1
|
Li Z, Qin L, Xu X, Chen R, Zhang G, Wang B, Li B, Chu XM. Immune modulation: the key to combat SARS-CoV-2 induced myocardial injury. Front Immunol 2025; 16:1561946. [PMID: 40438117 PMCID: PMC12116346 DOI: 10.3389/fimmu.2025.1561946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the Coronavirus disease 2019 (COVID-19) pandemic, has posed significant healthcare challenges. In addition to respiratory complications, it has led to severe damage in other organs, particularly the cardiovascular system. Of which, myocardial injury is increasingly recognized as a most significant complication, contributing to the high mortality. Recent research indicates the pivotal role of immune dysregulation in mediating myocardial injury in patients infected with SARS-CoV-2. In this review, we provide a comprehensive analysis of the immune mechanisms involved in SARS-CoV-2-induced myocardial damage, focusing on the roles of key immune cells and molecules that contribute to this pathological process. Aiming at mitigating the myocardial injury of COVID-19, we review immune-based treatments under evaluation in preclinical and clinical trials. Along with talking about the similarities and differences in myocardial injury resulting from SARS-CoV-2, the Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV). This article provides a unique perspective on using past experiences to prevent myocardial injury in the face of ongoing virus mutations.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Banghui Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Fallah MP, Van Ryn C, Moses JS, Badio M, Fayiah T, Johnson K, Gayedyu-Dennis D, Eghrari AO, Weiser SD, Porco TC, Martin JN, Peluso MJ, McIlwain DR, Dighero-Kemp B, Higgs E, Hensley LE, Rutherford GW, Reilly C, Kelly JD. Associations of inflammatory markers with post-acute clinical findings among survivors of Ebola virus disease with and without viral RNA shedding in the semen in Liberia: a nested case-control study. THE LANCET. MICROBE 2025; 6:101033. [PMID: 40081398 DOI: 10.1016/j.lanmic.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND A high proportion of survivors of Ebola virus disease (EVD) have post-acute sequelae of EVD (PASE), but the relationship between inflammation and PASE pathogenesis is poorly understood. This study tests the hypothesis that inflammation is associated with PASE among survivors with and without viral RNA shedding in the semen. METHODS This was a case-control study nested in a longitudinal cohort that recruited confirmed survivors of EVD and their uninfected contacts from the 2013-16 EVD epidemic in Liberia, starting on June 1, 2015. We included participants aged at least 18 years with clinical data and plasma available at cohort baseline for analysis. A semen donation substudy tested male survivors for Ebola virus RNA shedding in the semen. A sex-stratified and survivor-stratified random sample of cases (survivors) and controls (contacts) was obtained to select stored baseline plasma samples for cytokine testing of markers of inflammation, immune regulation, and antiviral responses. Serostatus of cases and controls was confirmed by Filovirus Animal Nonclinical Group assay. We identified inflammatory markers (adjusted p≤0·05) elevated in cases compared with controls and then used these biomarkers in analyses comparing survivors with and without pre-specified PASE-associated clinical findings (self-reported symptoms and abnormal examination findings). Survivors with viral RNA shedding in the semen formed subgroup analyses. FINDINGS Our analysis cohort consisted of 1044 participants (594 survivors of EVD and 450 uninfected contacts); 515 (49·3%) were female and 529 (50·7%) were male. The subcohort of 243 male survivors with data on viral shedding included 81 (33%) participants with viral shedding in semen. Median time from acute EVD to baseline was 317 days (IQR 271-366). Survivors of EVD showed a pattern of elevated inflammatory markers indicative of macrophage (MCP-1, IL-1β, and M-CSF) and angiogenic factor activation (VEGF-A) compared with controls (adjusted p<0·05). In survivors with viral shedding in the semen compared with controls, VEGF-A was the only inflammatory marker that was significantly higher (adjusted p<0·001). After restricting the analysis to survivors, each inflammatory marker had a specific pattern of clinical findings. Higher levels of IL-1β were associated with higher odds of urinary frequency (p=0·002), musculoskeletal abnormalities (p=0·003), and abdominal abnormalities (p=0·03). By contrast, higher levels of MCP-1 were associated with lower odds of the same clinical findings. M-CSF was the only inflammatory marker associated with lower odds of joint pain (p=0·04). Higher levels of VEGF-A were associated with higher odds of abnormal chest findings in the overall survivor group (p=0·02) and in the subgroup with viral shedding in the semen (p=0·02). INTERPRETATION We found evidence of distinct biological pathways for PASE. Although viral RNA shedding in the semen could be associated with angiogenic activation, it did not explain many of the PASE symptoms and exam findings associated with the elevated macrophage markers, suggesting the pathobiology of some clinical manifestations might be autoimmunity, immune dysregulation, or another biological mechanism. These findings could inform shared biological pathways with other infection-associated chronic conditions, including post-acute sequelae of SARS-CoV-2 infection. FUNDING National Cancer Institute and National Institute of Allergy and Infectious Diseases at the US National Institutes of Health.
Collapse
Affiliation(s)
- Mosoka P Fallah
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL), Monrovia, Liberia; Africa Centres for Disease Control and Prevention (Africa CDC), Addis Ababa, Ethiopia
| | - Collin Van Ryn
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA
| | - J Soka Moses
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL), Monrovia, Liberia
| | - Moses Badio
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL), Monrovia, Liberia; Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Tamba Fayiah
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL), Monrovia, Liberia
| | - Kumblytee Johnson
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL), Monrovia, Liberia
| | - Dehkontee Gayedyu-Dennis
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL), Monrovia, Liberia
| | - Allen O Eghrari
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheri D Weiser
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Travis C Porco
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA; F.I. Proctor Foundation, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Michael J Peluso
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - David R McIlwain
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Bonnie Dighero-Kemp
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Fort Detrick, MD, USA
| | - Elizabeth Higgs
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lisa E Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Fort Detrick, MD, USA
| | - George W Rutherford
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA; Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Cavan Reilly
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA; Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA; F.I. Proctor Foundation, University of California, San Francisco (UCSF), San Francisco, CA, USA; Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
3
|
Taher MK, Salzman T, Banal A, Morissette K, Domingo FR, Cheung AM, Cooper CL, Boland L, Zuckermann AM, Mullah MA, Laprise C, Colonna R, Hashi A, Rahman P, Collins E, Corrin T, Waddell LA, Pagaduan JE, Ahmad R, Jaramillo Garcia AP. Global prevalence of post-COVID-19 condition: a systematic review and meta-analysis of prospective evidence. Health Promot Chronic Dis Prev Can 2025; 45:112-138. [PMID: 40073162 PMCID: PMC12039764 DOI: 10.24095/hpcdp.45.3.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
INTRODUCTION We investigated the prevalence of new or persistent manifestations experienced by COVID-19 survivors at 3 or more months after their initial infection, collectively known as post-COVID-19 condition (PCC). METHODS We searched four electronic databases and major grey literature resources for prospective studies, systematic reviews, authoritative reports and population surveys. A random-effects meta-analysis pooled the prevalence data of 22 symptoms and outcomes. The GRADE approach was used to assess the certainty of evidence. PROSPERO CRD42021231476. RESULTS Of 20 731 identified references, 194 met our inclusion criteria. These studies followed 483 531 individuals with confirmed COVID-19 diagnosis over periods of up to 2 years. Most focused on adults, nearly two-thirds were conducted in Europe and 63% were of high or moderate quality. The supplementary search identified 17 systematic reviews, five authoritative reports and four population surveys that reported on PCC prevalence. Our analysis revealed that more than half of COVID-19 survivors experienced one or more symptoms more than a year after their initial infection. The most common symptoms were fatiguedyspneamemory, sleep or concentration disturbances; depressionand pain. Limitation in returning to work was the most common outcome. Prevalence tended to be higher among females, individuals hospitalized during their initial infection and those who experienced severe COVID-19 illness. CONCLUSION PCC presents a significant health burden, affecting some groups more than others. This information will help inform health care system policies and services for people living with PCC and those caring for them.
