in asthma and COPD cohorts with non-T2 inflammation providing support. Currently available treatments for both COPD and asthma provide symptomatic relief with disease control, improving lung function and reducing exacerbation rates; however, there still remains an unmet need for further improving lung function and reducing exacerbations, particularly for those not responsive to currently available treatments. The epithelial cytokines/alarmins are involved in exacerbations; biologics targeting TSLP and IL-33 have been shown to reduce exacerbations in moderate-to-severe asthma, either in a broad population or in specific subgroups, respectively. For COPD, while there is clinical evidence for IL-33 blockade impacting exacerbations in COPD, clinical data from anti-TSLP therapies is awaited. Clinical data to date support an acceptable safety profile for patients with airway diseases for both anti-IL-33 and anti-TSLP antibodies in development. We examine the roles of IL-33 and TSLP, their potential use as drug targets, and the evidence for target patient populations for COPD and asthma, together with ongoing and future trials focused on these targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Divya Mohan
- Genentench, Inc., San Francisco, CA, USA,Corresponding author: Divya Mohan ()
| | - Kian Fan Chung
- National Heart and Lung institute, Imperial College London, London, UK
| |
Collapse
|
8
|
Hizawa N. The understanding of asthma pathogenesis in the era of precision medicine. Allergol Int 2023; 72:3-10. [PMID: 36195530 DOI: 10.1016/j.alit.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Asthma is a syndrome with extremely diverse clinical phenotypes in which the onset, severity, and response to treatment are defined by the complex interplay of many genetic and environmental factors. Environmental factors epigenetically affect gene expression, and the disease is driven by a multidimensional dynamic network involving RNA and protein molecules derived from gene expression, as well as various metabolic products. In other words, specific pathophysiological mechanisms or endotypes are dynamic networks that arise in response to individual genotypes and the various environmental factors to which individuals have been exposed since before birth, such as diet, infection, air pollution, smoking, antibiotic use, and the bacterial flora of the intestinal tract, skin, and lungs. A key feature of asthma genome scans is their potential to reveal the molecular pathways that lead to pathogenesis. Endotypes that drive the disease have a significant impact on the phenotypes of asthma patients, including their drug responsiveness. Understanding endotypes will lead to not only the implementation of therapies that are tailored to the specific molecular network(s) underlying the patient's condition, but also to the development of therapeutic strategies that target individual endotypes, as well as to precision health, which will enable the prediction of disease onset with high accuracy from an early stage and the implementation of preventive strategies based on endotypes. Understanding of endotypes will pave the way for the practice of precision medicine in asthma care, moving away from 'one-size-fits-all' medicine and population-based prevention approaches that do not take individuals' susceptibility into account.
Collapse
Affiliation(s)
- Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
9
|
Ray A, Das J, Wenzel SE. Determining asthma endotypes and outcomes: Complementing existing clinical practice with modern machine learning. Cell Rep Med 2022; 3:100857. [PMID: 36543110 PMCID: PMC9798025 DOI: 10.1016/j.xcrm.2022.100857] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
There is unprecedented opportunity to use machine learning to integrate high-dimensional molecular data with clinical characteristics to accurately diagnose and manage disease. Asthma is a complex and heterogeneous disease and cannot be solely explained by an aberrant type 2 (T2) immune response. Available and emerging multi-omics datasets of asthma show dysregulation of different biological pathways including those linked to T2 mechanisms. While T2-directed biologics have been life changing for many patients, they have not proven effective for many others despite similar biomarker profiles. Thus, there is a great need to close this gap to understand asthma heterogeneity, which can be achieved by harnessing and integrating the rich multi-omics asthma datasets and the corresponding clinical data. This article presents a compendium of machine learning approaches that can be utilized to bridge the gap between predictive biomarkers and actual causal signatures that are validated in clinical trials to ultimately establish true asthma endotypes.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, MUH 628 NW, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, MUH 628 NW, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Environmental Medicine and Occupational Health, School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Wjst M. Exome variants associated with asthma and allergy. Sci Rep 2022; 12:21028. [PMID: 36470944 PMCID: PMC9722654 DOI: 10.1038/s41598-022-24960-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The mutational spectrum of asthma and allergy associated genes is not known although recent biobank based exome sequencing studies included these traits. We therefore conducted a secondary analysis of exome data from 281,104 UK Biobank samples for association of mostly rare variants with asthma, allergic rhinitis and atopic dermatitis. Variants of interest (VOI) were tabulated, shared genes annotated and compared to earlier genome-wide SNP association studies (GWAS), whole genome sequencing, exome and bisulfit sequencing studies. 354 VOI were significantly associated with asthma, allergic rhinitis and atopic dermatitis. They cluster mainly in two large regions on chromosome 6 and 17. After exclusion of the variants associated with atopic dermatitis and redundant variants, 321 unique VOI remain in 122 unique genes. 30 genes are shared among the 87 genes with increased and the 65 genes with decreased risk for allergic disease. 85% of genes identified earlier by common GWAS SNPs are not replicated here. Most identified genes are located in interferon ɣ and IL33 signaling pathway. These genes include already known but also new pharmacological targets, including the IL33 receptor ST2/IL1RL1, as well as TLR1, ALOX15, GSDMA, BTNL2, IL13 and IKZF3. Future pharmacological studies will need to included these VOI for stratification of the study population paving the way to individualized treatment.
