1
|
Terroba-Navajas P, Lu IN, Quast I, Heming M, Keller CW, Ostendorf L, Hauser AE, Mothes R, Radbruch H, Stascheit F, Meisel AGO, Wiendl H, Meyer Zu Hörste G, Willcox N, Lünemann JD. Single-Cell Transcriptomics Identifies a Prominent Role for the MIF-CD74 Axis in Myasthenia Gravis Thymus. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200384. [PMID: 40117520 PMCID: PMC11978437 DOI: 10.1212/nxi.0000000000200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/15/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND AND OBJECTIVES Myasthenia gravis (MG) is an autoimmune disease most frequently caused by autoantibodies (auto-Abs) against the acetylcholine receptor (AChR) located at the neuromuscular junction. Thymic follicular hyperplasia is present in most of the patients with early-onset AChR-Ab+ MG (EOMG), but its cellular and molecular drivers and development remain poorly understood. METHODS We constructed a single cell-based transcriptional profile of lymphoid cell types in thymi from 11 immunotherapy-naïve patients with EOMG. Multiplex histology and ELISA were used to determine migration inhibitory factor (MIF) levels. RESULTS Within EOMG thymi, we consistently observed 6 distinct clusters of B-cell populations maturing toward germinal center (GC)-associated and Ab-secreting cells, featuring prominent GC activity, as indicated by substantial clonal expansions and cycling B-cell subsets. Cell-cell interactome predictions identified strong interactions between T cells and GC-associated and memory B cells, dominated by B-cell prosurvival signaling through the MIF-CD74 axis. Multiplex histology confirmed abundant expression of CD74 in MG thymic B cells. Circulating MIF levels in EOMG correlated with higher disease severity as assessed by Myasthenia Gravis Foundation of America status. DISCUSSION Our data not only illustrate and define hyperplastic thymic niches in MG as favorable environments for pathogenic B-cell proliferation, maturation, and persistence but also suggest that the MIF-CD74 axis should be investigated for potential novel therapeutic targeting in EOMG.
Collapse
Affiliation(s)
- Paula Terroba-Navajas
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany
| | - I-Na Lu
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany
| | - Isaak Quast
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany
| | - Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Germany
| | - Lennard Ostendorf
- Department of Nephrology and Medical Intensive Care, Charite Universitatsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany
| | - Anja Erika Hauser
- Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ronja Mothes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Neuropathology, Charite Universitatsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charite Universitatsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Frauke Stascheit
- Department of Neurology with Experimental Neurology, Neuroscience Clinical Resarch Center, Charite Universitatsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and
| | - Andreas Georg Otto Meisel
- Department of Neurology with Experimental Neurology, Neuroscience Clinical Resarch Center, Charite Universitatsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany
| | - Nick Willcox
- Departments of Clinical Neurosciences, Royal Free Hospital, London Until 1988, Then Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany
| |
Collapse
|
2
|
Zhang S, Wen Q, Su S, Wang Y, Wang J, Xie N, Zhu W, Wen X, Di L, Lu Y, Xu M, Wang M, Chen H, Duo J, Huang Y, Wan D, Tao Z, Zhao S, Chai G, Hao J, Da Y. Peripheral immune profiling highlights a dynamic role of low-density granulocytes in myasthenia gravis. J Autoimmun 2025; 152:103395. [PMID: 40043622 DOI: 10.1016/j.jaut.2025.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune neuromuscular disease marked by dysregulation of several immune cell populations. Here we explored peripheral immune landscape, particularly the role of low-density granulocytes (LDGs). METHODS Single-cell and bulk RNA sequencing analyzed peripheral immune cells from MG patients pre- (n = 4) and after treatment (n = 2), as well as healthy controls (n = 3). Flow cytometry was employed for validating LDG subsets, and various functional assays were conducted to assess their impact on T cell proliferation and differentiation, NET formation, and ROS production. RESULTS Single-cell analysis highlighted a shift towards inflammatory Th1/Th17/Tfh subsets, an intense interferon-mediated immune response, and an expansion of immature myeloid subsets in MG. Flow cytometry showed increased LDGs correlated with disease severity. Unlike myeloid-derived suppressor cells, MG LDGs do not restrict T cell proliferation but induce a pro-inflammatory Th1/Th17 response. They also display enhanced spontaneous neutrophil extracellular traps (NETs) formation and basal reactive oxygen species (ROS) production. LDGs decreased after intravenous immunoglobulin and increased after prolonged immunotherapy in minimal manifestation status (MM), with reduced pro-inflammatory activity. Bulk RNA sequencing revealed significant transcriptional differences in LDGs, especially in cell cycle and granule protein genes. CONCLUSION Peripheral immune profiling sheds light on the intricate role of LDGs in MG. These cells, as a distinct subtype of neutrophils with a proinflammatory phenotype, are notable increased in MG, exacerbating chronic inflammation. Furthermore, immunotherapy expanded LDGs but reduced their proinflammatory capacities. The complex interplay of LDGs in MG underscores their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaye Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nairong Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianying Duo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Tao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shufang Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoliang Chai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Popova A, Slisere B, Racenis K, Kuzema V, Karklins R, Saulite M, Seilis J, Saulite AJ, Vasilvolfa A, Vaivode K, Pjanova D, Kroica J, Cernevskis H, Lejnieks A, Petersons A, Oleinika K. IgA class-switched CD27-CD21+ B cells in IgA nephropathy. Nephrol Dial Transplant 2025; 40:505-515. [PMID: 39020236 PMCID: PMC11879059 DOI: 10.1093/ndt/gfae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is characterized by the production of galactose-deficient IgA1 (GdIgA1) antibodies. As the source of pathogenic antibodies, B cells are central to IgAN pathogenesis, but the B cell activation pathways as well as the potential B cell source of dysregulated IgA secretion remain unknown. METHODS We carried out flow cytometry analysis of peripheral blood B cells in patients with IgAN and control subjects with a focus on IgA-expressing B cells to uncover the pathways of B cell activation in IgAN and how these could give rise to pathogenic GdIgA1 antibodies. RESULTS In addition to global changes in the B cell landscape-expansion of naïve and reduction in memory B cells-IgAN patients present with an increased frequency of IgA-expressing B cells that lack the classical memory marker CD27, but are CD21+. IgAN patients furthermore have an expanded population of IgA+ antibody-secreting cells, which correlate with serum IgA levels. Both IgA+ plasmabalsts and CD27- B cells co-express GdIgA1. Implicating dysregulation at mucosal surfaces as the driver of such B cell differentiation, we found a correlation between lipopolysaccharide in the serum and IgA+CD27- B cell frequency. CONCLUSION We propose that dysregulated immunity in the mucosa may drive de novo B cell activation within germinal centres, giving rise to IgA+CD27- B cells and subsequently IgA-producing plasmablasts. These data integrate B cells into the paradigm of IgAN pathogenesis and allow further investigation of this pathway to uncover biomarkers and develop therapeutic interventions.
Collapse
Affiliation(s)
- Anna Popova
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
- Department of Internal Medicine, University of Latvia, Riga, Latvia
| | - Baiba Slisere
- Joint Laboratory, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Doctoral Studies, Riga Stradins University, Riga, Latvia
| | - Karlis Racenis
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Viktorija Kuzema
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Roberts Karklins
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Mikus Saulite
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Janis Seilis
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Anna Jana Saulite
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Aiga Vasilvolfa
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Medicine, University of Latvia, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Kristine Vaivode
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Dace Pjanova
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | - Harijs Cernevskis
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Aivars Lejnieks
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
- Riga East Clinical University Hospital, Riga, Latvia
| | - Aivars Petersons
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Kristine Oleinika
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical, School, Boston, MA, USA
| |
Collapse
|
4
|
Binks SNM, Morse IM, Ashraghi M, Vincent A, Waters P, Leite MI. Myasthenia gravis in 2025: five new things and four hopes for the future. J Neurol 2025; 272:226. [PMID: 39987373 PMCID: PMC11846739 DOI: 10.1007/s00415-025-12922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
The last 10 years has brought transformative developments in the effective treatment of myasthenia gravis (MG). Beginning with the randomized trial of thymectomy in myasthenia gravis that demonstrated efficacy of thymectomy in nonthymomatous MG, several new treatment approaches have completed successful clinical trials and regulatory launch. These modalities, including B cell depletion, complement inhibition, and blockade of the neonatal Fc receptor, are now in use, offering prospects of sustained remission and neuromuscular protection in what is a long-term disease. In this review, we update our clinico-immunological review of 2016 with these important advances, examine their role in treatment algorithms, and focus attention on key issues of biomarkers for prognostication and the growing cohort of older patients, both those with long-term disease, and late-onset MG ('LOMG'). We close by expressing our four hopes for the next 5-10 years: improvements in laboratory medicine to facilitate rapid diagnosis, effective strategies for neuromuscular protection, more research into and better understanding of pathophysiology and treatment response in older individuals, and the potentially transformative role of therapies aimed at delivering a durable response such as chimeric antigen receptor (CAR) T cells. Our postscript summarizes some emerging themes in the field of serological and online biomarkers, which may develop greater stature in the next epoch.
