1
|
Arekar T, Katikaneni D, Kasem S, Desai D, Acharya T, Cole A, Khodayari N, Vaulont S, Hube B, Nemeth E, Drakesmith A, Lionakis MS, Mehrad B, Scindia Y. Essential role of hepcidin in host resistance to disseminated candidiasis. Cell Rep 2025; 44:115649. [PMID: 40333187 DOI: 10.1016/j.celrep.2025.115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/20/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Candida albicans is a leading cause of life-threatening invasive infection despite antifungal therapy. Patients with chronic liver disease are at increased risk of candidemia, but the mechanisms underlying this susceptibility are incompletely defined. One consequence of chronic liver disease is an attenuated ability to produce hepcidin and maintain organismal control of iron homeostasis. To address the biology underlying this critical clinical problem, we demonstrate the mechanistic link between hepcidin insufficiency and candida infection using genetic and inducible hepcidin knockout mice. Hepcidin deficiency led to unrestrained fungal growth and increased transition to the invasive hypha morphology with exposed 1,3-β-glucan, which exacerbated kidney injury, independent of the fungal pore-forming toxin candidalysin in immunocompetent mice. Of translational relevance, the therapeutic administration of PR-73, a hepcidin mimetic, improved the outcome of infection. Thus, we identify hepcidin deficiency as a host susceptibility factor against C. albicans and hepcidin mimetics as a potential intervention.
Collapse
Affiliation(s)
- Tanmay Arekar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Divya Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Sadat Kasem
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Dhruv Desai
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Thrisha Acharya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Augustina Cole
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Sophie Vaulont
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Elizabeta Nemeth
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA; Center for Integrated Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Sandnes M, Reikvam H. Hepcidin as a therapeutic target in iron overload. Expert Opin Ther Targets 2024; 28:1039-1046. [PMID: 39679683 DOI: 10.1080/14728222.2024.2443081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Dysregulation of the hepcidin-ferroportin axis is a hallmark in the pathogenesis of iron overload, ultimately leading to end-organ injury. Hereditary hemochromatosis and iron-loading anemias are characterized by a hepcidin deficiency, making hepcidin a novel therapeutic target for preventing and managing iron overload. AREAS COVERED Modulators of hepcidin expression and molecules mimicking hepcidin are emerging as highly promising therapeutic strategies. We present a summary of results from preclinical and clinical trials of such therapies in models of iron overload. EXPERT OPINION Current treatment alternatives in iron overload fail to address the underlying hepcidin deficiency - and may even exacerbate it. Until hepcidin-targeting therapies become available, several challenges remain, including the need to optimize dosing in order to manage the narrow treatment window and improving specificity in targeting iron metabolism pathways exclusively. Long-term studies are crucial to fully assess both the benefits and risks of these therapies and to explore their potential utility in combination with existing treatment guidelines. Furthermore, these therapies are expected to have applications, particularly in addressing other iron-maldistributed disorders, as seen in anemia of chronic disease and inflammation.
Collapse
Affiliation(s)
- Miriam Sandnes
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center of Myeloid Malignancies, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Arekar T, Katikaneni D, Kasem S, Desai D, Acharya T, Cole A, Khodayari N, Vaulont S, Hube B, Nemeth E, Drakesmith A, Lionakis MS, Mehrad B, Scindia Y. Essential role of Hepcidin in host resistance to disseminated candidiasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620511. [PMID: 39553949 PMCID: PMC11565830 DOI: 10.1101/2024.10.29.620511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Candida albicans is a leading cause of life-threatening invasive infections with up to 40% mortality rates in hospitalized individuals despite antifungal therapy. Patients with chronic liver disease are at an increased risk of candidemia, but the mechanisms underlying this susceptibility are incompletely defined. One consequence of chronic liver disease is attenuated ability to produce hepcidin and maintain organismal control of iron homeostasis. To address the biology underlying this critical clinical problem, we demonstrate the mechanistic link between hepcidin insufficiency and candida infection using genetic and inducible hepcidin knockout mice. Hepcidin deficiency led to unrestrained fungal growth and increased transition to the invasive hypha morphology with exposed 1,3, β-glucan that exacerbated kidney injury, independent of the fungal pore-forming toxin candidalysin in immunocompetent mice. Of translational relevance, the therapeutic administration of PR-73, a hepcidin mimetic, improved the outcomes of infection. Thus, we identify hepcidin deficiency as a novel host susceptibility factor against C. albicans and hepcidin mimetics as a potential intervention.
Collapse
|
4
|
Korkmaz FT, Quinton LJ. Extra-pulmonary control of respiratory defense. Cell Immunol 2024; 401-402:104841. [PMID: 38878619 PMCID: PMC12002097 DOI: 10.1016/j.cellimm.2024.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Pneumonia persists as a public health crisis, representing the leading cause of death due to infection. Whether respiratory tract infections progress to pneumonia and its sequelae such as acute respiratory distress syndrome and sepsis depends on numerous underlying conditions related to both the causative agent and host. Regarding the former, pneumonia burden remains staggeringly high, despite the effectiveness of pathogen-targeting strategies such as vaccines and antibiotics. This demands a greater understanding of host features that collaborate to promote immune resistance and tissue resilience in the infected lung. Such features inside the pulmonary compartment have drawn much attention, where major advances have been made related to resident and recruited immune activity. By comparison, extra-pulmonary processes guiding pneumonia susceptibility are relatively elusive, constituting the focus of this review. Here we will highlight examples of when, how, and why tissues outside of the lungs dispatch signals that modulate local immunity in the airspaces. Topics include the liver, gut, bone marrow, brain and more, all of which contribute in direct and indirect ways to pneumonia outcome. When tuned appropriately, it has become clear that these responses can serve protective roles, and this will be considered distinctly from what would otherwise be aberrant responses characteristic of pneumonia-induced organ injury and sepsis. Further advances in this area may reveal novel targetable areas for clinical intervention that are not confined to the intra-pulmonary space.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States.
| | - Lee J Quinton
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States
| |
Collapse
|
5
|
Petruncio G, Lee KH, Girgis M, Shellnutt Z, Beaulac Z, Xiang J, Lee SH, Peng X, Burdick M, Noble SM, Shim YM, Paige M. Synthesis and Evaluation of diaryl ether modulators of the leukotriene A 4 hydrolase aminopeptidase activity. Eur J Med Chem 2024; 272:116459. [PMID: 38704942 DOI: 10.1016/j.ejmech.2024.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Activation of the aminopeptidase (AP) activity of leukotriene A4 hydrolase (LTA4H) presents a potential therapeutic strategy for resolving chronic inflammation. Previously, ARM1 and derivatives were found to activate the AP activity using the alanine-p-nitroanilide (Ala-pNA) as a reporter group in an enzyme kinetics assay. As an extension of this previous work, novel ARM1 derivatives were synthesized using a palladium-catalyzed Ullmann coupling reaction and screened using the same assay. Analogue 5, an aminopyrazole (AMP) analogue of ARM1, was found to be a potent AP activator with an AC50 of 0.12 μM. An X-ray crystal structure of LTA4H in complex with AMP was refined at 2.7 Å. Despite its AP activity with Ala-pNA substrate, AMP did not affect hydrolysis of the previously proposed natural ligand of LTA4H, Pro-Gly-Pro (PGP). This result highlights a discrepancy between the hydrolysis of more conveniently monitored chromogenic synthetic peptides typically employed in assays and endogenous peptides. The epoxide hydrolase (EH) activity of AMP was measured in vivo and the compound significantly reduced leukotriene B4 (LTB4) levels in a murine bacterial pneumonia model. However, AMP did not enhance survival in the murine pneumonia model over a 14-day period. A liver microsome stability assay showed metabolic stability of AMP. The results suggested that accelerated Ala-pNA cleavage is not sufficient for predicting therapeutic potential, even when the full mechanism of activation is known.
Collapse
Affiliation(s)
- Greg Petruncio
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Center for Molecular Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States.
| | - Kyung Hyeon Lee
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Center for Molecular Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Bacterial Diseases Branch, Wound Infections Department, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, United States
| | - Michael Girgis
- Center for Molecular Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Department of Bioengineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States
| | - Zachary Shellnutt
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States
| | - Zach Beaulac
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Soo Hyeon Lee
- Bacterial Diseases Branch, Wound Infections Department, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, United States
| | - Xuejun Peng
- Bruker Scientific LLC., 101 Daggett Drive, San Jose CA, 95134, United States
| | - Marie Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, P.O. Box 800546, Charlottesville, VA, 22908, United States
| | - Schroeder M Noble
- Bacterial Diseases Branch, Wound Infections Department, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, United States.
| | - Yun M Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, P.O. Box 800546, Charlottesville, VA, 22908, United States.
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Center for Molecular Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States.
| |
Collapse
|
6
|
Ganz T, Nemeth E. Hypoferremia of inflammation: Innate host defense against infections. Blood Cells Mol Dis 2024; 104:102777. [PMID: 37391347 DOI: 10.1016/j.bcmd.2023.102777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Iron is an essential nutrient for microbes, plants and animals. Multicellular organisms have evolved multiple strategies to control invading microbes by restricting microbial access to iron. Hypoferremia of inflammation is a rapidly-acting organismal response that prevents the formation of iron species that would be readily accessible to microbes. This review takes an evolutionary perspective to explore the mechanisms and host defense function of hypoferremia of inflammation and its clinical implications.
Collapse
Affiliation(s)
- Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1690, USA; Department of Pathology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1690, USA.
