1
|
Ning Y, Zhou IY, Schaub JR, Rotile NJ, Boice A, Ay I, Turner S, Caravan P. Multimodal Imaging Demonstrates Antifibrotic Effects of Targeting αvβ6/αvβ1 Integrins in Biliary Fibrosis. Invest Radiol 2025:00004424-990000000-00333. [PMID: 40306257 DOI: 10.1097/rli.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
OBJECTIVES Development of molecular therapies for liver fibrosis is slowed by a lack of noninvasive methods addressing questions of target expression, target engagement, and treatment response. Integrin αvβ6 is a biomarker of liver fibrosis that is upregulated in livers of patients with primary sclerosing cholangitis. It activates latent TGF-β and plays a critical role in regulating extracellular matrix expression, especially collagen. In this study, our aim was to use combined αvβ6 integrin-targeted positron emission tomography (PET) and collagen-specific magnetic resonance imaging (MRI) to measure target expression/engagement and liver fibrosis reduction with a αvβ6 integrin inhibitor. MATERIALS AND METHODS We conducted a treatment study in bile duct-ligated (BDL) rats using a small molecule inhibitor to αvβ6/αvβ1. 68Ga-DOTA-R01-MG, an αvβ6-specific PET probe, was used to noninvasively measure αvβ6 expression and target engagement in the liver. CM-101, a type I collagen MRI probe, was used to quantify fibrosis. RESULTS 68Ga-DOTA-R01-MG PET showed 3-fold higher liver uptake in BDL rats compared with sham rats at 17 days after surgery. Pretreatment with high dose αvβ6/αvβ1 inhibitor 1 hour before imaging significantly decreased liver PET uptake in BDL rats (31%, P = 0.012). Two weeks of daily dosing with an αvβ6/αvβ1 inhibitor attenuated αvβ6 expression in BDL rat liver as assessed by αvβ6 PET (0.27 ± 0.07 percent injected dose [%ID]/mL compared with 0.40 ± 0.09 %ID/mL in vehicle-treated group, P = 0.014) and reduced liver fibrosis as assessed by collagen MRI (liver relaxation rate change ΔR1 = 0.14 ± 0.11 vs 0.36 ± 0.06, P = 0.0037). Imaging findings were confirmed by histology (collagen proportionate area 10.7 ± 2.8% vs 22.5 ± 6.1%, P < 0.001). CONCLUSIONS A single imaging protocol combining molecular MRI and PET can be used to effectively monitor integrin inhibitor treatment by measuring target expression/engagement and treatment outcomes. Multimodality molecular imaging may be valuable in accelerating drug development in molecular therapies for liver fibrosis.
Collapse
Affiliation(s)
- Yingying Ning
- From the Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Y.N., I.Y.Z., N.J.R., A.B., I.A., P.C.); and Pliant Therapeutics, Inc., South San Francisco, CA (J.R.S., S.T.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Liu M, Gao J, Zhang Y, Zhou X, Wang Y, Wu L, Tian Z, Tang JH. Recent advances in bioresponsive macrocyclic gadolinium(III) complexes for MR imaging and therapy. Dalton Trans 2025; 54:6741-6777. [PMID: 40085150 DOI: 10.1039/d5dt00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Magnetic resonance (MR) imaging is a non-invasive clinical diagnostic modality that provides anatomical and physiological information with sub-millimetre spatial resolution at the organ and tissue levels. It utilizes the relaxation times (T1 and T2) of protons in water to generate MR images. However, the intrinsic MR contrast produced by water relaxation in organs and tissues is limited. To enhance the sensitivity and specificity of MR imaging, about 30%-45% of all clinical MR diagnoses need to use contrast media. Currently, all clinically approved MR contrast agents are linear or macrocyclic gadolinium(III) (Gd(III)) complexes, which are not specific to particular biological events. Due to the relatively high potential for releasing toxic free Gd(III), linear Gd(III) complexes raise safety concerns, making macrocyclic Gd(III) probes the preferred choice for clinical MR imaging without acute safety issues. To enhance the capability of MR imaging for detecting dynamic biological processes and conditions, many bioresponsive macrocyclic Gd(III) complexes capable of targeting diverse biomarkers have been developed. This review provides a concise and timely summary of bioresponsive macrocyclic Gd(III) contrast agents, particularly those developed between 2019 and 2024. We focus on three major types of Gd(III) agent that respond specifically to changes in pH, chemicals, and enzymes, highlighting their molecular design strategies, proton-relaxivity responses, and applications in in vitro and in vivo MR imaging for monitoring specific biomedical conditions and therapies.
Collapse
Affiliation(s)
- Ming Liu
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jingpi Gao
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| | - Yang Zhang
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| | - Xin Zhou
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| | - Yu Wang
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jian-Hong Tang
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 101408, P. R. China.
| |
Collapse
|
3
|
Allison MB, Catana C, Zhou IY, Caravan P, Montesi SB. Molecular Imaging of Pulmonary Fibrosis. J Nucl Med 2025; 66:502-505. [PMID: 40015916 PMCID: PMC11960603 DOI: 10.2967/jnumed.124.267852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Fibrosing lung diseases affect over 160,000 individuals in the United States alone and can carry a prognosis that is worse than many cancers. Antifibrotic treatments modify only the rate of fibrosis progression, and more effective therapies are urgently needed. Molecular imaging enables visualization of disease pathogenesis in progress. It provides a noninvasive means to monitor and quantify dysregulated molecular fibrotic pathways and shows great promise in aiding the diagnosis and disease activity monitoring of pulmonary fibrosis. Here, we review molecular imaging probes under development for use in pulmonary fibrosis. We provide our opinion on current challenges in translating preclinical molecular imaging probes into clinical successes, as well as future directions for expanding their use in drug development.
Collapse
Affiliation(s)
- Margaret B Allison
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ciprian Catana
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
- A.A. Martinos Center for Biomedical Imaging, Boston, Massachusetts; and
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Iris Y Zhou
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
- A.A. Martinos Center for Biomedical Imaging, Boston, Massachusetts; and
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Caravan
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
- A.A. Martinos Center for Biomedical Imaging, Boston, Massachusetts; and
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts;
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Ahmad AA, Ghim M, Kukreja G, Neishabouri A, Zhang Z, Li J, Salarian M, Toczek J, Gona K, Hedayatyanfard K, Morrison T, Zhang J, Huang YH, Liu C, Yu SM, Sadeghi MM. Collagen Hybridizing Peptide-Based Radiotracers for Molecular Imaging of Collagen Turnover in Pulmonary Fibrosis. J Nucl Med 2025; 66:425-433. [PMID: 39915119 PMCID: PMC11876730 DOI: 10.2967/jnumed.124.268832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 02/12/2025] Open
Abstract
Pulmonary fibrosis is a characteristic feature of interstitial lung disease. Current clinical diagnostic methods provide a snapshot of the lung structure without information on disease activity. Collagen hybridizing peptides offer the opportunity to detect collagen remodeling through their hybridization with denatured collagen. Here, we sought to develop a 99mTc-labeled collagen hybridizing tracer to track denatured collagen in vivo and validate it in a murine model of pulmonary fibrosis. Methods: Imaging agents consisting of a polyhistidine or a poly-histidine-glutamic acid [(HE)3] peptide connected to an N-terminal targeting moiety with 9 glycine-proline-hydroxyproline repeats [(GPO)9] through a 3-glycine linker were synthesized. After radiolabeling with 99mTc-tricarbonyl, the labeled products' purity and stability were evaluated by high-performance liquid chromatography and γ-well counting, and their biodistributions were compared in mice. To induce pulmonary fibrosis, the lungs of 8- to 10-wk-old mice were exposed to bleomycin (or saline as control). At 3 wk after induction, SPECT/CT imaging with 99mTc-(HE)3-(GPO)9 was performed 1 h after injection and was followed by tissue collection to assess 99mTc-(HE)3-(GPO)9 biodistribution by γ-well counting and to evaluate lung histology. The specificity of the tracer uptake was assessed using a scrambled homolog. A group of animals underwent serial imaging 3 and 8-10 wk after induction. Results: The specific activity of the final radiolabeled product was 70.3 ± 14.8 GBq/µmol. Radiolabeled tracers were stable in blood for at least 2 h and showed rapid blood clearance. 99mTc-(HE)3-(GPO)9 showed lower liver uptake in biodistribution studies and was selected for in vivo imaging studies. SPECT/CT imaging of bleomycin-treated mice 3 wk after induction showed higher specific 99mTc-(HE)3-(GPO)9 lung uptake than that of control mice (P < 0.01) and that of bleomycin-treated mice 8-10 wk after induction, when fibrosis was resolved (P < 0.05). There was a significant correlation between lung uptake quantified by SPECT/CT and γ-well counting (Pearson R = 0.83, P < 0.001) and significant correlations between tracer uptake and indices of tissue fibrosis. Conclusion: 99mTc-(HE)3-(GPO)9 enables SPECT imaging of collagen turnover in pulmonary fibrosis. This approach expands the scope of existing diagnostic tools in fibrosis and can lead to better patient management by monitoring the effect of antifibrotic therapies.