Collapse
Affiliation(s)
- S N M Binks
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - I M Morse
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mohammad Ashraghi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
5
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2025; 21:28-44. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Hanna SJ, Bonami RH, Corrie B, Westley M, Posgai AL, Luning Prak ET, Breden F, Michels AW, Brusko TM. The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository in the AIRR Data Commons: a practical guide for access, use and contributions through the Type 1 Diabetes AIRR Consortium. Diabetologia 2025; 68:186-202. [PMID: 39467874 PMCID: PMC11663175 DOI: 10.1007/s00125-024-06298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024]
Abstract
Human molecular genetics has brought incredible insights into the variants that confer risk for the development of tissue-specific autoimmune diseases, including type 1 diabetes. The hallmark cell-mediated immune destruction that is characteristic of type 1 diabetes is closely linked with risk conferred by the HLA class II gene locus, in combination with a broad array of additional candidate genes influencing islet-resident beta cells within the pancreas, as well as function, phenotype and trafficking of immune cells to tissues. In addition to the well-studied germline SNP variants, there are critical contributions conferred by T cell receptor (TCR) and B cell receptor (BCR) genes that undergo somatic recombination to yield the Adaptive Immune Receptor Repertoire (AIRR) responsible for autoimmunity in type 1 diabetes. We therefore created the T1D TCR/BCR Repository (The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository) to study these highly variable and dynamic gene rearrangements. In addition to processed TCR and BCR sequences, the T1D TCR/BCR Repository includes detailed metadata (e.g. participant demographics, disease-associated parameters and tissue type). We introduce the Type 1 Diabetes AIRR Consortium goals and outline methods to use and deposit data to this comprehensive repository. Our ultimate goal is to facilitate research community access to rich, carefully annotated immune AIRR datasets to enable new scientific inquiry and insight into the natural history and pathogenesis of type 1 diabetes.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Stephanie J Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | - Rachel H Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
| | - Brian Corrie
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | | | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
He T, Chen K, Zhou Q, Cai H, Yang H. Immune repertoire profiling in myasthenia gravis. Immunol Cell Biol 2024; 102:891-906. [PMID: 39396830 DOI: 10.1111/imcb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T-B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.
Collapse
MESH Headings
- Myasthenia Gravis/immunology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- B-Lymphocytes/immunology
- Autoantibodies/immunology
- Animals
- Autoantigens/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Rohrbacher S, Seefried S, Hartmannsberger B, Annabelle R, Appeltshauser L, Arlt FA, Brämer D, Dresel C, Dorst J, Elmas Z, Franke C, Geis C, Högen T, Krause S, Marziniak M, Mäurer M, Prüss H, Schoeberl F, Schrank B, Steen C, Teichtinger H, Thieme A, Wessely L, Zernecke A, Sommer C, Doppler K. Different Patterns of Autoantibody Secretion by Peripheral Blood Mononuclear Cells in Autoimmune Nodopathies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200295. [PMID: 39173087 PMCID: PMC11379437 DOI: 10.1212/nxi.0000000000200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Autoimmune nodopathies with antibodies against the paranodal proteins show a distinct phenotype of a severe sensorimotor neuropathy. In some patients, complete remission can be achieved after treatment with rituximab whereas others show a chronic course. For optimal planning of treatment, predicting the course of disease and therapeutic response is crucial. METHODS We stimulated peripheral blood mononuclear cells in vitro to find out whether secretion of specific autoantibodies may be a predictor of the course of disease and response to rituximab. RESULTS Three patterns could be identified: In most patients with anti-Neurofascin-155-, anti-Contactin-1-, and anti-Caspr1-IgG4 autoantibodies, in vitro production of autoantibodies was detected, indicating autoantigen-specific memory B cells and short-lived plasma cells/plasmablasts as the major source of autoantibodies. These patients generally showed a good response to rituximab. In a subgroup of patients with anti-Neurofascin-155-IgG4 autoantibodies and insufficient response to rituximab, no in vitro autoantibody production was found despite high serum titers, indicating autoantibody secretion by long-lived plasma cells outside the peripheral blood. In the patients with anti-pan-Neurofascin autoantibodies-all with a monophasic course of disease-no in vitro autoantibody production could be measured, suggesting a lack of autoantigen-specific memory B cells. In some of them, autoantibody production by unstimulated cells was detectable, presumably corresponding to high amounts of autoantigen-specific plasmablasts-well in line with a severe but monophasic course of disease. DISCUSSION Our data suggest that different B-cell responses may occur in autoimmune nodopathies and may serve as markers of courses of disease and response to rituximab.
Collapse
Affiliation(s)
- Sophia Rohrbacher
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Sabine Seefried
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Beate Hartmannsberger
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Rosa Annabelle
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Luise Appeltshauser
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Friederike A Arlt
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Dirk Brämer
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Christian Dresel
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Johannes Dorst
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Zeynep Elmas
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Christiana Franke
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Christian Geis
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Tobias Högen
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Sabine Krause
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Martin Marziniak
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Mathias Mäurer
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Harald Prüss
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Florian Schoeberl
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Bertold Schrank
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Claudia Steen
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Helena Teichtinger
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Andrea Thieme
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Lena Wessely
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Alma Zernecke
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Claudia Sommer
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| | - Kathrin Doppler
- From the Department of Neurology (S.R., S.S., B.H., L.A., C. Sommer, K.D.); Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine Centre for Interdisciplinary Pain Medicine (B.H.); Institute of Experimental Biomedicine (R.A., A.Z.), University Hospital Würzburg; German Center for Neurodegenerative Diseases (DZNE) Berlin (F.A.A., H.P.); Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin; Section Translational Neuroimmunology (D.B., C.G.), Department of Neurology, Jena University Hospital; Department of Neurology (C.D.), University Medical Center of the Johannes Gutenberg University, Mainz; Department of Neurology (J.D., Z.E.), University Hospital Ulm; Department of Neurology (T.H., H.T.), Therapiezentrum Burgau; Department of Neurology (S.K.), Friedrich Baur Institute, LMU University Hospital, LMU Munich; Department of Neurology (M. Marziniak), Kbo-Isar-Amper-Hospital Munich East; Department of Neurology (M. Mäurer), Klinikum Würzburg Mitte gGmbH, Standort Juliusspital; Department of Neurology (F.S.), LMU University Hospital, LMU, Munich; Department of Neurology (B.S.), DKD HELIOS Klinik Wiesbaden; Department of Paediatric and Adolescent Medicine (C. Steen), St Joseph Hospital, Berlin; Department of Neurology (A.T.), HELIOS Klinikum Erfurt; and Neurologische Praxis Dres. Wessely (L.W.), Menden, Germany
| |
Collapse
|
9
|
Gabernet G, Marquez S, Bjornson R, Peltzer A, Meng H, Aron E, Lee NY, Jensen CG, Ladd D, Polster M, Hanssen F, Heumos S, nf-core community, Yaari G, Kowarik MC, Nahnsen S, Kleinstein SH. nf-core/airrflow: An adaptive immune receptor repertoire analysis workflow employing the Immcantation framework. PLoS Comput Biol 2024; 20:e1012265. [PMID: 39058741 PMCID: PMC11305553 DOI: 10.1371/journal.pcbi.1012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is a valuable experimental tool to study the immune state in health and following immune challenges such as infectious diseases, (auto)immune diseases, and cancer. Several tools have been developed to reconstruct B cell and T cell receptor sequences from AIRR-seq data and infer B and T cell clonal relationships. However, currently available tools offer limited parallelization across samples, scalability or portability to high-performance computing infrastructures. To address this need, we developed nf-core/airrflow, an end-to-end bulk and single-cell AIRR-seq processing workflow which integrates the Immcantation Framework following BCR and TCR sequencing data analysis best practices. The Immcantation Framework is a comprehensive toolset, which allows the processing of bulk and single-cell AIRR-seq data from raw read processing to clonal inference. nf-core/airrflow is written in Nextflow and is part of the nf-core project, which collects community contributed and curated Nextflow workflows for a wide variety of analysis tasks. We assessed the performance of nf-core/airrflow on simulated sequencing data with sequencing errors and show example results with real datasets. To demonstrate the applicability of nf-core/airrflow to the high-throughput processing of large AIRR-seq datasets, we validated and extended previously reported findings of convergent antibody responses to SARS-CoV-2 by analyzing 97 COVID-19 infected individuals and 99 healthy controls, including a mixture of bulk and single-cell sequencing datasets. Using this dataset, we extended the convergence findings to 20 additional subjects, highlighting the applicability of nf-core/airrflow to validate findings in small in-house cohorts with reanalysis of large publicly available AIRR datasets.