Collapse
Affiliation(s)
- Mohamed Kadry Taher
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Talia Salzman
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Allyson Banal
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Kate Morissette
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Francesca R Domingo
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Angela M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute and Schroeder Arthritis Institute, Toronto, Ontario, Canada
| | - Curtis L Cooper
- Department of Medicine, University of OttawaOttawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Laura Boland
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Alexandra M Zuckermann
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Muhammad A Mullah
- Infectious Disease and Vaccination Programs Branch, Centre for Communicable Diseases and Infection Control, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Claudie Laprise
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montréal, Quebec, Canada
| | - Roberto Colonna
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Ayan Hashi
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Prinon Rahman
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Erin Collins
- Population Health Modelling Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario,Canada
| | - Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Lisa A Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Jason E Pagaduan
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Rukshanda Ahmad
- Risk Assessment Division, Centre for Surveillance, Integrated Insights and Risk Assessment, Data, Surveillance and Foresight Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Alejandra P Jaramillo Garcia
- Evidence Synthesis and Knowledge Translation Unit, Centre for Surveillance and Applied Research, Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Almulla AF, Thipakorn Y, Zhou B, Vojdani A, Maes M. Immune activation and immune-associated neurotoxicity in Long-COVID: A systematic review and meta-analysis of 103 studies comprising 58 cytokines/chemokines/growth factors. Brain Behav Immun 2024; 122:75-94. [PMID: 39127088 DOI: 10.1016/j.bbi.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.
Collapse
Affiliation(s)
- Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine. Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Strategic Research and Innovation Program for the Development of MU - PLOVDIV-(SRIPD-MUP), European Union - NextGenerationEU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
5
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Lu S, Peluso MJ, Glidden DV, Davidson MC, Lugtu K, Pineda-Ramirez J, Tassetto M, Garcia-Knight M, Zhang A, Goldberg SA, Chen JY, Fortes-Cobby M, Park S, Martinez A, So M, Donovan A, Viswanathan B, Hoh R, Donohue K, McIlwain DR, Gaudiliere B, Anglin K, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Deeks SG, Briggs-Hagen M, Andino R, Midgley CM, Martin JN, Saydah S, Kelly JD. Early biological markers of post-acute sequelae of SARS-CoV-2 infection. Nat Commun 2024; 15:7466. [PMID: 39198441 PMCID: PMC11358427 DOI: 10.1038/s41467-024-51893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
To understand the roles of acute-phase viral dynamics and host immune responses in post-acute sequelae of SARS-CoV-2 infection (PASC), we enrolled 136 participants within 5 days of their first positive SARS-CoV-2 real-time PCR test. Participants self-collected up to 21 nasal specimens within the first 28 days post-symptom onset; interviewer-administered questionnaires and blood samples were collected at enrollment, days 9, 14, 21, 28, and month 4 and 8 post-symptom onset. Defining PASC as the presence of any COVID-associated symptom at their 4-month visit, we compared viral markers (quantity and duration of nasal viral RNA load, infectious viral load, and plasma N-antigen level) and host immune markers (IL-6, IL-10, TNF-α, IFN-α, IFN-γ, MCP, IP-10, and Spike IgG) over the acute period. Compared to those who fully recovered, those reporting PASC demonstrated significantly higher maximum levels of SARS-CoV-2 RNA and N-antigen, burden of RNA and infectious viral shedding, and lower Spike-specific IgG levels within 9 days post-illness onset. No significant differences were identified among a panel of host immune markers. Our results suggest early viral dynamics and the associated host immune responses play a role in the pathogenesis of PASC, highlighting the importance of understanding early biological markers in the natural history of PASC.
Collapse
Affiliation(s)
- Scott Lu
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, CA, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | | | - Kara Lugtu
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jesus Pineda-Ramirez
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Miguel Garcia-Knight
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
- Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Amethyst Zhang
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Jessica Y Chen
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Maya Fortes-Cobby
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Sara Park
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ana Martinez
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Matthew So
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Aidan Donovan
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, CA, USA
| | - Badri Viswanathan
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, CA, USA
| | | | | | | | - Khamal Anglin
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Brandon C Yee
- LabCorp - Monogram Biosciences, South San Francisco, San Francisco, CA, USA
| | - Ahmed Chenna
- LabCorp - Monogram Biosciences, South San Francisco, San Francisco, CA, USA
| | - John W Winslow
- LabCorp - Monogram Biosciences, South San Francisco, San Francisco, CA, USA
| | | | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, CA, USA
| | | | - Raul Andino
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | | | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Sharon Saydah
- Division of Respiratory Viral Pathogens, CDC, Atlanta, USA
| | - J Daniel Kelly
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA.
- School of Medicine, UCSF, San Francisco, CA, USA.
- F.I. Proctor Foundation, UCSF, San Francisco, CA, USA.