Collapse
Affiliation(s)
- Azmi A Ahmad
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Mean Ghim
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Gunjan Kukreja
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Afarin Neishabouri
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Zhengxing Zhang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jie Li
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Mani Salarian
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jakub Toczek
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Kiran Gona
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Keshvad Hedayatyanfard
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Tian Morrison
- Department of Biomedical Engineering and Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah; and
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - S Michael Yu
- Department of Biomedical Engineering and Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah; and
| | - Mehran M Sadeghi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
5
|
Harr TJ, Gupta N, Rahar B, Stott K, Medina-Guevara Y, Gari MK, Oler AT, McDermott IS, Lee HJ, Rasoulianboroujeni M, Weichmann AM, Forati A, Holbert K, Langel TS, Coulter KW, Burkel BM, Tomasini-Johansson BR, Ponik SM, Engle JW, Hernandez R, Kwon GS, Sandbo N, Bernau K. The fibronectin-targeting PEG-FUD imaging probe shows enhanced uptake during fibrogenesis in experimental lung fibrosis. Respir Res 2025; 26:34. [PMID: 39844185 PMCID: PMC11756063 DOI: 10.1186/s12931-025-03107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD). In this work, we demonstrate the binding of PEG-FUD to the fibrotic lung throughout the course of bleomycin-induced murine model of pulmonary fibrosis. We first analyzed the binding of radiolabeled PEG-FUD following direct incubation to precision cut lung slices from mice at different stages of experimental lung fibrosis. Then, we administered fluorescently labeled PEG-FUD subcutaneously to mice over the course of bleomycin-induced pulmonary fibrosis and assessed peptide uptake 24 h later through ex vivo tissue imaging. Using both methods, we found that peptide targeting to the fibrotic lung is increased during the fibrogenic phase of the single dose bleomycin lung fibrosis model (days 7 and 14 post-bleomycin). At these timepoints we found a correlative relationship between peptide uptake and fibrotic burden. These data suggest that PEG-FUD targets fibronectin associated with active fibrogenesis in this model, making it a promising candidate for a clinically translatable molecular imaging probe to non-invasively determine pulmonary fibrosis disease activity, enabling accelerated therapeutic decision-making.
Collapse
Affiliation(s)
- Thomas J Harr
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Babita Rahar
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kristen Stott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Yadira Medina-Guevara
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Metti K Gari
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Angie T Oler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ivy Sohee McDermott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Ashley M Weichmann
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Amir Forati
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kelsey Holbert
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Trevor S Langel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kade W Coulter
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Bianca R Tomasini-Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Nathan Sandbo
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ksenija Bernau
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
6
|
Zhang C, Ma H, DeRoche D, Gale EM, Pantazopoulos P, Rotile NJ, Diyabalanage H, Humblet V, Caravan P, Zhou IY. Manganese-based type I collagen-targeting MRI probe for in vivo imaging of liver fibrosis. RESEARCH SQUARE 2024:rs.3.rs-5349052. [PMID: 39606447 PMCID: PMC11601876 DOI: 10.21203/rs.3.rs-5349052/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Liver fibrosis is a common pathway shared by all forms of progressive chronic liver disease. There is an unmet clinical need for noninvasive imaging tools to diagnose and stage fibrosis, which presently relies heavily on percutaneous liver biopsy. Here we explored the feasibility of using a novel type I collagen-targeted manganese (Mn)-based MRI probe, Mn-CBP20, for liver fibrosis imaging. In vitro characterization of Mn-CBP20 demonstrated its high binding affinity for human collagen (K d = 9.6 μM), high T1-relaxivity (48.9 mM-1s-1 at 1.4T and 27°C), and kinetic inertness to Mn release under forcing conditions. We demonstrated MRI using Mn-CBP20 performs comparably to previously reported gadolinium-based type I collagen-targeted probe EP-3533 in a mouse model of carbon tetrachloride-induced liver fibrosis, and further demonstrate efficacy to detect fibrosis in a diet-induced mouse model of metabolically-associated steatohepatitis. Biodistribution studies using the Mn-CBP20 radio-labeled with the positron-emitting 52Mn isotope demonstrate efficient clearance of Mn-CBP20 primarily via renal excretion. Mn-CBP20 represents a promising candidate that merits further evaluation and development for molecular imaging of liver fibrosis.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hua Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Daniel DeRoche
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
7
|
Ning Y, Yuwen Zhou I, Caravan P. Quantitative in Vivo Molecular MRI. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407262. [PMID: 39279542 PMCID: PMC11530320 DOI: 10.1002/adma.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Molecular magnetic resonance imaging (MRI) combines chemistry, chemical biology, and imaging techniques to track molecular events non-invasively. Quantitative molecular MRI aims to provide meaningful, reproducible numerical measurements of molecular processes or biochemical targets within the body. In this review, the classifications of molecular MRI probes based on their signal-generating mechanism and functionality are first described. From there, the primary considerations for in vitro characterization and in vivo validation of molecular MRI probes, including how to avoid pitfalls and biases are discussed. Then, recommendations on imaging acquisition protocols and analysis methods to establish quantitative relationships between MRI signal change induced by the probes and the molecular processes of interest are provided. Finally, several representative case studies are highlighted that incorporate these features. Quantitative molecular MRI is a multidisciplinary research area incorporating expertise in chemical biology, inorganic chemistry, molecular probes, imaging physics, drug development, pathobiology, and medicine. The purpose of this review is to provide guidance to chemists developing MR imaging probes and methods in terms of in vitro and in vivo validation to accelerate the translation of these new quantitative tools for non-invasive imaging of biological processes.
Collapse
Affiliation(s)
- Yingying Ning
- Spin-X Institute, School of Chemistry and Chemical Engineering, School of Biomedical Sciences and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
8
|
Chaher N, Lacerda S, Digilio G, Padovan S, Gao L, Lavin B, Stefania R, Velasco C, Cruz G, Prieto C, Botnar RM, Phinikaridou A. Non-invasive in vivo imaging of changes in Collagen III turnover in myocardial fibrosis. NPJ IMAGING 2024; 2:33. [PMID: 39301014 PMCID: PMC11408249 DOI: 10.1038/s44303-024-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Heart failure (HF) affects 64 million people globally with enormous societal and healthcare costs. Myocardial fibrosis, characterised by changes in collagen content drives HF. Despite evidence that collagen type III (COL3) content changes during myocardial fibrosis, in vivo imaging of COL3 has not been achieved. Here, we discovered the first imaging probe that binds to COL3 with high affinity and specificity, by screening candidate peptide-based probes. Characterisation of the probe showed favourable magnetic and biodistribution properties. The probe's potential for in vivo molecular cardiac magnetic resonance imaging was evaluated in a murine model of myocardial infarction. Using the new probe, we were able to map and quantify, previously undetectable, spatiotemporal changes in COL3 after myocardial infarction and monitor response to treatment. This innovative probe provides a promising tool to non-invasively study the unexplored roles of COL3 in cardiac fibrosis and other cardiovascular conditions marked by changes in COL3.
Collapse
Affiliation(s)
- Nadia Chaher
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans rue Charles Sadron, 45071 Orléans, France
| | - Giuseppe Digilio
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR), Molecular Biotechnology Center, Torino, Italy
| | - Ling Gao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Rachele Stefania
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Department of Radiology, University of Michigan, Ann Arbor, MI USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- King’s BHF Centre of Excellence, Cardiovascular Division, London, UK
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- King’s BHF Centre of Excellence, Cardiovascular Division, London, UK
| |
Collapse
|
9
|
Ma H, Esfahani SA, Krishna S, Ataeinia B, Zhou IY, Rotile NJ, Weigand-Whittier J, Boice AT, Liss AS, Tanabe KK, Caravan P. Allysine-Targeted Molecular MRI Enables Early Prediction of Chemotherapy Response in Pancreatic Cancer. Cancer Res 2024; 84:2549-2560. [PMID: 38759082 PMCID: PMC11293968 DOI: 10.1158/0008-5472.can-23-3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Neoadjuvant therapy is routinely used in pancreatic ductal adenocarcinoma (PDAC), but not all tumors respond to this treatment. Current clinical imaging techniques are not able to precisely evaluate and predict the response to neoadjuvant therapies over several weeks. A strong fibrotic reaction is a hallmark of a positive response, and during fibrogenesis, allysine residues are formed on collagen proteins by the action of lysyl oxidases. Here, we report the application of an allysine-targeted molecular MRI probe, MnL3, to provide an early, noninvasive assessment of treatment response in PDAC. Allysine increased 2- to 3-fold after one dose of neoadjuvant therapy with FOLFIRINOX in sensitive human PDAC xenografts in mice. Molecular MRI with MnL3 could specifically detect and quantify fibrogenesis in PDAC xenografts. Comparing the MnL3 signal before and 3 days after one dose of FOLFIRINOX predicted subsequent treatment response. The MnL3 tumor signal increased by 70% from day 0 to day 3 in mice that responded to subsequent doses of FOLFIRINOX, whereas no signal increase was observed in FOLFIRINOX-resistant tumors. This study indicates the promise of allysine-targeted molecular MRI as a noninvasive tool to predict chemotherapy outcomes. Significance: Allysine-targeted molecular MRI can quantify fibrogenesis in pancreatic tumors and predict response to chemotherapy, which could guide rapid clinical management decisions by differentiating responders from nonresponders after treatment initiation.
Collapse
Affiliation(s)
- Hua Ma
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shadi A. Esfahani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Shriya Krishna
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Bahar Ataeinia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Iris Y. Zhou
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Nicholas J. Rotile
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Avery T. Boice
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, Massachusetts, 02114, United States
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Peter Caravan
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
10
|
Moon BF, Zhou IY, Ning Y, Chen YI, Le Fur M, Shuvaev S, Akam EA, Ma H, Solsona CM, Weigand‐Whittier J, Rotile N, Hariri LP, Drummond M, Boice AT, Zygmont SE, Sharma Y, Warburton RR, Martin GL, Blanton RM, Fanburg BL, Hill NS, Caravan P, Penumatsa KC. Simultaneous Positron Emission Tomography and Molecular Magnetic Resonance Imaging of Cardiopulmonary Fibrosis in a Mouse Model of Left Ventricular Dysfunction. J Am Heart Assoc 2024; 13:e034363. [PMID: 38979786 PMCID: PMC11292745 DOI: 10.1161/jaha.124.034363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Aging-associated left ventricular dysfunction promotes cardiopulmonary fibrogenic remodeling, Group 2 pulmonary hypertension (PH), and right ventricular failure. At the time of diagnosis, cardiac function has declined, and cardiopulmonary fibrosis has often developed. Here, we sought to develop a molecular positron emission tomography (PET)-magnetic resonance imaging (MRI) protocol to detect both cardiopulmonary fibrosis and fibrotic disease activity in a left ventricular dysfunction model. METHODS AND RESULTS Left ventricular dysfunction was induced by transverse aortic constriction (TAC) in 6-month-old senescence-accelerated prone mice, a subset of mice that received sham surgery. Three weeks after surgery, mice underwent simultaneous PET-MRI at 4.7 T. Collagen-targeted PET and fibrogenesis magnetic resonance (MR) probes were intravenously administered. PET signal was computed as myocardium- or lung-to-muscle ratio. Percent signal intensity increase and Δ lung-to-muscle ratio were computed from the pre-/postinjection magnetic resonance images. Elevated allysine in the heart (P=0.02) and lungs (P=0.17) of TAC mice corresponded to an increase in myocardial magnetic resonance imaging percent signal intensity increase (P<0.0001) and Δlung-to-muscle ratio (P<0.0001). Hydroxyproline in the heart (P<0.0001) and lungs (P<0.01) were elevated in TAC mice, which corresponded to an increase in heart (myocardium-to-muscle ratio, P=0.02) and lung (lung-to-muscle ratio, P<0.001) PET measurements. Pressure-volume loop and echocardiography demonstrated adverse left ventricular remodeling, function, and increased right ventricular systolic pressure in TAC mice. CONCLUSIONS Administration of collagen-targeted PET and allysine-targeted MR probes led to elevated PET-magnetic resonance imaging signals in the myocardium and lungs of TAC mice. The study demonstrates the potential to detect fibrosis and fibrogenesis in cardiopulmonary disease through a dual molecular PET-magnetic resonance imaging protocol.