Collapse
Affiliation(s)
- Gisela Gabernet
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Susanna Marquez
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Robert Bjornson
- Yale Center for Research Computing, New Haven, Connecticut, United States of America
| | | | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Edel Aron
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Noah Y. Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Cole G. Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - David Ladd
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Mark Polster
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | - Friederike Hanssen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | | | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Markus C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
10
|
Lin J, Li Y, Gui M, Bu B, Li Z. Effectiveness and safety of telitacicept for refractory generalized myasthenia gravis: a retrospective study. Ther Adv Neurol Disord 2024; 17:17562864241251476. [PMID: 38751755 PMCID: PMC11095194 DOI: 10.1177/17562864241251476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Refractory generalized myasthenia gravis (GMG) remains a substantial therapeutic challenge. Telitacicept, a recombinant human B-lymphocyte stimulator receptor-antibody fusion protein, holds promise for interrupting the immunopathology of this condition. Objectives This study retrospectively assessed the effectiveness and safety of telitacicept in patients with refractory GMG. Design A single-center retrospective study. Methods Patients with refractory GMG receiving telitacicept (160 mg/week or biweekly) from January to September in 2023 were included. We assessed effectiveness using Myasthenia Gravis Foundation of America post-intervention status (MGFA-PIS), myasthenia gravis treatment status and intensity (MGSTI), quantitative myasthenia gravis (QMG), and MG-activity of daily living (ADL) scores, alongside reductions in prednisone dosage at 3- and 6-month intervals. Safety profiles were also evaluated. Results Sixteen patients with MGFA class II-V refractory GMG were included, with eight females and eight males. All patients were followed up for at least 3 months, and 11 patients reached 6 months follow-up. At the 3-month evaluation, 75% (12/16) demonstrated clinical improvement with MGFA-PIS. One patient achieved pharmacological remission, two attained minimal manifestation status, and nine showed functional improvement; three remained unchanged, and one deteriorated. By the 6-month visit, 90.1% (10/11) sustained significant symptomatic improvement. MGSTI scores and prednisone dosages significantly reduced at both follow-ups (p < 0.05). MG-ADL and QMG scores showed marked improvement at 6 months (p < 0.05). The treatment was well tolerated, with no severe adverse events such as allergy or infection reported. Conclusion Our exploratory investigation suggests that telitacicept is a feasible and well-tolerated add-on therapy for refractory GMG, offering valuable clinical evidence for this novel treatment option.
Collapse
Affiliation(s)
- Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengcui Gui
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
11
|
Okuzono Y, Miyakawa S, Itou T, Sagara M, Iwata M, Ishizuchi K, Sekiguchi K, Motegi H, Oyama M, Warude D, Kikukawa Y, Suzuki S. B-cell immune dysregulation with low soluble CD22 levels in refractory seronegative myasthenia gravis. Front Immunol 2024; 15:1382320. [PMID: 38711503 PMCID: PMC11071663 DOI: 10.3389/fimmu.2024.1382320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Myasthenia gravis (MG), primarily caused by acetylcholine receptor (AChR) autoantibodies, is a chronic autoimmune disorder causing severe muscle weakness and fatigability. In particular, seronegative MG constitutes 10%-15% of MG cases and presents diagnostic challenges especially in early-onset female patients who often show severe disease and resistance to immunosuppressive therapy. Furthermore, the immunopathology of seronegative MG remains unclear. Thus, in this study, we aimed to elucidate the pathogenic mechanism of seronegative MG using scRNA-seq analysis and plasma proteome analysis; in particular, we investigated the relationship between immune dysregulation status and disease severity in refractory seronegative MG. Employing single-cell RNA-sequencing and plasma proteome analyses, we analyzed peripheral blood samples from 30 women divided into three groups: 10 healthy controls, 10 early-onset AChR-positive MG, and 10 refractory early-onset seronegative MG patients, both before and after intravenous immunoglobulin treatment. The disease severity was evaluated using the MG-Activities of Daily Living (ADL), MG composite (MGC), and revised 15-item MG-Quality of Life (QOL) scales. We observed numerical abnormalities in multiple immune cells, particularly B cells, in patients with refractory seronegative MG, correlating with disease activity. Notably, severe MG cases had fewer regulatory T cells without functional abnormalities. Memory B cells were found to be enriched in peripheral blood cells compared with naïve B cells. Moreover, plasma proteome analysis indicated significantly lower plasma protein levels of soluble CD22, expressed in the lineage of B-cell maturation (including mature B cells and memory B cells), in refractory seronegative MG patients than in healthy donors or patients with AChR-positive MG. Soluble CD22 levels were correlated with disease severity, B-cell frequency, and RNA expression levels of CD22. In summary, this study elucidates the immunopathology of refractory seronegative MG, highlighting immune disorders centered on B cells and diminished soluble CD22 levels. These insights pave the way for novel MG treatment strategies focused on B-cell biology.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shuuichi Miyakawa
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tatsuo Itou
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masaki Sagara
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masashi Iwata
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kei Ishizuchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Koji Sekiguchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Munenori Oyama
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Dnyaneshwar Warude
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yusuke Kikukawa
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Tian DS, Qin C, Dong MH, Heming M, Zhou LQ, Wang W, Cai SB, You YF, Shang K, Xiao J, Wang D, Li CR, Zhang M, Bu BT, Meyer Zu Hörste G, Wang W. B cell lineage reconstitution underlies CAR-T cell therapeutic efficacy in patients with refractory myasthenia gravis. EMBO Mol Med 2024; 16:966-987. [PMID: 38409527 PMCID: PMC11018773 DOI: 10.1038/s44321-024-00043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
B-cell maturation antigen (BCMA), expressed in plasmablasts and plasma cells, could serve as a promising therapeutic target for autoimmune diseases. We reported here chimeric antigen receptor (CAR) T cells targeting BCMA in two patients with highly relapsed and refractory myasthenia gravis (one with AChR-IgG, and one with MuSk-IgG). Both patients exhibited favorable safety profiles and persistent clinical improvements over 18 months. Reconstitution of B-cell lineages with sustained reduced pathogenic autoantibodies might underlie the therapeutic efficacy. To identify the possible mechanisms underlying the therapeutic efficacy of CAR-T cells in these patients, longitudinal single-cell RNA and TCR sequencing was conducted on serial blood samples post infusion as well as their matching infusion products. By tracking the temporal evolution of CAR-T phenotypes, we demonstrated that proliferating cytotoxic-like CD8 clones were the main effectors in autoimmunity, whereas compromised cytotoxic and proliferation signature and profound mitochondrial dysfunction in CD8+ Te cells before infusion and subsequently defect CAR-T cells after manufacture might explain their characteristics in these patients. Our findings may guide future studies to improve CAR T-cell immunotherapy in autoimmune diseases.
Collapse
Affiliation(s)
- Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wen Wang
- Nanjing IASO Biotechnology Co., Ltd, 210018, Nanjing, China
| | - Song-Bai Cai
- Nanjing IASO Biotechnology Co., Ltd, 210018, Nanjing, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Di Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chun-Rui Li
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
14
|
Lee H, Shin K, Lee Y, Lee S, Lee S, Lee E, Kim SW, Shin HY, Kim JH, Chung J, Kwon S. Identification of B cell subsets based on antigen receptor sequences using deep learning. Front Immunol 2024; 15:1342285. [PMID: 38576618 PMCID: PMC10991714 DOI: 10.3389/fimmu.2024.1342285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
B cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.
Collapse
Affiliation(s)
- Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yongju Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Soobin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seungyoun Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Kefalopoulou ZM, Veltsista D, Germeni A, Lykouras D, Tsiamaki E, Chroni E. Rituximab as a sole steroid-sparing agent in generalized myasthenia gravis: Long-term outcomes. Neurol Sci 2024; 45:1233-1242. [PMID: 37831214 DOI: 10.1007/s10072-023-07082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Rituximab, a B-cell depleting monoclonal antibody, represents an option for the treatment of refractory myasthenia gravis (MG). Its use is more established in muscle-specific tyrosine kinase positive (MuSK +) patients, while its role in managing acetylcholine receptor positive (AChR +), or double seronegative (DSN) patients, remains less clear. This study evaluates the long-term effectiveness and safety of rituximab in MG of various serotypes. METHODS We conducted an open-label study of MG patients receiving rituximab. Adults with generalized refractory MG, either anti-AChR + or DSN, and anti-MuSK + , refractory or not, who had follow-up > 12 months were selected. Change in quantitative myasthenia gravis (QMG) score at last follow-up, compared with baseline was a primary outcome, as well as factors affecting response to treatment. Secondary outcomes included, long-term safety, the steroid-sparing effect and relapse rates post-rituximab. RESULTS Thirty patients (16 anti-AChR + , 6 anti-MuSK + , 8 DSN) followed for a mean of 33.3 months were included. Mean scores pre-rituximab compared to last follow-up significantly decreased (p < 0.001), from 11 ± 4.1 to 4.3 ± 3.8, and from 1.9 to 0.3 regarding QMG and relapse rate per patient/year, respectively, while in 93.1% a daily steroid dose ≤ 10 mg was achieved. Antibody status was the only factor independently influencing several endpoints. Throughout the study period no crises or deaths occurred. CONCLUSION The present study supports that rituximab is an effective and well tolerated treatment for refractory anti-AChR + and DSN MG patients, while anti-MuSK + remains the group experiencing the greater benefits.
