1
|
Muro R, Nitta T, Nitta S, Tsukasaki M, Asano T, Nakano K, Okamura T, Nakashima T, Okamoto K, Takayanagi H. Transcript splicing optimizes the thymic self-antigen repertoire to suppress autoimmunity. J Clin Invest 2024; 134:e179612. [PMID: 39403924 PMCID: PMC11473167 DOI: 10.1172/jci179612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024] Open
Abstract
Immunological self-tolerance is established in the thymus by the expression of virtually all self-antigens, including tissue-restricted antigens (TRAs) and cell-type-restricted antigens (CRAs). Despite a wealth of knowledge about the transcriptional regulation of TRA genes, posttranscriptional regulation remains poorly understood. Here, we show that protein arginine methylation plays an essential role in central immune tolerance by maximizing the self-antigen repertoire in medullary thymic epithelial cells (mTECs). Protein arginine methyltransferase-5 (Prmt5) was required for pre-mRNA splicing of certain key genes in tolerance induction, including Aire as well as various genes encoding TRAs. Mice lacking Prmt5 specifically in thymic epithelial cells exhibited an altered thymic T cell selection, leading to the breakdown of immune tolerance accompanied by both autoimmune responses and enhanced antitumor immunity. Thus, arginine methylation and transcript splicing are essential for establishing immune tolerance and may serve as a therapeutic target in autoimmune diseases as well as cancer immunotherapy.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sachiko Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Asano
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Mabrut E, Mainbourg S, Peron J, Maillet D, Dalle S, Fontaine Delaruelle C, Grolleau E, Clezardin P, Bonnelye E, Confavreux C, Massy E. Synergistic effect between denosumab and immune checkpoint inhibitors (ICI)? A retrospective study of 268 patients with ICI and bone metastases. J Bone Oncol 2024; 48:100634. [PMID: 39381634 PMCID: PMC11460504 DOI: 10.1016/j.jbo.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Background Bone metastasis is a significant concern in advanced solid tumors, contributing to diminished patient survival and quality of life due to skeletal-related events (SREs). Denosumab (DMAB), a monoclonal antibody targeting the receptor activator of nuclear factor kappa-B ligand (RANKL), is used to prevent SREs in such cases. The RANK/RANKL axis, crucial in immunological processes, has garnered attention, especially with the expanding use of immune checkpoint inhibitors (ICI) in modern oncology. Objective Our study aims to explore the potential synergistic antitumor effects of combining immunotherapy with denosumab, as suggested by anecdotal evidence, small cohort studies, and preclinical research. Methods We conducted a retrospective analysis using the IMMUCARE database, encompassing patients receiving ICI treatment since 2014 and diagnosed with bone metastases. We examined overall survival (OS), progression-free survival (PFS) and switch of treatment line based on denosumab usage. Patients were stratified into groups: without denosumab, ICI followed by denosumab, and denosumab followed by ICI. Survival curves and multivariate Cox regression analyses were performed. Results Among the 268 patients with bone metastases, 154 received treatment with ICI alone, while 114 received ICI in combination with denosumab at some point during their oncological history. No significant differences were observed in overall survival (OS) or progression-free survival (PFS) between patients receiving ICI monotherapy and those receiving ICI with denosumab (p = 0.29 and p = 0.79, respectively). However, upon analyzing patients who received denosumab following ICI initiation (17 patients), a notable difference emerged. The group receiving ICI followed by denosumab exhibited a significant advantage compared to those without denosumab (154 patients) or those receiving denosumab before ICI initiation (72 patients) (p = 0.022). Conclusion This retrospective investigation supports the notion of potential benefits associated with sequential administration of ICI and denosumab, although statistical significance was not achieved. Future studies, including prospective trials or updated retrospective analyses, focusing on cancers treated with first-line immunotherapy, could provide further insights into this therapeutic approach.
Collapse
Affiliation(s)
- E. Mabrut
- Université de Lyon, France
- Centre Expert des Métastases Osseuses (CEMOS) - Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - S. Mainbourg
- Service universitaire de Pharmacotoxicologie, Hospices Civils de Lyon, France
| | - J. Peron
- Service d’Oncologie Médicale. Institut de Cancérologie des Hospices Civils de Lyon (IC-HCL), Hôpital Lyon Sud-HCL, Pierre-Bénite, France
| | - D. Maillet
- Service d’Oncologie Médicale. Institut de Cancérologie des Hospices Civils de Lyon (IC-HCL), Hôpital Lyon Sud-HCL, Pierre-Bénite, France
| | - S. Dalle
- Service de Dermatologie, Hôpital Lyon Sud - HC L, Pierre-Bénite, France
| | | | - E. Grolleau
- Service de Pneumologie, Hôpital Lyon Sud - HC L, Pierre-Bénite, France
| | - P. Clezardin
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
| | - E. Bonnelye
- Université de Lille, France
- INSERM UMR9020-UMR127, Lille, France
| | - C.B. Confavreux
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
- Centre Expert des Métastases Osseuses (CEMOS) - Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - E. Massy
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
- Centre Expert des Métastases Osseuses (CEMOS) - Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
3
|
Kumazoe M, Fujimura Y, Shimada Y, Onda H, Hatakeyama Y, Tachibana H. Fustin suppressed melanoma cell growth via cAMP/PKA-dependent mechanism. Biosci Biotechnol Biochem 2024; 88:900-907. [PMID: 38835135 DOI: 10.1093/bbb/zbae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Melanoma, a cancer arising from melanocytes, requires a novel treatment strategy because of the ineffectiveness of conventional therapies in certain patients. Fustin is a flavanonol found in young fustic (Cotinus coggygria). However, little is known about its antimelanoma effects. Our study demonstrates that fustin suppresses the growth of B16 melanoma cells. Phalloidin staining of cytoskeletal actin revealed that fustin induced a conformational change in the actin structure of melanoma cells, accompanied by suppressed phosphorylation of myosin regulatory light chain 2 (MLC2), a regulator of actin structure. Furthermore, the protein kinase A (cAMP-dependent protein kinase) inhibitor H89 completely attenuated fustin-induced downregulation of phosphorylated myosin phosphatase targeting subunit 1, which is involved in dephosphorylation of MLC2. In a mouse model, administration of fustin suppressed tumor growth in B16 melanoma cells without adverse effects. In conclusion, our findings suggest that fustin effectively suppresses melanoma cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yui Hatakeyama