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1690, USA
| |
Collapse
|
7
|
Fonseca Ó, Ramos AS, Gomes LTS, Gomes MS, Moreira AC. New Perspectives on Circulating Ferritin: Its Role in Health and Disease. Molecules 2023; 28:7707. [PMID: 38067440 PMCID: PMC10708148 DOI: 10.3390/molecules28237707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The diagnosis of iron disturbances usually includes the evaluation of serum parameters. Serum iron is assumed to be entirely bound to transferrin, and transferrin saturation-the ratio between the serum iron concentration and serum transferrin-usually reflects iron availability. Additionally, serum ferritin is commonly used as a surrogate of tissue iron levels. Low serum ferritin values are interpreted as a sign of iron deficiency, and high values are the main indicator of pathological iron overload. However, in situations of inflammation, serum ferritin levels may be very high, independently of tissue iron levels. This presents a particularly puzzling challenge for the clinician evaluating the overall iron status of the patient in the presence of an inflammatory condition. The increase in serum ferritin during inflammation is one of the enigmas regarding iron metabolism. Neither the origin, the mechanism of release, nor the effects of serum ferritin are known. The use of serum ferritin as a biomarker of disease has been rising, and it has become increasingly diverse, but whether or not it contributes to controlling the disease or host pathology, and how it would do it, are important, open questions. These will be discussed here, where we spotlight circulating ferritin and revise the recent clinical and preclinical data regarding its role in health and disease.
Collapse
Affiliation(s)
- Óscar Fonseca
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
| | - Ana S. Ramos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
- FCUP—Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Leonor T. S. Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
- FCUP—Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Cheng CY, Hsu TH, Yang YL, Huang YH. Hemoglobin and Its Z Score Reference Intervals in Febrile Children: A Cohort Study of 98,572 Febrile Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1402. [PMID: 37628401 PMCID: PMC10453815 DOI: 10.3390/children10081402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVES Febrile disease and age of children were associated with a variation in hemoglobin (Hb) level. Both CRP and Hb serve as laboratory markers that offer valuable insights into a patient's health, particularly in relation to inflammation and specific medical conditions. Although a direct correlation between CRP and Hb levels is not established, the relationship between these markers has garnered academic attention and investigation. This study aimed to determine updated reference ranges for Hb levels for age and investigated its correlation with CRP in febrile children under the age of 18. METHODS This is a cohort study of in Chang Gung Memorial Hospitals conducted from January 2010 to December 2019. Blood samples were collected from 98,572 febrile children who were or had been admitted in the pediatric emergency department. The parameters of individuals were presented as the mean ± standard deviation or 2.5th and 97.5th percentiles. We also determined the variation of Hb and Z score of Hb between CRP levels in febrile children. RESULT We observed that the Hb levels were the highest immediately after birth and subsequently underwent a rapid decline, reaching their lowest point at around 1-2 months of age, and followed by a steady increment in Hb levels throughout childhood and adolescence. In addition, there was a significant and wide variation in Hb levels during the infant period. It revealed a significant association between higher CRP levels and lower Hb levels or a more negative Z score of Hb across all age subgroups. Moreover, in patients with bacteremia, CRP levels were higher, Hb concentrations were lower, and Z scores of Hb were also lower compared to the non-bacteremia group. Furthermore, the bacteremia group exhibited a more substantial negative correlation between CRP levels and a Z score of Hb (r = -0.41, p < 0.001) compared to the non-bacteremia group (r = -0.115, p < 0.049). CONCLUSION The study findings revealed that the Hb references varied depending on the age of the children and their CRP levels. In addition, we established new reference values for Hb and its Z scores and explore their relationship with CRP. It provides valuable insights into the Hb status and its potential association with inflammation in febrile pediatric patients.
Collapse
Affiliation(s)
- Chu-Yin Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ting-Hsuan Hsu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan
| |
Collapse
|
10
|
Zhang X, Zhou J, Holbein BE, Lehmann C. Iron Chelation as a Potential Therapeutic Approach in Acute Lung Injury. Life (Basel) 2023; 13:1659. [PMID: 37629516 PMCID: PMC10455621 DOI: 10.3390/life13081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Acute lung injury (ALI) has been challenging health care systems since before the COVID-19 pandemic due to its morbidity, mortality, and length of hospital stay. In view of the complex pathogenesis of ALI, effective strategies for its prevention and treatment are still lacking. A growing body of evidence suggests that iron dysregulation is a common characteristic in many subtypes of ALI. On the one hand, iron is needed to produce reactive oxygen species (ROS) as part of the immune response to an infection; on the other hand, iron can accelerate the occurrence of ferroptosis and extend host cell damage. Iron chelation represents a novel therapeutic strategy for alleviating lung injury and improving the survival of patients with ALI. This article reviews the current knowledge of iron homeostasis, the role of iron in ALI development, and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
| | - Bruce E. Holbein
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
11
|
Ginzburg YZ. Hepcidin and its multiple partners: Complex regulation of iron metabolism in health and disease. VITAMINS AND HORMONES 2023; 123:249-284. [PMID: 37717987 DOI: 10.1016/bs.vh.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The peptide hormone hepcidin is central to the regulation of iron metabolism, influencing the movement of iron into the circulation and determining total body iron stores. Its effect on a cellular level involves binding ferroportin, the main iron export protein, preventing iron egress and leading to iron sequestration within ferroportin-expressing cells. Hepcidin expression is enhanced by iron loading and inflammation and suppressed by erythropoietic stimulation. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis as occurs in anemia of chronic inflammation. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload such as hereditary hemochromatosis and iron loading anemias. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we assess the complex regulation of hepcidin, delineate the many binding partners involved in its regulation, and present an update on the development of hepcidin agonists and antagonists in various clinical scenarios.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United Sates.
| |
Collapse
|
12
|
Abuga KM, Nairz M, MacLennan CA, Atkinson SH. Severe anaemia, iron deficiency, and susceptibility to invasive bacterial infections. Wellcome Open Res 2023; 8:48. [PMID: 37600584 PMCID: PMC10439361 DOI: 10.12688/wellcomeopenres.18829.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 08/22/2023] Open
Abstract
Severe anaemia and invasive bacterial infections remain important causes of hospitalization and death among young African children. The emergence and spread of antimicrobial resistance demand better understanding of bacteraemia risk factors to inform prevention strategies. Epidemiological studies have reported an association between severe anaemia and bacteraemia. In this review, we explore evidence that severe anaemia is associated with increased risk of invasive bacterial infections in young children. We describe mechanisms of iron dysregulation in severe anaemia that might contribute to increased risk and pathogenesis of invasive bacteria, recent advances in knowledge of how iron deficiency and severe anaemia impair immune responses to bacterial infections and vaccines, and the gaps in our understanding of mechanisms underlying severe anaemia, iron deficiency, and the risk of invasive bacterial infections.
Collapse
Affiliation(s)
- Kelvin M. Abuga
- Kenya Medical Research Institute (KEMRI) Centre for Geographical Medicine Research-Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- Open University, KEMRI-Wellcome Trust Research Programme – Accredited Research Centre, Kilifi, 80108, Kenya
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI) Centre for Geographical Medicine Research-Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
13
|
Aksoyalp ZŞ, Temel A, Erdogan BR. Iron in infectious diseases friend or foe?: The role of gut microbiota. J Trace Elem Med Biol 2023; 75:127093. [PMID: 36240616 DOI: 10.1016/j.jtemb.2022.127093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2022]
Abstract
Iron is a trace element involved in metabolic functions for all organisms, from microorganisms to mammalians. Iron deficiency is a prevalent health problem that affects billions of people worldwide, and iron overload could have some hazardous effect. The complex microbial community in the human body, also called microbiota, influences the host immune defence against infections. An imbalance in gut microbiota, dysbiosis, changes the host's susceptibility to infections by regulating the immune system. In recent years, the number of studies on the relationship between infectious diseases and microbiota has increased. Gut microbiota is affected by different parameters, including mode of delivery, hygiene habits, diet, drugs, and plasma iron levels during the lifetime. Gut microbiota may influence iron levels in the body, and iron overload and deficiency can also affect gut microbiota composition. Novel researches on microbiota shed light on the fact that the bidirectional interactions between gut microbiota and iron play a role in the pathogenesis of many diseases, especially infections. A better understanding of these interactions may help us to comprehend the pathogenesis of many infectious and metabolic diseases affecting people worldwide and following the development of more effective preventive and/or therapeutic strategies. In this review, we aimed to present the iron-mediated host-gut microbiota interactions, susceptibility to bacterial infections, and iron-targeted therapy approaches for infections.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| | - Aybala Temel
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Izmir, Turkey.
| | - Betul Rabia Erdogan
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| |
Collapse
|
14
|
Wang H, Zeng C, Luo G, Sun Y, Zhang J, Xu Z, Guo Y, Ye H, Mao J, Chen S, Zhang Y, Zhang K, Vidal Melo MF, Fang X. Macrophage ferroportin serves as a therapeutic target against bacteria-induced acute lung injury by promoting barrier restoration. iScience 2022; 25:105698. [PMID: 36567719 PMCID: PMC9768356 DOI: 10.1016/j.isci.2022.105698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/10/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common lung disorder that involves severe inflammatory damage in the pulmonary barrier, but the underlying mechanisms remain elusive. Here, we demonstrated that pulmonary macrophages originating from ARDS patients and mice caused by bacteria were characterized by increased expression of ferroportin (FPN). Specifically deleting FPN in myeloid cells conferred significant resistance to bacterial infection with improved survival by decreasing extracellular bacterial growth and preserving pulmonary barrier integrity in mice. Mechanistically, macrophage FPN deficiency not only limited the availability of iron to bacteria, but also promoted tissue restoration via growth factor amphiregulin, which is regulated by cellular iron-activated Yes-associated protein signaling. Furthermore, pharmacological treatment with C-Hep, the self-assembled N-terminally cholesterylated minihepcidin that functions in the degradation of macrophage FPN, protected against bacteria-induced lung injury. Therefore, therapeutic strategies targeting the hepcidin-FPN axis in macrophages may be promising for the clinical treatment of acute lung injury.