Collapse
Affiliation(s)
- Zinovia-Maria Kefalopoulou
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece.
- Neuromuscular Centre, University Hospital of Patras, 26504, Patras, Rio, Greece.
| | - Dimitra Veltsista
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece
- Neuromuscular Centre, University Hospital of Patras, 26504, Patras, Rio, Greece
| | - Alexandra Germeni
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece
| | - Dimosthenis Lykouras
- Department of Respiratory Medicine, University Hospital of Patras, 26504, Patras, Rio, Greece
| | - Eirini Tsiamaki
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece
| | - Elisabeth Chroni
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece
- Neuromuscular Centre, University Hospital of Patras, 26504, Patras, Rio, Greece
| |
Collapse
|
16
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
17
|
Hoehn KB, Kleinstein SH. B cell phylogenetics in the single cell era. Trends Immunol 2024; 45:62-74. [PMID: 38151443 PMCID: PMC10872299 DOI: 10.1016/j.it.2023.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
The widespread availability of single-cell RNA sequencing (scRNA-seq) has led to the development of new methods for understanding immune responses. Single-cell transcriptome data can now be paired with B cell receptor (BCR) sequences. However, RNA from BCRs cannot be analyzed like most other genes because BCRs are genetically diverse within individuals. In humans, BCRs are shaped through recombination followed by mutation and selection for antigen binding. As these processes co-occur with cell division, B cells can be studied using phylogenetic trees representing the mutations within a clone. B cell trees can link experimental timepoints, tissues, or cellular subtypes. Here, we review the current state and potential of how B cell phylogenetics can be combined with single-cell data to understand immune responses.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Paardekooper LM, Fillié-Grijpma YE, van der Sluijs-Gelling AJ, Zlei M, van Doorn R, Vermeer MH, Paunovic M, Titulaer MJ, van der Maarel SM, van Dongen JJM, Verschuuren JJ, Huijbers MG. Autoantibody subclass predominance is not driven by aberrant class switching or impaired B cell development. Clin Immunol 2023; 257:109817. [PMID: 37925120 DOI: 10.1016/j.clim.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.
Collapse
Affiliation(s)
| | | | | | - Mihaela Zlei
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manuela Paunovic
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
19
|
Oh S, Mao X, Manfredo-Vieira S, Lee J, Patel D, Choi EJ, Alvarado A, Cottman-Thomas E, Maseda D, Tsao PY, Ellebrecht CT, Khella SL, Richman DP, O'Connor KC, Herzberg U, Binder GK, Milone MC, Basu S, Payne AS. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol 2023; 41:1229-1238. [PMID: 36658341 PMCID: PMC10354218 DOI: 10.1038/s41587-022-01637-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Muscle-specific tyrosine kinase myasthenia gravis (MuSK MG) is an autoimmune disease that causes life-threatening muscle weakness due to anti-MuSK autoantibodies that disrupt neuromuscular junction signaling. To avoid chronic immunosuppression from current therapies, we engineered T cells to express a MuSK chimeric autoantibody receptor with CD137-CD3ζ signaling domains (MuSK-CAART) for precision targeting of B cells expressing anti-MuSK autoantibodies. MuSK-CAART demonstrated similar efficacy as anti-CD19 chimeric antigen receptor T cells for depletion of anti-MuSK B cells and retained cytolytic activity in the presence of soluble anti-MuSK antibodies. In an experimental autoimmune MG mouse model, MuSK-CAART reduced anti-MuSK IgG without decreasing B cells or total IgG levels, reflecting MuSK-specific B cell depletion. Specific off-target interactions of MuSK-CAART were not identified in vivo, in primary human cell screens or by high-throughput human membrane proteome array. These data contributed to an investigational new drug application and phase 1 clinical study design for MuSK-CAART for the treatment of MuSK autoantibody-positive MG.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuming Mao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Eun Jung Choi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Y Tsao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sami L Khella
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Richman
- Department of Neurology, University of California - Davis, Davis, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Laurent SA, Strauli NB, Eggers EL, Wu H, Michel B, Demuth S, Palanichamy A, Wilson MR, Sirota M, Hernandez RD, Cree BAC, Herman AE, von Büdingen HC. Effect of Ocrelizumab on B- and T-Cell Receptor Repertoire Diversity in Patients With Relapsing Multiple Sclerosis From the Randomized Phase III OPERA Trial. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200118. [PMID: 37094998 PMCID: PMC10136682 DOI: 10.1212/nxi.0000000000200118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/22/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AND OBJECTIVES The B cell-depleting anti-CD20 antibody ocrelizumab (OCR) effectively reduces MS disease activity and slows disability progression. Given the role of B cells as antigen-presenting cells, the primary goal of this study was to evaluate the effect of OCR on the T-cell receptor repertoire diversity. METHODS To examine whether OCR substantially alters the molecular diversity of the T-cell receptor repertoire, deep immune repertoire sequencing (RepSeq) of CD4+ and CD8+ T-cell receptor β-chain variable regions was performed on longitudinal blood samples. The IgM and IgG heavy chain variable region repertoire was also analyzed to characterize the residual B-cell repertoire under OCR treatment. RESULTS Peripheral blood samples for RepSeq were obtained from 8 patients with relapsing MS enrolled in the OPERA I trial over a period of up to 39 months. Four patients each were treated with OCR or interferon β1-a during the double-blind period of OPERA I. All patients received OCR during the open-label extension. The diversity of the CD4+/CD8+ T-cell repertoires remained unaffected in OCR-treated patients. The expected OCR-associated B-cell depletion was mirrored by reduced B-cell receptor diversity in peripheral blood and a shift in immunoglobulin gene usage. Despite deep B-cell depletion, longitudinal persistence of clonally related B-cells was observed. DISCUSSION Our data illustrate that the diversity of CD4+/CD8+ T-cell receptor repertoires remained unaltered in OCR-treated patients with relapsing MS. Persistence of a highly diverse T-cell repertoire suggests that aspects of adaptive immunity remain intact despite extended anti-CD20 therapy. TRIAL REGISTRATION INFORMATION This is a substudy (BE29353) of the OPERA I (WA21092; NCT01247324) trial. Date of registration, November 23, 2010; first patient enrollment, August 31, 2011.
Collapse
Affiliation(s)
- Sarah A Laurent
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Nicolas B Strauli
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Erica L Eggers
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Hao Wu
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Brady Michel
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Stanislas Demuth
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Arumugam Palanichamy
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Michael R Wilson
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Marina Sirota
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Ryan D Hernandez
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Bruce Anthony Campbell Cree
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Ann E Herman
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - H-Christian von Büdingen
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA.
| |
Collapse
|
22
|
Wang M, Jiang R, Mohanty S, Meng H, Shaw AC, Kleinstein SH. High-throughput single-cell profiling of B cell responses following inactivated influenza vaccination in young and older adults. Aging (Albany NY) 2023; 15:9250-9274. [PMID: 37367734 PMCID: PMC10564424 DOI: 10.18632/aging.204778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Seasonal influenza contributes to a substantial disease burden, resulting in approximately 10 million hospital visits and 50 thousand deaths in a typical year in the United States. 70 - 85% of the mortality occurs in people over the age of 65. Influenza vaccination is the best protection against the virus, but it is less effective for the elderly, which may be in part due to differences in the quantity or type of B cells induced by vaccination. To investigate this possibility, we sorted pre- and post-vaccination peripheral blood B cells from three young and three older adults with strong antibody responses to the inactivated influenza vaccine and employed single-cell technology to simultaneously profile the gene expression and the B cell receptor (BCR) of the B cells. Prior to vaccination, we observed a higher somatic hypermutation frequency and a higher abundance of activated B cells in older adults than in young adults. Following vaccination, young adults mounted a more clonal response than older adults. The expanded clones included a mix of plasmablasts, activated B cells, and resting memory B cells in both age groups, with a decreased proportion of plasmablasts in older adults. Differential abundance analysis identified additional vaccine-responsive cells that were not part of expanded clones, especially in older adults. We observed broadly consistent gene expression changes in vaccine-responsive plasmablasts and greater heterogeneity among activated B cells between age groups. These quantitative and qualitative differences in the B cells provide insights into age-related changes in influenza vaccination response.