Collapse
Affiliation(s)
- Brianna F. Moon
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Iris Y. Zhou
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yingying Ning
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yin‐Ching I. Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Mariane Le Fur
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Sergey Shuvaev
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Eman A. Akam
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Hua Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | | | - Jonah Weigand‐Whittier
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Nicholas Rotile
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Lida P. Hariri
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Matthew Drummond
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Avery T. Boice
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Samantha E. Zygmont
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yamini Sharma
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Rod R. Warburton
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Tufts Medical CenterBostonMAUSA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Tufts Medical CenterBostonMAUSA
| | - Barry L. Fanburg
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Nicholas S. Hill
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Peter Caravan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | | |
Collapse
|
11
|
Chen S, Zhuang D, Jia Q, Guo B, Hu G. Advances in Noninvasive Molecular Imaging Probes for Liver Fibrosis Diagnosis. Biomater Res 2024; 28:0042. [PMID: 38952717 PMCID: PMC11214848 DOI: 10.34133/bmr.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury, which may lead to cirrhosis and cancer. Early-stage fibrosis is reversible, and it is difficult to precisely diagnose with conventional imaging modalities such as magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and ultrasound imaging. In contrast, probe-assisted molecular imaging offers a promising noninvasive approach to visualize early fibrosis changes in vivo, thus facilitating early diagnosis and staging liver fibrosis, and even monitoring of the treatment response. Here, the most recent progress in molecular imaging technologies for liver fibrosis is updated. We start by illustrating pathogenesis for liver fibrosis, which includes capillarization of liver sinusoidal endothelial cells, cellular and molecular processes involved in inflammation and fibrogenesis, as well as processes of collagen synthesis, oxidation, and cross-linking. Furthermore, the biological targets used in molecular imaging of liver fibrosis are summarized, which are composed of receptors on hepatic stellate cells, macrophages, and even liver collagen. Notably, the focus is on insights into the advances in imaging modalities developed for liver fibrosis diagnosis and the update in the corresponding contrast agents. In addition, challenges and opportunities for future research and clinical translation of the molecular imaging modalities and the contrast agents are pointed out. We hope that this review would serve as a guide for scientists and students who are interested in liver fibrosis imaging and treatment, and as well expedite the translation of molecular imaging technologies from bench to bedside.
Collapse
Affiliation(s)
- Shaofang Chen
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Danping Zhuang
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qingyun Jia
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application,
Harbin Institute of Technology, Shenzhen 518055, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
12
|
Akam-Baxter EA, Bergemann D, Ridley SJ, To S, Andrea B, Moon B, Ma H, Zhou Y, Aguirre A, Caravan P, Gonzalez-Rosa JM, Sosnovik DE. Dynamics of collagen oxidation and cross linking in regenerating and irreversibly infarcted myocardium. Nat Commun 2024; 15:4648. [PMID: 38858347 PMCID: PMC11164919 DOI: 10.1038/s41467-024-48604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
In mammalian hearts myocardial infarction produces a permanent collagen-rich scar. Conversely, in zebrafish a collagen-rich scar forms but is completely resorbed as the myocardium regenerates. The formation of cross-links in collagen hinders its degradation but cross-linking has not been well characterized in zebrafish hearts. Here, a library of fluorescent probes to quantify collagen oxidation, the first step in collagen cross-link (CCL) formation, was developed. Myocardial injury in mice or zebrafish resulted in similar dynamics of collagen oxidation in the myocardium in the first month after injury. However, during this time, mature CCLs such as pyridinoline and deoxypyridinoline developed in the murine infarcts but not in the zebrafish hearts. High levels of newly oxidized collagen were still seen in murine scars with mature CCLs. These data suggest that fibrogenesis remains dynamic, even in mature scars, and that the absence of mature CCLs in zebrafish hearts may facilitate their ability to regenerate.
Collapse
Affiliation(s)
- Eman A Akam-Baxter
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.
| | - David Bergemann
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sterling J Ridley
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha To
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Andrea
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brianna Moon
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hua Ma
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yirong Zhou
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron Aguirre
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Caravan
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan Manuel Gonzalez-Rosa
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Biology Department, Boston College, Chestnut Hill, USA
| | - David E Sosnovik
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Kirby A, Shuhendler AJ. Small Animal Multisubject PET/CT Workflow. Methods Mol Biol 2024; 2729:185-193. [PMID: 38006497 DOI: 10.1007/978-1-0716-3499-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Positron emission tomography (PET) is a highly sensitive molecular imaging technique that uses radioactive tracers to map molecular and metabolic processes in living animals. PET can be performed as a stand-alone modality but is often combined with CT to provide for objective anatomical localization of PET signals in a multimodality approach. In order to outline the general approach to evaluating four mice simultaneously by dynamic PET imaging, the use of the aldehyde-targeted radiotracer [18F]NA3BF3 in mouse models of hepatotoxicity will be described. Indeed the production of aldehydes is upregulated in a wide range of disease and injury, making them a suitable biomarker for PET imaging of numerous pathologies.
Collapse
Affiliation(s)
- Alexia Kirby
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Adam J Shuhendler
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Shuvaev S, Knipe RS, Drummond M, Rotile NJ, Ay I, Weigand-Whittier JP, Ma H, Zhou IY, Roberts JD, Black K, Hariri LP, Ning Y, Caravan P. Optimization of an Allysine-Targeted PET Probe for Quantifying Fibrogenesis in a Mouse Model of Pulmonary Fibrosis. Mol Imaging Biol 2023; 25:944-953. [PMID: 37610609 DOI: 10.1007/s11307-023-01845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a destructive lung disease with a poor prognosis, an unpredictable clinical course, and inadequate therapies. There are currently no measures of disease activity to guide clinicians making treatment decisions. The aim of this study was to develop a PET probe to identify lung fibrogenesis using a pre-clinical model of pulmonary fibrosis, with potential for translation into clinical use to predict disease progression and inform treatment decisions. METHODS Eight novel allysine-targeting chelators, PIF-1, PIF-2, …, PIF-8, with different aldehyde-reactive moieties were designed, synthesized, and radiolabeled with gallium-68 or copper-64. PET probe performance was assessed in C57BL/6J male mice 2 weeks after intratracheal bleomycin challenge and in naïve mice by dynamic PET/MR imaging and with biodistribution at 90 min post injection. Lung hydroxyproline and allysine were quantified ex vivo and histological staining for fibrosis and aldehyde was performed. RESULTS In vivo screening of probes identified 68GaPIF-3 and 68GaPIF-7 as probes with high uptake in injured lung, high uptake in injured lung versus normal lung, and high uptake in injured lung versus adjacent liver and heart tissue. A crossover, intra-animal PET/MR imaging study of 68GaPIF-3 and 68GaPIF-7 confirmed 68GaPIF-7 as the superior probe. Specificity for fibrogenesis was confirmed in a crossover, intra-animal PET/MR imaging study with 68GaPIF-7 and a non-binding control compound, 68GaPIF-Ctrl. Substituting copper-64 for gallium-68 did not affect lung uptake or specificity indicating that either isotope could be used. CONCLUSION A series of allysine-reactive PET probes with variations in the aldehyde-reactive moiety were evaluated in a pre-clinical model of lung fibrosis. The hydrazine-bearing probe, 68GaPIF-7, exhibited the highest uptake in fibrogenic lung, low uptake in surrounding liver or heart tissue, and low lung uptake in healthy mice and should be considered for further clinical translation.
Collapse
Affiliation(s)
- Sergey Shuvaev
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA
| | - Rachel S Knipe
- Division of Pulmonary and Critical Care Medicine, Boston, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt Drummond
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA
- Division of Pulmonary and Critical Care Medicine, Boston, USA
| | - Nicholas J Rotile
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
| | - Ilknur Ay
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
| | | | - Hua Ma
- Institute for Innovation in Imaging (i3), Boston, USA
| | - Iris Yuwen Zhou
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA
| | - Jesse D Roberts
- Department of Pediatric Anesthesiology, Mass General Hospital for Children, Boston, USA
| | - Katherine Black
- Division of Pulmonary and Critical Care Medicine, Boston, USA
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Yingying Ning
- Institute for Innovation in Imaging (i3), Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA
| | - Peter Caravan
- Institute for Innovation in Imaging (i3), Boston, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA, 02129, USA.
| |
Collapse
|
15
|
Ma H, Zhou IY, Chen YI, Rotile NJ, Ay I, Akam EA, Wang H, Knipe RS, Hariri LP, Zhang C, Drummond M, Pantazopoulos P, Moon BF, Boice AT, Zygmont SE, Weigand-Whittier J, Sojoodi M, Gonzalez-Villalobos RA, Hansen MK, Tanabe KK, Caravan P. Tailored Chemical Reactivity Probes for Systemic Imaging of Aldehydes in Fibroproliferative Diseases. J Am Chem Soc 2023; 145:20825-20836. [PMID: 37589185 PMCID: PMC11022681 DOI: 10.1021/jacs.3c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.