Collapse
Affiliation(s)
- Matthias Wjst
- Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, München, Germany. .,Institut für KI und Informatik in der Medizin, Lehrstuhl für Medizinische Informatik, Klinikum Rechts der Isar, Grillparzerstr. 18, 81675, München, Germany.
| |
Collapse
|
11
|
Huang X, Yu H, Xie C, Zhou YL, Chen MM, Shi HL, Tang WF, Dong JC, Luo QL. Louki Zupa decoction attenuates the airway inflammation in acute asthma mice induced by ovalbumin through IL-33/ST2-NF-κB/GSK3β/mTOR signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1520-1532. [PMID: 35952388 PMCID: PMC9377271 DOI: 10.1080/13880209.2022.2104327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 05/20/2023]
Abstract
CONTEXT Asthma is a common respiratory system disease. Louki Zupa decoction (LKZP), a traditional Chinese medicine, presents a promising efficacy against lung diseases. OBJECTIVE To investigate the pathogenic mechanism of asthma and reveal the intervention mechanism of LKZP. MATERIALS AND METHODS Forty-eight female Balb/c mice were randomly divided into 6 groups: normal control group (NC), ovalbumin (OVA)/saline asthma model group, OVA/LL group, OVA/LM group, OVA/LH group and OVA/DEX group (n = 8 per group). The asthmatic mice were modelled through intraperitoneal injecting and neutralizing OVA. LKZP decoction was administrated by gavage at the challenge stage for seven consecutive days (2.1, 4.2 and 8.4 g/kg/day). We investigated the change in lung function, airway inflammation, mucus secretion and TH-1/TH-2-related cytokines. We further verify the activated status of the IL-33/ST2/NF-κB/GSK3β/mTOR signalling pathway. RESULTS LKZP was proved to improve asthmatic symptoms, as evidenced by the down-regulated airway resistance by 36%, 58% and 53% (p < 0.01, p < 0.001 vs. OVA/saline group), up-regulated lung compliance by 102%, 114% and 111%, decreased airway inflammation and mucus secretion by 33%, 40% and 33% (p < 0.001 vs. OVA/saline group). Moreover, the content of cytokines in BALF related to airway allergy (such as IgE) and T helper 1/T helper 2 cells (like IL-2, IL-4, IL-5, IL-13, TNF-α and IFN-γ), were also markedly reduced by 13-65% on LKZP intervention groups compared with model group. Mechanistic research revealed that the IL-33/ST2-NF-κB/GSK3β/mTOR signalling pathway was activated in the OVA/saline group and LKZP significantly down-regulated this pathway. DISCUSSION AND CONCLUSION LKZP improves lung function, airway inflammation, mucus secretion and correct immune imbalance by intervening with the IL-33/ST2-NF-κB/GSK3β/mTOR signalling pathway, presenting a promising therapeutic choice for asthma.