| |
Collapse
|
7
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Vasquez JJ, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambhir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadk3295. [PMID: 38959327 PMCID: PMC11337933 DOI: 10.1126/scitranslmed.adk3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Dylan Ryder
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Robert Flavell
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Yingbing Wang
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Jelena Levi
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Sadie E. Munter
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Kofi A. Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Maya Aslam
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Walter Koch
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Gyula Szabo
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Uttam Shrestha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Joshua J. Vasquez
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Matthew S. Durstenfeld
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Nitasha Kumar
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Aruna Gambhir
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Henry F. VanBrocklin
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| |
Collapse
|
8
|
Kubrova E, Hallo-Carrasco AJ, Klasova J, Pagan Rosado RD, Prusinski CC, Trofymenko O, Schappell JB, Prokop LJ, Yuh CI, Gupta S, Hunt CL. Persistent chest pain following COVID-19 infection - A scoping review. PM R 2024; 16:605-625. [PMID: 37906499 DOI: 10.1002/pmrj.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Persistent chest pain (PCP) following acute COVID-19 infection is a commonly reported symptom with an unclear etiology, making its management challenging. This scoping review aims to address the knowledge gap surrounding the characteristics of PCP following COVID-19, its causes, and potential treatments. This is a scoping review of 64 studies, including observational (prospective, retrospective, cross-sectional, case series, and case-control) and one quasi-experimental study, from databases including Embase, PubMed/MEDLINE, Cochrane CENTRAL, Google Scholar, Cochrane Database of Systematic Reviews, and Scopus. Studies on patients with PCP following mild, moderate, and severe COVID-19 infection were included. Studies with patients of any age, with chest pain that persisted following acute COVID-19 disease, irrespective of etiology or duration were included. A total of 35 studies reported PCP symptoms following COVID-19 (0.24%-76.6%) at an average follow-up of 3 months or longer, 12 studies at 1-3 months and 17 studies at less than 1-month follow-up or not specified. PCP was common following mild-severe COVID-19 infection, and etiology was mostly not reported. Fourteen studies proposed potential etiologies including endothelial dysfunction, cardiac ischemia, vasospasm, myocarditis, cardiac arrhythmia, pneumonia, pulmonary embolism, postural tachycardia syndrome, or noted cardiac MRI (cMRI) changes. Evaluation methods included common cardiopulmonary tests, as well as less common tests such as flow-mediated dilatation, cMRI, single-photon emission computed tomography myocardial perfusion imaging, and cardiopulmonary exercise testing. Only one study reported a specific treatment (sulodexide). PCP is a prevalent symptom following COVID-19 infection, with various proposed etiologies. Further research is needed to establish a better understanding of the causes and to develop targeted treatments for PCP following COVID-19.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | | | - Johana Klasova
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Robert D Pagan Rosado
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Rochester, Minnesota, USA
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | - Larry J Prokop
- Library and Public Services, Mayo Clinic, Rochester, Minnesota, USA
| | - Clara I Yuh
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, California, USA
| | - Sahil Gupta
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Christine L Hunt
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
9
|
Collins E, Galipeau Y, Arnold C, Bhéreur A, Booth R, Buchan AC, Cooper C, Crawley AM, McCluskie PS, McGuinty M, Pelchat M, Rocheleau L, Saginur R, Gravel C, Hawken S, Langlois MA, Little J. Clinical and serological predictors of post COVID-19 condition-findings from a Canadian prospective cohort study. Front Public Health 2024; 12:1276391. [PMID: 38784593 PMCID: PMC11111987 DOI: 10.3389/fpubh.2024.1276391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction More than 3 years into the pandemic, there is persisting uncertainty as to the etiology, biomarkers, and risk factors of Post COVID-19 Condition (PCC). Serological research data remain a largely untapped resource. Few studies have investigated the potential relationships between post-acute serology and PCC, while accounting for clinical covariates. Methods We compared clinical and serological predictors among COVID-19 survivors with (n = 102 cases) and without (n = 122 controls) persistent symptoms ≥12 weeks post-infection. We selected four primary serological predictors (anti-nucleocapsid (N), anti-Spike, and anti-receptor binding domain (RBD) IgG titres, and neutralization efficiency), and specified clinical covariates a priori. Results Similar proportions of PCC-cases (66.7%, n = 68) and infected-controls (71.3%, n = 87) tested positive for anti-N IgG. More cases tested positive for anti-Spike (94.1%, n = 96) and anti-RBD (95.1%, n = 97) IgG, as compared with controls (anti-Spike: 89.3%, n = 109; anti-RBD: 84.4%, n = 103). Similar trends were observed among unvaccinated participants. Effects of IgG titres on PCC status were non-significant in univariate and multivariate analyses. Adjusting for age and sex, PCC-cases were more likely to be efficient neutralizers (OR 2.2, 95% CI 1.11-4.49), and odds was further increased among cases to report deterioration in quality of life (OR 3.4, 95% CI 1.64-7.31). Clinical covariates found to be significantly related to PCC included obesity (OR 2.3, p = 0.02), number of months post COVID-19 (OR 1.1, p < 0.01), allergies (OR 1.8, p = 0.04), and need for medical support (OR 4.1, p < 0.01). Conclusion Despite past COVID-19 infection, approximately one third of PCC-cases and infected-controls were seronegative for anti-N IgG. Findings suggest higher neutralization efficiency among cases as compared with controls, and that this relationship is stronger among cases with more severe PCC. Cases also required more medical support for COVID-19 symptoms, and described complex, ongoing health sequelae. More data from larger cohorts are needed to substantiate results, permit subgroup analyses of IgG titres, and explore for differences between clusters of PCC symptoms. Future assessment of IgG subtypes may also elucidate new findings.
Collapse
Affiliation(s)
- Erin Collins
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Anne Bhéreur
- Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Ronald Booth
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Arianne C. Buchan
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michaeline McGuinty
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Raphael Saginur
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Health Science Network Research Ethics Board (OHSN-REB), Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Chris Gravel
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Steven Hawken
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Collins E, Philippe E, Gravel CA, Hawken S, Langlois MA, Little J. Serological markers and long COVID-A rapid systematic review. Eur J Clin Invest 2024; 54:e14149. [PMID: 38083997 DOI: 10.1111/eci.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Long COVID is highly heterogeneous, often debilitating, and may last for years after infection. The aetiology of long COVID remains uncertain. Examination of potential serological markers of long COVID, accounting for clinical covariates, may yield emergent pathophysiological insights. METHODS In adherence to PRISMA guidelines, we carried out a rapid review of the literature. We searched Medline and Embase for primary observational studies that compared IgG response in individuals who experienced COVID-19 symptoms persisting ≥12 weeks post-infection with those who did not. We examined relationships between serological markers and long COVID status and investigated sources of inter-study variability, such as severity of acute illness, long COVID symptoms assessed and target antigen(s). RESULTS Of 8018 unique records, we identified 29 as being eligible for inclusion in synthesis. Definitions of long COVID varied. In studies that reported anti-nucleocapsid (N) IgG (n = 10 studies; n = 989 participants in aggregate), full or partial anti-Spike IgG (i.e. the whole trimer, S1 or S2 subgroups, or receptor binding domain, n = 19 studies; n = 2606 participants), or neutralizing response (n = 7 studies; n = 1123 participants), we did not find strong evidence to support any difference in serological markers between groups with and without persisting symptoms. However, most studies did not account for severity or level of care required during acute illness, and other potential confounders. CONCLUSIONS Pooling of studies would enable more robust exploration of clinical and serological predictors among diverse populations. However, substantial inter-study variations hamper comparability. Standardized reporting practices would improve the quality, consistency and comprehension of study findings.
Collapse
Affiliation(s)
- Erin Collins
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Elizabeth Philippe
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher A Gravel
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Steven Hawken
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Julian Little
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Ye Y, Xiong C, Dai Y, Wang Y, Yang X, Cheng L, Hou C, Nie N, Tang H, Ma X, Zhang A, Cao G, He Y, Jiang J, Li L. Assessment of post-COVID-19 fatigue among female survivors 2 years after hospital discharge: a nested case-control study. BMC Public Health 2023; 23:2455. [PMID: 38062429 PMCID: PMC10704782 DOI: 10.1186/s12889-023-17382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Fatigue is a common symptom of long COVID syndrome. Compared to male survivors, females have a higher incidence of post-COVID fatigue. Therefore, long-term follow-up is necessary to understand which groups of females are more vulnerable to post-COVID fatigue. METHODS This is a nested case-control study of female COVID-19 survivors who were discharged from two designated hospitals in Wuhan, China in 2020, and received 2-year follow-up from March 1 to April 6, 2022. All patients completed the Checklist Individual Strength-subscale subjective fatigue (CIS-fatigue), a chronic obstructive pulmonary disease (COPD) assessment test (CAT), and the Hospital Anxiety and Depression Scale (HADS; including the HADS-Anxiety [HADS-A] and the HADS-Depression [HADS-D]). Individuals with CIS-fatigue scores of 27 or higher were classified as cases. The risk factors for fatigue was analysed with multivariable logistic regression analysis. RESULTS A total of 899 female COVID-19 survivors were enrolled for analysis, including 47 cases and 852 controls. Compared with controls, cases had higher CAT, HADS-A and HADS-D scores, and showed a higher prevalence of symptoms, including anxiety (cases vs. controls, 44.7% vs. 4.0%, p < 0.001), chest tightness (21.2% vs. 2.3%, p < 0.001), dyspnoea (19.1% vs. 0.8%, p < 0.001) and so on. In multivariable logistic regression analysis, age (OR, 1.03; 95% CI, 1.01-1.06; p = 0.02) and cerebrovascular disease (OR, 11.32; 95% CI, 2.87-43.00; p < 0.001) were risk factors for fatigue. Fatigue had a statistically significant moderate correlation with depression (r = 0.44, p < 0.001), but not with CAT ≥ 10. CONCLUSION Female COVID-19 patients who had cerebrovascular disease and older age have higher risk of fatigue. Patients with fatigue have higher CAT scores, and are more likely to have concurrent depression.