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Chang H, Marquez J, Chen BK, Kim DM, Cheng ML, Liu EV, Yang H, Zhang L, Sinha M, Cheung A, Kwek SS, Chow ED, Bridge M, Aggarwal RR, Friedlander TW, Small EJ, Anderson M, Fong L. Immune Modulation with RANKL Blockade through Denosumab Treatment in Patients with Cancer. Cancer Immunol Res 2024; 12:453-461. [PMID: 38276989 PMCID: PMC10993769 DOI: 10.1158/2326-6066.cir-23-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/21/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Denosumab is a fully human mAb that binds receptor activator of NFκB ligand (RANKL). It is routinely administered to patients with cancer to reduce the incidence of new bone metastasis. RANK-RANKL interactions regulate bone turnover by controlling osteoclast recruitment, development, and activity. However, these interactions also can regulate immune cells including dendritic cells and medullary thymic epithelial cells. Inhibition of the latter results in reduced thymic negative selection of T cells and could enhance the generation of tumor-specific T cells. We examined whether administering denosumab could modify modulate circulating immune cells in patients with cancer. Blood was collected from 23 patients with prostate cancer and 3 patients with renal cell carcinoma, all of whom had advanced disease and were receiving denosumab, prior to and during denosumab treatment. Using high-dimensional mass cytometry, we found that denosumab treatment by itself induced modest effects on circulating immune cell frequency and activation. We also found minimal changes in the circulating T-cell repertoire and the frequency of new thymic emigrants with denosumab treatment. However, when we stratified patients by whether they were receiving chemotherapy and/or steroids, patients receiving these concomitant treatments showed significantly greater immune modulation, including an increase in the frequency of natural killer cells early and classical monocytes later. We also saw broad induction of CTLA-4 and TIM3 expression in circulating lymphocytes and some monocyte populations. These findings suggest that denosumab treatment by itself has modest immunomodulatory effects, but when combined with conventional cancer treatments, can lead to the induction of immunologic checkpoints. See related Spotlight by Nasrollahi and Davar, p. 383.
Collapse
Affiliation(s)
- Hewitt Chang
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jaqueline Marquez
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Brandon K. Chen
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Daniel M. Kim
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Michael L. Cheng
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric V. Liu
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Hai Yang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Li Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Meenal Sinha
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Alexander Cheung
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Serena S. Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric D. Chow
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Biochemistry and Biophysics, Center for Advanced Technologies, University of California San Francisco, San Francisco, California
| | - Mark Bridge
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Rahul R. Aggarwal
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Terence W. Friedlander
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric J. Small
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Mark Anderson
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
5
|
Källberg E, Mehmeti-Ajradini M, Björk Gunnarsdottir F, Göransson M, Bergenfelz C, Allaoui Fredriksson R, Hagerling C, Johansson ME, Welinder C, Jirström K, Leandersson K. AIRE is expressed in breast cancer TANs and TAMs to regulate the extrinsic apoptotic pathway and inflammation. J Leukoc Biol 2024; 115:664-678. [PMID: 38060995 DOI: 10.1093/jleuko/qiad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 04/02/2024] Open
Abstract
The autoimmune regulator (AIRE) is a transcriptional regulator expressed in the thymus and is necessary for maintaining immunological self-tolerance. Extrathymic AIRE expression is rare, and a role for AIRE in tumor-associated innate immune cells has not yet been established. In this study, we show that AIRE is expressed in human pro-tumor neutrophils. In breast cancer, AIRE was primarily located to tumor-associated neutrophils (TANs), and to a lesser extent to tumor-associated macrophages (TAMs) and tumor cells. Expression of AIRE in TAN/TAMs, but not in cancer cells, was associated with an adverse prognosis. We show that the functional role for AIRE in neutrophils and macrophages is to regulate expression of immune mediators and the extrinsic apoptotic pathway involving the Fas/TNFR death receptors and cathepsin G. Here, we propose that the role for AIRE in TAN/TAMs in breast tumors is to regulate cell death and inflammation, thus promoting tumor progression.
Collapse
Affiliation(s)
- Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Meliha Mehmeti-Ajradini
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Frida Björk Gunnarsdottir
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Marcus Göransson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Caroline Bergenfelz
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Roni Allaoui Fredriksson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Catharina Hagerling
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Martin E Johansson
- Sahlgrenska Center for Cancer Research, Department of Biomedicine, Vasaparken Universitetsplatsen 1, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Department for Clinical Sciences, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Karin Jirström
- Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| |
Collapse
|
6
|
Deng Z, Law CS, Kurra S, Simchoni N, Shum AK. Activated STING in the thymus alters T cell development and selection leading to autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580803. [PMID: 38464209 PMCID: PMC10925148 DOI: 10.1101/2024.02.17.580803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Classifying systemic inflammatory disorders as autoinflammatory or autoimmune provides insight into disease pathogenesis and whether treatment should target innate molecules and their signaling pathways or the adaptive immune response. COPA syndrome is a monogenic disorder of immune dysregulation that leads to interstitial lung disease and high-titer autoantibodies. Studies show constitutive activation of the innate immune molecule STING is centrally involved in disease. However, the mechanisms by which STING results in loss of T cell tolerance and autoimmunity in COPA syndrome or more common autoimmune diseases is not understood. Using CopaE241K/+ mice, we uncovered a functional role for STING in the thymus. Single cell data of human thymus demonstrates STING is highly expressed in medullary thymic epithelial cells (mTECs) involved in processing and presenting self-antigens to thymocytes. In CopaE241K/+ mice, activated STING in mTECs triggered interferon signaling, impaired macroautophagy and caused a defect in negative selection of T cells. Wild-type mice given a systemic STING agonist phenocopied the selection defect and showed enhanced thymic escape of a T cell clone targeting a self-antigen also expressed in melanoma. Our work demonstrates STING activation in TECs shapes the T cell repertoire and contributes to autoimmunity, findings important for settings that activate thymic STING.