Collapse
Affiliation(s)
- Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Cong Xie
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yao-Long Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Meng-Meng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Han-Lin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Wei-Feng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Qing-Li Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- CONTACT Qing-Li Luo
| |
Collapse
|
12
|
Akoto C, Willis A, Banas CF, Bell JA, Bryant D, Blume C, Davies DE, Swindle EJ. IL-33 Induces an Antiviral Signature in Mast Cells but Enhances Their Permissiveness for Human Rhinovirus Infection. Viruses 2022; 14:2430. [PMID: 36366528 PMCID: PMC9699625 DOI: 10.3390/v14112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) are classically associated with allergic asthma but their role in antiviral immunity is unclear. Human rhinoviruses (HRVs) are a major cause of asthma exacerbations and can infect and replicate within MCs. The primary site of HRV infection is the airway epithelium and MCs localise to this site with increasing asthma severity. The asthma susceptibility gene, IL-33, encodes an epithelial-derived cytokine released following HRV infection but its impact on MC antiviral responses has yet to be determined. In this study we investigated the global response of LAD2 MCs to IL-33 stimulation using RNA sequencing and identified genes involved in antiviral immunity. In spite of this, IL-33 treatment increased permissiveness of MCs to HRV16 infection which, from the RNA-Seq data, we attributed to upregulation of ICAM1. Flow cytometric analysis confirmed an IL-33-dependent increase in ICAM1 surface expression as well as LDLR, the receptors used by major and minor group HRVs for cellular entry. Neutralisation of ICAM1 reduced the IL-33-dependent enhancement in HRV16 replication and release in both LAD2 MCs and cord blood derived MCs. These findings demonstrate that although IL-33 induces an antiviral signature in MCs, it also upregulates the receptors for HRV entry to enhance infection. This highlights the potential for a gene-environment interaction involving IL33 and HRV in MCs to contribute to virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Charlene Akoto
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Anna Willis
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Chiara F. Banas
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Joseph A. Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Cornelia Blume
- Human Development and Health, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Emily J. Swindle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
13
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
14
|
Bhattacharya A, Hirbo JB, Zhou D, Zhou W, Zheng J, Kanai M, Pasaniuc B, Gamazon ER, Cox NJ. Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative. CELL GENOMICS 2022; 2:100180. [PMID: 36341024 PMCID: PMC9631681 DOI: 10.1016/j.xgen.2022.100180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
The Global Biobank Meta-analysis Initiative (GBMI), through its diversity, provides a valuable opportunity to study population-wide and ancestry-specific genetic associations. However, with multiple ascertainment strategies and multi-ancestry study populations across biobanks, GBMI presents unique challenges in implementing statistical genetics methods. Transcriptome-wide association studies (TWASs) boost detection power for and provide biological context to genetic associations by integrating genetic variant-to-trait associations from genome-wide association studies (GWASs) with predictive models of gene expression. TWASs present unique challenges beyond GWASs, especially in a multi-biobank, meta-analytic setting. Here, we present the GBMI TWAS pipeline, outlining practical considerations for ancestry and tissue specificity, meta-analytic strategies, and open challenges at every step of the framework. We advise conducting ancestry-stratified TWASs using ancestry-specific expression models and meta-analyzing results using inverse-variance weighting, showing the least test statistic inflation. Our work provides a foundation for adding transcriptomic context to biobank-linked GWASs, allowing for ancestry-aware discovery to accelerate genomic medicine.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jibril B. Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan Zhou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - the Global Biobank Meta-analysis Initiative
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric R. Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nancy J. Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Saferali A, Hersh CP. Genetic Determinants in Airways Obstructive Diseases: The Case of Asthma Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:559-573. [PMID: 35965045 PMCID: PMC9379112 DOI: 10.1016/j.iac.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genome-wide association studies (GWAS) of asthma and chronic obstructive pulmonary disease (COPD) with ever-increasing sample sizes have found multiple genetic loci associated with either disease. However, there are few intersecting loci between asthma and COPD. GWAS specifically focused on asthma-COPD overlap (ACO) have been limited by smaller sample sizes and the lack of a consistent definition of ACO that has also hampered clinical and epidemiologic studies. Other genomic techniques, such as gene expression profiling, are feasible with smaller sample sizes. Genetic analyses of objective measures of airway reactivity and allergy/T2 inflammation biomarkers in COPD studies may be another strategy to overcome limitations in ACO definitions.