Collapse
Affiliation(s)
- Meng Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
| | - Ruoyi Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Steven H. Kleinstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
23
|
Jiang R, Roy B, Wu Q, Mohanty S, Nowak RJ, Shaw AC, Kleinstein SH, O’Connor KC. The Plasma Cell Infiltrate Populating the Muscle Tissue of Patients with Inclusion Body Myositis Features Distinct B Cell Receptor Repertoire Properties. Immunohorizons 2023; 7:310-322. [PMID: 37171806 PMCID: PMC10579972 DOI: 10.4049/immunohorizons.2200078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Inclusion body myositis (IBM) is an autoimmune and degenerative disorder of skeletal muscle. The B cell infiltrates in IBM muscle tissue are predominantly fully differentiated Ab-secreting plasma cells, with scarce naive or memory B cells. The role of this infiltrate in the disease pathology is not well understood. To better define the humoral response in IBM, we used adaptive immune receptor repertoire sequencing, of human-derived specimens, to generate large BCR repertoire libraries from IBM muscle biopsies and compared them to those generated from dermatomyositis, polymyositis, and circulating CD27+ memory B cells, derived from healthy controls and Ab-secreting cells collected following vaccination. The repertoire properties of the IBM infiltrate included the following: clones that equaled or exceeded the highly clonal vaccine-associated Ab-secreting cell repertoire in size; reduced somatic mutation selection pressure in the CDRs and framework regions; and usage of class-switched IgG and IgA isotypes, with a minor population of IgM-expressing cells. The IBM IgM-expressing population revealed unique features, including an elevated somatic mutation frequency and distinct CDR3 physicochemical properties. These findings demonstrate that some of IBM muscle BCR repertoire characteristics are distinct from dermatomyositis and polymyositis and circulating Ag-experienced subsets, suggesting that it may form through selection by disease-specific Ags.
Collapse
Affiliation(s)
- Roy Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Bhaskar Roy
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Qian Wu
- Department of Pathology, University of Connecticut School of Medicine, Farmington, CT
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | | | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Kevin C. O’Connor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Neurology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
24
|
Sarkar MK, Uppala R, Zeng C, Billi AC, Tsoi LC, Kidder A, Xing X, Perez White BE, Shao S, Plazyo O, Sirobhushanam S, Xing E, Jiang Y, Gallagher KA, Voorhees JJ, Kahlenberg JM, Gudjonsson JE. Keratinocytes sense and eliminate CRISPR DNA through STING/IFN-κ activation and APOBEC3G induction. J Clin Invest 2023; 133:e159393. [PMID: 36928117 PMCID: PMC10145927 DOI: 10.1172/jci159393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
CRISPR/Cas9 has been proposed as a treatment for genetically inherited skin disorders. Here we report that CRISPR transfection activates STING-dependent antiviral responses in keratinocytes, resulting in heightened endogenous interferon (IFN) responses through induction of IFN-κ, leading to decreased plasmid stability secondary to induction of the cytidine deaminase gene APOBEC3G. Notably, CRISPR-generated KO keratinocytes had permanent suppression of IFN-κ and IFN-stimulated gene (ISG) expression, secondary to hypermethylation of the IFNK promoter region by the DNA methyltransferase DNMT3B. JAK inhibition via baricitinib prior to CRISPR transfection increased transfection efficiency, prevented IFNK promoter hypermethylation, and restored normal IFN-κ activity and ISG responses. This work shows that CRISPR-mediated gene correction alters antiviral responses in keratinocytes, has implications for future gene therapies for inherited skin diseases using CRISPR technology, and suggests pharmacologic JAK inhibition as a tool for facilitating and attenuating inadvertent selection effects in CRISPR/Cas9 therapeutic approaches.
Collapse
Affiliation(s)
| | - Ranjitha Uppala
- Department of Dermatology, and
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | - Shuai Shao
- Department of Dermatology, and
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, China
| | | | - Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Yanyun Jiang
- Department of Dermatology, and
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology, and
| | | | - J. Michelle Kahlenberg
- Department of Dermatology, and
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
- Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, and
- Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, Ge J. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review. J Autoimmun 2022; 133:102919. [PMID: 36242821 DOI: 10.1016/j.jaut.2022.102919] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
Autoimmunity refers to the phenomenon that the body's immune system produces antibodies or sensitized lymphocytes to its own tissues to cause an immune response. Immune disorders caused by autoimmunity can mediate autoimmune diseases. Autoimmune diseases have complicated pathogenesis due to the many types of cells involved, and the mechanism is still unclear. The emergence of single-cell research technology can solve the problem that ordinary transcriptome technology cannot be accurate to cell type. It provides unbiased results through independent analysis of cells in tissues and provides more mRNA information for identifying cell subpopulations, which provides a novel approach to study disruption of immune tolerance and disturbance of pro-inflammatory pathways on a cellular basis. It may fundamentally change the understanding of molecular pathways in the pathogenesis of autoimmune diseases and develop targeted drugs. Single-cell transcriptome sequencing (scRNA-seq) has been widely applied in autoimmune diseases, which provides a powerful tool for demonstrating the cellular heterogeneity of tissues involved in various immune inflammations, identifying pathogenic cell populations, and revealing the mechanism of disease occurrence and development. This review describes the principles of scRNA-seq, introduces common sequencing platforms and practical procedures, and focuses on the progress of scRNA-seq in 41 autoimmune diseases, which include 9 systemic autoimmune diseases and autoinflammatory diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) and 32 organ-specific autoimmune diseases (5 Skin diseases, 3 Nervous system diseases, 4 Eye diseases, 2 Respiratory system diseases, 2 Circulatory system diseases, 6 Liver, Gallbladder and Pancreas diseases, 2 Gastrointestinal system diseases, 3 Muscle, Bones and joint diseases, 3 Urinary system diseases, 2 Reproductive system diseases). This review also prospects the molecular mechanism targets of autoimmune diseases from the multi-molecular level and multi-dimensional analysis combined with single-cell multi-omics sequencing technology (such as scRNA-seq, Single cell ATAC-seq and single cell immune group library sequencing), which provides a reference for further exploring the pathogenesis and marker screening of autoimmune diseases and autoimmune inflammatory diseases in the future.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Tianqing Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
26
|
Ralph DK, Matsen FA. Inference of B cell clonal families using heavy/light chain pairing information. PLoS Comput Biol 2022; 18:e1010723. [PMID: 36441808 PMCID: PMC9731466 DOI: 10.1371/journal.pcbi.1010723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 12/08/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Next generation sequencing of B cell receptor (BCR) repertoires has become a ubiquitous tool for understanding the antibody-mediated immune response: it is now common to have large volumes of sequence data coding for both the heavy and light chain subunits of the BCR. However, until the recent development of high throughput methods of preserving heavy/light chain pairing information, these samples contained no explicit information on which heavy chain sequence pairs with which light chain sequence. One of the first steps in analyzing such BCR repertoire samples is grouping sequences into clonally related families, where each stems from a single rearrangement event. Many methods of accomplishing this have been developed, however, none so far has taken full advantage of the newly-available pairing information. This information can dramatically improve clustering performance, especially for the light chain. The light chain has traditionally been challenging for clonal family inference because of its low diversity and consequent abundance of non-clonal families with indistinguishable naive rearrangements. Here we present a method of incorporating this pairing information into the clustering process in order to arrive at a more accurate partition of the data into clonally related families. We also demonstrate two methods of fixing imperfect pairing information, which may allow for simplified sample preparation and increased sequencing depth. Finally, we describe several other improvements to the partis software package.