Collapse
Affiliation(s)
- Hanbin Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Congli Zeng
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gan Luo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jue Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhipeng Xu
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuqian Guo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiali Mao
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shiyu Chen
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yan Zhang
- National Clinical Research Center for Child Health, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Kai Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Marcos F. Vidal Melo
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China,Corresponding author
| |
Collapse
|
15
|
Abstract
Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in aspergillosis, we generated a transcriptomic time series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection. We found an overwhelming macrophage response beginning 2 to 4 h after exposure to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of the iron exporter ferroportin. The computational model, based on a discrete dynamical systems framework, consisted of 21 3-state nodes, and was validated with additional experimental data that were not used in model generation. The model accurately captures the steady state and the trajectories of most of the quantitatively measured nodes. In the experimental data, we surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory cytokines, a feature that deviated from model predictions. Model simulations suggested that direct induction of transferrin receptor-1 (TfR1) after fungal recognition, independent of the iron regulatory protein-labile iron pool (IRP-LIP) system, explains this finding. We anticipate that this model will contribute to a quantitative understanding of iron regulation as a fundamental host defense mechanism during aspergillosis. IMPORTANCE Invasive pulmonary aspergillosis is a major cause of death among immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron is an essential component of host defense in this infection, but the mechanisms by which the host achieves this are complex. To understand how recruited macrophages mediate iron deprivation during the infection, we developed and validated a mechanistic computational model that integrates the available information in the field. The insights provided by this approach can help in designing iron modulation therapies as anti-fungal treatments.
Collapse
|
16
|
Chang IF, Shih WL, Liu YC, Ho TW, Yen TY, Chang HH, Chang LY, Fang CT, Lai F. The association of anemia with the clinical outcomes of community-acquired pneumonia in children. Pediatr Pulmonol 2022; 57:1416-1424. [PMID: 35293151 DOI: 10.1002/ppul.25892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Anemia is associated with severe outcomes in adult community-acquired pneumonia (CAP), but few studies investigated its association with pediatric CAP. Hence, we tried to delineate the association of anemia with the clinical outcomes of CAP in children. METHODS This retrospective cohort study was conducted from 2010 to 2019 in a medical center. Inpatients aged 6 months to 17 years who were diagnosed with CAP and without major underlying diseases were included. The subjects' clinical data within 24 h of admission and clinical outcomes were collected. We accessed the rates of adverse outcomes and the adjusted odds ratios (ORs) of these outcomes between anemic and nonanemic patients, as well as among patients with different types of anemia. RESULTS In this study of 3601 patients, the prevalence of anemia was 11.6% (418/3601). Anemic patients had higher rates of intensive care (16.8% vs. 3.6%; p < 0.001), endotracheal intubation (11.0% vs. 1.3%; p < 0.001), and empyema (8.6% vs. 0.6%; p < 0.001) than nonanemic patients. In addition, anemia was independently associated with intensive care (adjusted OR, 3.00; 95% confidence interval [CI], 2.03-4.42), endotracheal intubation (adjusted OR, 3.79; 95% CI, 2.17-6.63), and empyema (adjusted OR, 4.72; 95% CI, 2.30-9.69). Iron-deficiency anemia (IDA) and normocytic anemia were associated with these adverse outcomes but not with anemia due to thalassemia trait. CONCLUSION Anemia is a biomarker associated with poor outcomes in pediatric CAP, and patients with IDA or normocytic anemia should be carefully monitored and managed since they may have higher disease severity.
Collapse
Affiliation(s)
- I-Fan Chang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan.,Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei City, Taiwan
| | - Yun-Chung Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City, Taiwan
| | - Te-Wei Ho
- Department of Surgery, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Ting-Yu Yen
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Feipei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City, Taiwan.,Department of Computer Science and Information Engineering, National Taiwan University, Taipei City, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
17
|
Michels K, Solomon AL, Scindia Y, Sordo Vieira L, Goddard Y, Whitten S, Vaulont S, Burdick MD, Atkinson C, Laubenbacher R, Mehrad B. Aspergillus Utilizes Extracellular Heme as an Iron Source During Invasive Pneumonia, Driving Infection Severity. J Infect Dis 2022; 225:1811-1821. [PMID: 35267014 PMCID: PMC9113461 DOI: 10.1093/infdis/jiac079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Depriving microbes of iron is critical to host defense. Hemeproteins, the largest source of iron within vertebrates, are abundant in infected tissues in aspergillosis due to hemorrhage, but Aspergillus species have been thought to lack heme import mechanisms. We hypothesized that heme provides iron to Aspergillus during invasive pneumonia, thereby worsening the outcomes of the infection. METHODS We assessed the effect of heme on fungal phenotype in various in vitro conditions and in a neutropenic mouse model of invasive pulmonary aspergillosis. RESULTS In mice with neutropenic invasive aspergillosis, we found a progressive and compartmentalized increase in lung heme iron. Fungal cells cultured under low iron conditions took up heme, resulting in increased fungal iron content, resolution of iron starvation, increased conidiation, and enhanced resistance to oxidative stress. Intrapulmonary administration of heme to mice with neutropenic invasive aspergillosis resulted in markedly increased lung fungal burden, lung injury, and mortality, whereas administration of heme analogs or heme with killed Aspergillus did not. Finally, infection caused by fungal germlings cultured in the presence of heme resulted in a more severe infection. CONCLUSIONS Invasive aspergillosis induces local hemolysis in infected tissues, thereby supplying heme iron to the fungus, leading to lethal infection.
Collapse
Affiliation(s)
- Kathryn Michels
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Angelica L Solomon
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Luis Sordo Vieira
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yana Goddard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Spencer Whitten
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, Paris, France
| | - Marie D Burdick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Carl Atkinson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Reinhard Laubenbacher
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Bénard A, Podolska MJ, Czubayko F, Kutschick I, Klösch B, Jacobsen A, Naschberger E, Brunner M, Krautz C, Trufa DI, Sirbu H, Lang R, Grützmann R, Weber GF. Pleural Resident Macrophages and Pleural IRA B Cells Promote Efficient Immunity Against Pneumonia by Inducing Early Pleural Space Inflammation. Front Immunol 2022; 13:821480. [PMID: 35493510 PMCID: PMC9047739 DOI: 10.3389/fimmu.2022.821480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Airway infection is a major cause of mortality worldwide. The identification of new mechanisms aiding in effective host immune response is therefore required. Here, we show that the specific depletion of the pleural immune cell compartment during bacterial pneumonia resulted in a reduced pulmonary immune response and increased mortality in mice. Bacterial airway infection provoked early pleural space (PS) inflammation characterized by innate response activator (IRA) B cell development and pleural large resident macrophage (LRM) necroptosis, the repopulation of LRMs being driven by cellular proliferation in situ. Necroptotic LRMs amplified PS inflammation by stimulating pleural Mincle-expressing macrophages whereas IRA B cells contributed partially to GM-CSF-induced PS inflammation. Upon pulmonary infection, the induction of PS inflammation resulted in reduced bacterial burden whereas the specific depletion of pleural resident macrophages led to increased mortality and bacterial burden and reduced pulmonary immunity. Moreover, mice in which B cells were unable to produce GM-CSF exhibited reduced CD103+ dendritic cells and reduced CD4+ T cell numbers in the draining lymph node. Altogether, our results describe a previously unrecognized mechanism of pleural space inflammation necessary for effective protection against bacterial airway infection.
Collapse
Affiliation(s)
- Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Malgorzata J. Podolska
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Czubayko
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Klösch
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anne Jacobsen
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Brunner
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Krautz
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I. Trufa
- Department of Thoracic Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg F. Weber
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Georg F. Weber,
| |
Collapse
|
19
|
Zohrabi M, Dehghan Marvast L, Izadi M, Mousavi SA, Aflatoonian B. Potential of Mesenchymal Stem Cell-Derived Exosomes as a Novel Treatment for Female Infertility Caused by Bacterial Infections. Front Microbiol 2022; 12:785649. [PMID: 35154028 PMCID: PMC8834364 DOI: 10.3389/fmicb.2021.785649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
Neisseria gonorrhoeae and Chlamydia trachomatis are the most common causes of bacterial sexually transmitted diseases (STDs) with complications in women, including pelvic inflammatory disease (PID), ectopic pregnancy, and infertility. The main concern with these infections is that 70% of infected women are asymptomatic and these infections ascend to the upper female reproductive tract (FRT). Primary infection in epithelial cells creates a cascade of events that leads to secretion of pro-inflammatory cytokines that stimulate innate immunity. Production of various cytokines is damaging to mucosal barriers, and tissue destruction leads to ciliated epithelial destruction that is associated with tubal scarring and ultimately provides the conditions for infertility. Mesenchymal stem cells (MSCs) are known as tissue specific stem cells with limited self-renewal capacity and the ability to repair damaged tissues in a variety of pathological conditions due to their multipotential differentiation capacity. Moreover, MSCs secrete exosomes that contain bioactive factors such as proteins, lipids, chemokines, enzymes, cytokines, and immunomodulatory factors which have therapeutic properties to enhance recovery activity and modulate immune responses. Experimental studies have shown that local and systemic treatment of MSC-derived exosomes (MSC-Exos) suppresses the destructive immune response due to the delivery of immunomodulatory proteins. Interestingly, some recent data have indicated that MSC-Exos display strong antimicrobial effects, by the secretion of antimicrobial peptides and proteins (AMPs), and increase bacterial clearance by enhancing the phagocytic activity of host immune cells. Considering MSC-Exos can secrete different bioactive factors that can modulate the immune system and prevent infection, exosome therapy is considered as a new therapeutic method in the treatment of inflammatory and microbial diseases. Here we intend to review the possible application of MSC-Exos in female reproductive system bacterial diseases.