Collapse
Affiliation(s)
- Yidan Ye
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Chuyue Xiong
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Yang Dai
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Yan Wang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Xinyue Yang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Lixia Cheng
- Department of Medical and Research Management, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Wuhan Taikang Tongji Hospital, Wuhan, China
| | - Chao Hou
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Naifu Nie
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Huan Tang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Anqiang Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guoqiang Cao
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
- Wuhan Huoshenshan Hospital, Wuhan, China
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China
| | - Ji Jiang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China.
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Army Medical University, Chongqing, 400042, China.
- Wuhan Huoshenshan Hospital, Wuhan, China.
| |
Collapse
|
12
|
Durstenfeld MS, Peluso MJ, Spinelli MA, Li D, Hoh R, Chenna A, Yee B, Winslow J, Petropoulos C, Gandhi M, Henrich TJ, Aras MA, Long CS, Deeks SG, Hsue PY. Association of SARS-CoV-2 Infection and Cardiopulmonary Long COVID With Exercise Capacity and Chronotropic Incompetence Among People With HIV. J Am Heart Assoc 2023; 12:e030896. [PMID: 37830367 PMCID: PMC10757521 DOI: 10.1161/jaha.123.030896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
Background Postacute sequelae of COVID-19 (PASC) and HIV are both associated with reduced exercise capacity, but whether SARS-CoV-2 or PASC are associated with exercise capacity among people with HIV (PWH) is unknown. We hypothesized that PWH with PASC would have reduced exercise capacity from chronotropic incompetence. Methods and Results We conducted cross-sectional cardiopulmonary exercise testing within a COVID recovery cohort that included PWH with and without prior SARS-CoV-2 infection and people without HIV with prior SARS-CoV-2 infection (controls). We evaluated associations of HIV, SARS-CoV-2, and PASC with exercise capacity (peak oxygen consumption) and chronotropy (adjusted heart rate reserve). We included 83 participants (median age, 54 years; 35% women; 37 PWH): 23 out of 37 (62%) PWH and all 46 controls had prior SARS-CoV-2 infection, and 11 out of 23 (48%) PWH and 28 out of 46 (61%) without HIV had PASC. Peak oxygen consumption was reduced among PWH versus controls (80% predicted versus 99%, P=0.005), a difference of 5.5 mL/kg per minute (95% CI, 2.7-8.2; P<0.001). Chronotropic incompetence was more prevalent among PWH (38% versus 11%, P=0.002), with lower adjusted heart rate reserve (60% versus 83%, P<0.0001) versus controls. Among PWH, SARS-CoV-2 coinfection and PASC were not associated with exercise capacity. Chronotropic incompetence was more common among PWH with PASC: 7 out of 11 (64%) with PASC versus 7 out of 26 (27%) without PASC (P=0.04). Conclusions Exercise capacity and chronotropy are lower among PWH compared with individuals with SARS-CoV-2 infection without HIV. Among PWH, SARS-CoV-2 infection and PASC were not strongly associated with reduced exercise capacity. Chronotropic incompetence may be a common underrecognized mechanism of exercise intolerance among PWH, especially those with cardiopulmonary PASC.
Collapse
Affiliation(s)
- Matthew S. Durstenfeld
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Division of CardiologyZuckerberg San Francisco GeneralSan FranciscoCA
| | - Michael J. Peluso
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General HospitalUniversity of CaliforniaSan FranciscoCA
| | - Matthew A. Spinelli
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General HospitalUniversity of CaliforniaSan FranciscoCA
| | - Danny Li
- Division of CardiologyZuckerberg San Francisco GeneralSan FranciscoCA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General HospitalUniversity of CaliforniaSan FranciscoCA
| | - Ahmed Chenna
- Monogram Biosciences, LabCorpSouth San FranciscoCA
| | - Brandon Yee
- Monogram Biosciences, LabCorpSouth San FranciscoCA
| | - John Winslow
- Monogram Biosciences, LabCorpSouth San FranciscoCA
| | | | - Monica Gandhi
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General HospitalUniversity of CaliforniaSan FranciscoCA
| | - Timothy J. Henrich
- Department of Experimental MedicineUniversity of CaliforniaSan FranciscoCA
| | - Mandar A. Aras
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Division of CardiologyUCSF HealthSan FranciscoCA
| | - Carlin S. Long
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Division of CardiologyUCSF HealthSan FranciscoCA
| | - Steven G. Deeks
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General HospitalUniversity of CaliforniaSan FranciscoCA
| | - Priscilla Y. Hsue
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Division of CardiologyZuckerberg San Francisco GeneralSan FranciscoCA
| |
Collapse
|
13
|
Durstenfeld MS, Peluso MJ, Kaveti P, Hill C, Li D, Sander E, Swaminathan S, Arechiga VM, Lu S, Goldberg SA, Hoh R, Chenna A, Yee BC, Winslow JW, Petropoulos CJ, Kelly JD, Glidden DV, Henrich TJ, Martin JN, Lee YJ, Aras MA, Long CS, Grandis DJ, Deeks SG, Hsue PY. Reduced Exercise Capacity, Chronotropic Incompetence, and Early Systemic Inflammation in Cardiopulmonary Phenotype Long Coronavirus Disease 2019. J Infect Dis 2023; 228:542-554. [PMID: 37166076 PMCID: PMC10686699 DOI: 10.1093/infdis/jiad131] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Mechanisms underlying persistent cardiopulmonary symptoms after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (postacute sequelae of coronavirus disease 2019 [COVID-19; PASC] or "long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity. METHODS We conducted cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults >1 year after SARS-CoV-2 infection, compared those with and those without symptoms, and correlated findings with previously measured biomarkers. RESULTS Sixty participants (median age, 53 years; 42% female; 87% nonhospitalized; median 17.6 months after infection) were studied. At CPET, 18/37 (49%) with symptoms had reduced exercise capacity (<85% predicted), compared with 3/19 (16%) without symptoms (P = .02). The adjusted peak oxygen consumption (VO2) was 5.2 mL/kg/min lower (95% confidence interval, 2.1-8.3; P = .001) or 16.9% lower percent predicted (4.3%-29.6%; P = .02) among those with symptoms. Chronotropic incompetence was common. Inflammatory markers and antibody levels early in PASC were negatively correlated with peak VO2. Late-gadolinium enhancement on CMR and arrhythmias were absent. CONCLUSIONS Cardiopulmonary symptoms >1 year after COVID-19 were associated with reduced exercise capacity, which was associated with earlier inflammatory markers. Chronotropic incompetence may explain exercise intolerance among some with "long COVID."