Collapse
Affiliation(s)
- Zimu Deng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143
| | - Christopher S. Law
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143
| | - Santosh Kurra
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143
| | - Noa Simchoni
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143
| | - Anthony K. Shum
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143
- Cardiovascular Research Institute, University of California San Francisco, CA 94158
| |
Collapse
|
7
|
Khan GJ, Imtiaz A, Wang W, Duan H, Cao H, Zhai K, He N. Thymus as Incontrovertible Target of Future Immune Modulatory Therapeutics. Endocr Metab Immune Disord Drug Targets 2024; 24:1587-1610. [PMID: 38347798 DOI: 10.2174/0118715303283164240126104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 10/22/2024]
Abstract
Thymus plays a crucial role in cellular immunity by acting as a warehouse for proliferating and differentiating lymphocytes. Thymic stromal cells educate T-cells to differentiate self from non-self antigens while nurse cells and thymoproteasome play a major role in the maturation and differentiation of T-cells. The thymic conditions dictate T-cells to cope with the risk of cancer development. A study was designed to demonstrate potential mechanisms behind the failure to eliminate tumors and impaired immune surveillance as well as the impact of delay in thymus regression on cancer and autoimmune disorders. Scientific literature from Pubmed; Scopus; WOS; JSTOR; National Library of Medicine Bethesda, Maryland; The New York Academy of Medicine; Library of Speech Rehabilitation, NY; St. Thomas' Hospital Library; The Wills Library of Guys Hospital; Repository of Kings College London; and Oxford Academic repository was explored for pathological, physiological, immunological and toxicological studies of thymus. Studies have shown that systemic chemotherapy may lead to micro inflammatory environment within thymus where conventionally and dynamically metastasized dormant cells seek refuge. The malfunctioning of the thymus and defective T and Treg cells, bypassing negative selection, contributes to autoimmune disorders, while AIRE and Fezf2 play significant roles in thymic epithelial cell solidity. Different vitamins, TCM, and live cell therapy are effective therapeutics. Vitamin A, C, D, and E, selenium and zinc, cinobufagin and dietary polysaccharides, and glandular extracts and live cell injections have strong potential to restore immune system function and thymus health. Moreover, the relationship between different ages/ stages of thymus and their corresponding T-cell mediated anti-tumor immune response needs further exploration.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abeeha Imtiaz
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| |
Collapse
|
8
|
Liu Q, Li L, Qin W, Chao T. Repurposing drugs for solid tumor treatment: focus on immune checkpoint inhibitors. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0281. [PMID: 37929901 PMCID: PMC10690875 DOI: 10.20892/j.issn.2095-3941.2023.0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Cancer remains a significant global health challenge with limited treatment options beyond systemic therapies, such as chemotherapy, radiotherapy, and molecular targeted therapy. Immunotherapy has emerged as a promising therapeutic modality but the efficacy has plateaued, which therefore provides limited benefits to patients with cancer. Identification of more effective approaches to improve patient outcomes and extend survival are urgently needed. Drug repurposing has emerged as an attractive strategy for drug development and has recently garnered considerable interest. This review comprehensively analyses the efficacy of various repurposed drugs, such as transforming growth factor-beta (TGF-β) inhibitors, metformin, receptor activator of nuclear factor-κB ligand (RANKL) inhibitors, granulocyte macrophage colony-stimulating factor (GM-CSF), thymosin α1 (Tα1), aspirin, and bisphosphonate, in tumorigenesis with a specific focus on their impact on tumor immunology and immunotherapy. Additionally, we present a concise overview of the current preclinical and clinical studies investigating the potential therapeutic synergies achieved by combining these agents with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Qingxu Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Onji M, Penninger JM. RANKL and RANK in Cancer Therapy. Physiology (Bethesda) 2023; 38:0. [PMID: 36473204 DOI: 10.1152/physiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of nuclear factor-κB (RANK) and its ligand (RANKL) are key regulators of mammalian physiology such as bone metabolism, immune tolerance and antitumor immunity, and mammary gland biology. Here, we explore the multiple functions of RANKL/RANK in physiology and pathophysiology and discuss underlying principles and strategies to modulate the RANKL/RANK pathway as a therapeutic target in immune-mediated cancer treatment.
Collapse
Affiliation(s)
- Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Giardino G, Romano R, Lougaris V, Castagnoli R, Cillo F, Leonardi L, La Torre F, Soresina A, Federici S, Cancrini C, Pacillo L, Toriello E, Cinicola BL, Corrente S, Volpi S, Marseglia GL, Pignata C, Cardinale F. Immune tolerance breakdown in inborn errors of immunity: Paving the way to novel therapeutic approaches. Clin Immunol 2023; 251:109302. [PMID: 36967025 DOI: 10.1016/j.clim.2023.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/12/2023]
Abstract
Up to 25% of the patients with inborn errors of immunity (IEI) also exhibit immunodysregulatory features. The association of immune dysregulation and immunodeficiency may be explained by different mechanisms. The understanding of mechanisms underlying immune dysregulation in IEI has paved the way for the development of targeted treatments. In this review article, we will summarize the mechanisms of immune tolerance breakdown and the targeted therapeutic approaches to immune dysregulation in IEI.
Collapse
Affiliation(s)
- Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Roberta Romano
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Francesca Cillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Silvia Federici
- Division of Rheumatology, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Toriello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Università degli Studi di Genova, Genoa, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
11
|
Gulla S, Reddy MC, Reddy VC, Chitta S, Bhanoori M, Lomada D. Role of thymus in health and disease. Int Rev Immunol 2022; 42:347-363. [PMID: 35593192 DOI: 10.1080/08830185.2022.2064461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023]
Abstract
The thymus is a primary lymphoid organ, essential for the development of T-cells that will protect from invading pathogens, immune disorders, and cancer. The thymus decreases in size and cellularity with age referred to as thymus involution or atrophy. This involution causes decreased T-cell development and decreased naive T-cell emigration to the periphery, increased proportion of memory T cells, and a restricted, altered T-cell receptor (TCR) repertoire. The changes in composition and function of the circulating T cell pool as a result of thymic involution led to increased susceptibility to infectious diseases including the recent COVID and a higher risk for autoimmune disorders and cancers. Thymic involution consisting of both structural and functional loss of the thymus has a deleterious effect on T cell development, T cell selection, and tolerance. The mechanisms which act on the structural (cortex and medulla) matrix of the thymus, the gradual accumulation of genetic mutations, and altered gene expressions may lead to immunosenescence as a result of thymus involution. Understanding the molecular mechanisms behind thymic involution is critical for identifying diagnostic biomarkers and targets for treatment help to develop strategies to mitigate thymic involution-associated complications. This review is focused on the consequences of thymic involution in infections, immune disorders, and diseases, identifying potential checkpoints and potential approaches to sustain or restore the function of the thymus particularly in elderly and immune-compromised individuals.