Collapse
Affiliation(s)
- Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Portelli MA, Rakkar K, Hu S, Guo Y, Adcock IM, Sayers I. Translational Analysis of Moderate to Severe Asthma GWAS Signals Into Candidate Causal Genes and Their Functional, Tissue-Dependent and Disease-Related Associations. FRONTIERS IN ALLERGY 2022; 2:738741. [PMID: 35386986 PMCID: PMC8974692 DOI: 10.3389/falgy.2021.738741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Asthma affects more than 300 million people globally and is both under diagnosed and under treated. The most recent and largest genome-wide association study investigating moderate to severe asthma to date was carried out in 2019 and identified 25 independent signals. However, as new and in-depth downstream databases become available, the translational analysis of these signals into target genes and pathways is timely. In this study, unique (U-BIOPRED) and publicly available datasets (HaploReg, Open Target Genetics and GTEx) were investigated for the 25 GWAS signals to identify 37 candidate causal genes. Additional traits associated with these signals were identified through PheWAS using the UK Biobank resource, with asthma and eosinophilic traits amongst the strongest associated. Gene expression omnibus dataset examination identified 13 candidate genes with altered expression profiles in the airways and blood of asthmatic subjects, including MUC5AC and STAT6. Gene expression analysis through publicly available datasets highlighted lung tissue cell specific expression, with both MUC5AC and SLC22A4 genes showing enriched expression in ciliated cells. Gene enrichment pathway and interaction analysis highlighted the dominance of the HLA-DQA1/A2/B1/B2 gene cluster across many immunological diseases including asthma, type I diabetes, and rheumatoid arthritis. Interaction and prediction analyses found IL33 and IL18R1 to be key co-localization partners for other genes, predicted that CD274 forms co-expression relationships with 13 other genes, including the HLA-DQA1/A2/B1/B2 gene cluster and that MUC5AC and IL37 are co-expressed. Drug interaction analysis revealed that 11 of the candidate genes have an interaction with available therapeutics. This study provides significant insight into these GWAS signals in the context of cell expression, function, and disease relationship with the view of informing future research and drug development efforts for moderate-severe asthma.
Collapse
Affiliation(s)
- Michael A Portelli
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Kamini Rakkar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sile Hu
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Yike Guo
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- The National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian Sayers
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
17
|
Riikonen R, Teräsjärvi J, Lauhkonen E, Nuolivirta K, He Q, Korppi M. Interleukin 1 receptor-like 1 rs13408661/13431828 polymorphism is associated with persistent post-bronchiolitis asthma at school age. Acta Paediatr 2022; 111:628-635. [PMID: 34741482 PMCID: PMC9298919 DOI: 10.1111/apa.16176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
Aim Interleukin (IL) 1 receptor‐like 1, encoded by the IL1RL1 gene, is a receptor for IL‐33. In European birth cohorts, IL1RL1 rs102082293, rs10204137 (rs4988955), rs13424006 and rs13431828 (rs13048661) variations were associated with asthma at school age. In a Dutch multi‐centre study, IL1RL1 rs1921622 variation was associated with severe bronchiolitis. We evaluated the associations of these five IL1RL1 variations with asthma and lung function at school age after hospitalisation for bronchiolitis in infancy. Methods Follow‐up data, including impulse oscillometry at age 5–7 and flow‐volume spirometry at age 11–13 years, and the IL1RL1 genotype data were available for 141 children followed until 5–7 and for 125 children followed until 11–13 age years after bronchiolitis in infancy. The IL1RL1 rs10204137 and rs4988955, and the IL1RL1 rs13048661 and rs13431828, are 100% co‐segregating in the Finnish population. Results The variant IL1RL1 rs13048661/13431828 genotype was constantly associated with increased asthma risk by various definitions at 5–7 and 11–13 years of ages. The result was confirmed with analyses adjusted for current confounders and early‐life environment‐related factors. Statistical significances were lost, when maternal asthma and atopic dermatitis in infancy were included in the model. Conclusion IL1RL1 rs13048661/13431828 variation was associated with post‐bronchiolitis asthma outcomes at school age.