Collapse
Affiliation(s)
- Hua Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Y. Iris Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Eman A. Akam
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Caiyuan Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Matthew Drummond
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Brianna F. Moon
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Avery T. Boice
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Samantha E. Zygmont
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Romer A. Gonzalez-Villalobos
- Cardiovascular and Metabolism Discovery, Janssen Research and Development LLC, Boston, Massachusetts 02115, United States
| | - Michael K. Hansen
- Cardiovascular and Metabolism Discovery, Janssen Research and Development LLC, Boston, Massachusetts 02115, United States
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
16
|
Akam EA, Bergemann D, Ridley SJ, To S, Andrea B, Moon B, Ma H, Zhou Y, Aguirre A, Caravan P, Gonzalez-Rosa JM, Sosnovik DE. Dynamics of Collagen Oxidation and Cross Linking in Regenerating and Irreversibly Infarcted Myocardium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.549713. [PMID: 37546963 PMCID: PMC10402057 DOI: 10.1101/2023.07.25.549713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In mammalian hearts myocardial infarction produces a permanent collagen-rich scar. Conversely, in zebrafish a collagen-rich scar forms but is completely resorbed as the myocardium regenerates. The formation of cross-links in collagen hinders its degradation but cross-linking has not been well characterized in zebrafish hearts. Here, a library of fluorescent probes to quantify collagen oxidation, the first step in collagen cross-link (CCL) formation, was developed. Myocardial injury in mice or zebrafish resulted in similar dynamics of collagen oxidation in the myocardium in the first month after injury. However, during this time, mature CCLs such as pyridinoline and deoxypyridinoline developed in the murine infarcts but not in the zebrafish hearts. High levels of newly oxidized collagen were still seen in murine scars with mature CCLs. These data suggest that fibrogenesis remains dynamic, even in mature scars, and that the absence of mature CCLs in zebrafish hearts may facilitate their ability to regenerate.
Collapse
|
17
|
Chen YC, Waghorn PA, Rosales IA, Arora G, Erstad DJ, Rotile NJ, Jones CM, Ferreira DS, Wei L, Martinez RV, Schlerman FJ, Wellen J, Fuchs BC, Colvin RB, Ay I, Caravan P. Molecular MR Imaging of Renal Fibrogenesis in Mice. J Am Soc Nephrol 2023; 34:1159-1165. [PMID: 37094382 PMCID: PMC10356170 DOI: 10.1681/asn.0000000000000148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/12/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND In most CKDs, lysyl oxidase oxidation of collagen forms allysine side chains, which then form stable crosslinks. We hypothesized that MRI with the allysine-targeted probe Gd-oxyamine (OA) could be used to measure this process and noninvasively detect renal fibrosis. METHODS Two mouse models were used: hereditary nephritis in Col4a3-deficient mice (Alport model) and a glomerulonephritis model, nephrotoxic nephritis (NTN). MRI measured the difference in kidney relaxation rate, ΔR1, after intravenous Gd-OA administration. Renal tissue was collected for biochemical and histological analysis. RESULTS ΔR1 was increased in the renal cortex of NTN mice and in both the cortex and the medulla of Alport mice. Ex vivo tissue analyses showed increased collagen and Gd-OA levels in fibrotic renal tissues and a high correlation between tissue collagen and ΔR1. CONCLUSIONS Magnetic resonance imaging using Gd-OA is potentially a valuable tool for detecting and staging renal fibrogenesis.
Collapse
Affiliation(s)
- Yin-Ching Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Philip A. Waghorn
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Ivy A. Rosales
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gunisha Arora
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Derek J. Erstad
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Chloe M. Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Diego S. Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Robert V.P. Martinez
- Inflammation and Immunology Research Unit, Pfizer Inc., Cambridge, Massachusetts
| | | | - Jeremy Wellen
- Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Robert B. Colvin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Ma H, Zhou IY, Chen YI, Rotile NJ, Ay I, Akam E, Wang H, Knipe R, Hariri LP, Zhang C, Drummond M, Pantazopoulos P, Moon BF, Boice AT, Zygmont SE, Weigand-Whittier J, Sojoodi M, Gonzalez-Villalobos RA, Hansen MK, Tanabe KK, Caravan P. Tailored chemical reactivity probes for systemic imaging of aldehydes in fibroproliferative diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537707. [PMID: 37131719 PMCID: PMC10153247 DOI: 10.1101/2023.04.20.537707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small molecule magnetic resonance (MR) probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis noninvasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, make them strong candidates for clinical translation.
Collapse
|
19
|
Ali Mondal S, Sathiaseelan R, Mann SN, Kamal M, Luo W, Saccon TD, Isola JVV, Peelor FF, Li T, Freeman WM, Miller BF, Stout MB. 17α-estradiol, a lifespan-extending compound, attenuates liver fibrosis by modulating collagen turnover rates in male mice. Am J Physiol Endocrinol Metab 2023; 324:E120-E134. [PMID: 36516471 PMCID: PMC9902223 DOI: 10.1152/ajpendo.00256.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17β-estradiol (17β-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17β-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor β1 (TGF-β1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-β1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tatiana D Saccon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Tiangang Li
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
20
|
Keeling G, Man F. Nuclear Imaging of Inflammation. PROGRESS IN INFLAMMATION RESEARCH 2023:23-90. [DOI: 10.1007/978-3-031-23661-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Ning Y, Zhou IY, Roberts JD, Rotile NJ, Akam E, Barrett SC, Sojoodi M, Barr MN, Punshon T, Pantazopoulos P, Drescher HK, Jackson BP, Tanabe KK, Caravan P. Molecular MRI quantification of extracellular aldehyde pairs for early detection of liver fibrogenesis and response to treatment. Sci Transl Med 2022; 14:eabq6297. [PMID: 36130015 PMCID: PMC10189657 DOI: 10.1126/scitranslmed.abq6297] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Liver fibrosis plays a critical role in the evolution of most chronic liver diseases and is characterized by a buildup of extracellular matrix, which can progress to cirrhosis, hepatocellular carcinoma, liver failure, or death. Now, there are no noninvasive methods available to accurately assess disease activity (fibrogenesis) to sensitively detect early onset of fibrosis or to detect early response to treatment. Here, we hypothesized that extracellular allysine aldehyde (LysAld) pairs formed by collagen oxidation during active fibrosis could be a target for assessing fibrogenesis with a molecular probe. We showed that molecular magnetic resonance imaging (MRI) using an extracellular probe targeting these LysAld pairs acts as a noninvasive biomarker of fibrogenesis and demonstrated its high sensitivity and specificity in detecting fibrogenesis in toxin- and dietary-induced mouse models, a cholestasis rat model of liver fibrogenesis, and in human fibrotic liver tissues. Quantitative molecular MRI was highly correlated with fibrogenesis markers and enabled noninvasive detection of early onset fibrosis and response to antifibrotic treatment, showing high potential for clinical translation.
Collapse
Affiliation(s)
- Yingying Ning
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Iris. Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jesse D. Roberts
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Eman Akam
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Stephen C. Barrett
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Matthew N. Barr
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03766, USA
| | - Tracy Punshon
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03766, USA
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Hannah K. Drescher
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03766, USA
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
22
|
Ning Y, Zhou IY, Rotile NJ, Pantazopoulos P, Wang H, Barrett SC, Sojoodi M, Tanabe KK, Caravan P. Dual Hydrazine-Equipped Turn-On Manganese-Based Probes for Magnetic Resonance Imaging of Liver Fibrogenesis. J Am Chem Soc 2022; 144:16553-16558. [PMID: 35998740 PMCID: PMC10083724 DOI: 10.1021/jacs.2c06231] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver fibrogenesis is accompanied by upregulation of lysyl oxidase enzymes, which catalyze oxidation of lysine ε-amino groups on the extracellular matrix proteins to form the aldehyde containing amino acid allysine (LysAld). Here, we describe the design and synthesis of novel manganese-based MRI probes with high signal amplification for imaging liver fibrogenesis. Rational design of a series of stable hydrazine-equipped manganese MRI probes gives Mn-2CHyd with the highest affinity and turn-on relaxivity (4-fold) upon reaction with LysAld. A dynamic PET-MRI study using [52Mn]Mn-2CHyd showed low liver uptake of the probe in healthy mice. The ability of the probe to detect liver fibrogenesis was then demonstrated in vivo in CCl4-injured mice. This study enables further development and application of manganese-based hydrazine-equipped probes for imaging liver fibrogenesis.
Collapse
Affiliation(s)
- Yingying Ning
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Stephen Cole Barrett
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
23
|
Comeau ZJ, Lessard BH, Shuhendler AJ. The Need to Pair Molecular Monitoring Devices with Molecular Imaging to Personalize Health. Mol Imaging Biol 2022; 24:675-691. [PMID: 35257276 PMCID: PMC8901094 DOI: 10.1007/s11307-022-01714-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
By enabling the non-invasive monitoring and quantification of biomolecular processes, molecular imaging has dramatically improved our understanding of disease. In recent years, non-invasive access to the molecular drivers of health versus disease has emboldened the goal of precision health, which draws on concepts borrowed from process monitoring in engineering, wherein hundreds of sensors can be employed to develop a model which can be used to preventatively detect and diagnose problems. In translating this monitoring regime from inanimate machines to human beings, precision health posits that continual and on-the-spot monitoring are the next frontiers in molecular medicine. Early biomarker detection and clinical intervention improves individual outcomes and reduces the societal cost of treating chronic and late-stage diseases. However, in current clinical settings, methods of disease diagnoses and monitoring are typically intermittent, based on imprecise risk factors, or self-administered, making optimization of individual patient outcomes an ongoing challenge. Low-cost molecular monitoring devices capable of on-the-spot biomarker analysis at high frequencies, and even continuously, could alter this paradigm of therapy and disease prevention. When these devices are coupled with molecular imaging, they could work together to enable a complete picture of pathogenesis. To meet this need, an active area of research is the development of sensors capable of point-of-care diagnostic monitoring with an emphasis on clinical utility. However, a myriad of challenges must be met, foremost, an integration of the highly specialized molecular tools developed to understand and monitor the molecular causes of disease with clinically accessible techniques. Functioning on the principle of probe-analyte interactions yielding a transducible signal, probes enabling sensing and imaging significantly overlap in design considerations and targeting moieties, however differing in signal interpretation and readout. Integrating molecular sensors with molecular imaging can provide improved data on the personal biomarkers governing disease progression, furthering our understanding of pathogenesis, and providing a positive feedback loop toward identifying additional biomarkers and therapeutics. Coupling molecular imaging with molecular monitoring devices into the clinical paradigm is a key step toward achieving precision health.