Collapse
Affiliation(s)
- Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vajra C Reddy
- Katuri Medical College and Hospital, Chinnakondrupadu, Guntur, India
| | | | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
12
|
Tang J, Gong Y, Ma X. Bispecific Antibodies Progression in Malignant Melanoma. Front Pharmacol 2022; 13:837889. [PMID: 35401191 PMCID: PMC8984188 DOI: 10.3389/fphar.2022.837889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
The discovery of oncogenes and immune checkpoints has revolutionized the treatment of melanoma in the past 10 years. However, the current PD-L1 checkpoints lack specificity for tumors and target normal cells expressing PD-L1, thus reducing the efficacy on malignant melanoma and increasing the side effects. In addition, the treatment options for primary or secondary drug-resistant melanoma are limited. Bispecific antibodies bind tumor cells and immune cells by simultaneously targeting two antigens, enhancing the anti-tumor targeting effect and cytotoxicity and reducing drug-resistance in malignant melanoma, thus representing an emerging strategy to improve the clinical efficacy. This review focused on the treatment of malignant melanoma by bispecific antibodies and summarized the effective results of the experiments that have been conducted, also discussing the different aspects of these therapies. The role of the melanoma epitopes, immune cell activation, cell death and cytotoxicity induced by bispecific antibodies were evaluated in the clinical or preclinical stage, as these therapies appear to be the most suitable in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Juan Tang
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Youling Gong
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Policheni AN, Teh CE, Robbins A, Tuzlak S, Strasser A, Gray DHD. PD-1 cooperates with AIRE-mediated tolerance to prevent lethal autoimmune disease. Proc Natl Acad Sci U S A 2022; 119:e2120149119. [PMID: 35394861 PMCID: PMC9169857 DOI: 10.1073/pnas.2120149119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/02/2022] [Indexed: 01/06/2023] Open
Abstract
Immunological tolerance is established and maintained by a diverse array of safeguards that work together to protect against autoimmunity. Despite the identification of numerous tolerogenic processes, the basis for cooperation among them remains poorly understood. We sought to identify synergy among several well-defined tolerance mediators that alone provide protection only from mild autoimmune symptoms in C57BL/6 mice: BIM, AIRE, CBL-B, and PD-1. Survey of a range of compound mutant mice revealed that the combined loss of the autoimmune regulator, AIRE, with PD-1 unleashed a spontaneous, lethal autoimmune disease. Pdcd1−/−Aire−/− mice succumbed to cachexia before adulthood, with near-complete destruction of the exocrine pancreas. Such fatal autoimmunity was not observed in Pdcd1−/−Bim−/−, Bim−/−Aire−/−, or Cblb−/−Bim−/− mice, suggesting that the cooperation between AIRE-mediated and PD-1–mediated tolerance was particularly potent. Immune profiling revealed largely normal development of FOXP3+ regulatory T (Treg) cells in Pdcd1−/−Aire−/− mice, yet excessive, early activation of effector T cells. Adoptive transfer experiments demonstrated that autoimmune exocrine pancreatitis was driven by conventional CD4+ T cells and could not be prevented by the cotransfer of Treg cells from wild-type mice. The development of autoimmunity in mixed bone marrow chimeras supported these observations, indicating that failure of recessive tolerance was responsible for disease. These findings reveal a potent tolerogenic axis between AIRE and PD-1 that has implications for our understanding of how immune checkpoint blockade might synergize with subclinical defects in central tolerance to elicit autoimmune disease.
Collapse
Affiliation(s)
- Antonia N. Policheni
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Charis E. Teh
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alissa Robbins
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Selma Tuzlak
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Institute for Experimental Immunology, University of Zurich, Zurich CH-8057, Switzerland
| | - Andreas Strasser
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel H. D. Gray
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Cardinale A, De Luca CD, Locatelli F, Velardi E. Thymic Function and T-Cell Receptor Repertoire Diversity: Implications for Patient Response to Checkpoint Blockade Immunotherapy. Front Immunol 2021; 12:752042. [PMID: 34899700 PMCID: PMC8652142 DOI: 10.3389/fimmu.2021.752042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
The capacity of T cells to recognize and mount an immune response against tumor antigens depends on the large diversity of the T-cell receptor (TCR) repertoire generated in the thymus during the process of T-cell development. However, this process is dramatically impaired by immunological insults, such as that caused by cytoreductive cancer therapies and infections, and by the physiological decline of thymic function with age. Defective thymic function and a skewed TCR repertoire can have significant clinical consequences. The presence of an adequate pool of T cells capable of recognizing specific tumor antigens is a prerequisite for the success of cancer immunotherapy using checkpoint blockade therapy. However, while this approach has improved the chances of survival of patients with different types of cancer, a large proportion of them do not respond. The limited response rate to checkpoint blockade therapy may be linked to a suboptimal TCR repertoire in cancer patients prior to therapy. Here, we focus on the role of the thymus in shaping the T-cell pool in health and disease, discuss how the TCR repertoire influences patients’ response to checkpoint blockade therapy and highlight approaches able to manipulate thymic function to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
15
|
Wang J, Lareau CA, Bautista J, Gupta A, Sandor K, Germino J, Yin Y, Arvedson M, Reeder GC, Cramer NT, Xie F, Ntranos V, Satpathy AT, Anderson MS, Gardner JM. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci Immunol 2021; 6:eabl5053. [PMID: 34767455 PMCID: PMC8855935 DOI: 10.1126/sciimmunol.abl5053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The autoimmune regulator (Aire), a well-defined transcriptional regulator in the thymus, is also found in extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. eTACs are hematopoietic antigen-presenting cells and inducers of immune tolerance, but their precise identity has remained unclear. Here, we use single-cell multiomics, transgenic murine models, and functional approaches to define eTACs at the transcriptional, genomic, and proteomic level. We find that eTACs consist of two similar cell types: CCR7+ Aire-expressing migratory dendritic cells (AmDCs) and an Airehi population coexpressing Aire and retinoic acid receptor–related orphan receptor γt (RORγt) that we term Janus cells (JCs). Both JCs and AmDCs have the highest transcriptional and genomic homology to CCR7+ migratory dendritic cells. eTACs, particularly JCs, have highly accessible chromatin and broad gene expression, including a range of tissue-specific antigens, as well as remarkable homology to medullary thymic epithelium and RANK-dependent Aire expression. Transgenic self-antigen expression by eTACs is sufficient to induce negative selection and prevent autoimmune diabetes. This transcriptional, genomic, and functional symmetry between eTACs (both JCs and AmDCs) and medullary thymic epithelium—the other principal Aire-expressing population and a key regulator of central tolerance—identifies a core program that may influence self-representation and tolerance across the spectrum of immune development.