Collapse
Affiliation(s)
- Riikka Riikonen
- Center for Child Health Research Faculty of Medicine and Biotechnology University of Tampere and University Hospital Tampere Finland
| | | | - Eero Lauhkonen
- Center for Child Health Research Faculty of Medicine and Biotechnology University of Tampere and University Hospital Tampere Finland
| | - Kirsi Nuolivirta
- Department of Pediatrics Seinäjoki Central Hospital Seinäjoki Finland
| | - Qiushui He
- Institute of Biomedicine University of Turku Turku Finland
- Department of Medical Microbiology Capital Medical University Beijing China
| | - Matti Korppi
- Center for Child Health Research Faculty of Medicine and Biotechnology University of Tampere and University Hospital Tampere Finland
| |
Collapse
|
18
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
19
|
Van Nevel S, van Ovost J, Holtappels G, De Ruyck N, Zhang N, Braun H, Maes T, Bachert C, Krysko O. Neutrophils Affect IL-33 Processing in Response to the Respiratory Allergen Alternaria alternata. Front Immunol 2021; 12:677848. [PMID: 34484177 PMCID: PMC8416032 DOI: 10.3389/fimmu.2021.677848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Future precision medicine requires further clarifying the mechanisms of inflammation in the severe endotypes of chronic airway diseases such as asthma and chronic rhinosinusitis (CRS). The presence of neutrophils in the airways is often associated with severe airway inflammation, while their precise contribution to the severe inflammation is largely unknown. We aimed to study the role of neutrophils in BALB/c and C57BL/6 mice exposed to Alternaria alternata (Alt). The mice were exposed to Alt extract for twelve hours or ten days to induce allergic airway inflammation. C57BL/6 mice exposed to Alt responded with eosinophilic infiltration and the characteristic IL-5 upregulation. In contrast, the inflammatory response to Alt extract in BALB/c mice was characterized by a neutrophilic response, high levels of G-CSF, and elastase in the lungs. The lack of neutrophils affected the processing of IL-33 in BALB/c mice, as was demonstrated by depletion of neutrophils through intraperitoneal injections of anti-Ly6G antibody. Our data identifies the key role of neutrophils in airway inflammation through IL-33 cleavage in the Alt-induced airway inflammation in mice, which could potentially underline the different endotypes in human disease.
Collapse
Affiliation(s)
- Sharon Van Nevel
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Judith van Ovost
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Gabriele Holtappels
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Natalie De Ruyck
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Harald Braun
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium.,Department of Ear, Nose and Throat Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Okragly AJ, Corwin KB, Elia M, He D, Schroeder O, Zhang Q, Shiyanova T, Bright S, Dicker SB, Chlewicki L, Truhlar SME, Davies J, Patel CN, Benschop RJ. Generation and Characterization of Torudokimab (LY3375880): A Monoclonal Antibody That Neutralizes Interleukin-33. J Inflamm Res 2021; 14:3823-3835. [PMID: 34408465 PMCID: PMC8364917 DOI: 10.2147/jir.s320287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Interleukin-33 (IL-33) is an alarmin that is released following cellular damage, mechanical injury, or necrosis. It is a member of the IL-1 family and binds to a heterodimer receptor consisting of ST2 and IL-1RAP to induce the production of a wide range of cellular mediators, including the type 2 cytokines IL-4, IL-5 and IL-13. This relationship has led to the hypothesis that the IL-33/ST2 pathway is a driver of allergic disease and inhibition of the IL-33 and ST2 association could have therapeutic benefit. Methods In this paper, we describe the selection of a phage antibody through the ability to bind human IL-33 and block IL-33/ST2 interaction. This hit antibody was then affinity matured by site-directed mutagenesis of the antibody complementarity-determining regions (CDRs). Further characterization of a fully human monoclonal antibody (mAb), torudokimab (LY3375880) included demonstration of human IL-33 neutralization activity in vitro with an NFκB reporter assay and IL-33 induced mast cell cytokine secretion assay, followed by an in vivo IL-33-induced pharmacodynamic inhibition assay in mice that used IL-5 production as the endpoint. Results Torudokimab is highly specific to IL-33 and does not bind any of the other IL-1 family members. Furthermore, torudokimab binds human and cynomolgus monkey IL-33 with higher affinity than the binding affinity of IL-33 to ST2, but does not bind mouse, rat, or rabbit IL-33. Torudokimab’s half-life in cynomolgous monkey projects monthly dosing in the clinic. Conclusion Due to torudokimab’s high affinity, its ability to completely neutralize IL-33 activity in vitro and in vivo, and the observed cynomolgus monkey pharmacokinetic properties, this molecule was selected for clinical development.