Collapse
Affiliation(s)
- Zachary J Comeau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, ON, K1N 6N5, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada.
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
24
|
Zhong Y, Mahoney RC, Khatun Z, Chen HH, Nguyen CT, Caravan P, Roberts JD. Lysyl oxidase regulation and protein aldehydes in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 2022; 322:L204-L223. [PMID: 34878944 PMCID: PMC8794022 DOI: 10.1152/ajplung.00158.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFβ activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFβ regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFβ-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFβ treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFβ stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFβ and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.
Collapse
Affiliation(s)
- Ying Zhong
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rose C. Mahoney
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Zehedina Khatun
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Howard H. Chen
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher T. Nguyen
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Caravan
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts,7The Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesse D. Roberts
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,2Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts,3Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
25
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
26
|
Ezeani M, Noor A, Alt K, Lal S, Donnelly PS, Hagemeyer CE, Niego B. Collagen-Targeted Peptides for Molecular Imaging of Diffuse Cardiac Fibrosis. J Am Heart Assoc 2021; 10:e022139. [PMID: 34514814 PMCID: PMC8649514 DOI: 10.1161/jaha.121.022139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Cardiac fibrosis is the excessive deposition of extracellular matrix in the heart, triggered by a cardiac insult, aging, genetics, or environmental factors. Molecular imaging of the cardiac extracellular matrix with targeted probes could improve diagnosis and treatment of heart disease. However, although this technology has been used to demonstrate focal scarring arising from myocardial infarction, its capacity to demonstrate extracellular matrix expansion and diffuse cardiac fibrosis has not been assessed. Methods and Results Here, we report the use of collagen-targeted peptides labeled with near-infrared fluorophores for the detection of diffuse cardiac fibrosis in the β2-AR (β-2-adrenergic receptor) overexpressing mouse model and in ischemic human hearts. Two approaches were evaluated, the first based on a T peptide that binds matrix metalloproteinase-2-proteolyzed collagen IV, and the second on the cyclic peptide EP-3533, which targets collagen I. The systemic and cardiac uptakes of both peptides (intravenously administered) were quantified ex vivo by near-infrared imaging of whole organs, tissue sections, and heart lysates. The peptide accumulation profiles corresponded to an immunohistochemically-validated increase in collagen types I and IV in hearts of transgenic mice versus littermate controls. The T peptide could encouragingly demonstrate both the intermediate (7 months old) and severe (11 months old) cardiomyopathic phenotypes. Co-immunostainings of fluorescent peptides and collagens, as well as reduced collagen binding of a control peptide, confirmed the collagen specificity of the tracers. Qualitative analysis of heart samples from patients with ischemic cardiomyopathy compared with nondiseased donors supported the collagen-enhancement capabilities of these peptides also in the clinical settings. Conclusions Together, these observations demonstrate the feasibility and translation potential of molecular imaging with collagen-binding peptides for noninvasive imaging of diffuse cardiac fibrosis.
Collapse
Affiliation(s)
- Martin Ezeani
- NanoBiotechnology Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Australia
| | - Asif Noor
- School of Chemistry Bio21 Molecular Science and Biotechnology Institute University of Melbourne Australia
| | - Karen Alt
- NanoTheranostics Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Australia
| | - Sean Lal
- School of Medical Sciences Faculty of Medicine and Health University of Sydney Australia
| | - Paul S Donnelly
- School of Chemistry Bio21 Molecular Science and Biotechnology Institute University of Melbourne Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Australia
| |
Collapse
|
27
|
Nayor M, Shen L, Hunninghake GM, Kochunov P, Barr RG, Bluemke DA, Broeckel U, Caravan P, Cheng S, de Vries PS, Hoffmann U, Kolossváry M, Li H, Luo J, McNally EM, Thanassoulis G, Arnett DK, Vasan RS. Progress and Research Priorities in Imaging Genomics for Heart and Lung Disease: Summary of an NHLBI Workshop. Circ Cardiovasc Imaging 2021; 14:e012943. [PMID: 34387095 PMCID: PMC8486340 DOI: 10.1161/circimaging.121.012943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging genomics is a rapidly evolving field that combines state-of-the-art bioimaging with genomic information to resolve phenotypic heterogeneity associated with genomic variation, improve risk prediction, discover prevention approaches, and enable precision diagnosis and treatment. Contemporary bioimaging methods provide exceptional resolution generating discrete and quantitative high-dimensional phenotypes for genomics investigation. Despite substantial progress in combining high-dimensional bioimaging and genomic data, methods for imaging genomics are evolving. Recognizing the potential impact of imaging genomics on the study of heart and lung disease, the National Heart, Lung, and Blood Institute convened a workshop to review cutting-edge approaches and methodologies in imaging genomics studies, and to establish research priorities for future investigation. This report summarizes the presentations and discussions at the workshop. In particular, we highlight the need for increased availability of imaging genomics data in diverse populations, dedicated focus on less common conditions, and centralization of efforts around specific disease areas.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, MA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary M. Hunninghake
- Division of Pulmonary and Critical Care Medicine, Harvard
Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of
Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - R. Graham Barr
- Department of Medicine and Department of Epidemiology,
Mailman School of Public Health, Columbia University Irving Medical Center, New
York, NY
| | - David A. Bluemke
- Department of Radiology, University of Wisconsin-Madison
School of Medicine and Public Health, Madison, WI
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics,
Medicine and Physiology, Children’s Research Institute and Genomic Sciences
and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Peter Caravan
- Institute for Innovation in Imaging, Athinoula A. Martinos
Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical
School, Charlestown, MA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute,
Cedars-Sinai Medical Center, Los Angeles, CA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX
| | - Udo Hoffmann
- Department of Radiology, Harvard Medical School,
Massachusetts General Hospital, Boston, Massachusetts
| | - Márton Kolossváry
- Department of Radiology, Harvard Medical School,
Massachusetts General Hospital, Boston, Massachusetts
| | - Huiqing Li
- Division of Cardiovascular Sciences, National Heart,
Lung, and Blood Institute, Bethesda, MD
| | - James Luo
- Division of Cardiovascular Sciences, National Heart,
Lung, and Blood Institute, Bethesda, MD
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University
Feinberg School of Medicine, Chicago, IL
| | - George Thanassoulis
- Preventive and Genomic Cardiology, McGill University
Health Center and Research Institute, Montreal, Quebec, Canada
| | - Donna K. Arnett
- College of Public Health, University of Kentucky,
Lexington KY
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine and Epidemiology, and
Cardiology, Department of Medicine, Department of Epidemiology, Boston University
Schools of Medicine and Public Health, and Center for Computing and Data Sciences,
Boston University, Boston, MA
| |
Collapse
|
28
|
Sinis SI, Zarogiannis SG. Commentary: Imaging Biomarkers and Pathobiological Profiling in a Rat Model of Drug-Induced Interstitial Lung Disease (DIILD) Induced by Bleomycin. Front Physiol 2021; 12:691650. [PMID: 34393816 PMCID: PMC8355489 DOI: 10.3389/fphys.2021.691650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/06/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
29
|
Dai X, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Advances on Nanomedicines for Diagnosis and Theranostics of Hepatic Fibrosis. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xinghang Dai
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- West China School of Medicine Sichuan University Chengdu 610041 China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Amgen Bioprocessing Centre Keck Graduate Institute CA 91711 USA
| | - Zhongwei Gu
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
30
|
dos Santos Ferreira D, Arora G, Gieseck RL, Rotile NJ, Waghorn PA, Tanabe KK, Wynn TA, Caravan P, Fuchs BC. Molecular Magnetic Resonance Imaging of Liver Fibrosis and Fibrogenesis Is Not Altered by Inflammation. Invest Radiol 2021; 56:244-251. [PMID: 33109919 PMCID: PMC7956154 DOI: 10.1097/rli.0000000000000737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
METHODS Three groups of mice that develop either mild type 2 inflammation and fibrosis (wild type), severe fibrosis with exacerbated type 2 inflammation (Il10-/-Il12b-/-Il13ra2-/-), or minimal fibrosis with marked type 1 inflammation (Il4ra∂/∂) after infection with S. mansoni were imaged using both probes for determination of signal enhancement. Schistosoma mansoni-infected wild-type mice developed chronic liver fibrosis. RESULTS The liver MR signal enhancement after either probe administration was significantly higher in S. mansoni-infected wild-type mice compared with naive animals. The S. mansoni-infected Il4ra∂/∂ mice presented with little liver signal enhancement after probe injection despite the presence of substantial inflammation. Schistosoma mansoni-infected Il10-/-Il12b-/-Il13ra2-/- mice presented with marked fibrosis, which correlated to increased signal enhancement after injection of either probe. CONCLUSIONS Both MR probes, EP-3533 and Gd-Hyd, were specific for fibrosis in this model of chronic liver disease regardless of the presence or severity of the underlying inflammation. These results, in addition to previous findings, show the potential application of both molecular MR probes for detection and quantification of fibrosis from various etiologies.