Collapse
Affiliation(s)
- Jiaxi Wang
- Diabetes Center, University of California San Francisco
| | - Caleb A. Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Alexander Gupta
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Joe Germino
- Diabetes Center, University of California San Francisco
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Matt Arvedson
- Diabetes Center, University of California San Francisco
| | | | | | - Fang Xie
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| | - Vasilis Ntranos
- Diabetes Center, University of California San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco
- Department of Medicine, University of California San Francisco
| | - James M. Gardner
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| |
Collapse
|
16
|
Reverted exhaustion phenotype of circulating lymphocytes as immune correlate of anti-PD1 first-line treatment in Hodgkin lymphoma. Leukemia 2021; 36:760-771. [PMID: 34584203 PMCID: PMC8885413 DOI: 10.1038/s41375-021-01421-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
While classical Hodgkin lymphoma (HL) is highly susceptible to anti-programmed death protein 1 (PD1) antibodies, the exact modes of action remain controversial. To elucidate the circulating lymphocyte phenotype and systemic effects during anti-PD1 1st-line HL treatment we applied multicolor flow cytometry, FluoroSpot and NanoString to sequential samples of 81 HL patients from the NIVAHL trial (NCT03004833) compared to healthy controls. HL patients showed a decreased CD4 T-cell fraction, a higher percentage of effector-memory T cells and higher expression of activation markers at baseline. Strikingly, and in contrast to solid cancers, expression for 10 out of 16 analyzed co-inhibitory molecules on T cells (e.g., PD1, LAG3, Tim3) was higher in HL. Overall, we observed a sustained decrease of the exhausted T-cell phenotype during anti-PD1 treatment. FluoroSpot of 42.3% of patients revealed T-cell responses against ≥1 of five analyzed tumor-associated antigens. Importantly, these responses were more frequently observed in samples from patients with early excellent response to anti-PD1 therapy. In summary, an initially exhausted lymphocyte phenotype rapidly reverted during anti-PD1 1st-line treatment. The frequently observed IFN-y responses against shared tumor-associated antigens indicate T-cell-mediated cytotoxicity and could represent an important resource for immune monitoring and cellular therapy of HL.
Collapse
|
17
|
Peterson P, Kisand K, Kluger N, Ranki A. Loss of AIRE-Mediated Immune Tolerance and the Skin. J Invest Dermatol 2021; 142:760-767. [PMID: 34535292 DOI: 10.1016/j.jid.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
The core function of the immune response is to distinguish between self and foreign. The multiorgan human autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED/autoimmune polyendocrine syndrome type 1) is an example of what happens in the body when central immune tolerance goes astray. APECED revealed the existence and function of the autoimmune regulator gene, which has a central role in the development of tolerance. The discovery of autoimmune regulator was the start of a new period in immunology and in understanding the role of central and peripheral tolerance, also very relevant to many skin diseases as we highlight in this review.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
18
|
Konci X, Litvinov IV, Netchiporouk E. Dysregulations in Autoimmune Regulator (AIRE) in Controlling B and T Cell Tolerance Have Important Implications for a Broad Range of Dermatologic Diseases. J Cutan Med Surg 2021; 24:312-313. [PMID: 32421429 DOI: 10.1177/1203475419890838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Xheni Konci
- 5620 507266 54473 Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ivan V Litvinov
- 5620 507266 54473 Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Elena Netchiporouk
- 5620 507266 54473 Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Besnard M, Padonou F, Provin N, Giraud M, Guillonneau C. AIRE deficiency, from preclinical models to human APECED disease. Dis Model Mech 2021; 14:dmm046359. [PMID: 33729987 PMCID: PMC7875492 DOI: 10.1242/dmm.046359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare life-threatening autoimmune disease that attacks multiple organs and has its onset in childhood. It is an inherited condition caused by a variety of mutations in the autoimmune regulator (AIRE) gene that encodes a protein whose function has been uncovered by the generation and study of Aire-KO mice. These provided invaluable insights into the link between AIRE expression in medullary thymic epithelial cells (mTECs), and the broad spectrum of self-antigens that these cells express and present to the developing thymocytes. However, these murine models poorly recapitulate all phenotypic aspects of human APECED. Unlike Aire-KO mice, the recently generated Aire-KO rat model presents visual features, organ lymphocytic infiltrations and production of autoantibodies that resemble those observed in APECED patients, making the rat model a main research asset. In addition, ex vivo models of AIRE-dependent self-antigen expression in primary mTECs have been successfully set up. Thymus organoids based on pluripotent stem cell-derived TECs from APECED patients are also emerging, and constitute a promising tool to engineer AIRE-corrected mTECs and restore the generation of regulatory T cells. Eventually, these new models will undoubtedly lead to main advances in the identification and assessment of specific and efficient new therapeutic strategies aiming to restore immunological tolerance in APECED patients.