Collapse
Affiliation(s)
- Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
20
|
Das S, Saqib M, Meng RC, Chittur SV, Guan Z, Wan F, Sun W. Hemochromatosis drives acute lethal intestinal responses to hyperyersiniabactin-producing Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 2022; 119:e2110166119. [PMID: 34969677 PMCID: PMC8764673 DOI: 10.1073/pnas.2110166119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Hemachromatosis (iron-overload) increases host susceptibility to siderophilic bacterial infections that cause serious complications, but the underlying mechanisms remain elusive. The present study demonstrates that oral infection with hyperyersiniabactin (Ybt) producing Yersinia pseudotuberculosis Δfur mutant (termed Δfur) results in severe systemic infection and acute mortality to hemochromatotic mice due to rapid disruption of the intestinal barrier. Transcriptome analysis of Δfur-infected intestine revealed up-regulation in cytokine-cytokine receptor interactions, the complement and coagulation cascade, the NF-κB signaling pathway, and chemokine signaling pathways, and down-regulation in cell-adhesion molecules and Toll-like receptor signaling pathways. Further studies indicate that dysregulated interleukin (IL)-1β signaling triggered in hemachromatotic mice infected with Δfur damages the intestinal barrier by activation of myosin light-chain kinases (MLCK) and excessive neutrophilia. Inhibiting MLCK activity or depleting neutrophil infiltration reduces barrier disruption, largely ameliorates immunopathology, and substantially rescues hemochromatotic mice from lethal Δfur infection. Moreover, early intervention of IL-1β overproduction can completely rescue hemochromatotic mice from the lethal infection.
Collapse
Affiliation(s)
- Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Ryan C Meng
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
21
|
Odom CV, Kim Y, Burgess CL, Baird LA, Korkmaz FT, Na E, Shenoy AT, Arafa EI, Lam TT, Jones MR, Mizgerd JP, Traber KE, Quinton LJ. Liver-Dependent Lung Remodeling during Systemic Inflammation Shapes Responses to Secondary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1891-1902. [PMID: 34470857 PMCID: PMC8631467 DOI: 10.4049/jimmunol.2100254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
Systemic duress, such as that elicited by sepsis, burns, or trauma, predisposes patients to secondary pneumonia, demanding better understanding of host pathways influencing this deleterious connection. These pre-existing circumstances are capable of triggering the hepatic acute-phase response (APR), which we previously demonstrated is essential for limiting susceptibility to secondary lung infections. To identify potential mechanisms underlying protection afforded by the lung-liver axis, our studies aimed to evaluate liver-dependent lung reprogramming when a systemic inflammatory challenge precedes pneumonia. Wild-type mice and APR-deficient littermate mice with hepatocyte-specific deletion of STAT3 (hepSTAT3-/-), a transcription factor necessary for full APR initiation, were challenged i.p. with LPS to induce endotoxemia. After 18 h, pneumonia was induced by intratracheal Escherichia coli instillation. Endotoxemia elicited significant transcriptional alterations in the lungs of wild-type and hepSTAT3-/- mice, with nearly 2000 differentially expressed genes between genotypes. The gene signatures revealed exaggerated immune activity in the lungs of hepSTAT3-/- mice, which were compromised in their capacity to launch additional cytokine responses to secondary infection. Proteomics revealed substantial liver-dependent modifications in the airspaces of pneumonic mice, implicating a network of dispatched liver-derived mediators influencing lung homeostasis. These results indicate that after systemic inflammation, liver acute-phase changes dramatically remodel the lungs, resulting in a modified landscape for any stimuli encountered thereafter. Based on the established vulnerability of hepSTAT3-/- mice to secondary lung infections, we believe that intact liver function is critical for maintaining the immunological responsiveness of the lungs.
Collapse
Affiliation(s)
- Christine V Odom
- Pulmonary Center, Boston University School of Medicine, Boston, MA
- Department of Microbiology, Boston University School of Medicine, Boston, MA
| | - Yuri Kim
- Pulmonary Center, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Claire L Burgess
- Pulmonary Center, Boston University School of Medicine, Boston, MA
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Lillia A Baird
- Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Elim Na
- Pulmonary Center, Boston University School of Medicine, Boston, MA
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Anukul T Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Emad I Arafa
- Pulmonary Center, Boston University School of Medicine, Boston, MA
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - TuKiet T Lam
- Yale MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT; and
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, MA
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA
- Department of Microbiology, Boston University School of Medicine, Boston, MA
- Department of Medicine, Boston University School of Medicine, Boston, MA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, MA;
- Department of Microbiology, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
- Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
22
|
The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull (Beijing) 2021; 66:1806-1816. [PMID: 36654387 DOI: 10.1016/j.scib.2021.02.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/28/2021] [Indexed: 02/03/2023]
Abstract
The essential trace element iron regulates a wide range of biological processes in virtually all living organisms. Because both iron deficiency and iron overload can lead to various pathological conditions, iron homeostasis is tightly regulated, and understanding this complex process will help pave the way to developing new therapeutic strategies for inflammatory disease. In recent years, significant progress has been made with respect to elucidating the roles of iron and iron-related genes in the development and maintenance of the immune system. Here, we review the timing and mechanisms by which systemic and cellular iron metabolism are regulated during the inflammatory response and during infectious disease, processes in which both the host and the pathogen compete for iron. We also discuss the evidence and implications that immune cells such as macrophages, T cells, and B cells require sufficient amounts of iron for their proliferation and for mediating their effector functions, in which iron serves as a co-factor in toll-like receptor 4 (TLR4) signaling, mitochondrial respiration, posttranslational regulation, and epigenetic modification. In addition, we discuss the therapeutic implications of targeting ferroptosis, iron homeostasis and/or iron metabolism with respect to conferring protection against pathogen infection, controlling inflammation, and improving the efficacy of immunotherapy.
Collapse
|
23
|
Airway Epithelial Hepcidin Coordinates Lung Macrophages and Immunity Against Bacterial Pneumonia. Shock 2021; 54:402-412. [PMID: 31743298 DOI: 10.1097/shk.0000000000001471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hepcidin is a liver-derived master regulator of iron metabolism through its molecular target ferroportin, the only known mammalian iron exporter. Accumulated evidence has shown the important roles of hepatic hepcidin in host defense and infections. Hepcidin is also expressed by airway epithelial cells. However, the function of epithelial hepcidin during bacterial pneumonia remains unknown. METHODS Pneumonia was induced in hepcidin-1-deficient and wild-type mice using the most common bacterial agents, and the effects of hepcidin on survival, bacterial burden, iron status, and macrophage phagocytosis after bacterial pneumonia were assessed. RESULTS Hepcidin levels decreased in airway epithelium during common pneumonia, while lung macrophage-derived ferroportin levels and pulmonary iron concentrations increased. Lack of hepcidin in the airway epithelium worsened the outcomes of pneumonia. Manipulation of hepcidin level in the airway epithelium in mice with macrophage-specific ferroportin deletion did not affect the progress of pneumonia. Increased pulmonary iron concentration not only facilitated bacterial growth but also led to the defective phagocytic function of lung macrophages via activation of RhoA GTPase through oxidation of RhoGDI. Furthermore, enhancing the hepcidin level in the airway epithelium rescued mice from lethal bacterial pneumonia. CONCLUSIONS These findings identify an uncharacterized important role of airway epithelial hepcidin in protection against bacterial pneumonia and provide the basis for novel alternative therapeutic strategies for combatting bacterial pneumonia in future translational research.
Collapse
|
24
|
Brabin B. The possible effects of iron loss from bloodletting on mortality from pneumonia in the nineteenth century. J Clin Epidemiol 2021; 138:139-146. [PMID: 34186196 DOI: 10.1016/j.jclinepi.2021.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To estimate iron losses and disease severity following 19th century bloodletting in patients with pneumonia. STUDY DESIGN AND SETTING Benefits of bloodletting in pneumonia patients were contested during the 19th century. Although large blood volumes during infection were removed there was no systematic data collection assessing efficacy and knowledge of iron composition of blood was rudimentary. This observational analysis of historical data quantifies iron losses in pneumonia cases in relation to disease severity. RESULTS Based on one detailed case series average blood volume removed for survivors was 830 mL (range 114-2272 mL), and mean recovery times were shorter in patients bled within 2 days of illness (P < 0.001). Average iron removed was 446 mg with phlebotomy done ≤2 days of illness presentation and 347 mg after >2 days of illness (P = 0.012). Across several European hospitals average case fatality in pneumonia patients receiving phlebotomy was higher than in those treated without phlebotomy (19.9% vs. 12.8%, OR 1.55, 95% CI 1.38-1.74, P < 0.001). CONCLUSION Variable efficacy for bloodletting could at least in part be explained by altered iron status.