Collapse
Affiliation(s)
- Diego dos Santos Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Gunisha Arora
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114 USA
| | - Richard L. Gieseck
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Ln, Bethesda, MD, 20892, United States
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Philip A. Waghorn
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114 USA
| | - Thomas A. Wynn
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Ln, Bethesda, MD, 20892, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
- The Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Boston, MA 02129 USA
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
31
|
Quantitative, noninvasive MRI characterization of disease progression in a mouse model of non-alcoholic steatohepatitis. Sci Rep 2021; 11:6105. [PMID: 33731798 PMCID: PMC7971064 DOI: 10.1038/s41598-021-85679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/28/2021] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is an increasing cause of chronic liver disease characterized by steatosis, inflammation, and fibrosis which can lead to cirrhosis, hepatocellular carcinoma, and mortality. Quantitative, noninvasive methods for characterizing the pathophysiology of NASH at both the preclinical and clinical level are sorely needed. We report here a multiparametric magnetic resonance imaging (MRI) protocol with the fibrogenesis probe Gd-Hyd to characterize fibrotic disease activity and steatosis in a common mouse model of NASH. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) to induce NASH with advanced fibrosis. Mice fed normal chow and CDAHFD underwent MRI after 2, 6, 10 and 14 weeks to measure liver T1, T2*, fat fraction, and dynamic T1-weighted Gd-Hyd enhanced imaging of the liver. Steatosis, inflammation, and fibrosis were then quantified by histology. NASH and fibrosis developed quickly in CDAHFD fed mice with strong correlation between morphometric steatosis quantification and liver fat estimated by MRI (r = 0.90). Sirius red histology and collagen quantification confirmed increasing fibrosis over time (r = 0.82). Though baseline T1 and T2* measurements did not correlate with fibrosis, Gd-Hyd signal enhancement provided a measure of the extent of active fibrotic disease progression and correlated strongly with lysyl oxidase expression. Gd-Hyd MRI accurately detects fibrogenesis in a mouse model of NASH with advanced fibrosis and can be combined with other MR measures, like fat imaging, to more accurately assess disease burden.
Collapse
|
32
|
Abstract
Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | | | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
33
|
Zhou IY, Montesi SB, Akam EA, Caravan P. Molecular Imaging of Fibrosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
34
|
Molecular Magnetic Resonance Imaging of Fibrin Deposition in the Liver as an Indicator of Tissue Injury and Inflammation. Invest Radiol 2020; 55:209-216. [PMID: 31895219 DOI: 10.1097/rli.0000000000000631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Liver inflammation is associated with nonalcoholic steatohepatitis and other pathologies, but noninvasive methods to assess liver inflammation are limited. Inflammation causes endothelial disruption and leakage of plasma proteins into the interstitial space and can result in extravascular coagulation with fibrin deposition. Here we assess the feasibility of using the established fibrin-specific magnetic resonance probe EP-2104R for the noninvasive imaging of fibrin as a marker of liver inflammation. METHODS Weekly 100 mg/kg diethylnitrosamine (DEN) dosing was used to generate liver fibrosis in male rats; control animals received vehicle. Magnetic resonance imaging at 1.5 T with EP-2104R, a matched non-fibrin-binding control linear peptide, or the collagen-specific probe EP-3533 was performed at 1 day or 7 days after the last DEN administration. Imaging data were compared with quantitative histological measures of fibrosis and inflammation. RESULTS After 4 or 5 DEN administrations, the liver becomes moderately fibrotic, and fibrosis is the same if the animal is killed 1 day (Ishak score, 3.62 ± 0.31) or 7 days (Ishak score, 3.82 ± 0.25) after the last DEN dose, but inflammation is significantly higher at 1 day compared with 7 days after the last DEN dose (histological activity index from 0-4, 3.54 ± 0.14 vs 1.61 ± 0.16, respectively; P < 0.0001). Peak EP-2104R signal enhancement was significantly higher in animals imaged at 1 day post-DEN compared with 7 days post-DEN or control rats (29.0% ± 3.2% vs 22.4% ± 2.0% vs 17.0% ± 0.2%, respectively; P = 0.017). Signal enhancement with EP-2104R was significantly higher than control linear peptide at 1 day post-DEN but not at 7 days post-DEN indicating specific fibrin binding during the inflammatory phase. Collagen molecular magnetic resonance with EP-3533 showed equivalent T1 change when imaging rats 1 day or 7 days post-DEN, consistent with equivalent fibrosis. CONCLUSIONS EP-2104R can specifically detect fibrin associated with inflammation in a rat model of liver inflammation and fibrosis.
Collapse
|
35
|
Ezeani M, Hagemeyer CE, Lal S, Niego B. Molecular imaging of atrial myopathy: Towards early AF detection and non-invasive disease management. Trends Cardiovasc Med 2020; 32:20-31. [DOI: 10.1016/j.tcm.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
|
36
|
Courtoy GE, Leclercq I, Froidure A, Schiano G, Morelle J, Devuyst O, Huaux F, Bouzin C. Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization. Biomolecules 2020; 10:biom10111585. [PMID: 33266431 PMCID: PMC7709042 DOI: 10.3390/biom10111585] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Current understanding of fibrosis remains incomplete despite the increasing burden of related diseases. Preclinical models are used to dissect the pathogenesis and dynamics of fibrosis, and to evaluate anti-fibrotic therapies. These studies require objective and accurate measurements of fibrosis. Existing histological quantification methods are operator-dependent, organ-specific, and/or need advanced equipment. Therefore, we developed a robust, minimally operator-dependent, and tissue-transposable digital method for fibrosis quantification. The proposed method involves a novel algorithm for more specific and more sensitive detection of collagen fibers stained by picrosirius red (PSR), a computer-assisted segmentation of histological structures, and a new automated morphological classification of fibers according to their compactness. The new algorithm proved more accurate than classical filtering using principal color component (red-green-blue; RGB) for PSR detection. We applied this new method on established mouse models of liver, lung, and kidney fibrosis and demonstrated its validity by evidencing topological collagen accumulation in relevant histological compartments. Our data also showed an overall accumulation of compact fibers concomitant with worsening fibrosis and evidenced topological changes in fiber compactness proper to each model. In conclusion, we describe here a robust digital method for fibrosis analysis allowing accurate quantification, pattern recognition, and multi-organ comparisons useful to understand fibrosis dynamics.
Collapse
Affiliation(s)
- Guillaume E. Courtoy
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence: (I.L.); (C.B.)
| | - Antoine Froidure
- Pole of Pneumology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Guglielmo Schiano
- Mechanisms of Inherited Kidney Diseases Group, University of Zurich, 8057 Zurich, Switzerland; (G.S.); (O.D.)
| | - Johann Morelle
- Pole of Nephrology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Diseases Group, University of Zurich, 8057 Zurich, Switzerland; (G.S.); (O.D.)
- Pole of Nephrology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
- Correspondence: (I.L.); (C.B.)
| |
Collapse
|
37
|
Zhou IY, Tanabe KK, Fuchs BC, Caravan P. Collagen-targeted molecular imaging in diffuse liver diseases. Abdom Radiol (NY) 2020; 45:3545-3556. [PMID: 32737546 DOI: 10.1007/s00261-020-02677-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is a common pathway shared by all progressive chronic liver diseases (CLD) regardless of the underlying etiologies. With liver biopsy being the gold standard in assessing fibrosis degree, there is a large unmet clinical need to develop non-invasive imaging tools that can directly and repeatedly quantify fibrosis throughout the liver for a more accurate assessment of disease burden, progression, and treatment response. Type I collagen is a particularly attractive target for molecular imaging as its excessive deposition is specific to fibrosis, and it is present in concentrations suitable for many imaging modalities. Novel molecular MRI contrast agents designed to bind with collagen provide direct quantification of collagen deposition, which have been validated across animal species and liver injury models. Collagen-targeted molecular imaging probes hold great promise not only as a tool for initial staging and surveillance of fibrosis progression, but also as a marker of fibrosis regression in drug trials.
Collapse
Affiliation(s)
- Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Harvard Medical School, 149 13th St, Boston, MA, 02129, USA
- Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
- Harvard Medical School, 149 13th St, Boston, MA, 02129, USA.
- Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
38
|
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020; 73:1241-1254. [PMID: 32585160 PMCID: PMC7572718 DOI: 10.1016/j.jhep.2020.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.
Collapse
Affiliation(s)
- Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
39
|
Charlton JR, Xu Y, Wu T, deRonde KA, Hughes JL, Dutta S, Oxley GT, Cwiek A, Cathro HP, Charlton NP, Conaway MR, Baldelomar EJ, Parvin N, Bennett KM. Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease. Kidney Int 2020; 99:173-185. [PMID: 32916180 DOI: 10.1016/j.kint.2020.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023]
Abstract
Acute kidney injury (AKI) increases the risk for chronic kidney disease (CKD). However, there are few tools to detect microstructural changes after AKI. Here, cationic ferritin-enhanced magnetic resonance imaging (CFE-MRI) was applied to examine the heterogeneity of kidney pathology in the transition from AKI to CKD. Adult male mice received folic acid followed by cationic ferritin and were euthanized at four days (AKI), four weeks (CKD-4) or 12 weeks (CKD-12). Kidneys were examined by histologic methods and CFE-MRI. In the CKD-4 and CKD-12 groups, glomerular number was reduced and atubular cortical lesions were observed. Apparent glomerular volume was larger in the AKI, CKD-4 and CKD-12 groups compared to controls. Glomerular hypertrophy occurred with ageing. Interglomerular distance and glomerular density were combined with other MRI metrics to distinguish the AKI and CKD groups from controls. Despite significant heterogeneity, the noninvasive (MRI-based) metrics were as accurate as invasive (histological) metrics at distinguishing AKI and CKD from controls. To assess the toxicity of cationic ferritin in a CKD model, CKD-4 mice received cationic ferritin and were examined one week later. The CKD-4 groups with and without cationic ferritin were similar, except the iron content of the kidney, liver, and spleen was greater in the CKD-4 plus cationic ferritin group. Thus, our study demonstrates the accuracy and safety of CFE-MRI to detect whole kidney pathology allowing for the development of novel biomarkers of kidney disease and providing a foundation for future in vivo longitudinal studies in mouse models of AKI and CKD to track nephron fate.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Department of Pediatrics, Division Nephrology, University of Virginia, Charlottesville, Virginia, USA.