Collapse
Affiliation(s)
- Duncan K. Ralph
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Frederick A. Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
27
|
Fichtner ML, Hoehn KB, Ford EE, Mane-Damas M, Oh S, Waters P, Payne AS, Smith ML, Watson CT, Losen M, Martinez-Martinez P, Nowak RJ, Kleinstein SH, O'Connor KC. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathol Commun 2022; 10:154. [PMID: 36307868 PMCID: PMC9617453 DOI: 10.1186/s40478-022-01454-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disorder of the neuromuscular junction. A small subset of patients (<10%) with MG, have autoantibodies targeting muscle-specific tyrosine kinase (MuSK). MuSK MG patients respond well to CD20-mediated B cell depletion therapy (BCDT); most achieve complete stable remission. However, relapse often occurs. To further understand the immunomechanisms underlying relapse, we studied autoantibody-producing B cells over the course of BCDT. We developed a fluorescently labeled antigen to enrich for MuSK-specific B cells, which was validated with a novel Nalm6 cell line engineered to express a human MuSK-specific B cell receptor. B cells (≅ 2.6 million) from 12 different samples collected from nine MuSK MG patients were screened for MuSK specificity. We successfully isolated two MuSK-specific IgG4 subclass-expressing plasmablasts from two of these patients, who were experiencing a relapse after a BCDT-induced remission. Human recombinant MuSK mAbs were then generated to validate binding specificity and characterize their molecular properties. Both mAbs were strong MuSK binders, they recognized the Ig1-like domain of MuSK, and showed pathogenic capacity when tested in an acetylcholine receptor (AChR) clustering assay. The presence of persistent clonal relatives of these MuSK-specific B cell clones was investigated through B cell receptor repertoire tracing of 63,977 unique clones derived from longitudinal samples collected from these two patients. Clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-mediated remission, predating disease relapse by several months. These findings demonstrate that a reservoir of rare pathogenic MuSK autoantibody-expressing B cell clones survive BCDT and reemerge into circulation prior to manifestation of clinical relapse. Overall, this study provides both a mechanistic understanding of MuSK MG relapse and a valuable candidate biomarker for relapse prediction.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Easton E Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marina Mane-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa L Smith
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review summarizes recent insights into the immunopathogenesis of autoimmune myasthenia gravis (MG). Mechanistic understanding is presented according to MG disease subtypes and by leveraging the knowledge gained through the use of immunomodulating biological therapeutics. RECENT FINDINGS The past two years of research on MG have led to a more accurate definition of the mechanisms through which muscle-specific tyrosine kinase (MuSK) autoantibodies induce pathology. Novel insights have also emerged from the collection of stronger evidence on the pathogenic capacity of low-density lipoprotein receptor-related protein 4 autoantibodies. Clinical observations have revealed a new MG phenotype triggered by cancer immunotherapy, but the underlying immunobiology remains undetermined. From a therapeutic perspective, MG patients can now benefit from a wider spectrum of treatment options. Such therapies have uncovered profound differences in clinical responses between and within the acetylcholine receptor and MuSK MG subtypes. Diverse mechanisms of immunopathology between the two subtypes, as well as qualitative nuances in the autoantibody repertoire of each patient, likely underpin the variability in therapeutic outcomes. Although predictive biomarkers of clinical response are lacking, these observations have ignited the development of assays that might assist clinicians in the choice of specific therapeutic strategies. SUMMARY Recent advances in the understanding of autoantibody functionalities are bringing neuroimmunologists closer to a more detailed appreciation of the mechanisms that govern MG pathology. Future investigations on the immunological heterogeneity among MG patients will be key to developing effective, individually tailored therapies.
Collapse
Affiliation(s)
- Gianvito Masi
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
29
|
Su S, Lei L, Fan Z, Zhang S, Wen Q, Wang J, Lu Y, Di L, Wang M, Chen H, Da Y. Clinical Predictors of Relapse in a Cohort of Steroid-Treated Patients With Well-Controlled Myasthenia Gravis. Front Neurol 2022; 13:816243. [PMID: 35185767 PMCID: PMC8854248 DOI: 10.3389/fneur.2022.816243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDespite the high efficiency of glucocorticoids (GCs), ~18–34% patients with myasthenia gravis (MG) may experience relapses of the disease. Here, we aim to identify clinical factors related to relapses during steroid tapering or after withdrawal in MG patients who were well-managed on steroid monotherapy.MethodsWe conducted a retrospective study on 125 MG patients from the Xuanwu Hospital MG Trial Database. Patients were treated with corticosteroids and achieved minimal manifestation status (MMS) or better. Patients were divided into steroid reduction subset (N = 74) and steroid withdrawal subset (N = 51). Clinical characteristics and therapeutic data were compared between patients with disease relapse and those who maintained clinical remission at the last follow-ups. Cox proportional hazards regression models were used to identify risk factors of relapse in each subset.ResultsThirty-seven (29.6%) patients experienced relapses during the follow-up periods. Relapse during the steroid reduction was significantly associated with drug reducing duration (HR = 0.81, 95%CI 0.74–0.89, P < 0.001). Risk of relapse was augmented if the drug reducing duration was <11.5 months (HR 27.80, 95%CI 5.88–131.57, P < 0.001). Among patients who discontinued the steroids, those with onset symptoms of bulbar weakness (adjusted HR 3.59, 95%CI 1.19–10.81, P = 0.023) were more likely to experience relapse.ConclusionOur study demonstrated that patients could benefit from prolonged steroid-reducing duration to prevent disease relapse. Patients with bulbar weakness at disease onset should be proposed to take long-term steroids or other immunosuppressants.
Collapse
|
30
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
31
|
Broketa M, Bruhns P. Single-Cell Technologies for the Study of Antibody-Secreting Cells. Front Immunol 2022; 12:821729. [PMID: 35173713 PMCID: PMC8841722 DOI: 10.3389/fimmu.2021.821729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Antibody-secreting cells (ASC), plasmablasts and plasma cells, are terminally differentiated B cells responsible for large-scale production and secretion of antibodies. ASC are derived from activated B cells, which may differentiate extrafollicularly or form germinal center (GC) reactions within secondary lymphoid organs. ASC therefore consist of short-lived, poorly matured plasmablasts that generally secrete lower-affinity antibodies, or long-lived, highly matured plasma cells that generally secrete higher-affinity antibodies. The ASC population is responsible for producing an immediate humoral B cell response, the polyclonal antibody repertoire, as well as in parallel building effective humoral memory and immunity, or potentially driving pathology in the case of autoimmunity. ASC are phenotypically and transcriptionally distinct from other B cells and further distinguishable by morphology, varied lifespans, and anatomical localization. Single cell analyses are required to interrogate the functional and transcriptional diversity of ASC and their secreted antibody repertoire and understand the contribution of individual ASC responses to the polyclonal humoral response. Here we summarize the current and emerging functional and molecular techniques for high-throughput characterization of ASC with single cell resolution, including flow and mass cytometry, spot-based and microfluidic-based assays, focusing on functional approaches of the secreted antibodies: specificity, affinity, and secretion rate.
Collapse
Affiliation(s)
- Matteo Broketa
- Institut Pasteur, Université de Paris, INSERM UMR 1222, Unit of Antibodies in Therapy and Pathology, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, INSERM UMR 1222, Unit of Antibodies in Therapy and Pathology, Paris, France
| |
Collapse
|
32
|
Oh JE, Song E, Moriyama M, Wong P, Zhang S, Jiang R, Strohmeier S, Kleinstein SH, Krammer F, Iwasaki A. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Sci Immunol 2021; 6:eabj5129. [PMID: 34890255 PMCID: PMC8762609 DOI: 10.1126/sciimmunol.abj5129] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antibodies secreted at the mucosal surface play an integral role in immune defense by serving to neutralize the pathogen and promote its elimination at the site of entry. Secretory immunoglobulin A (IgA) is a predominant Ig isotype at mucosal surfaces whose epithelial cells express polymeric Ig receptor capable of transporting dimeric IgA to the lumen. Although the role of IgA in intestinal mucosa has been extensively studied, the cell types responsible for secreting the IgA that protects the host against pathogens in the lower respiratory tract are less clear. Here, using a mouse model of influenza virus infection, we demonstrate that intranasal, but not systemic, immunization induces local IgA secretion in the bronchoalveolar space. Using single-cell RNA sequencing, we found a heterogeneous population of IgA-expressing cells within the respiratory mucosa, including tissue-resident memory B cells, plasmablasts, and plasma cells. IgA-secreting cell establishment within the lung required CXCR3. An intranasally administered protein-based vaccine also led to the establishment of IgA-secreting cells in the lung, but not when given intramuscularly or intraperitoneally. Last, local IgA secretion correlated with superior protection against secondary challenge with homologous and heterologous virus infection than circulating antibodies alone. These results provide key insights into establishment of protective immunity in the lung based on tissue-resident IgA-secreting B cells and inform vaccine strategies designed to elicit highly effective immune protection against respiratory virus infections.
Collapse
Affiliation(s)
- Ji Eun Oh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Republic of Korea
| | - Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Miyu Moriyama
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Patrick Wong
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Sophia Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Ruoyi Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
33
|
Hoehn KB, Turner JS, Miller FI, Jiang R, Pybus OG, Ellebedy AH, Kleinstein SH. Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving. eLife 2021; 10:e70873. [PMID: 34787567 PMCID: PMC8741214 DOI: 10.7554/elife.70873] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-existing immunity interfering with the persistence and maturation of vaccine-induced B cell responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these lineages against vaccine antigens can occur. However, it remains to be determined whether seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and previous work has found no significant increase in somatic hypermutation among influenza-binding lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first validate this test through simulations and survey measurable evolution across multiple conditions. We find significant heterogeneity in measurable B cell evolution across conditions, with enrichment in primary response conditions such as HIV infection and early childhood development. We then show that measurable evolution following influenza vaccination is highly compartmentalized: while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive from memory B cells. We conclude from these findings that seasonal influenza virus vaccination can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell evolution.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Pathology, Yale School of MedicineNew HavenUnited States
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | | | - Ruoyi Jiang
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Oliver G Pybus
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of MedicineSt LouisUnited States
| | - Steven H Kleinstein
- Department of Pathology, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale UniversityNew HavenUnited States
| |
Collapse
|
34
|
Mandel-Brehm C, Fichtner ML, Jiang R, Winton VJ, Vazquez SE, Pham MC, Hoehn KB, Kelleher NL, Nowak RJ, Kleinstein SH, Wilson MR, DeRisi JL, O'Connor KC. Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes. THE JOURNAL OF IMMUNOLOGY 2021; 207:2005-2014. [PMID: 34544801 DOI: 10.4049/jimmunol.2100225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.