Collapse
Affiliation(s)
- Bernard Brabin
- Liverpool School of Tropical Medicine, and Institute of Infection and Global Health, University of Liverpool, UK, and Global Child Health Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int J Mol Sci 2021; 22:ijms22126493. [PMID: 34204327 PMCID: PMC8235187 DOI: 10.3390/ijms22126493] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Despite its abundance in the environment, iron is poorly bioavailable and subject to strict conservation and internal recycling by most organisms. In vertebrates, the stability of iron concentration in plasma and extracellular fluid, and the total body iron content are maintained by the interaction of the iron-regulatory peptide hormone hepcidin with its receptor and cellular iron exporter ferroportin (SLC40a1). Ferroportin exports iron from duodenal enterocytes that absorb dietary iron, from iron-recycling macrophages in the spleen and the liver, and from iron-storing hepatocytes. Hepcidin blocks iron export through ferroportin, causing hypoferremia. During iron deficiency or after hemorrhage, hepcidin decreases to allow iron delivery to plasma through ferroportin, thus promoting compensatory erythropoiesis. As a host defense mediator, hepcidin increases in response to infection and inflammation, blocking iron delivery through ferroportin to blood plasma, thus limiting iron availability to invading microbes. Genetic diseases that decrease hepcidin synthesis or disrupt hepcidin binding to ferroportin cause the iron overload disorder hereditary hemochromatosis. The opposite phenotype, iron restriction or iron deficiency, can result from genetic or inflammatory overproduction of hepcidin.
Collapse
|
26
|
Olonisakin TF, Suber T, Gonzalez-Ferrer S, Xiong Z, Peñaloza HF, van der Geest R, Xiong Y, Osei-Hwedieh DO, Tejero J, Rosengart MR, Mars WM, Van Tyne D, Perlegas A, Brashears S, Kim-Shapiro DB, Gladwin MT, Bachman MA, Hod EA, St. Croix C, Tyurina YY, Kagan VE, Mallampalli RK, Ray A, Ray P, Lee JS. Stressed erythrophagocytosis induces immunosuppression during sepsis through heme-mediated STAT1 dysregulation. J Clin Invest 2021; 131:137468. [PMID: 32941182 PMCID: PMC7773401 DOI: 10.1172/jci137468] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023] Open
Abstract
Macrophages are main effectors of heme metabolism, increasing transiently in the liver during heightened disposal of damaged or senescent RBCs (sRBCs). Macrophages are also essential in defense against microbial threats, but pathological states of heme excess may be immunosuppressive. Herein, we uncovered a mechanism whereby an acute rise in sRBC disposal by macrophages led to an immunosuppressive phenotype after intrapulmonary Klebsiella pneumoniae infection characterized by increased extrapulmonary bacterial proliferation and reduced survival from sepsis in mice. The impaired immunity to K. pneumoniae during heightened sRBC disposal was independent of iron acquisition by bacterial siderophores, in that K. pneumoniae mutants lacking siderophore function recapitulated the findings observed with the WT strain. Rather, sRBC disposal induced a liver transcriptomic profile notable for suppression of Stat1 and IFN-related responses during K. pneumoniae sepsis. Excess heme handling by macrophages recapitulated STAT1 suppression during infection that required synergistic NRF1 and NRF2 activation but was independent of heme oxygenase-1 induction. Whereas iron was dispensable, the porphyrin moiety of heme was sufficient to mediate suppression of STAT1-dependent responses in human and mouse macrophages and promoted liver dissemination of K. pneumoniae in vivo. Thus, cellular heme metabolism dysfunction negatively regulated the STAT1 pathway, with implications in severe infection.
Collapse
Affiliation(s)
- Tolani F. Olonisakin
- Medical Scientist Training Program,,Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Tomeka Suber
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Shekina Gonzalez-Ferrer
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Hernán F. Peñaloza
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Yuting Xiong
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Jesús Tejero
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine,,Vascular Medicine Institute
| | | | | | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andreas Perlegas
- Department of Physics and The Translational Science Center, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Samuel Brashears
- Department of Physics and The Translational Science Center, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Daniel B. Kim-Shapiro
- Department of Physics and The Translational Science Center, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Mark T. Gladwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine,,Vascular Medicine Institute
| | - Michael A. Bachman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center-New York Presbyterian Hospital, New York, New York, USA
| | | | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, and,Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, and,Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K. Mallampalli
- Department of Medicine, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Anuradha Ray
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Prabir Ray
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence,,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine,,Vascular Medicine Institute
| |
Collapse
|
27
|
Iron in immune cell function and host defense. Semin Cell Dev Biol 2020; 115:27-36. [PMID: 33386235 DOI: 10.1016/j.semcdb.2020.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The control over iron availability is crucial under homeostatic conditions and even more in the case of an infection. This results from diverse properties of iron: first, iron is an important trace element for the host as well as for the pathogen for various cellular and metabolic processes, second, free iron catalyzes Fenton reaction and is therefore producing reactive oxygen species as a part of the host defense machinery, third, iron exhibits important effects on immune cell function and differentiation and fourth almost every immune activation in turn impacts on iron metabolism and spatio-temporal iron distribution. The central importance of iron in the host and microbe interplay and thus for the course of infections led to diverse strategies to restrict iron for invading pathogens. In this review, we focus on how iron restriction to the pathogen is a powerful innate immune defense mechanism of the host called "nutritional immunity". Important proteins in the iron-host-pathogen interplay will be discussed as well as the influence of iron on the efficacy of innate and adaptive immunity. Recently described processes like ferritinophagy and ferroptosis are further covered in respect to their impact on inflammation and infection control and how they impact on our understanding of the interaction of host and pathogen.
Collapse
|
28
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
29
|
How Severe Anaemia Might Influence the Risk of Invasive Bacterial Infections in African Children. Int J Mol Sci 2020; 21:ijms21186976. [PMID: 32972031 PMCID: PMC7555399 DOI: 10.3390/ijms21186976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
Severe anaemia and invasive bacterial infections are common causes of childhood sickness and death in sub-Saharan Africa. Accumulating evidence suggests that severely anaemic African children may have a higher risk of invasive bacterial infections. However, the mechanisms underlying this association remain poorly described. Severe anaemia is characterized by increased haemolysis, erythropoietic drive, gut permeability, and disruption of immune regulatory systems. These pathways are associated with dysregulation of iron homeostasis, including the downregulation of the hepatic hormone hepcidin. Increased haemolysis and low hepcidin levels potentially increase plasma, tissue and intracellular iron levels. Pathogenic bacteria require iron and/or haem to proliferate and have evolved numerous strategies to acquire labile and protein-bound iron/haem. In this review, we discuss how severe anaemia may mediate the risk of invasive bacterial infections through dysregulation of hepcidin and/or iron homeostasis, and potential studies that could be conducted to test this hypothesis.
Collapse
|
30
|
Mould DL, Botelho NJ, Hogan DA. Intraspecies Signaling between Common Variants of Pseudomonas aeruginosa Increases Production of Quorum-Sensing-Controlled Virulence Factors. mBio 2020; 11:e01865-20. [PMID: 32843558 PMCID: PMC7448281 DOI: 10.1128/mbio.01865-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR-) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR- strains, LasR- strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR-but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections.IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR- strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico J Botelho
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
31
|
Enhanced labile plasma iron in hematopoietic stem cell transplanted patients promotes Aspergillus outgrowth. Blood Adv 2020; 3:1695-1700. [PMID: 31167821 DOI: 10.1182/bloodadvances.2019000043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/19/2019] [Indexed: 01/21/2023] Open
Abstract
Key Points
Serum-enhanced labile plasma iron in patients undergoing allogeneic HSCT is critical for Aspergillus fumigatus growth in vitro. Transferrin iron in serum is inaccessible for A fumigatus, and uptake of iron in the form of eLPI involves fungal siderophores.
Collapse
|
32
|
Zhang V, Ganz T, Nemeth E, Kim A. Iron overload causes a mild and transient increase in acute lung injury. Physiol Rep 2020; 8:e14470. [PMID: 32596989 PMCID: PMC7322498 DOI: 10.14814/phy2.14470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have demonstrated a strong link between acute respiratory distress syndrome (ARDS) and the levels of iron and iron-related proteins in the lungs. However, the role of iron overload in ARDS development has yet to be characterized. In this study, we compared the highly iron-overloaded hepcidin knockout mice (HKO) to their iron-sufficient wild-type (WT) littermates in a model of sterile acute lung injury (ALI) induced by treatment with oropharyngeal (OP) LPS. There were no major differences in systemic inflammatory response or airway neutrophil infiltration between the two groups at the time of maximal injury (days 2 and 3) or during the recovery phase (day 7). Hepcidin knockout mice had transiently increased bronchoalveolar lavage fluid (BALF) protein and MPO activity in the lung and BALF on day 3, indicating worse vascular leakage and increased neutrophil activity, respectively. The increased ALI severity in iron-overloaded mice may be a result of increased apoptosis of lung tissue, as evidenced by an increase in cleaved capsase-3 protein in lung homogenates from HKO mice versus WT mice on day 3. Altogether, our data suggest that even severe iron overload has a relatively minor and transient effect in LPS-induced ALI.