Collapse
Affiliation(s)
- Angela J Okragly
- Immunology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Marikka Elia
- BioTechnology Discovery Research Eli Lilly and Company, San Diego, CA, USA
| | - Dongmei He
- BioTechnology Discovery Research Eli Lilly and Company, San Diego, CA, USA
| | - Oliver Schroeder
- BioTechnology Discovery Research Eli Lilly and Company, San Diego, CA, USA
| | - Qing Zhang
- BioTechnology Discovery Research Eli Lilly and Company, San Diego, CA, USA
| | - Tatiyana Shiyanova
- BioTechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Stuart Bright
- Immunology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Julian Davies
- BioTechnology Discovery Research Eli Lilly and Company, San Diego, CA, USA
| | - Chetan N Patel
- BioTechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
21
|
Role of Interleukin-1 Receptor-Like 1 (ST2) in Cerebrovascular Disease. Neurocrit Care 2021; 35:887-893. [PMID: 34231185 DOI: 10.1007/s12028-021-01284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Following both ischemic and hemorrhagic stroke, innate immune cells initiate a proinflammatory response that further exacerbate tissue injury in the acute phase, but these cells also play an important reparative role thereafter. Numerous cytokines and signaling pathways have been implicated in driving the deleterious proinflammatory response, but less is known about the mediators that connect the initial vascular injury to the systemic immune response and the relationship between proinflammatory and reparative immune responses. The Interleukin-33 (IL-33) and serum stimulation-2 (ST2) axis is an interleukin signaling pathway that is a prime candidate to fulfill this role. In this review, we describe the biology of the IL-33/ST2 system, present evidence that its soluble decoy receptor, soluble ST2 (sST2), plays a key role in secondary neurologic injury after stroke, and discuss this in the context of the known role of IL-33/ST2 in other disease.
Collapse
|
22
|
Schunk SJ, Kleber ME, März W, Pang S, Zewinger S, Triem S, Ege P, Reichert MC, Krawczyk M, Weber SN, Jaumann I, Schmit D, Sarakpi T, Wagenpfeil S, Kramann R, Boerwinkle E, Ballantyne CM, Grove ML, Tragante V, Pilbrow AP, Richards AM, Cameron VA, Doughty RN, Dubé MP, Tardif JC, Feroz-Zada Y, Sun M, Liu C, Ko YA, Quyyumi AA, Hartiala JA, Tang WHW, Hazen SL, Allayee H, McDonough CW, Gong Y, Cooper-DeHoff RM, Johnson JA, Scholz M, Teren A, Burkhardt R, Martinsson A, Smith JG, Wallentin L, James SK, Eriksson N, White H, Held C, Waterworth D, Trompet S, Jukema JW, Ford I, Stott DJ, Sattar N, Cresci S, Spertus JA, Campbell H, Tierling S, Walter J, Ampofo E, Niemeyer BA, Lipp P, Schunkert H, Böhm M, Koenig W, Fliser D, Laufs U, Speer T. Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality. Eur Heart J 2021; 42:1742-1756. [PMID: 33748830 PMCID: PMC8244638 DOI: 10.1093/eurheartj/ehab107] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/19/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Inflammation plays an important role in cardiovascular disease (CVD) development. The NOD-like receptor protein-3 (NLRP3) inflammasome contributes to the development of atherosclerosis in animal models. Components of the NLRP3 inflammasome pathway such as interleukin-1β can therapeutically be targeted. Associations of genetically determined inflammasome-mediated systemic inflammation with CVD and mortality in humans are unknown. METHODS AND RESULTS We explored the association of genetic NLRP3 variants with prevalent CVD and cardiovascular mortality in 538 167 subjects on the individual participant level in an explorative gene-centric approach without performing multiple testing. Functional relevance of single-nucleotide polymorphisms on NLRP3 inflammasome activation has been evaluated in monocyte-enriched peripheral blood mononuclear cells (PBMCs). Genetic analyses identified the highly prevalent (minor allele frequency 39.9%) intronic NLRP3 variant rs10754555 to affect NLRP3 gene expression. rs10754555 carriers showed significantly higher C-reactive protein and serum amyloid A plasma levels. Carriers of the G allele showed higher NLRP3 inflammasome activation in isolated human PBMCs. In carriers of the rs10754555 variant, the prevalence of coronary artery disease was significantly higher as compared to non-carriers with a significant interaction between rs10754555 and age. Importantly, rs10754555 carriers had significantly higher risk for cardiovascular mortality during follow-up. Inflammasome inducers (e.g. urate, triglycerides, apolipoprotein C3) modulated the association between rs10754555 and mortality. CONCLUSION The NLRP3 intronic variant rs10754555 is associated with increased systemic inflammation, inflammasome activation, prevalent coronary artery disease, and mortality. This study provides evidence for a substantial role of genetically driven systemic inflammation in CVD and highlights the NLRP3 inflammasome as a therapeutic target.