Collapse
Affiliation(s)
- Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Neil L Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL.,Department of Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Pathology, Yale University School of Medicine, New Haven, CT.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA; and
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT; .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
35
|
Crickx E, Chappert P, Sokal A, Weller S, Azzaoui I, Vandenberghe A, Bonnard G, Rossi G, Fadeev T, Storck S, Fadlallah J, Meignin V, Rivière E, Audia S, Godeau B, Michel M, Weill JC, Reynaud CA, Mahévas M. Rituximab-resistant splenic memory B cells and newly engaged naive B cells fuel relapses in patients with immune thrombocytopenia. Sci Transl Med 2021; 13:13/589/eabc3961. [PMID: 33853929 DOI: 10.1126/scitranslmed.abc3961] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 01/19/2023]
Abstract
Rituximab (RTX), an antibody targeting CD20, is widely used as a first-line therapeutic strategy in B cell-mediated autoimmune diseases. However, a large proportion of patients either do not respond to the treatment or relapse during B cell reconstitution. Here, we characterize the cellular basis responsible for disease relapse in secondary lymphoid organs in humans, taking advantage of the opportunity offered by therapeutic splenectomy in patients with relapsing immune thrombocytopenia. By analyzing the B and plasma cell immunoglobulin gene repertoire at bulk and antigen-specific single-cell level, we demonstrate that relapses are associated with two responses coexisting in germinal centers and involving preexisting mutated memory B cells that survived RTX treatment and naive B cells generated upon reconstitution of the B cell compartment. To identify distinctive characteristics of the memory B cells that escaped RTX-mediated depletion, we analyzed RTX refractory patients who did not respond to treatment at the time of B cell depletion. We identified, by single-cell RNA sequencing (scRNA-seq) analysis, a population of quiescent splenic memory B cells that present a unique, yet reversible, RTX-shaped phenotype characterized by down-modulation of B cell-specific factors and expression of prosurvival genes. Our results clearly demonstrate that these RTX-resistant autoreactive memory B cells reactivate as RTX is cleared and give rise to plasma cells and further germinal center reactions. Their continued surface expression of CD19 makes them efficient targets for current anti-CD19 therapies. This study thus identifies a pathogenic contributor to autoimmune diseases that can be targeted by available therapeutic agents.
Collapse
Affiliation(s)
- Etienne Crickx
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France.,Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Pascal Chappert
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France.,Inovarion, 75005 Paris, France
| | - Aurélien Sokal
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Sandra Weller
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Imane Azzaoui
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Alexis Vandenberghe
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Guillaume Bonnard
- INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Geoffrey Rossi
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Tatiana Fadeev
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Sébastien Storck
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Jehane Fadlallah
- Service d'immunologie clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France
| | - Véronique Meignin
- Service d'anatomopathologie, Hôpital Saint-Louis (AP-HP), 75010 Paris, France
| | - Etienne Rivière
- Service de médecine interne, Hôpital Haut-Lévêque, 33604 Pessac, France
| | - Sylvain Audia
- Service de médecine interne, Hôpital du Bocage, 21000 Dijon, France
| | - Bertrand Godeau
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Matthieu Mahévas
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France. .,Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| |
Collapse
|
36
|
Jiang R, Meng H, Raddassi K, Fleming I, Hoehn KB, Dardick KR, Belperron AA, Montgomery RR, Shalek AK, Hafler DA, Kleinstein SH, Bockenstedt LK. Single-cell immunophenotyping of the skin lesion erythema migrans identifies IgM memory B cells. JCI Insight 2021; 6:148035. [PMID: 34061047 PMCID: PMC8262471 DOI: 10.1172/jci.insight.148035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The skin lesion erythema migrans (EM) is an initial sign of the Ixodes tick-transmitted Borreliella spirochetal infection known as Lyme disease. T cells and innate immune cells have previously been shown to predominate the EM lesion and promote the reaction. Despite the established importance of B cells and antibodies in preventing infection, the role of B cells in the skin immune response to Borreliella is unknown. Here, we used single-cell RNA-Seq in conjunction with B cell receptor (BCR) sequencing to immunophenotype EM lesions and their associated B cells and BCR repertoires. We found that B cells were more abundant in EM in comparison with autologous uninvolved skin; many were clonally expanded and had circulating relatives. EM-associated B cells upregulated the expression of MHC class II genes and exhibited preferential IgM isotype usage. A subset also exhibited low levels of somatic hypermutation despite a gene expression profile consistent with memory B cells. Our study demonstrates that single-cell gene expression with paired BCR sequencing can be used to interrogate the sparse B cell populations in human skin and reveals that B cells in the skin infection site in early Lyme disease expressed a phenotype consistent with local antigen presentation and antibody production.
Collapse
Affiliation(s)
| | | | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ira Fleming
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | | | | | - Alexia A. Belperron
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - David A. Hafler
- Department of Immunobiology
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Steven H. Kleinstein
- Department of Immunobiology
- Department of Pathology, and
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Linda K. Bockenstedt
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Song E, Bartley CM, Chow RD, Ngo TT, Jiang R, Zamecnik CR, Dandekar R, Loudermilk RP, Dai Y, Liu F, Sunshine S, Liu J, Wu W, Hawes IA, Alvarenga BD, Huynh T, McAlpine L, Rahman NT, Geng B, Chiarella J, Goldman-Israelow B, Vogels CB, Grubaugh ND, Casanovas-Massana A, Phinney BS, Salemi M, Alexander JR, Gallego JA, Lencz T, Walsh H, Wapniarski AE, Mohanty S, Lucas C, Klein J, Mao T, Oh J, Ring A, Spudich S, Ko AI, Kleinstein SH, Pak J, DeRisi JL, Iwasaki A, Pleasure SJ, Wilson MR, Farhadian SF. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med 2021; 2:100288. [PMID: 33969321 PMCID: PMC8091032 DOI: 10.1016/j.xcrm.2021.100288] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/03/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.
Collapse
Affiliation(s)
- Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher M. Bartley
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan D. Chow
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Thomas T. Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Ruoyi Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Colin R. Zamecnik
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Rita P. Loudermilk
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- University of California, Berkeley—University of California, San Francisco Gradate Program in Bioengineering, Berkeley, CA, USA
| | - Wesley Wu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Isobel A. Hawes
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bonny D. Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Trung Huynh
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lindsay McAlpine
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Nur-Taz Rahman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Bertie Geng
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | | | - Benjamin Goldman-Israelow
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, CT, USA
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Brett S. Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jessa R. Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Juan A. Gallego
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Todd Lencz
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Hannah Walsh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Anne E. Wapniarski
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Subhasis Mohanty
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jieun Oh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Albert I. Ko
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - John Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Samuel J. Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Shelli F. Farhadian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021; 20:179-199. [PMID: 33324003 PMCID: PMC7737718 DOI: 10.1038/s41573-020-00092-2] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
In the past 15 years, B cells have been rediscovered to be not merely bystanders but rather active participants in autoimmune aetiology. This has been fuelled in part by the clinical success of B cell depletion therapies (BCDTs). Originally conceived as a method of eliminating cancerous B cells, BCDTs such as those targeting CD20, CD19 and BAFF are now used to treat autoimmune diseases, including systemic lupus erythematosus and multiple sclerosis. The use of BCDTs in autoimmune disease has led to some surprises. For example, although antibody-secreting plasma cells are thought to have a negative pathogenic role in autoimmune disease, BCDT, even when it controls the disease, has limited impact on these cells and on antibody levels. In this Review, we update our understanding of B cell biology, review the results of clinical trials using BCDT in autoimmune indications, discuss hypotheses for the mechanism of action of BCDT and speculate on evolving strategies for targeting B cells beyond depletion.
Collapse
Affiliation(s)
- Dennis S W Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
39
|
Low-dose rituximab treatment for new-onset generalized myasthenia gravis. J Neuroimmunol 2021; 354:577528. [PMID: 33662696 DOI: 10.1016/j.jneuroim.2021.577528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/24/2021] [Accepted: 02/21/2021] [Indexed: 01/18/2023]
Abstract
The aim of this retrospective case series study was to evaluate the response and durability of rituximab in patients with new-onset acetylcholine receptor positive (AChR +) generalized myasthenia gravis (MG). Patients were initiated with low-dose rituximab treatment within 3.5 months of onset without concomitant oral immunosuppressants. Seventeen patients (89%) remained relapse-free with a mean follow-up of 51.3 months. Clinical improvement was observed in parallel with the maintenance of low-dose corticosteroids or the complete discontinuation of corticosteroids. Long-term depletion of B cells with low-dose rituximab treatment has shown favorable efficacy and tolerance in reducing disease activity for AChR+ generalized MG.