Collapse
Affiliation(s)
- Vida Zhang
- Department of MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Department of Molecular and Medical PharmacologyUCLALos AngelesCAUSA
| | - Tomas Ganz
- Department of MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
| | - Elizabeta Nemeth
- Department of MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
| | - Airie Kim
- Department of MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
| |
Collapse
|
33
|
Michels KR, Lambrecht NJ, Carson WF, Schaller MA, Lukacs NW, Bermick JR. The Role of Iron in the Susceptibility of Neonatal Mice to Escherichia coli K1 Sepsis. J Infect Dis 2020; 220:1219-1229. [PMID: 31136646 DOI: 10.1093/infdis/jiz282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022] Open
Abstract
Sepsis from Escherichia coli expressing the K1 antigen is a leading cause of death in neonates. In a murine model, E. coli K1 grew rapidly in the peritoneal cavity of neonatal mice, causing fatal disease. In contrast, adult mice cleared the infection. Neonatal mice mounted a rapid and equivalent antimicrobial immune response compared to adult mice. Interestingly, peritoneal fluid from neonatal mice contained significantly more total iron than that of adult mice, which was sufficient to support enhanced E. coli growth. Transient iron overload in adult mice infected with E. coli resulted in 100% mortality. Maternal diet-induced mild iron deficiency decreased offspring peritoneal iron, decreased bacterial growth, and conferred protection against sepsis. Taken together, neonatal susceptibility to E. coli K1 sepsis is enhanced by a localized excess of peritoneal iron that allows for unchecked bacterial growth. Targeting this excess iron may provide a new therapeutic target in human patients.
Collapse
Affiliation(s)
- Kathryn R Michels
- Department of Pathology, Michigan Medicine, School of Public Health, University of Michigan, Ann Arbor
| | - Nathalie J Lambrecht
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor
| | - William F Carson
- Department of Pathology, Michigan Medicine, School of Public Health, University of Michigan, Ann Arbor
| | - Matthew A Schaller
- Department of Pathology, Michigan Medicine, School of Public Health, University of Michigan, Ann Arbor
| | - Nicholas W Lukacs
- Department of Pathology, Michigan Medicine, School of Public Health, University of Michigan, Ann Arbor.,Mary H. Weiser Food Allergy Center, Department of Pediatrics, Michigan Medicine, Ann Arbor
| | - Jennifer R Bermick
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, Ann Arbor
| |
Collapse
|
34
|
Hosseiniyan Khatibi SM, Kheyrolahzadeh K, Barzegari A, Rahbar Saadat Y, Zununi Vahed S. Medicinal signaling cells: A potential antimicrobial drug store. J Cell Physiol 2020; 235:7731-7746. [PMID: 32352173 DOI: 10.1002/jcp.29728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022]
Abstract
Medicinal signaling cells (MSCs) are multipotent cells derived from mammalian bone marrow and periosteum that can be extended in culture. They can keep their ability in vitro to form a variety of mesodermal phenotypes and tissues. Over recent years, there has been great attention over MSCs since they can impact the organ transplantation as well as autoimmune and bacterial diseases. MSCs can secrete different bioactive factors such as growth factors, antimicrobial peptides/proteins and cytokines that can suppress the immune system and prevent infection via direct and indirect mechanisms. Moreover, MSCs are able to increase bacterial clearance in sepsis models by producing antimicrobial peptides such as defensins, cathelicidins, lipocalin and hepcidin. It is the aim of the present review to focus on the antibacterial effector functions of MSCs and their mechanisms of action against the pathogenic microbes.
Collapse
Affiliation(s)
| | - Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Azad University, Tabriz Branch, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
35
|
Fallet E, Rayar M, Landrieux A, Camus C, Houssel-Debry P, Jezequel C, Legros L, Uguen T, Ropert-Bouchet M, Boudjema K, Guyader D, Bardou-Jacquet E. Iron metabolism imbalance at the time of listing increases overall and infectious mortality after liver transplantation. World J Gastroenterol 2020; 26:1938-1949. [PMID: 32390704 PMCID: PMC7201152 DOI: 10.3748/wjg.v26.i16.1938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver transplantation (LT) is the best treatment for patients with liver cancer or end stage cirrhosis, but it is still associated with a significant mortality. Therefore identifying factors associated with mortality could help improve patient management. The impact of iron metabolism, which could be a relevant therapeutic target, yield discrepant results in this setting. Previous studies suggest that increased serum ferritin is associated with higher mortality. Surprisingly iron deficiency which is a well described risk factor in critically ill patients has not been considered. AIM To assess the impact of pre-transplant iron metabolism parameters on post-transplant survival. METHODS From 2001 to 2011, 553 patients who underwent LT with iron metabolism parameters available at LT evaluation were included. Data were prospectively recorded at the time of evaluation and at the time of LT regarding donor and recipient. Serum ferritin (SF) and transferrin saturation (TS) were studied as continuous and categorical variable. Cox regression analysis was used to determine mortality risks factors. Follow-up data were obtained from the local and national database regarding causes of death. RESULTS At the end of a 95-mo median follow-up, 196 patients were dead, 38 of them because of infections. In multivariate analysis, overall mortality was significantly associated with TS > 75% [HR: 1.73 (1.14; 2.63)], SF < 100 µg/L [HR: 1.62 (1.12; 2.35)], hepatocellular carcinoma [HR: 1.58 (1.15; 2.26)], estimated glomerular filtration rate (CKD EPI Cystatin C) [HR: 0.99 (0.98; 0.99)], and packed red blood cell transfusion [HR: 1.05 (1.03; 1.08)]. Kaplan Meier curves show that patients with low SF (< 100 µg/L) or high SF (> 400 µg/L) have lower survival rates at 36 mo than patients with normal SF (P = 0.008 and P = 0.016 respectively). Patients with TS higher than 75% had higher mortality at 12 mo (91.4% ± 1.4% vs 84.6% ± 3.1%, P = 0.039). TS > 75% was significantly associated with infection related death [HR: 3.06 (1.13; 8.23)]. CONCLUSION Our results show that iron metabolism imbalance (either deficiency or overload) is associated with post-transplant overall and infectious mortality. Impact of iron supplementation or depletion should be assessed in prospective study.
Collapse
Affiliation(s)
- Elodie Fallet
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | - Michel Rayar
- Service de Chirurgie Hepatobilaire, CHU Rennes, University Rennes, Rennes 35033, France
| | - Amandine Landrieux
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | - Christophe Camus
- Service de Réanimation médicale, CHU Rennes, University Rennes, Rennes 35033, France
| | - Pauline Houssel-Debry
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
- Service de Chirurgie Hepatobilaire, CHU Rennes, University Rennes, Rennes 35033, France
| | - Caroline Jezequel
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | - Ludivine Legros
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | - Thomas Uguen
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | | | - Karim Boudjema
- Service de Chirurgie Hepatobilaire, CHU Rennes, University Rennes, Rennes 35033, France
| | - Dominique Guyader
- Service des Maladies du Foie, CHU Rennes, University Rennes, Rennes 35033, France
| | | |
Collapse
|
36
|
Ganz T, Aronoff GR, Gaillard CAJM, Goodnough LT, Macdougall IC, Mayer G, Porto G, Winkelmayer WC, Wish JB. Iron Administration, Infection, and Anemia Management in CKD: Untangling the Effects of Intravenous Iron Therapy on Immunity and Infection Risk. Kidney Med 2020; 2:341-353. [PMID: 32734254 PMCID: PMC7380433 DOI: 10.1016/j.xkme.2020.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk for infection, attributable to immune dysfunction, increased exposure to infectious agents, loss of cutaneous barriers, comorbid conditions, and treatment-related factors (eg, hemodialysis and immunosuppressant therapy). Because iron plays a vital role in pathogen reproduction and host immunity, it is biologically plausible that intravenous iron therapy and/or iron deficiency influence infection risk in CKD. Available data from preclinical experiments, observational studies, and randomized controlled trials are summarized to explore the interplay between intravenous iron and infection risk among patients with CKD, particularly those receiving maintenance hemodialysis. The current evidence base, including data from a recent randomized controlled trial, suggests that proactive judicious use of intravenous iron (in a manner that minimizes the accumulation of non-transferrin-bound iron) beneficially replaces iron stores while avoiding a clinically relevant effect on infection risk. In the absence of an urgent clinical need, intravenous iron therapy should be avoided in patients with active infection. Although serum ferritin concentration and transferrin saturation can help guide clinical decision making about intravenous iron therapy, definition of an optimal iron status and its precise determination in individual patients remain clinically challenging in CKD and warrant additional study.
Collapse
Affiliation(s)
- Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | | | | | - Lawrence T Goodnough
- Department of Pathology, Stanford University, Stanford, CA.,Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Iain C Macdougall
- Department of Renal Medicine, King's College Hospital, London, United Kingdom
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Graça Porto
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Wolfgang C Winkelmayer
- Section of Nephrology and Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX
| | - Jay B Wish
- Division of Nephrology, Indiana University Health, Indianapolis, IN
| |
Collapse
|
37
|
Boumaiza M, Poli M, Carmona F, Asperti M, Gianoncelli A, Bertuzzi M, Arosio P, Marzouki MN. Cellular binding analysis of recombinant hybrid heteropolymer of camel hepcidin and human ferritin H chain. The unexpected human H-ferritin binding to J774 murine macrophage cells. Mol Biol Rep 2019; 47:1265-1273. [PMID: 31838658 DOI: 10.1007/s11033-019-05234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/07/2019] [Indexed: 11/24/2022]
Abstract
Ferritin is a molecule with enormous potentiality in biotechnology that have been already used to encapsulate molecules, as contrast in magnetic resonance imaging and to carry epitopes. We proposed to use it to carry another key protein of iron metabolism, hepcidin that is a small hormone peptide that control systemic iron homeostasis. In this work, we purified the previously produced camel hepcidin and human H-ferritin heteropolymer (HepcH-FTH) and to monitor its binding capability toward J744 cell line in presence or absence of ferric ammonium citrate. Fused camel hepcidin and human H-ferritin monomer (HepcH) as well as the assembled HepcH-FTH heteropolymer (ratio 1:5) was easily purified by a one-step purification using size exclusion chromatography. SDS-PAGE electrophoresis of HepcH, purified from soluble and insoluble fractions, showed a single band of 24 kDa with an estimated purity of at least 90%. The purification yields of HepcH from the soluble and insoluble fractions was, respectively, of about 6.80 and 2 mg/L of bacterial culture. Time curse cellular binding assays of HepcH-FTH revealed its great potential to bind the J774 cells after 15 min of incubation. Furthermore, HepcH-FTH was able to degrade ferroportin, the unique hepcidin receptor, even after 30 min of incubation with J774 cells treated with 100 µM ferric ammonium citrate. In conclusion, we proposed ferritin as a peptide carrier to promote the association of the hybrid HepcH-FTH nanoparticle with a particular type of cell for therapeutic or diagnostic.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.), BP 676, 1080, Tunis Cedex, Tunisia. .,Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, 13, place Pasteur, BP. 74, 1002, Tunis, Tunisia.