| | - Yanzhe Xu
- ASU-Mayo Center for Innovative Imaging, School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Kim A deRonde
- Department of Pediatrics, Division Nephrology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Shourik Dutta
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gavin T Oxley
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Helen P Cathro
- Department of Pathology University of Virginia, Charlottesville, Virginia, USA
| | - Nathan P Charlton
- Department of Toxicology, University of Virginia, Virginia, Charlottesville, USA
| | - Mark R Conaway
- Division of Translational Research and Applied Statistics Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Edwin J Baldelomar
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Neda Parvin
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin M Bennett
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Le Fur M, Zhou IY, Catalano O, Caravan P. Toward Molecular Imaging of Intestinal Pathology. Inflamm Bowel Dis 2020; 26:1470-1484. [PMID: 32793946 PMCID: PMC7500524 DOI: 10.1093/ibd/izaa213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is defined by a chronic relapsing and remitting inflammation of the gastrointestinal tract, with intestinal fibrosis being a major complication. The etiology of IBD remains unknown, but it is thought to arise from a dysregulated and excessive immune response to gut luminal microbes triggered by genetic and environmental factors. To date, IBD has no cure, and treatments are currently directed at relieving symptoms and treating inflammation. The current diagnostic of IBD relies on endoscopy, which is invasive and does not provide information on the presence of extraluminal complications and molecular aspect of the disease. Cross-sectional imaging modalities such as computed tomography enterography (CTE), magnetic resonance enterography (MRE), positron emission tomography (PET), single photon emission computed tomography (SPECT), and hybrid modalities have demonstrated high accuracy for the diagnosis of IBD and can provide both functional and morphological information when combined with the use of molecular imaging probes. This review presents the state-of-the-art imaging techniques and molecular imaging approaches in the field of IBD and points out future directions that could help improve our understanding of IBD pathological processes, along with the development of efficient treatments.
Collapse
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Iris Y Zhou
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Onofrio Catalano
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA,The Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA,Address correspondence to: Peter Caravan, PhD, The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown 02129, MA, USA. E-mail:
| |
Collapse
|
41
|
Erstad DJ, Sojoodi M, Taylor MS, Jordan VC, Farrar CT, Axtell AL, Rotile NJ, Jones C, Graham-O'Regan KA, Ferreira DS, Michelakos T, Kontos F, Chawla A, Li S, Ghoshal S, Chen YCI, Arora G, Humblet V, Deshpande V, Qadan M, Bardeesy N, Ferrone CR, Lanuti M, Tanabe KK, Caravan P, Fuchs BC. Fibrotic Response to Neoadjuvant Therapy Predicts Survival in Pancreatic Cancer and Is Measurable with Collagen-Targeted Molecular MRI. Clin Cancer Res 2020; 26:5007-5018. [PMID: 32611647 DOI: 10.1158/1078-0432.ccr-18-1359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/05/2019] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the prognostic value of posttreatment fibrosis in human PDAC patients, and to compare a type I collagen targeted MRI probe, CM-101, to the standard contrast agent, Gd-DOTA, for their abilities to identify FOLFIRINOX-induced fibrosis in a murine model of PDAC. EXPERIMENTAL DESIGN Ninety-three chemoradiation-treated human PDAC samples were stained for fibrosis and outcomes evaluated. For imaging, C57BL/6 and FVB mice were orthotopically implanted with PDAC cells and FOLFIRINOX was administered. Mice were imaged with Gd-DOTA and CM-101. RESULTS In humans, post-chemoradiation PDAC tumor fibrosis was associated with longer overall survival (OS) and disease-free survival (DFS) on multivariable analysis (OS P = 0.028, DFS P = 0.047). CPA increased the prognostic accuracy of a multivariable logistic regression model comprised of previously established PDAC risk factors [AUC CPA (-) = 0.76, AUC CPA (+) = 0.82]. In multiple murine orthotopic PDAC models, FOLFIRINOX therapy reduced tumor weight (P < 0.05) and increased tumor fibrosis by collagen staining (P < 0.05). CM-101 MR signal was significantly increased in fibrotic tumor regions. CM-101 signal retention was also increased in the more fibrotic FOLFIRINOX-treated tumors compared with untreated controls (P = 0.027), consistent with selective probe binding to collagen. No treatment-related differences were observed with Gd-DOTA imaging. CONCLUSIONS In humans, post-chemoradiation tumor fibrosis is associated with OS and DFS. In mice, our MR findings indicate that translation of collagen molecular MRI with CM-101 to humans might provide a novel imaging technique to monitor fibrotic response to therapy to assist with prognostication and disease management.
Collapse
Affiliation(s)
- Derek J Erstad
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Mozhdeh Sojoodi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Veronica Clavijo Jordan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Christian T Farrar
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Andrea L Axtell
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicholas J Rotile
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Chloe Jones
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Katherine A Graham-O'Regan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Diego S Ferreira
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Akhil Chawla
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shen Li
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarani Ghoshal
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yin-Ching Iris Chen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Gunisha Arora
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nabeel Bardeesy
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Lanuti
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kenneth K Tanabe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Peter Caravan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Bryan C Fuchs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
42
|
Mahmutovic Persson I, Falk Håkansson H, Örbom A, Liu J, von Wachenfeldt K, Olsson LE. Imaging Biomarkers and Pathobiological Profiling in a Rat Model of Drug-Induced Interstitial Lung Disease Induced by Bleomycin. Front Physiol 2020; 11:584. [PMID: 32636756 PMCID: PMC7317035 DOI: 10.3389/fphys.2020.00584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
A large number of systemically administered drugs have the potential to cause drug-induced interstitial lung disease (DIILD). We aim to characterize a model of DIILD in the rat and develop imaging biomarkers (IBs) for detection and quantification of DIILD. In this study, Sprague-Dawley rats received one single dose of intratracheal (i.t.) bleomycin and were longitudinally imaged at day 0, 3, 7, 14, 21, and 28 post dosing, applying the imaging techniques magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT). Bronchoalveolar lavage fluid (BALF) was analyzed for total protein and inflammatory cells. Lungs were saved for further evaluation by gene analysis using quantitative-PCR and by histology. Lung sections were stained with Masson's-Trichrome staining and evaluated by modified Ashcroft score. Gene expression profiling of inflammatory and fibrotic markers was performed on lung tissue homogenates. Bleomycin induced significant increase in total protein concentration and total cell count in bronchoalveolar lavage (BAL), peaking at day 3 (p > 0.001) and day 7 (p > 0.001) compared to control, respectively. Lesions measured by MRI and PET signal in the lungs of bleomycin challenged rats were significantly increased during days 3-14, peaking at day 7. Two subgroups of animals were identified as low- and high-responders by their different change in total lung volume. Both groups showed signs of inflammation initially, while at later time points, the low-responder group recovered toward control, and the high-responder group showed sustained lung volume increase, and significant increase of lesion volume (p < 0.001) compared to control. Lastly, important inflammatory and pro-fibrotic markers were assessed from lung tissue, linking observed imaging pathological changes to gene expression patterns. In conclusion, bleomycin-induced lung injury is an adequate animal model for DIILD studies and for translational lung injury assessment by MRI and PET imaging. The scenario comprised disease responses, with different fractions of inflammation and fibrosis. Thereby, this study improved the understanding of imaging and biological biomarkers in DIILD and lung injury.