Collapse
|
40
|
Louie RH, Luciani F. Recent advances in single-cell multimodal analysis to study immune cells. Immunol Cell Biol 2021; 99:157-167. [PMID: 33314406 DOI: 10.1111/imcb.12432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Recent advances in single-cell technologies have enabled the profiling of the genome, epigenome, transcriptome and proteome, along with temporal and spatial information of individual cells. These technologies have provided unique opportunities to understand mechanisms underpinning the immune system, such as characterizations of the molecular cell state, how the cell state evolves along its lineage and the impact of spatial location on cell state. In this review, we discuss how these mechanisms have been studied through recent advances in single-cell multimodal technologies.
Collapse
Affiliation(s)
- Raymond Hy Louie
- School of Medical Sciences, The Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Fabio Luciani
- School of Medical Sciences, The Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
41
|
Song E, Bartley CM, Chow RD, Ngo TT, Jiang R, Zamecnik CR, Dandekar R, Loudermilk RP, Dai Y, Liu F, Hawes IA, Alvarenga BD, Huynh T, McAlpine L, Rahman NT, Geng B, Chiarella J, Goldman-Israelow B, Vogels CB, Grubaugh ND, Casanovas-Massana A, Phinney BS, Salemi M, Alexander J, Gallego JA, Lencz T, Walsh H, Lucas C, Klein J, Mao T, Oh J, Ring A, Spudich S, Ko AI, Kleinstein SH, DeRisi JL, Iwasaki A, Pleasure SJ, Wilson MR, Farhadian SF. Exploratory neuroimmune profiling identifies CNS-specific alterations in COVID-19 patients with neurological involvement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.11.293464. [PMID: 32935102 PMCID: PMC7491516 DOI: 10.1101/2020.09.11.293464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One third of COVID-19 patients develop significant neurological symptoms, yet SARS-CoV-2 is rarely detected in central nervous system (CNS) tissue, suggesting a potential role for parainfectious processes, including neuroimmune responses. We therefore examined immune parameters in cerebrospinal fluid (CSF) and blood samples from a cohort of patients with COVID-19 and significant neurological complications. We found divergent immunological responses in the CNS compartment, including increased levels of IL-12 and IL-12-associated innate and adaptive immune cell activation. Moreover, we found increased proportions of B cells in the CSF relative to the periphery and evidence of clonal expansion of CSF B cells, suggesting a divergent intrathecal humoral response to SARS-CoV-2. Indeed, all COVID-19 cases examined had anti-SARS-CoV-2 IgG antibodies in the CSF whose target epitopes diverged from serum antibodies. We directly examined whether CSF resident antibodies target self-antigens and found a significant burden of CNS autoimmunity, with the CSF from most patients recognizing neural self-antigens. Finally, we produced a panel of monoclonal antibodies from patients' CSF and show that these target both anti-viral and anti-neural antigens-including one mAb specific for the spike protein that also recognizes neural tissue. This exploratory immune survey reveals evidence of a compartmentalized and self-reactive immune response in the CNS meriting a more systematic evaluation of neurologically impaired COVID-19 patients.
Collapse
Affiliation(s)
- Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher M. Bartley
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Ryan D. Chow
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Thomas T. Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Ruoyi Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Colin R. Zamecnik
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Rita P. Loudermilk
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Isobel A. Hawes
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Bonny D. Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Trung Huynh
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Lindsay McAlpine
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Nur-Taz Rahman
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bertie Geng
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | | | - Benjamin Goldman-Israelow
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Brett S. Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Jessa Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Juan A. Gallego
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, New York, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| | - Todd Lencz
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, New York, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| | - Hannah Walsh
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jieun Oh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Albert I. Ko
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Samuel J. Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Shelli F. Farhadian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Jiang R, Hoehn KB, Lee CS, Pham MC, Homer RJ, Detterbeck FC, Aban I, Jacobson L, Vincent A, Nowak RJ, Kaminski HJ, Kleinstein SH, O'Connor KC. Thymus-derived B cell clones persist in the circulation after thymectomy in myasthenia gravis. Proc Natl Acad Sci U S A 2020; 117:30649-30660. [PMID: 33199596 PMCID: PMC7720237 DOI: 10.1073/pnas.2007206117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular, autoimmune disease caused by autoantibodies that target postsynaptic proteins, primarily the acetylcholine receptor (AChR) and inhibit signaling at the neuromuscular junction. The majority of patients under 50 y with AChR autoantibody MG have thymic lymphofollicular hyperplasia. The MG thymus is a reservoir of plasma cells that secrete disease-causing AChR autoantibodies and although thymectomy improves clinical scores, many patients fail to achieve complete stable remission without additional immunosuppressive treatments. We speculate that thymus-associated B cells and plasma cells persist in the circulation after thymectomy and that their persistence could explain incomplete responses to resection. We studied patients enrolled in a randomized clinical trial and used complementary modalities of B cell repertoire sequencing to characterize the thymus B cell repertoire and identify B cell clones that resided in the thymus and circulation before and 12 mo after thymectomy. Thymus-associated B cell clones were detected in the circulation by both mRNA-based and genomic DNA-based sequencing. These antigen-experienced B cells persisted in the circulation after thymectomy. Many circulating thymus-associated B cell clones were inferred to have originated and initially matured in the thymus before emigration from the thymus to the circulation. The persistence of thymus-associated B cells correlated with less favorable changes in clinical symptom measures, steroid dose required to manage symptoms, and marginal changes in AChR autoantibody titer. This investigation indicates that the diminished clinical response to thymectomy is related to persistent circulating thymus-associated B cell clones.
Collapse
Affiliation(s)
- Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
| | - Casey S Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511
| | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
- Pathology & Laboratory Medicine Service, VA CT Health Care System, West Haven, CT 06516
| | - Frank C Detterbeck
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06511
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Henry J Kaminski
- Department of Neurology, The George Washington University, Washington, DC 20052
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511;
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06511
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511;
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
43
|
Wang A, Rojas O, Lee D, Gommerman JL. Regulation of neuroinflammation by B cells and plasma cells. Immunol Rev 2020; 299:45-60. [PMID: 33107072 DOI: 10.1111/imr.12929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
The remarkable success of anti-CD20 B cell depletion therapies in reducing the burden of multiple sclerosis (MS) disease has prompted significant interest in how B cells contribute to neuroinflammation. Most focus has been on identifying pathogenic CD20+ B cells. However, an increasing number of studies have also identified regulatory functions of B lineage cells, particularly the production of IL-10, as being associated with disease remission in anti-CD20-treated MS patients. Moreover, IL-10-producing B cells have been linked to the attenuation of inflammation in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. In addition to IL-10-producing B cells, antibody-producing plasma cells (PCs) have also been implicated in suppressing neuroinflammation. This review will examine regulatory roles for B cells and PCs in MS and EAE. In addition, we speculate on the involvement of regulatory PCs and the cytokine BAFF in the context of anti-CD20 treatment. Lastly, we explore how the microbiota could influence anti-inflammatory B cell behavior. A better understanding of the contributions of different B cell subsets to the regulation of neuroinflammation, and factors that impact the development, maintenance, and migration of such subsets, will be important for rationalizing next-generation B cell-directed therapies for the treatment of MS.
Collapse
Affiliation(s)
- Angela Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
44
|
Sun B, Ramberger M, O'Connor KC, Bashford-Rogers RJM, Irani SR. The B cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat Rev Neurol 2020; 16:481-492. [PMID: 32724223 PMCID: PMC9364389 DOI: 10.1038/s41582-020-0381-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
A rapidly expanding and clinically distinct group of CNS diseases are caused by pathogenic autoantibodies that target neuroglial surface proteins. Despite immunotherapy, patients with these neuroglial surface autoantibody (NSAb)-mediated diseases often experience clinical relapse, high rates of long-term morbidity and adverse effects from the available medications. Fundamentally, the autoantigen-specific B cell lineage leads to production of the pathogenic autoantibodies. These autoantigen-specific B cells have been consistently identified in the circulation of patients with NSAb-mediated diseases, accompanied by high serum levels of autoantigen-specific antibodies. Early evidence suggests that these cells evade well-characterized B cell tolerance checkpoints. Nearer to the site of pathology, cerebrospinal fluid from patients with NSAb-mediated diseases contains high levels of autoantigen-specific B cells that are likely to account for the intrathecal synthesis of these autoantibodies. The characteristics of their immunoglobulin genes offer insights into the underlying immunobiology. In this Review, we summarize the emerging knowledge of B cells across the NSAb-mediated diseases. We review the evidence for the relative contributions of germinal centres and long-lived plasma cells as sources of autoantibodies, discuss data that indicate migration of B cells into the CNS and summarize insights into the underlying B cell pathogenesis that are provided by therapeutic effects.
Collapse
Affiliation(s)
- Bo Sun
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Melanie Ramberger
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, USA
| | | | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|