Collapse
Affiliation(s)
- Marine Besnard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Francine Padonou
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Nathan Provin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Matthieu Giraud
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Carole Guillonneau
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| |
Collapse
|
20
|
Paprckova D, Stepanek O. Narcissistic T cells: reactivity to self makes a difference. FEBS J 2020; 288:1778-1788. [PMID: 32738029 DOI: 10.1111/febs.15498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/22/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
It has been appreciated for more than three decades that the interactions between the T-cell antigen receptor and self-antigens are the major determinants of the cell fates of developing thymocytes and the establishment of central tolerance. However, recent evidence shows that the level of self-reactivity substantially contributes to fate choices of positively selected mature T cells in homeostasis, as well as during immune responses. This implies that individual clones of peripheral T cells are predisposed to specific functional properties based on the self-reactivity of their antigen receptors. Overall, the relative difference in the self-reactivity among peripheral T cells is an important factor contributing to the diversity of T-cell responses to foreign antigens.
Collapse
Affiliation(s)
- Darina Paprckova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Cader FZ, Hu X, Goh WL, Wienand K, Ouyang J, Mandato E, Redd R, Lawton LN, Chen PH, Weirather JL, Schackmann RCJ, Li B, Ma W, Armand P, Rodig SJ, Neuberg D, Liu XS, Shipp MA. A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nat Med 2020; 26:1468-1479. [PMID: 32778827 DOI: 10.1038/s41591-020-1006-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
PD-1 blockade is highly effective in classical Hodgkin lymphomas (cHLs), which exhibit frequent copy-number gains of CD274 (PD-L1) and PDC1LG2 (PD-L2) on chromosome 9p24.1. However, in this largely MHC-class-I-negative tumor, the mechanism of action of anti-PD-1 therapy remains undefined. We utilized the complementary approaches of T cell receptor (TCR) sequencing and cytometry by time-of-flight analysis to obtain a peripheral immune signature of responsiveness to PD-1 blockade in 56 patients treated in the CheckMate 205 phase II clinical trial (NCT02181738). Anti-PD-1 therapy was most effective in patients with a diverse baseline TCR repertoire and an associated expansion of singleton clones during treatment. CD4+, but not CD8+, TCR diversity significantly increased during therapy, most strikingly in patients who had achieved complete responses. Additionally, patients who responded to therapy had an increased abundance of activated natural killer cells and a newly identified CD3-CD68+CD4+GrB+ subset. These studies highlight the roles of recently expanded, clonally diverse CD4+ T cells and innate effectors in the efficacy of PD-1 blockade in cHL.
Collapse
Affiliation(s)
- Fathima Zumla Cader
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,AstraZeneca, City House, Cambridge, UK
| | - Xihao Hu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, USA.,GV20 Therapeutics LLC, Cambridge, MA, USA
| | - Walter L Goh
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kirsty Wienand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Hematology and Oncology, Göttingen Comprehensive Cancer Center, Göttingen, Germany
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robert Redd
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lee N Lawton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pei-Hsuan Chen
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason L Weirather
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Merus, Utrecht, the Netherlands
| | - Bo Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wenjiang Ma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Clarion Healthcare, Boston, MA, USA
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - X Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
22
|
Benitez AA, Khalil-Agüero S, Nandakumar A, Gupta NT, Zhang W, Atwal GS, Murphy AJ, Sleeman MA, Haxhinasto S. Absence of central tolerance in Aire-deficient mice synergizes with immune-checkpoint inhibition to enhance antitumor responses. Commun Biol 2020; 3:355. [PMID: 32641748 PMCID: PMC7343867 DOI: 10.1038/s42003-020-1083-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
The endogenous anti-tumor responses are limited in part by the absence of tumor-reactive T cells, an inevitable consequence of thymic central tolerance mechanisms ensuring prevention of autoimmunity. Here we show that tumor rejection induced by immune checkpoint blockade is significantly enhanced in Aire-deficient mice, the epitome of central tolerance breakdown. The observed synergy in tumor rejection extended to different tumor models, was accompanied by increased numbers of activated T cells expressing high levels of Gzma, Gzmb, Perforin, Cxcr3, and increased intratumoural levels of Cxcl9 and Cxcl10 compared to wild-type mice. Consistent with Aire's central role in T cell repertoire selection, single cell TCR sequencing unveiled expansion of several clones with high tumor reactivity. The data suggest that breakdown in central tolerance synergizes with immune checkpoint blockade in enhancing anti-tumor immunity and may serve as a model to unmask novel anti-tumor therapies including anti-tumor TCRs, normally purged during central tolerance.
Collapse
Affiliation(s)
- Asiel A Benitez
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Sara Khalil-Agüero
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Anjali Nandakumar
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Namita T Gupta
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Wen Zhang
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gurinder S Atwal
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Sokol Haxhinasto
- Regeneron Pharmaceuticals, Inc. 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
23
|
Rausch MP, Meador LR, Metzger TC, Li H, Qiu S, Anderson MS, Hastings KT. GILT in Thymic Epithelial Cells Facilitates Central CD4 T Cell Tolerance to a Tissue-Restricted, Melanoma-Associated Self-Antigen. THE JOURNAL OF IMMUNOLOGY 2020; 204:2877-2886. [PMID: 32269095 DOI: 10.4049/jimmunol.1900523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022]
Abstract
Central tolerance prevents autoimmunity, but also limits T cell responses to potentially immunodominant tumor epitopes with limited expression in healthy tissues. In peripheral APCs, γ-IFN-inducible lysosomal thiol reductase (GILT) is critical for MHC class II-restricted presentation of disulfide bond-containing proteins, including the self-antigen and melanoma Ag tyrosinase-related protein 1 (TRP1). The role of GILT in thymic Ag processing and generation of central tolerance has not been investigated. We found that GILT enhanced the negative selection of TRP1-specific thymocytes in mice. GILT expression was enriched in thymic APCs capable of mediating deletion, namely medullary thymic epithelial cells (mTECs) and dendritic cells, whereas TRP1 expression was restricted solely to mTECs. GILT facilitated MHC class II-restricted presentation of endogenous TRP1 by pooled thymic APCs. Using bone marrow chimeras, GILT expression in thymic epithelial cells (TECs), but not hematopoietic cells, was sufficient for complete deletion of TRP1-specific thymocytes. An increased frequency of TRP1-specific regulatory T (Treg) cells was present in chimeras with increased deletion of TRP1-specific thymocytes. Only chimeras that lacked GILT in both TECs and hematopoietic cells had a high conventional T/Treg cell ratio and were protected from melanoma challenge. Thus, GILT expression in thymic APCs, and mTECs in particular, preferentially facilitates MHC class II-restricted presentation, negative selection, and increased Treg cells, resulting in a diminished antitumor response to a tissue-restricted, melanoma-associated self-antigen.