Collapse
Affiliation(s)
- Matthew S Durstenfeld
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of Cardiology, Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, California, USA
| | - Michael J Peluso
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Punita Kaveti
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of Cardiology, UCSF Health, San Francisco, California, USA
| | - Christopher Hill
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Danny Li
- Division of Cardiology, Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, California, USA
| | - Erica Sander
- Division of Cardiology, UCSF Health, San Francisco, California, USA
| | - Shreya Swaminathan
- Division of Cardiology, Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, California, USA
| | - Victor M Arechiga
- Division of Cardiology, Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, California, USA
| | - Scott Lu
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Sarah A Goldberg
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca Hoh
- Division of Cardiology, Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, California, USA
| | - Ahmed Chenna
- Monogram Biosciences, LabCorp, University of California, San Francisco, California, USA
| | - Brandon C Yee
- Monogram Biosciences, LabCorp, University of California, San Francisco, California, USA
| | - John W Winslow
- Monogram Biosciences, LabCorp, University of California, San Francisco, California, USA
| | | | - J Daniel Kelly
- Institute of Global Health Sciences, University of California, San Francisco, San Francisco, California, USA
- F.I. Proctor Foundation, University of California, San Francisco, San Francisco, California, USA
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Timothy J Henrich
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Yoo Jin Lee
- Cardiac and Pulmonary Imaging, Department of Radiology, University of California, San Francisco, San Francisco, California, USA
| | - Mandar A Aras
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of Cardiology, UCSF Health, San Francisco, California, USA
| | - Carlin S Long
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of Cardiology, UCSF Health, San Francisco, California, USA
| | - Donald J Grandis
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of Cardiology, UCSF Health, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Priscilla Y Hsue
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Division of Cardiology, Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to 2 Years Following COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.27.23293177. [PMID: 37577714 PMCID: PMC10418298 DOI: 10.1101/2023.07.27.23293177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role. We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection. We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms. We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Dylan Ryder
- Division of Experimental Medicine, University of California San Francisco
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Yingbing Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California San Francisco
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco
| | - Kofi A. Asare
- Division of Experimental Medicine, University of California San Francisco
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Wally Koch
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Gyula Szabo
- Department of Pathology, University of California San Francisco
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Uttam Shrestha
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | | | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Nitasha Kumar
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | - Ma Somsouk
- Division of Gastroenterology, University of California San Francisco
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | | | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco
| |
Collapse
|
15
|
Parhizgar P, Yazdankhah N, Rzepka AM, Chung KYC, Ali I, Lai Fat Fur R, Russell V, Cheung AM. Beyond Acute COVID-19: A Review of Long-term Cardiovascular Outcomes. Can J Cardiol 2023; 39:726-740. [PMID: 36754119 PMCID: PMC9901229 DOI: 10.1016/j.cjca.2023.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
Statistics Canada estimated that approximately 1.4 million Canadians suffer from long COVID. Although cardiovascular changes during acute SARS-CoV-2 infection are well documented, long-term cardiovascular sequelae are less understood. In this review, we sought to characterize adult cardiovascular outcomes in the months after acute COVID-19 illness. In our search we identified reports of outcomes including cardiac dysautonomia, myocarditis, ischemic injuries, and ventricular dysfunction. Even in patients without overt cardiac outcomes, subclinical changes have been observed. Cardiovascular sequelae after SARS-CoV-2 infection can stem from exacerbation of preexisting conditions, ongoing inflammation, or as a result of damage that occurred during acute infection. For example, myocardial fibrosis has been reported months after hospital admission for COVID-19 illness, and might be a consequence of myocarditis and myocardial injury during acute disease. In turn, myocardial fibrosis can contribute to further outcomes including dysrhythmias and heart failure. Severity of acute infection might be a risk factor for long-term cardiovascular consequences, however, cardiovascular changes have also been reported in young, healthy individuals who had asymptomatic or mild acute disease. Although evolving evidence suggests that previous SARS-CoV-2 infection might be a risk factor for cardiovascular disease, there is heterogeneity in existing evidence, and some studies are marred by measured and unmeasured confounders. Many investigations have also been limited by relatively short follow-up. Future studies should focus on longer term outcomes (beyond 1 year) and identifying the prevalence of outcomes in different populations on the basis of acute and long COVID disease severity.
Collapse
Affiliation(s)
- Parinaz Parhizgar
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nima Yazdankhah
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anna M Rzepka
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kit Yan Christie Chung
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Irfan Ali
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Lai Fat Fur
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Russell
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Angela M Cheung
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Ertesvåg NU, Iversen A, Blomberg B, Özgümüş T, Rijal P, Fjelltveit EB, Cox RJ, Langeland N. Post COVID-19 condition after delta infection and omicron reinfection in children and adolescents. EBioMedicine 2023; 92:104599. [PMID: 37149931 PMCID: PMC10166589 DOI: 10.1016/j.ebiom.2023.104599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND The burden of COVID-19 in children and adolescents has increased during the delta and omicron waves, necessitating studies of long-term symptoms such as fatigue, dyspnoea and cognitive problems. Furthermore, immune responses in relation to persisting symptoms in younger people have not been well characterised. In this cohort study, we investigated the role of antibodies, vaccination and omicron reinfection upon persisting and long-term symptoms up to 8 months post-delta infection. METHODS SARS-CoV-2 RT-PCR positive participants (n = 276, aged 10-20 years) were prospectively recruited in August 2021. We recorded the major symptoms of post COVID-19 condition and collected serum samples 3- and 8-months post delta infection. Binding antibodies were measured by spike IgG ELISA, and surrogate neutralising antibodies against Wuhan and delta variants by the hemagglutination test (HAT). FINDINGS After delta infection, persisting symptoms at 3 months were significantly associated with higher delta antibody titres (OR 2.97, 95% CI 1.57-6.04, p = 0.001). Asymptomatic acute infection compared to symptomatic infection lowered the risk of persisting (OR 0.13, 95% CI 0.02-0.55, p = 0.013) and long-term (OR 0.28 95% CI 0.11-0.66, p = 0.005) symptoms at 3 and 8 months, respectively. Adolescents (16-20 years) were more likely to have long-term symptoms compared to children (10-15 years) (OR 2.44, 95% CI 1.37-4.41, p = 0.003). INTERPRETATION This clinical and serological study compares long-term symptoms after delta infection between children and adolescents. The association between high antibody titres and persisting symptoms suggest the involvement of an immune mechanism. Similarly to adults, the dominant long-term symptoms in children are fatigue, dyspnoea and cognitive problems. FUNDING This work was funded by the Ministry of Health and Care Services, Norway, the University of Bergen, Norway and Helse Vest, Norway (F-12621).