Collapse
Affiliation(s)
- Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - Marcus E Kleber
- Vth Department of Medicine, University Heidelberg, Mannheim Medical Faculty, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Harrlachweg 1, 68163 Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine, University Heidelberg, Mannheim Medical Faculty, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Clinical Institute of Medical and Laboratory Diagnostics, Medical University Graz, Auenbruggerpl. 2, 8036 Graz, Austria
- Synlab Academy, Synlab Holding GmbH, Harrlachweg 1, 68163 Mannheim, Germany
| | - Shichao Pang
- Kardiologie, Deutsches Herzzentrum München, Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany
| | - Stephen Zewinger
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - Sarah Triem
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - Philipp Ege
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Kirrberger Straße, 66424 Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Kirrberger Straße, 66424 Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul. Banacha 1B, CePT, 02-097 Warsaw, Poland
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Kirrberger Straße, 66424 Homburg, Germany
| | - Isabella Jaumann
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - David Schmit
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - Tamim Sarakpi
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - Stefan Wagenpfeil
- Institute of Medical Biometry, Epidemiology & Medical Informatics, Saarland University Campus Homburg/Saar, Kirrberger Straße, 66424 Homburg/Saar, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Pauwelsstrasse 30 52074 Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, 1200 Pressler Street, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, BCM226, Houston, TX 77030, USA
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Center of Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, 6565 Fannin St, Houston, TX 77030, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, 1200 Pressler Street, Houston, TX 77030, USA
| | - Vinicius Tragante
- Department of Cardiology, Heart and Lungs Division, UMC Utrecht, Heidelberglaan 100 3584 CX Utrecht, Netherlands
| | - Anna P Pilbrow
- The Christchurch Heart Institute, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch Central City, Christchurch 8011, New Zealand
| | - A Mark Richards
- The Christchurch Heart Institute, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch Central City, Christchurch 8011, New Zealand
| | - Vicky A Cameron
- The Christchurch Heart Institute, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch Central City, Christchurch 8011, New Zealand
| | - Robert N Doughty
- Heart Health Research Group, University of Auckland, Level 2 / 22-30 Park Ave, Grafton, Auckland, New Zealand
| | - Marie-Pierre Dubé
- Montreal Heart Institute, 5000 Rue Bélanger, Montreal QC H1T 1C8, Canada
- Faculty of Medicine, Université der Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, 5000 Rue Bélanger, Montreal QC H1T 1C8, Canada
- Faculty of Medicine, Université der Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | | | - Maxine Sun
- Faculty of Medicine, Université der Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Chang Liu
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, 1462 Clifton Road NE, Atlanta, GA 30322, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Healthy, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, 1462 Clifton Road NE, Atlanta, GA 30322, USA
| | - Jaana A Hartiala
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, 2001 N. Soto St. Los Angeles, CA 90033, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, NB 21, Cleveland, OH 44195, USA
| | - Stanley L Hazen
- Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, NB 21, Cleveland, OH 44195, USA
| | - Hooman Allayee
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, 2001 N. Soto St. Los Angeles, CA 90033, USA
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research, University of Florida, College of Pharmacy, 1225 Center Drive, HPNP Building, Gainesville, FL 32610-0486, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, University of Florida, College of Pharmacy, 1225 Center Drive, HPNP Building, Gainesville, FL 32610-0486, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research, University of Florida, College of Pharmacy, 1225 Center Drive, HPNP Building, Gainesville, FL 32610-0486, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research, University of Florida, College of Pharmacy, 1225 Center Drive, HPNP Building, Gainesville, FL 32610-0486, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Andrej Teren
- LIFE Research Center for Civilization Diseases, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Heart Center Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg,Germany