Collapse
Affiliation(s)
- Matthew P Rausch
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Lydia R Meador
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Todd C Metzger
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| | - Handong Li
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| | - K Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| |
Collapse
|
24
|
Wang W, Thomas R, Sizova O, Su DM. Thymic Function Associated With Cancer Development, Relapse, and Antitumor Immunity - A Mini-Review. Front Immunol 2020; 11:773. [PMID: 32425946 PMCID: PMC7203483 DOI: 10.3389/fimmu.2020.00773] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The thymus is the central lymphoid organ for T cell development, a cradle of T cells, and for central tolerance establishment, an educator of T cells, maintaining homeostatic cellular immunity. T cell immunity is critical to control cancer occurrence, relapse, and antitumor immunity. Evidence on how aberrant thymic function influences cancer remains largely insufficient, however, there has been recent progress. For example, the involuted thymus results in reduced output of naïve T cells and a restricted T cell receptor (TCR) repertoire, inducing immunosenescence and potentially dampening immune surveillance of neoplasia. In addition, the involuted thymus relatively enhances regulatory T (Treg) cell generation. This coupled with age-related accumulation of Treg cells in the periphery, potentially provides a supportive microenvironment for tumors to escape T cell-mediated antitumor responses. Furthermore, acute thymic involution from chemotherapy can create a tumor reservoir, resulting from an inflammatory microenvironment in the thymus, which is suitable for disseminated tumor cells to hide, survive chemotherapy, and become dormant. This may eventually result in cancer metastatic relapse. On the other hand, if thymic involution is wisely taken advantage of, it may be potentially beneficial to antitumor immunity, since the involuted thymus increases output of self-reactive T cells, which may recognize certain tumor-associated self-antigens and enhance antitumor immunity, as demonstrated through depletion of autoimmune regulator (AIRE) gene in the thymus. Herein, we briefly review recent research progression regarding how altered thymic function modifies T cell immunity against tumors.
Collapse
Affiliation(s)
- Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Olga Sizova
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
25
|
Toraih EA, Ameen HM, Hussein MH, Youssef Elabd AA, Mohamed AM, Abdel-Gawad AR, Fawzy MS. Association of Autoimmune Regulator Gene Rs2075876 Variant, but Not Gene Expression with Alopecia Areata in Males: A Case-control Study. Immunol Invest 2020; 49:146-165. [PMID: 31601134 DOI: 10.1080/08820139.2019.1671450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alopecia areata (AA) is a non-scarring hair loss of autoimmune etiology. The autoimmune regulator (AIRE) gene is believed to be an important driver in AA pathogenesis. Genetic variants can alter mRNA expression levels which may provoke an autoimmune response. A total of 337 males (97 AA patients and 240 controls) were enrolled in the current case-control study. On screening of the most frequent variants in the gene, rs2075876 (A/G) polymorphism in intron 5 was selected and genotyped using Real-Time PCR (polymerase chain reaction) technology. Additionally, circulatory AIRE expression levels were quantified by quantitative reverse-transcription PCR (qRT-PCR). Allelic discrimination analysis revealed GG genotype to be more frequent in patients (90.7% in AA compared to 32.5% in controls, p < .001). G variant conferred increased risk to alopecia under homozygote comparison (GG versus AA: OR = 16.1, 95%CI = 5.57-46.3), dominant model (GG+AG versus AA: OR = 7.24, 95%CI = 2.5-20.5), recessive model (GG versus AG+AA: OR = 20.3, 95%CI = 9.7-42.4), and allelic model (G versus A: OR = 11.6, 95%CI = 6.47-21.1). The expression levels of AIRE gene did not differ significantly between patients and controls and were not related to rs2075876 variant. In conclusion, the intronic variant (rs2075876) is suggested to be a potent susceptibility variant for AA development in the studied population.Abbreviations: AA: Alopecia areata; AIRE: Autoimmune Regulator; APECED: Autoimmune, Polyendocrinopathy Candidiasis Ectodermal Dystrophy; DLQI: Dermatology life quality index questionnaire; MIQE: Minimum information for publication of quantitative real-time PCR experiments; mTEC: Medullary thymic epithelial cells; PHD: Plant homeodomain; qRT-PCR: Quantitative reversetranscription-polymerase chain reaction; RA: Rheumatoid arthritis.
Collapse
Affiliation(s)
- Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatem M Ameen
- Department of Dermatology, Al Qantara East Central Hospital, Ismailia, Egypt
| | - Mohammad H Hussein
- Department of Chest Diseases, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed A Youssef Elabd
- Department of Dermatology, El-Sheikh Zaied Aal Nahyan hospital, Cairo, Egypt
- Department of Dermatology, Emirates Medical Center, Salalah Oman, Oman
| | - Abeer M Mohamed
- Department of Clinical Pathology and Clinical Chemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
- Department of Clinical Laboratory Sciences, Al-Ghad International College for Applied Medical Sciences, Abha, Saudi Arabia
| | | | - Manal S Fawzy
- Deprtment of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
The Non-Bone-Related Role of RANK/RANKL Signaling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:53-62. [PMID: 33119864 DOI: 10.1007/978-3-030-50224-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RANK ligand (RANKL) is a member of the tumor necrosis factor alpha superfamily of cytokines. It is the only known ligand binding to a membrane receptor named receptor activator of nuclear factor-kappa B (RANK), thereby triggering recruitment of TNF receptor-associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor, osteoprotegerin (OPG), but also has additional more complex levels of regulation. It is crucial for the differentiation of bone-resorbing osteoclasts and is deregulated in disease processes such as osteoporosis and cancer bone metastasis. Cells expressing RANK and RANKL are commonly found in the tumor environment. In many tumor types, the RANK/RANKL pathway is overexpressed, and this is in most cases correlated with poor prognosis. RANK signaling plays an important role in the innate and adaptive immune response, generates regulatory T (Treg) cells, and increases the production of cytokines. It is also involved in chemo resistance in vitro. Recent evidence suggests that RANKL blockade improves the efficacy of anti-CTLA-4 antibodies against solid tumors and experimental metastasis. Therefore, there is increasing interest to use RANKL inhibition as an immunomodulatory strategy in an attempt to make immune-resistant tumor responsive to immune therapy.