Collapse
Affiliation(s)
| | - Arild Iversen
- Chief Municipal Doctor's Office, Bergen Municipality, Bergen, Norway
| | - Bjørn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Türküler Özgümüş
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
| | - Elisabeth Berg Fjelltveit
- Influenza Centre, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
17
|
Durstenfeld MS, Peluso MJ, Spinelli MA, Li D, Hoh R, Gandhi M, Henrich TJ, Aras MA, Long CS, Deeks SG, Hsue PY. Association of SARS-CoV-2 Infection and Cardiopulmonary Long COVID with Exercise Capacity and Chronotropic Incompetence among People with HIV. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23289358. [PMID: 37205522 PMCID: PMC10187359 DOI: 10.1101/2023.05.01.23289358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Long COVID has been associated with reduced exercise capacity, but whether SARS-CoV-2 infection or Long COVID is associated with reduced exercise capacity among people with HIV (PWH) has not been reported. We hypothesized that PWH with cardiopulmonary post-acute symptoms of COVID-19 (PASC) would have reduced exercise capacity due to chronotropic incompetence. Methods We conducted cross-sectional cardiopulmonary exercise testing within a COVID recovery cohort that included PWH. We evaluated associations of HIV, prior SARS-CoV-2 infection, and cardiopulmonary PASC with exercise capacity (peak oxygen consumption, VO 2 ) and adjusted heart rate reserve (AHRR, chronotropic measure) with adjustment for age, sex, and body mass index. Results We included 83 participants (median age 54, 35% female). All 37 PWH were virally suppressed; 23 (62%) had prior SARS-CoV-2 infection, and 11 (30%) had PASC. Peak VO 2 was reduced among PWH (80% predicted vs 99%; p=0.005), a difference of 5.5 ml/kg/min (95%CI 2.7-8.2, p<0.001). Chronotropic incompetence more prevalent among PWH (38% vs 11%; p=0.002), and AHRR was reduced among PWH (60% vs 83%, p<0.0001). Among PWH, exercise capacity did not vary by SARS-CoV-2 coinfection, but chronotropic incompetence was more common among PWH with PASC: 3/14 (21%) without SARS-CoV-2, 4/12 (25%) with SARS-CoV-2 without PASC, and 7/11 (64%) with PASC (p=0.04 PASC vs no PASC). Conclusions Exercise capacity and chronotropy are lower among PWH compared to SARS-CoV-2 infected individuals without HIV. Among PWH, SARS-CoV-2 infection and PASC were not strongly associated with reduced exercise capacity. Chronotropic incompetence may be a mechanism limiting exercise capacity among PWH.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW It is now recognized that SARS-CoV-2 infection can have a long-term impact on health. This review summarizes the current state of knowledge regarding Long COVID in people living with HIV (PLWH). RECENT FINDINGS PLWH may be at elevated risk of experiencing Long COVID. Although the mechanisms contributing to Long COVID are incompletely understood, there are several demographic and clinical factors that might make PLWH vulnerable to developing Long COVID. SUMMARY PLWH should be aware that new or worsening symptoms following SARS-CoV-2 infection might represent Long COVID. HIV providers should be aware of this clinical entity and be mindful that their patients recovering from SARS-CoV-2 infection may be at higher risk.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA 94110
| | - Annukka A. R. Antar
- Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
19
|
Durstenfeld MS, Peluso MJ, Kaveti P, Hill C, Li D, Sander E, Swaminathan S, Arechiga VM, Lu S, Goldberg SA, Hoh R, Chenna A, Yee BC, Winslow JW, Petropoulos CJ, Kelly JD, Glidden DV, Henrich TJ, Martin JN, Lee YJ, Aras MA, Long CS, Grandis DJ, Deeks SG, Hsue PY. Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype Long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2022.05.17.22275235. [PMID: 35677073 PMCID: PMC9176659 DOI: 10.1101/2022.05.17.22275235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity using advanced cardiac testing. METHODS We performed cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; substudy of NCT04362150 ). Adults who completed a research echocardiogram (at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or pulmonary hypertension were asked to complete additional cardiopulmonary testing approximately 1 year later. Although participants were recruited as a prospective cohort, to account for selection bias, the primary analyses were as a case-control study comparing those with and without persistent cardiopulmonary symptoms. We also correlated findings with previously measured biomarkers. We used logistic regression and linear regression models to adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses adjusting for medical history. RESULTS Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non- hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO 2 <85% predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO 2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3- 29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic incompetence was present among 12/21 (57%) with reduced VO 2 including 11/37 (30%) with symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on ambulatory monitoring were not present. CONCLUSIONS We found evidence of objectively reduced exercise capacity among those with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary phenotype Long COVID. Key Points Long COVID symptoms were associated with reduced exercise capacity on cardiopulmonary exercise testing more than 1 year after SARS-CoV-2 infection. The most common abnormal finding was chronotropic incompetence. Reduced exercise capacity was associated with early elevations in inflammatory markers.
Collapse
|
20
|
Bonilla H, Peluso MJ, Rodgers K, Aberg JA, Patterson TF, Tamburro R, Baizer L, Goldman JD, Rouphael N, Deitchman A, Fine J, Fontelo P, Kim AY, Shaw G, Stratford J, Ceger P, Costantine MM, Fisher L, O’Brien L, Maughan C, Quigley JG, Gabbay V, Mohandas S, Williams D, McComsey GA. Therapeutic trials for long COVID-19: A call to action from the interventions taskforce of the RECOVER initiative. Front Immunol 2023; 14:1129459. [PMID: 36969241 PMCID: PMC10034329 DOI: 10.3389/fimmu.2023.1129459] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Although most individuals recover from acute SARS-CoV-2 infection, a significant number continue to suffer from Post-Acute Sequelae of SARS-CoV-2 (PASC), including the unexplained symptoms that are frequently referred to as long COVID, which could last for weeks, months, or even years after the acute phase of illness. The National Institutes of Health is currently funding large multi-center research programs as part of its Researching COVID to Enhance Recover (RECOVER) initiative to understand why some individuals do not recover fully from COVID-19. Several ongoing pathobiology studies have provided clues to potential mechanisms contributing to this condition. These include persistence of SARS-CoV-2 antigen and/or genetic material, immune dysregulation, reactivation of other latent viral infections, microvascular dysfunction, and gut dysbiosis, among others. Although our understanding of the causes of long COVID remains incomplete, these early pathophysiologic studies suggest biological pathways that could be targeted in therapeutic trials that aim to ameliorate symptoms. Repurposed medicines and novel therapeutics deserve formal testing in clinical trial settings prior to adoption. While we endorse clinical trials, especially those that prioritize inclusion of the diverse populations most affected by COVID-19 and long COVID, we discourage off-label experimentation in uncontrolled and/or unsupervised settings. Here, we review ongoing, planned, and potential future therapeutic interventions for long COVID based on the current understanding of the pathobiological processes underlying this condition. We focus on clinical, pharmacological, and feasibility data, with the goal of informing future interventional research studies.