Collapse
Affiliation(s)
- Irma Mahmutovic Persson
- Department of Medical Radiation Physics, Institution of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | | | - Anders Örbom
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Lars E Olsson
- Department of Medical Radiation Physics, Institution of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,TRISTAN-IMI Consortium (Translational Imaging in Drug Safety Assessment-Innovative Medicines Initiative)
| |
Collapse
|
43
|
Zhou IY, Clavijo Jordan V, Rotile NJ, Akam E, Krishnan S, Arora G, Krishnan H, Slattery H, Warner N, Mercaldo N, Farrar CT, Wellen J, Martinez R, Schlerman F, Tanabe KK, Fuchs BC, Caravan P. Advanced MRI of Liver Fibrosis and Treatment Response in a Rat Model of Nonalcoholic Steatohepatitis. Radiology 2020; 296:67-75. [PMID: 32343209 DOI: 10.1148/radiol.2020192118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Liver biopsy is the reference standard to diagnose nonalcoholic steatohepatitis (NASH) but is invasive with potential complications. Purpose To evaluate molecular MRI with type 1 collagen-specific probe EP-3533 and allysine-targeted fibrogenesis probe Gd-Hyd, MR elastography, and native T1 to characterize fibrosis and to assess treatment response in a rat model of NASH. Materials and Methods MRI was performed prospectively (June-November 2018) in six groups of male Wistar rats (a) age- and (b) weight-matched animals received standard chow (n = 12 per group); (c) received choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) for 6 weeks or (d) 9 weeks (n = 8 per group); (e) were fed 6 weeks of CDAHFD and switched to standard chow for 3 weeks (n = 12); (f) were fed CDAHFD for 9 weeks with daily treatment of elafibranor beginning at week 6 (n = 14). Differences in imaging measurements and tissue analyses among groups were tested with one-way analysis of variance. The ability of each imaging measurement to stage fibrosis was quantified by using area under the receiver operating characteristic curve (AUC) with quantitative digital pathology (collagen proportionate area [CPA]) as reference standard. Optimal cutoff values for distinguishing advanced fibrosis were used to assess treatment response. Results AUC for distinguishing fibrotic (CPA >4.8%) from nonfibrotic (CPA ≤4.8%) livers was 0.95 (95% confidence interval [CI]: 0.91, 1.00) for EP-3533, followed by native T1, Gd-Hyd, and MR elastography with AUCs of 0.90 (95% CI: 0.83, 0.98), 0.84 (95% CI: 0.74, 0.95), and 0.65 (95% CI: 0.51, 0.79), respectively. AUCs for discriminating advanced fibrosis (CPA >10.3%) were 0.86 (95% CI: 0.76, 0.97), 0.96 (95% CI: 0.90, 1.01), 0.84 (95% CI: 0.70, 0.98), and 0.74 (95% CI: 0.63, 0.86) for EP-3533, Gd-Hyd, MR elastography, and native T1, respectively. Gd-Hyd MRI had the highest accuracy (24 of 26, 92%; 95% CI: 75%, 99%) in identifying responders and nonresponders in the treated groups compared with MR elastography (23 of 26, 88%; 95% CI: 70%, 98%), EP-3533 (20 of 26, 77%; 95% CI: 56%, 91%), and native T1 (14 of 26, 54%; 95% CI: 33%, 73%). Conclusion Collagen-targeted molecular MRI most accurately detected early onset of fibrosis, whereas the fibrogenesis probe Gd-Hyd proved most accurate for detecting treatment response. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Iris Y Zhou
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Veronica Clavijo Jordan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Nicholas J Rotile
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Eman Akam
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Smitha Krishnan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Gunisha Arora
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Hema Krishnan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Hannah Slattery
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Noah Warner
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Nathaniel Mercaldo
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Christian T Farrar
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Jeremy Wellen
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Robert Martinez
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Franklin Schlerman
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Kenneth K Tanabe
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Bryan C Fuchs
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Peter Caravan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| |
Collapse
|
44
|
Xing P, Niu Y, Mu R, Wang Z, Xie D, Li H, Dong L, Wang C. A pocket-escaping design to prevent the common interference with near-infrared fluorescent probes in vivo. Nat Commun 2020; 11:1573. [PMID: 32218438 PMCID: PMC7099068 DOI: 10.1038/s41467-020-15323-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Near-infrared (NIR) fluorescent probes are among the most attractive chemical tools for biomedical imaging. However, their in vivo applications are hindered by albumin binding, generating unspecific fluorescence that masks the specific signal from the analyte. Here, combining experimental and docking methods, we elucidate that the reason for this problem is an acceptor (A) group-mediated capture of the dyes into hydrophobic pockets of albumin. This pocket-capturing phenomenon commonly applies to dyes designed under the twisted intramolecular charge-transfer (TICT) principle and, therefore, represents a generic but previously unidentified backdoor problem. Accordingly, we create a new A group that avoids being trapped into the albumin pockets (pocket-escaping) and thereby construct a NIR probe, BNLBN, which effectively prevents this backdoor problem with increased imaging accuracy for liver fibrosis in vivo. Overall, our study explains and overcomes a fundamental problem for the in vivo application of a broad class of bioimaging tools.
Collapse
Affiliation(s)
- Panfei Xing
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Ruoyu Mu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093, Nanjing, China
| | - Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Huanling Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093, Nanjing, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093, Nanjing, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China.
| |
Collapse
|
45
|
Akam EA, Abston E, Rotile NJ, Slattery HR, Zhou IY, Lanuti M, Caravan P. Improving the reactivity of hydrazine-bearing MRI probes for in vivo imaging of lung fibrogenesis. Chem Sci 2020; 11:224-231. [PMID: 32728411 PMCID: PMC7362876 DOI: 10.1039/c9sc04821a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is the pathologic accumulation of extracellular matrix components in lung tissue that result in scarring following chronic lung injury. PF is typically diagnosed by high resolution computed tomography (HRCT) and/or invasive biopsy. However, HRCT cannot distinguish old injury from active fibrogenesis. We previously demonstrated that allysine residues on oxidized collagen represent an abundant target during lung fibrogenesis, and that magnetic resonance imaging (MRI) with a small-molecule, gadolinium-containing probe, Gd-Hyd, could specifically detect and stage fibrogenesis in a mouse model. In this work, we present an improved probe, Gd-CHyd, featuring an N,N-dialkyl hydrazine which has an order of magnitude both greater reactivity and affinity for aldehydes. In a paired study in mice with bleomycin induced lung injury we show that the improved reactivity and affinity of Gd-CHyd results in significantly higher lung-to-liver contrast, e.g. 77% higher at 45 min post injection, and slower lung clearance than Gd-Hyd. Gd-CHyd enhanced MRI is >60-fold higher in bleomycin injured mouse lungs compared to uninjured mice. Collectively, our data indicate that enhancing hydrazine reactivity and affinity towards allysine is an effective strategy to significantly improve molecular MRI probes for lung fibrogenesis.
Collapse
Affiliation(s)
- Eman A Akam
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
- Harvard Medical School , Boston , USA
| | - Eric Abston
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- Boston University School of Medicine: Pulmonary , Allergy, Sleep & Critical Care Medicine , Boston , USA
- The Division of Thoracic Surgery , MGH , Boston , USA
| | - Nicholas J Rotile
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
| | - Hannah R Slattery
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
| | - Iris Y Zhou
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
- Harvard Medical School , Boston , USA
| | - Michael Lanuti
- Harvard Medical School , Boston , USA
- The Division of Thoracic Surgery , MGH , Boston , USA
| | - Peter Caravan
- Martinos Center for Biomedical Imaging , Massachusetts General Hospital (MGH) , Boston , USA .
- The Institute for Innovation in Imaging , MGH , Boston , USA
- Harvard Medical School , Boston , USA
| |
Collapse
|
46
|
Rodríguez-Rodríguez A, Shuvaev S, Rotile N, Jones CM, Probst CK, Dos Santos Ferreira D, Graham-O′Regan K, Boros E, Knipe RS, Griffith JW, Tager AM, Bogdanov A, Caravan P. Peroxidase Sensitive Amplifiable Probe for Molecular Magnetic Resonance Imaging of Pulmonary Inflammation. ACS Sens 2019; 4:2412-2419. [PMID: 31397156 DOI: 10.1021/acssensors.9b01010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An amplifiable magnetic resonance imaging (MRI) probe that combines the stability of the macrocyclic Gd-DOTAGA core with a peroxidase-reactive 5-hydroxytryptamide (5-HT) moiety is reported. The incubation of the complex under enzymatic oxidative conditions led to a 1.7-fold increase in r1 at 1.4 T that was attributed to an oligomerization of the probe upon oxidation. This probe, Gd-5-HT-DOTAGA, provided specific detection of lung inflammation by MRI in bleomycin-injured mice.
Collapse
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Sergey Shuvaev
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicholas Rotile
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Chloe M. Jones
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Diego Dos Santos Ferreira
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Katherine Graham-O′Regan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Eszter Boros
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jason W. Griffith
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Alexei Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
47
|
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019; 209:105-120. [PMID: 31082371 PMCID: PMC6553637 DOI: 10.1016/j.trsl.2019.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
48
|
Montesi SB, Caravan P. Novel Imaging Approaches in Systemic Sclerosis-Associated Interstitial Lung Disease. Curr Rheumatol Rep 2019; 21:25. [PMID: 31025121 DOI: 10.1007/s11926-019-0826-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF THE REVIEW Novel imaging approaches, such as quantitative computed tomography (CT), magnetic resonance imaging (MRI), and molecular imaging, are being applied to interstitial lung diseases to provide prognostic, functional, and molecular information. Here, we review such imaging approaches and their applicability to systemic sclerosis-associated interstitial lung disease (SSc-ILD). RECENT FINDINGS Quantitative CT can be used to quantify the radiographic response to SSc-ILD therapy. Due to advances in MRI sequence development, MRI can detect the presence of SSc-ILD with high accuracy. MRI can also be utilized to provide functional information as to SSc-ILD and paired with molecular probes to provide non-invasive molecular information. MRI and ultrasound have promising test characteristics for diagnosing ILD in SSc without the use of ionizing radiation. Novel imaging approaches can detect SSc-ILD without the use of ionizing radiation, provide non-invasive functional and molecular information, and quantify treatment response in SSc-ILD. These techniques hold promise for translation into clinical care and clinical trials.
Collapse
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Massachusetts General Hospital, 55 Fruit Street, BUL-148, Boston, MA, 02114, USA.
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Wahsner J, Désogère P, Abston E, Graham-O'Regan KA, Wang J, Rotile NJ, Schirmer MD, Santos Ferreira DD, Sui J, Fuchs BC, Lanuti M, Caravan P. 68Ga-NODAGA-Indole: An Allysine-Reactive Positron Emission Tomography Probe for Molecular Imaging of Pulmonary Fibrogenesis. J Am Chem Soc 2019; 141:5593-5596. [PMID: 30908032 DOI: 10.1021/jacs.8b12342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidized collagen, wherein lysine residues are converted to the aldehyde allysine, is a universal feature of fibrogenesis, i.e. actively progressive fibrosis. Here we report the small molecule, allysine-binding positron emission tomography probe, 68Ga-NODAGA-indole, that can noninvasively detect and quantify pulmonary fibrogenesis. We demonstrate that the uptake of 68Ga-NODAGA-indole in actively fibrotic lungs is 7-fold higher than in control groups and that uptake is linearly correlated ( R2 = 0.98) with the concentration of lung allysine.
Collapse
Affiliation(s)
- Jessica Wahsner
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Pauline Désogère
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Eric Abston
- Division of Thoracic Surgery , MGH & HMS , Boston , Massachusetts 02114 , United States
| | - Katherine A Graham-O'Regan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Junfeng Wang
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Nicholas J Rotile
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Markus D Schirmer
- Stroke Division , MGH & HMS , Boston , Massachusetts 02114 , United States
| | - Diêgo Dos Santos Ferreira
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Jingyi Sui
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| | - Bryan C Fuchs
- Division of Surgical Oncology , MGH & HMS , Boston , Massachusetts 02114 , United States
| | - Michael Lanuti
- Division of Thoracic Surgery , MGH & HMS , Boston , Massachusetts 02114 , United States
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States
| |
Collapse
|
50
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 950] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|