| | - Maura Poli
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Fernando Carmona
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Michela Asperti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Alessandra Gianoncelli
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Michela Bertuzzi
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Paolo Arosio
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Mohamed Nejib Marzouki
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.), BP 676, 1080, Tunis Cedex, Tunisia
| |
Collapse
|
38
|
Hepcidin mediates hypoferremia and reduces the growth potential of bacteria in the immediate post-natal period in human neonates. Sci Rep 2019; 9:16596. [PMID: 31719592 PMCID: PMC6851364 DOI: 10.1038/s41598-019-52908-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/01/2019] [Indexed: 01/21/2023] Open
Abstract
Septicemia is a leading cause of death among neonates in low-income settings, a situation that is deteriorating due to high levels of antimicrobial resistance. Novel interventions are urgently needed. Iron stimulates the growth of most bacteria and hypoferremia induced by the acute phase response is a key element of innate immunity. Cord blood, which has high levels of hemoglobin, iron and transferrin saturation, has hitherto been used as a proxy for the iron status of neonates. We investigated hepcidin-mediated redistribution of iron in the immediate post-natal period and tested the effect of the observed hypoferremia on the growth of pathogens frequently associated with neonatal sepsis. Healthy, vaginally delivered neonates were enrolled in a cohort study at a single center in rural Gambia (N = 120). Cord blood and two further blood samples up to 96 hours of age were analyzed for markers of iron metabolism. Samples pooled by transferrin saturation were used to conduct ex-vivo growth assays with Staphylococcus aureus, Streptococcus agalactiae, Escherichia coli and Klebsiella pneumonia. A profound reduction in transferrin saturation occurred within the first 12 h of life, from high mean levels in cord blood (47.6% (95% CI 43.7–51.5%)) to levels at the lower end of the normal reference range by 24 h of age (24.4% (21.2–27.6%)). These levels remained suppressed to 48 h of age with some recovery by 96 h. Reductions in serum iron were associated with high hepcidin and IL-6 levels. Ex-vivo growth of all sentinel pathogens was strongly associated with serum transferrin saturation. These results suggest the possibility that the hypoferremia could be augmented (e.g. by mini-hepcidins) as a novel therapeutic option that would not be vulnerable to antimicrobial resistance. Trial registration: The original trial in which this study was nested is registered at ISRCTN, number 93854442.
Collapse
|
39
|
Cross JH, Jarjou O, Mohammed NI, Prentice AM, Cerami C. Neonatal iron distribution and infection susceptibility in full term, preterm and low birthweight babies in urban Gambia: study protocol for an observational study. Gates Open Res 2019; 3:1469. [PMID: 31588425 PMCID: PMC6757319 DOI: 10.12688/gatesopenres.12963.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Neonatal infection is the third largest cause of death in children under five worldwide. Nutritional immunity is the process by which the host innate immune system limits nutrient availability to invading organisms. Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Our previously published data shows that, during the first 24 hours of life, full-term neonates have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord blood to ~20% by six hours post-delivery. Methods: To study neonatal nutritional immunity and its role in neonatal susceptibility to infection, we will conduct an observational study on 300 full-term normal birth weight (FTB+NBW), 50 preterm normal birth weight (PTB+NBW), 50 preterm low birth weight (PTB+LBW) and 50 full-term low birth weight (FTB+LBW), vaginally-delivered neonates born at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial growth assays to assess how differences in serum iron affect bacterial growth. Blood samples will be collected from the umbilical cord (arterial and venous) and at serial time points from the neonates over the first week of life. Discussion: Currently, little is known about nutritional immunity in neonates. In this study, we will increase understanding of how nutritional immunity may protect neonates from infection during the first critical days of life by limiting the pathogenicity and virulence of neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will investigate the hypothesis that this protective mechanism may not be activated in preterm and low birth weight neonates, potentially putting these babies at an enhanced risk of neonatal infection. Trial registration: clinicaltrials.gov ( NCT03353051) 27/11/2017.
Collapse
Affiliation(s)
- James H. Cross
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Ousman Jarjou
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | - Andrew M. Prentice
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Carla Cerami
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
40
|
Daher R, Lefebvre T, Puy H, Karim Z. Extrahepatic hepcidin production: The intriguing outcomes of recent years. World J Clin Cases 2019; 7:1926-1936. [PMID: 31423425 PMCID: PMC6695539 DOI: 10.12998/wjcc.v7.i15.1926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/05/2023] Open
Abstract
Hepcidin is the hyposideremic hormone regulating iron metabolism. It is a defensin-like disulfide-bonded peptide with antimicrobial activity. The main site of hepcidin production is the liver where its synthesis is modulated by iron, inflammation and erythropoietic signaling. However, hepcidin locally produced in several peripheral organs seems to be an important actor for the maintenance of iron homeostasis in these organs. This review highlights the presence of peripheral hepcidin and its potential functions. Understanding the role of extrahepatic hepcidin could be of great physiological and therapeutic importance for several specific pathologies.
Collapse
Affiliation(s)
- Raêd Daher
- Université Paris Diderot, Bichat site, Paris 75018, France
- Inflammation Research Center (CRI), INSERM U1149/ERL CNRS 8252, Paris 75018, France
- Laboratory of Excellence, GR-Ex, Paris 75018, France
| | - Thibaud Lefebvre
- Université Paris Diderot, Bichat site, Paris 75018, France
- Inflammation Research Center (CRI), INSERM U1149/ERL CNRS 8252, Paris 75018, France
- Laboratory of Excellence, GR-Ex, Paris 75018, France
| | - Hervé Puy
- Université Paris Diderot, Bichat site, Paris 75018, France
- Inflammation Research Center (CRI), INSERM U1149/ERL CNRS 8252, Paris 75018, France
- Laboratory of Excellence, GR-Ex, Paris 75018, France
| | - Zoubida Karim
- Université Paris Diderot, Bichat site, Paris 75018, France
- Inflammation Research Center (CRI), INSERM U1149/ERL CNRS 8252, Paris 75018, France
- Laboratory of Excellence, GR-Ex, Paris 75018, France
| |
Collapse
|
41
|
Kolloli A, Singh P, Rodriguez GM, Subbian S. Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection. J Clin Med 2019; 8:jcm8081155. [PMID: 31382404 PMCID: PMC6722820 DOI: 10.3390/jcm8081155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
The human response to Mycobacterium tuberculosis (Mtb) infection is affected by the availability of iron (Fe), which is necessary for proper immune cell function and is essential for the growth and virulence of bacteria. Increase in host Fe levels promotes Mtb growth and tuberculosis (TB) pathogenesis, while Fe-supplementation to latently infected, asymptomatic individuals is a significant risk factor for disease reactivation. However, the effect of Fe-supplementation on the host immunity during latent Mtb infection remains unclear, due partly to the paucity in availability of animal models that recapitulate key pathophysiological features seen in humans. We have demonstrated that rabbits can develop non-progressive latency similar to infected humans. In this study, using this model we have evaluated the effect of Fe-supplementation on the bacterial growth, disease pathology, and immune response. Systemic and lung Fe parameters, gene expression profile, lung bacterial burden, and disease pathology were determined in the Mtb-infected/Fe- or placebo-supplemented rabbits. Results show that Fe-supplementation to Mtb-infected rabbits did not significantly change the hematocrit and Hb levels, although it elevated total Fe in the lungs. Expression of selected host iron- and immune-response genes in the blood and lungs was perturbed in Mtb-infected/Fe-supplemented rabbits. Iron-supplementation during acute or chronic stages of Mtb infection did not significantly affect the bacterial burden or disease pathology in the lungs. Data presented in this study is of significant relevance for current public health policies on Fe-supplementation therapy given to anemic patients with latent Mtb infection.
Collapse
Affiliation(s)
- Afsal Kolloli
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Pooja Singh
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - G Marcela Rodriguez
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
42
|
Radosz A, Obuchowicz A. The role of hepcidin in regulating iron homeostasis in selected diseases. DEVELOPMENTAL PERIOD MEDICINE 2019; 23. [PMID: 31280251 PMCID: PMC8522373 DOI: 10.34763/devperiodmed.20192302.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Iron is an element whose content in the human organism remains under strict control not only due to its involvement in many life processes but also because of its potential toxicity. The latest studies in iron metabolism, especially the involvement of hepcidin, which is the main regulator of iron homeostasis, broadened our knowledge in many medical fields (immunology, nephrology, hematology, gastrology). The present paper is a review of the literature devoted to the importance of hepcidin under selected conditions.