Collapse
Affiliation(s)
- Hector Bonilla
- Department of Medicine and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Michael J. Peluso
- Department of Medicine and Infectious Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Judith A. Aberg
- Department of Medicine, Infectious Diseases, Icahn School of Medicine at Mount Sinai, Chief, Division of Infectious Disease, New York, NY, United States
| | - Thomas F. Patterson
- Department of Medicine, Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Robert Tamburro
- Division of Intramural Research, National Institute of Health, Bethesda, MD, United States
| | - Lawrence Baizer
- National Heart Lung and Blood Institute, Division of Lung Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason D. Goldman
- Department of Medicine, Organ Transplant and Liver Center, Swedish Medical Center, Seattle, WA, United States
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Nadine Rouphael
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Amelia Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey Fine
- Department of Rehabilitation Medicine at New York University (NYU) Grossman School of Medicine, Physical Medicine and Rehabilitation Service, New York University (NYU), New York University Medical Center, New York, NY, United States
| | - Paul Fontelo
- Applied Clinical Informatics Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Arthur Y. Kim
- Department of Medicine at Harvard Medical School, Division of Infectious Disease, Boston, MA, United States
| | - Gwendolyn Shaw
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Jeran Stratford
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Patricia Ceger
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Maged M. Costantine
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, United States
| | - Liza Fisher
- Long COVID Families, Houston, TX, United States
| | - Lisa O’Brien
- Utah Covid-19 Long Haulers, Salt Lake City, UT, United States
| | | | - John G. Quigley
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Vilma Gabbay
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Sindhu Mohandas
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Williams
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Grace A. McComsey
- Department of Pediatrics and Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Hackenbruch C, Maringer Y, Tegeler CM, Walz JS, Nelde A, Heitmann JS. Elevated SARS-CoV-2-Specific Antibody Levels in Patients with Post-COVID Syndrome. Viruses 2023; 15:v15030701. [PMID: 36992410 PMCID: PMC10051370 DOI: 10.3390/v15030701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
With the routine use of effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, the number of life-threatening coronavirus disease 2019 (COVID-19) courses have largely been reduced. However, multiple COVID-19 convalescents, even after asymptomatic to moderate disease, suffer from post-COVID syndrome, with relevant limitations in daily life. The pathophysiologic mechanisms of post-COVID syndrome are still elusive, with dysregulation of the immune system suggested as a central mechanism. Here, we assessed COVID-19 post-infectious symptoms (5-6 months after PCR-confirmed acute infection) together with the humoral immune response against SARS-CoV-2 in non-hospitalized COVID-19 convalescents, early (5-6 weeks) and late (5-6 months) after their first positive SARS-CoV-2 PCR result. Convalescents reporting several post-infectious symptoms (>3) showed higher anti-spike and anti-nucleocapsid antibody levels 5-6 weeks after PCR-confirmed infection with the latter remained increased 5-6 months after positive PCR. Likewise, a higher post-infectious symptom score was associated with increased antibody levels. Of note, convalescents displaying neuro-psychiatric symptoms such as restlessness, palpitations, irritability, and headache, as well as general symptoms such as fatigue/reduced power had higher SARS-CoV-2-specific antibody levels compared with asymptomatic cases. The increased humoral immune response in convalescents with post-COVID syndrome might be useful for the detection of individuals with an increased risk for post-COVID syndrome.
Collapse
Affiliation(s)
- Christopher Hackenbruch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Yacine Maringer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
- Department for Peptide-Based Immunotherapy, University and University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital of Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
- Department for Peptide-Based Immunotherapy, University and University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Annika Nelde
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
- Department for Peptide-Based Immunotherapy, University and University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Yong SJ, Halim A, Halim M, Liu S, Aljeldah M, Al Shammari BR, Alwarthan S, Alhajri M, Alawfi A, Alshengeti A, Khamis F, Alsalman J, Alshukairi AN, Abukhamis NA, Almaghrabi FS, Almuthree SA, Alsulaiman AM, Alshehail BM, Alfaraj AH, Alhawaj SA, Mohapatra RK, Rabaan AA. Inflammatory and vascular biomarkers in post-COVID-19 syndrome: A systematic review and meta-analysis of over 20 biomarkers. Rev Med Virol 2023; 33:e2424. [PMID: 36708022 DOI: 10.1002/rmv.2424] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 may inflict a post-viral condition known as post-COVID-19 syndrome (PCS) or long-COVID. Studies measuring levels of inflammatory and vascular biomarkers in blood, serum, or plasma of COVID-19 survivors with PCS versus non-PCS controls have produced mixed findings. Our review sought to meta-analyse those studies. A systematic literature search was performed across five databases until 25 June 2022, with an updated search on 1 November 2022. Data analyses were performed with Review Manager and R Studio statistical software. Twenty-four biomarkers from 23 studies were meta-analysed. Higher levels of C-reactive protein (Standardized mean difference (SMD) = 0.20; 95% CI: 0.02-0.39), D-dimer (SMD = 0.27; 95% CI: 0.09-0.46), lactate dehydrogenase (SMD = 0.30; 95% CI: 0.05-0.54), and leukocytes (SMD = 0.34; 95% CI: 0.02-0.66) were found in COVID-19 survivors with PCS than in those without PCS. After sensitivity analyses, lymphocytes (SMD = 0.30; 95% CI: 0.12-0.48) and interleukin-6 (SMD = 0.30; 95% CI: 0.12-0.49) were also significantly higher in PCS than non-PCS cases. No significant differences were noted in the remaining biomarkers investigated (e.g., ferritin, platelets, troponin, and fibrinogen). Subgroup analyses suggested the biomarker changes were mainly driven by PCS cases diagnosed via manifestation of organ abnormalities rather than symptomatic persistence, as well as PCS cases with duration of <6 than ≥6 months. In conclusion, our review pinpointed certain inflammatory and vascular biomarkers associated with PCS, which may shed light on potential new approaches to understanding, diagnosing, and treating PCS.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Alice Halim
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Michael Halim
- Department of Biomedical Science, School of Science, Engineering and Environment, University of Salford, Greater Manchester, UK
| | - Shiliang Liu
- Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Basim R Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| | - Abeer N Alshukairi
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nujoud A Abukhamis
- Molecular Virology Laboratory, East Jeddah Hospital, Jeddah, Saudi Arabia
| | | | - Souad A Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah, Saudi Arabia
| | | | - Bashayer M Alshehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq, Saudi Arabia
| | - Shorouq A Alhawaj
- Department of Nursing Model of Care, Nephrology Dialysis & Transplant Unit, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, India
| | - Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
23
|
Peluso MJ, Deveau TM, Munter SE, Ryder D, Buck A, Beck-Engeser G, Chan F, Lu S, Goldberg SA, Hoh R, Tai V, Torres L, Iyer NS, Deswal M, Ngo LH, Buitrago M, Rodriguez A, Chen JY, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Deitchman AN, Hellmuth J, Spinelli MA, Durstenfeld MS, Hsue PY, Kelly JD, Martin JN, Deeks SG, Hunt PW, Henrich TJ. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J Clin Invest 2023; 133:e163669. [PMID: 36454631 PMCID: PMC9888380 DOI: 10.1172/jci163669] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUNDThe presence and reactivation of chronic viral infections, such as EBV, CMV, and HIV, have been proposed as potential contributors to long COVID (LC), but studies in well-characterized postacute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited.METHODSIn a cohort of 280 adults with prior SARS-CoV-2 infection, we assessed the presence and types of LC symptoms and prior medical history (including COVID-19 history and HIV status) and performed serological testing for EBV and CMV using a commercial laboratory. We used covariate-adjusted binary logistic regression models to identify independent associations between variables and LC symptoms.RESULTSWe observed that LC symptoms, such as fatigue and neurocognitive dysfunction, at a median of 4 months following initial diagnosis were independently associated with serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) or high nuclear antigen (EBNA) IgG levels but not with ongoing EBV viremia. Serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) was most strongly associated with fatigue (OR = 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR = 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR = 0.52).CONCLUSIONOverall, these findings suggest differential effects of chronic viral coinfections on the likelihood of developing LC and association with distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted.TRIAL REGISTRATIONLong-term Impact of Infection with Novel Coronavirus; ClinicalTrials.gov NCT04362150.FUNDINGThis work was supported by NIH/National Institute of Allergy and Infectious Diseases grants (3R01AI141003-03S1, R01AI158013, and K24AI145806); the Zuckerberg San Francisco General Hospital Department of Medicine and Division of HIV, Infectious Diseases, and Global Medicine; and the UCSF-Bay Area Center for AIDS Research (P30-AI027763).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fay Chan
- Division of Experimental Medicine, and
| | - Scott Lu
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine
| | | | | | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine
| | - Lynn H. Ngo
- Division of HIV, Infectious Diseases, and Global Medicine
| | | | | | | | - Brandon C. Yee
- Monogram Biosciences Inc., South San Francisco, California, USA
| | - Ahmed Chenna
- Monogram Biosciences Inc., South San Francisco, California, USA
| | - John W. Winslow
- Monogram Biosciences Inc., South San Francisco, California, USA
| | | | | | | | | | | | | | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | | | | |
Collapse
|
24
|
Giron LB, Peluso MJ, Ding J, Kenny G, Zilberstein NF, Koshy J, Hong KY, Rasmussen H, Miller GE, Bishehsari F, Balk RA, Moy JN, Hoh R, Lu S, Goldman AR, Tang HY, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Kelly JD, Wasse H, Martin JN, Liu Q, Keshavarzian A, Landay A, Deeks SG, Henrich TJ, Abdel-Mohsen M. Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling. JCI Insight 2022; 7:e160989. [PMID: 35727635 PMCID: PMC9462470 DOI: 10.1172/jci.insight.160989] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as β-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher β-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, β-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.