| | - Andreas Martinsson
- Department of Cardiology, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Göteborg, Sweden
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skane University Hospital, BMC F12, 221 84 Lund, Sweden
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska sjukhuset Entrance 40, 751 85 Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds Väg 38, 751 85 Uppsala, Sweden
| | - Stefan K James
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska sjukhuset Entrance 40, 751 85 Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds Väg 38, 751 85 Uppsala, Sweden
| | - Niclas Eriksson
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska sjukhuset Entrance 40, 751 85 Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds Väg 38, 751 85 Uppsala, Sweden
| | - Harvey White
- Green Lane Cardiovascular Service, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Claes Held
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska sjukhuset Entrance 40, 751 85 Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds Väg 38, 751 85 Uppsala, Sweden
| | - Dawn Waterworth
- Genetics, GlaxoSmithKline, 709 Swedeland Rd, King of Prussia, PA 19406, USA
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Cernter, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, The Netherlands
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Boyd Orr Building University Avenue, Glasgow G12 8QQ, UK
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Naveed Sattar
- BHF Glasgow Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA UK
| | - Sharon Cresci
- Washington University School of Medicine, 2300 I St NW, Washington, DC 20052, USA
- Department of Medicine & Genetics, Campus Box 8232, 4515 McKinley Ave., St. Louis, MO 63110, USA
| | - John A Spertus
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, 4401 Wornall Rd, Kansas City, MO 64111, USA
| | - Hannah Campbell
- Washington University School of Medicine, 2300 I St NW, Washington, DC 20052, USA
- Department of Medicine & Genetics, Campus Box 8232, 4515 McKinley Ave., St. Louis, MO 63110, USA
| | - Sascha Tierling
- Faculty of Natural Sciences and Technology, Department of Genetics/Epigenetics, Saarland University, Postfach 151150, 66041 Saarbrücken, Germany
| | - Jörn Walter
- Faculty of Natural Sciences and Technology, Department of Genetics/Epigenetics, Saarland University, Postfach 151150, 66041 Saarbrücken, Germany
| | - Emmanuel Ampofo
- Institute of Clinical & Experimental Surgery, Saarland University, Kirrberger Straße, 66424 Homburg/Saar, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, Saarland University, Kirrberger Straße, 66424 Homburg/Saar, Germany
| | - Peter Lipp
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology, Research Center for Molecular Imaging and Screening, Medical Faculty, Saarland University, Kirrberger Straße, 66424 Homburg, Germany
| | - Heribert Schunkert
- Kardiologie, Deutsches Herzzentrum München, Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany
- Partner Site Munich Heart Alliance, German Centre of Cardiovascular Research (DZHK), Ismaninger Straße 22, 81675 Munich, Germany
| | - Michael Böhm
- Department of Internal Medicine III, Cardiology, Angiology, and Intensive Care Medicine, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - Wolfgang Koenig
- Kardiologie, Deutsches Herzzentrum München, Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany
- Partner Site Munich Heart Alliance, German Centre of Cardiovascular Research (DZHK), Ismaninger Straße 22, 81675 Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
| | - Ulrich Laufs
- Department of Cardiology, University Medical Center Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Thimoteus Speer
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Strasse, Building 41, 66424 Homburg/Saar, Germany
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Straße, 66424 Homburg/Saar, Germany
| | | | | |
Collapse
|
23
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
24
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
25
|
Ketelaar ME, Westerlaken-van Ginkel CD, Nawijn MC, Ej Dubois A, Koppelman GH. IL-1RL1a serum levels and IL1RL1 SNPs in the prediction of food allergy. Clin Exp Allergy 2021; 51:614-619. [PMID: 33278838 PMCID: PMC8048844 DOI: 10.1111/cea.13802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Maria E Ketelaar
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), GRIAC, University Medical Centre Groningen, Groningen, The Netherlands
| | - C Doriene Westerlaken-van Ginkel
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), GRIAC, University Medical Centre Groningen, Groningen, The Netherlands
| | - Antony Ej Dubois
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|