Collapse
Affiliation(s)
- Aleksandra Radosz
- Chair and Department of Pediatrics in Bytom, The School of Health Sciences, Medical University of Silesia, Katowice, Poland,Aleksandra Radosz Katedra i Oddział Kliniczny Pediatrii ul. Batorego 15, 41-902 Bytom tel. (32) 78-61-504, (32)78-61-498
| | - Anna Obuchowicz
- Chair and Department of Pediatrics in Bytom, The School of Health Sciences, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
43
|
Verma S, Prescott R, Cherayil BJ. The commensal bacterium Bacteroides fragilis down-regulates ferroportin expression and alters iron homeostasis in macrophages. J Leukoc Biol 2019; 106:1079-1088. [PMID: 31166618 DOI: 10.1002/jlb.2a1018-408rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal microbiota has several effects on host physiology. Previous work from our laboratory demonstrated that the microbiota influences systemic iron homeostasis in mouse colitis models by altering inflammation-induced expression of the iron-regulating hormone hepcidin. In the present study, we examined the impact of the gut commensal bacterium Bacteroides fragilis on the expression of the iron exporter ferroportin, the target of hepcidin action, in macrophages, the cell type that plays a pivotal role in iron recycling. Mouse bone marrow-derived macrophages were exposed to B. fragilis and were analyzed by quantitative real-time polymerase chain reaction and Western blotting. We found that B. fragilis down-regulated ferroportin transcription independently of bacterial viability. Medium conditioned by the bacteria also reduced ferroportin expression, indicating the involvement of soluble factors, possibly Toll-like receptor ligands. Consistent with this idea, several of these ligands were able to down-regulate ferroportin. The B. fragilis-induced decrease in ferroportin was functionally important since it produced a significant increase in intracellular iron concentrations that prevented the effects of the iron chelator deferoxamine on Salmonella-induced IL-6 and IL-1β production. Our results thus reveal that B. fragilis can influence macrophage iron handling and inflammatory responses by modulating ferroportin expression.
Collapse
Affiliation(s)
- Smriti Verma
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel Prescott
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bobby J Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Núñez G, Sakamoto K, Soares MP. Innate Nutritional Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:11-18. [PMID: 29914937 DOI: 10.4049/jimmunol.1800325] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) is an essential micronutrient for both microbes and their hosts. The biologic importance of Fe derives from its inherent ability to act as a universal redox catalyst, co-opted in a variety of biochemical processes critical to maintain life. Animals evolved several mechanisms to retain and limit Fe availability to pathogenic microbes, a resistance mechanism termed "nutritional immunity." Likewise, pathogenic microbes coevolved to deploy diverse and efficient mechanisms to acquire Fe from their hosts and in doing so overcome nutritional immunity. In this review, we discuss how the innate immune system regulates Fe metabolism to withhold Fe from pathogenic microbes and how strategies used by pathogens to acquire Fe circumvent these resistance mechanisms.
Collapse
Affiliation(s)
- Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; .,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Kei Sakamoto
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | | |
Collapse
|
45
|
Cross JH, Jarjou O, Mohammed NI, Prentice AM, Cerami C. Neonatal iron distribution and infection susceptibility in full term, preterm and low birthweight babies in urban Gambia: study protocol for an observational study. Gates Open Res 2019; 3:1469. [PMID: 31588425 PMCID: PMC6757319 DOI: 10.12688/gatesopenres.12963.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2019] [Indexed: 10/15/2023] Open
Abstract
Background: Neonatal infection is the third largest cause of death in children under five worldwide. Nutritional immunity is the process by which the host innate immune system limits nutrient availability to invading organisms. Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Our previously published data shows that, during the first 24 hours of life, full-term neonates have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord blood to ~20% by six hours post-delivery. Methods: To study neonatal nutritional immunity and its role in neonatal susceptibility to infection, we will conduct an observational study on 300 full-term normal birth weight (FTB+NBW), 50 preterm normal birth weight (PTB+NBW), 50 preterm low birth weight (PTB+LBW) and 50 full-term low birth weight (FTB+LBW), vaginally-delivered neonates born at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial growth assays to assess how differences in serum iron affect bacterial growth. Blood samples will be collected from the umbilical cord (arterial and venous) and at serial time points from the neonates over the first week of life. Discussion: Currently, little is known about nutritional immunity in neonates. In this study, we will increase understanding of how nutritional immunity may protect neonates from infection during the first critical days of life by limiting the pathogenicity and virulence of neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will investigate the hypothesis that this protective mechanism may not be activated in preterm and low birth weight neonates, potentially putting these babies at an enhanced risk of neonatal infection. Trial registration: clinicaltrials.gov ( NCT03353051) 27/11/2017.
Collapse
Affiliation(s)
- James H. Cross
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Ousman Jarjou
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | - Andrew M. Prentice
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Carla Cerami
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
46
|
Bauckman KA, Matsuda R, Higgins CB, DeBosch BJ, Wang C, Mysorekar IU. Dietary restriction of iron availability attenuates UPEC pathogenesis in a mouse model of urinary tract infection. Am J Physiol Renal Physiol 2019; 316:F814-F822. [PMID: 30724105 PMCID: PMC6580250 DOI: 10.1152/ajprenal.00133.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Iron is a critical nutrient required by hosts and pathogens. Uropathogenic Escherichia coli (UPEC), the principal causative agent of urinary tract infections (UTIs), chelate iron for their survival and persistence. Here, we demonstrate that dietary modulation of iron availability limits UPEC burden in a mouse model of UTI. Mice on a low-iron diet exhibit reduced systemic and bladder mucosal iron availability and harbor significantly lower bacterial burden, concomitant with dampened inflammation. Hepcidin is a master regulator of iron that controls iron-dependent UPEC intracellular growth. Hepcidin-deficient mice ( Hamp1-/-) exhibit accumulation of iron deposits, persistent bacterial burden in the bladder, and a heightened inflammatory response to UTI. However, a low-iron dietary regimen reversed the iron overload and increased bacterial burden phenotypes in Hamp1-/- mice. Thus modulation of iron levels via diet can reduce UPEC infection and persistence, which may have significant implications for clinical management of UTI.
Collapse
Affiliation(s)
- Kyle A Bauckman
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri
| | - Rina Matsuda
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri
| | - Cassandra B Higgins
- Department of Pediatrics, Division of Gastroenterology, Washington University School of Medicine , St. Louis, Missouri
| | - Brian J DeBosch
- Department of Pediatrics, Division of Gastroenterology, Washington University School of Medicine , St. Louis, Missouri
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri
- Centre for Reproductive Health Sciences, Washington University School of Medicine , St. Louis, Missouri
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, Missouri
- Centre for Reproductive Health Sciences, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
47
|
Haschka D, Petzer V, Kocher F, Tschurtschenthaler C, Schaefer B, Seifert M, Sopper S, Sonnweber T, Feistritzer C, Arvedson TL, Zoller H, Stauder R, Theurl I, Weiss G, Tymoszuk P. Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. JCI Insight 2019; 4:98867. [PMID: 30996139 PMCID: PMC6538345 DOI: 10.1172/jci.insight.98867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Myelomonocytic cells are critically involved in iron turnover as aged RBC recyclers. Human monocytes are divided in 3 subpopulations of classical, intermediate, and nonclassical cells, differing in inflammatory and migratory phenotype. Their functions in iron homeostasis are, however, unclear. Here, we asked whether the functional diversity of monocyte subsets translates into differences in handling physiological and pathological iron species. By microarray data analysis and flow cytometry we identified a set of iron-related genes and proteins upregulated in classical and, in part, intermediate monocytes. These included the iron exporter ferroportin (FPN1), ferritin, transferrin receptor, putative transporters of non-transferrin-bound iron (NTBI), and receptors for damaged erythrocytes. Consequently, classical monocytes displayed superior scavenging capabilities of potentially toxic NTBI, which were augmented by blocking iron export via hepcidin. The same subset and, to a lesser extent, the intermediate population, efficiently cleared damaged erythrocytes in vitro and mediated erythrophagocytosis in vivo in healthy volunteers and patients having received blood transfusions. To summarize, our data underline the physiologically important function of the classical and intermediate subset in clearing NTBI and damaged RBCs. As such, these cells may play a nonnegligible role in iron homeostasis and limit iron toxicity in iron overload conditions. Human classical and intermediate monocytes mediate clearance of non-transferrin-bound iron and erythrophagocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | - Tara L Arvedson
- Department of Oncology, Amgen Inc., Thousand Oaks, California, USA
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
48
|
Chawla LS, Beers-Mulroy B, Tidmarsh GF. Therapeutic Opportunities for Hepcidin in Acute Care Medicine. Crit Care Clin 2019; 35:357-374. [DOI: 10.1016/j.ccc.2018.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Iron in Lung Pathology. Pharmaceuticals (Basel) 2019; 12:ph12010030. [PMID: 30781366 PMCID: PMC6469192 DOI: 10.3390/ph12010030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022] Open
Abstract
The lung presents a unique challenge for iron homeostasis. The entire airway is in direct contact with the environment and its iron particulate matter and iron-utilizing microbes. However, the homeostatic and adaptive mechanisms of pulmonary iron regulation are poorly understood. This review provides an overview of systemic and local lung iron regulation, as well as the roles of iron in the development of lung infections, airway disease, and lung injury. These mechanisms provide an important foundation for the ongoing development of therapeutic applications.
Collapse
|
50
|
Abstract
Hepcidin is central to regulation of iron metabolism. Its effect on a cellular level involves binding ferroportin, the main iron export protein, resulting in its internalization and degradation and leading to iron sequestration within ferroportin-expressing cells. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we present an overview of and rationale for exploring the development of hepcidin agonists and antagonists in various clinical scenarios.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|