Collapse
Affiliation(s)
| | | | - Jianyi Ding
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | | | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kai Ying Hong
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | - Faraz Bishehsari
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, Illinois, USA
| | - Robert A. Balk
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
| | - James N. Moy
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
| | | | - Scott Lu
- UCSF, San Francisco, California, USA
| | | | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Brandon C. Yee
- Monogram Biosciences, Inc., Labcorp, South San Francisco, California, USA
| | - Ahmed Chenna
- Monogram Biosciences, Inc., Labcorp, South San Francisco, California, USA
| | - John W. Winslow
- Monogram Biosciences, Inc., Labcorp, South San Francisco, California, USA
| | | | | | - Haimanot Wasse
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
| | | | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, Illinois, USA
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
25
|
Peluso MJ, Deveau TM, Munter SE, Ryder D, Buck A, Beck-Engeser G, Chan F, Lu S, Goldberg SA, Hoh R, Tai V, Torres L, Iyer NS, Deswal M, Ngo LH, Buitrago M, Rodriguez A, Chen JY, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Deitchman AN, Hellmuth J, Spinelli MA, Durstenfeld MS, Hsue PY, Kelly JD, Martin JN, Deeks SG, Hunt PW, Henrich TJ. Impact of Pre-Existing Chronic Viral Infection and Reactivation on the Development of Long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.06.21.22276660. [PMID: 35898346 PMCID: PMC9327632 DOI: 10.1101/2022.06.21.22276660] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The presence and reactivation of chronic viral infections such as Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) have been proposed as potential contributors to Long COVID (LC), but studies in well-characterized post-acute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited. In a cohort of 280 adults with prior SARS-CoV-2 infection, we observed that LC symptoms such as fatigue and neurocognitive dysfunction at a median of 4 months following initial diagnosis were independently associated with serological evidence of recent EBV reactivation (early antigen-D [EA-D] IgG positivity) or high nuclear antigen IgG levels, but not with ongoing EBV viremia. Evidence of EBV reactivation (EA-D IgG) was most strongly associated with fatigue (OR 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR 0.52) and tended to have less severe (>5 symptoms reported) LC (OR 0.44). Overall, these findings suggest differential effects of chronic viral co-infections on the likelihood of developing LC and predicted distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted. SUMMARY The authors found that Long COVID symptoms in a post-acute cohort were associated with serological evidence of recent EBV reactivation and pre-existing HIV infection when adjusted for participant factors, sample timing, comorbid conditions and prior hospitalization, whereas underlying CMV infection was associated with a decreased risk of Long COVID.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Dylan Ryder
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Amanda Buck
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | | | - Fay Chan
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Leonel Torres
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Nikita S. Iyer
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Lynn H. Ngo
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Jessica Y. Chen
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | | | - Ahmed Chenna
- Monogram Biosciences Inc., South San Francisco, CA, USA
| | | | | | | | - Joanna Hellmuth
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew A. Spinelli
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | | | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, CA, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Post-COVID-19 syndrome and humoral response association after one year in vaccinated and unvaccinated patients. Clin Microbiol Infect 2022; 28:1140-1148. [PMID: 35339673 PMCID: PMC8940723 DOI: 10.1016/j.cmi.2022.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 01/25/2023]
Abstract
Objectives This study aimed to describe the impact of vaccination and the role of humoral responses on post–COVID-19 syndrome 1 year after the onset of SARS coronavirus type 2 (CoV-2). Methods This prospective study was conducted through interviews to investigate post–COVID-19 syndrome 6 and 12 months after disease onset in all adult in- and outpatients with COVID-19 at Udine Hospital (March–May 2020). Vaccination status and two different serological assays to distinguish between response to vaccination (receptor-binding domain (RBD) SARS-CoV-2 IgG) and/or natural infection (non-RBD-SARS-CoV-2 IgG) were also assessed. Results A total of 479 patients (52.6% female; mean age: 53 years) were interviewed 13.5 months (standard deviation: 0.6 months) after acute infection. Post–COVID-19 syndrome was observed in 47.2% of patients (n = 226) after 1 year. There were no significant differences in the worsening of post–COVID-19 symptoms (22.7% vs. 15.8%; p = 0.209) among vaccinated (n = 132) and unvaccinated (n = 347) patients. The presence of non-RBD SARS-CoV-2 IgG induced by natural infection showed a significant association with post–COVID-19 syndrome (OR: 1.35; 95% CI, 1.11–1.64; p = 0.003), and median non-RBD SARS-CoV-2 IgG titres were significantly higher in long haulers than in patients without symptoms (22 kAU/L (interquartile range, 9.7–37.2 kAU/L) vs. 14.1 kAU/L (interquartile range, 5.4–31.3 kAU/L); p = 0.009) after 1 year. In contrast, the presence of RBD SARS-CoV-2 IgG was not associated with the occurrence of post–COVID-19 syndrome (>2500 U/mL vs. 0.9–2500 U/mL; OR: 1.36; 95% CI, 0.62–3.00; p = 0.441), and RBD SARS-CoV-2 IgG titres were similar in long haulers as in patients without symptoms (50% values > 2500 U/mL vs. 55.6% values > 2500 U/mL; p = 0.451). Discussion The SARS-CoV-2 vaccination is not associated with the emergence of post–COVID-19 symptoms more than 1 year after acute infection. The persistence of high serological titre response induced by natural infection, but not vaccination, may play a role in long-haul COVID-19.
Collapse
|