Collapse
|
28
|
Dougall WC, Roman Aguilera A, Smyth MJ. Dual targeting of RANKL and PD-1 with a bispecific antibody improves anti-tumor immunity. Clin Transl Immunology 2019; 8:e01081. [PMID: 31572609 PMCID: PMC6763724 DOI: 10.1002/cti2.1081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives The addition of RANKL/RANK blockade to immune checkpoint inhibitors (ICIs) such as anti‐PD‐1/PD‐L1 and anti‐CTLA4 antibodies is associated with increased anti‐tumor immunity in mice. Recent retrospective clinical studies in patients with advanced melanoma and lung cancer suggest the addition of anti‐RANKL antibody to ICI increases the overall response rate relative to ICI treatment alone. Based on this rationale, we developed a novel bispecific antibody (BsAb) co‐targeting RANKL and PD‐1. Methods We characterized target binding and functional activity of the anti‐RANKL/PD‐1 BsAb in cell‐based assays. Anti‐tumor activity was confirmed in experimental lung metastasis models and in mice with established subcutaneously transplanted tumors. Results The anti‐RANKL/PD‐1 BsAb retained binding to both RANKL and PD‐1 and blocked the interaction with respective counter‐structures RANK and PD‐L1. The inhibitory effect of anti‐RANKL/PD‐1 BsAb was confirmed by demonstrating a complete block of RANKL‐dependent osteoclast formation. Monotherapy activity of anti‐RANKL/PD‐1 BsAb was observed in anti‐PD‐1 resistant tumors and, when combined with anti‐CTLA‐4 mAb, increased anti‐tumor responses. An equivalent or superior anti‐tumor response was observed with the anti‐RANKL/PD‐1 BsAb compared with the combination of parental anti‐RANKL plus anti‐PD‐1 antibodies depending upon the tumor model. Discussion Mechanistically, the anti‐tumor activity of anti‐RANKL/PD‐1 BsAb required CD8+T cells, host PD‐1 and IFNγ. Targeting RANKL and PD‐1 simultaneously within the tumor microenvironment (TME) improved anti‐tumor efficacy compared with combination of two separate mAbs. Conclusion In summary, the bispecific anti‐RANKL/PD‐1 antibody demonstrates potent tumor growth inhibition in settings of ICI resistance and represents a novel modality for clinical development in advanced cancer.
Collapse
Affiliation(s)
- William C Dougall
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute Herston Qld Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute Herston Qld Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute Herston Qld Australia
| |
Collapse
|
29
|
Angela Y, Haferkamp S, Weishaupt C, Ugurel S, Becker JC, Oberndörfer F, Alar V, Satzger I, Gutzmer R. Combination of denosumab and immune checkpoint inhibition: experience in 29 patients with metastatic melanoma and bone metastases. Cancer Immunol Immunother 2019; 68:1187-1194. [PMID: 31187176 PMCID: PMC11028174 DOI: 10.1007/s00262-019-02353-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND PD-1 inhibition (PD-1i) is the standard of care in melanoma and other malignancies. In patients with bone metastases of solid tumors, the monoclonal antibody denosumab directed against RANKL is approved for the prevention of skeletal-related events. However, RANKL is not only relevant in osteoclastogenesis, but also has immunological effects. Hence, we aimed at investigating, whether the combination of PD-1i and denosumab produces synergistic effects in metastatic melanoma treatment. METHODS We retrospectively collected and analyzed clinical data of metastatic melanoma patients with bone metastases, who received PD-1i and denosumab therapy. RESULTS 29 patients were identified with a median age of 60.7 years: 20 were male and 9 were female. 20 patients (69%) were in stage IV M1c and 9 (31%) in stage IV M1d; 52% had an increased serum LDH. 24 patients (83%) received PD-1i as first-line therapy and five patients (17%) as second- or third-line therapy. 13 patients received the triple combination nivolumab, ipilimumab and denosumab (N + I+D), 16 patients received PD-1i and denosumab (PD-1i + D). Within a median follow-up time of 19.8 months, 17 patients progressed with a median time to progression of 6 months. The objective response rate was 54% in the N + I + D group and 50% in the PD-1i + D group. Recalcification of bone metastases was radiologically observed in 18 (62%) patients. No unexpected treatment-related adverse events emerged. CONCLUSIONS The combination therapy of metastatic melanoma with PD-1i and denosumab was feasible without unexpected safety issues and showed a promising efficacy signal. Further investigation in prospective studies is needed.
Collapse
Affiliation(s)
- Yenny Angela
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Medizinische Hochschule Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany.
| | | | | | - Selma Ugurel
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Jürgen C Becker
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
- Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Essen/Düsseldorf, Germany
| | - Florian Oberndörfer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Medizinische Hochschule Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Vesna Alar
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Medizinische Hochschule Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Imke Satzger
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Medizinische Hochschule Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Medizinische Hochschule Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| |
Collapse
|
30
|
Su MA, Anderson MS. Pulling RANK on Cancer: Blocking Aire-Mediated Central Tolerance to Enhance Immunotherapy. Cancer Immunol Res 2019; 7:854-859. [PMID: 31160305 PMCID: PMC6550349 DOI: 10.1158/2326-6066.cir-18-0912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A major breakthrough in cancer treatment occurred with the development of strategies that overcome T-cell tolerance toward tumor cells. These approaches enhance antitumor immunity by overcoming mechanisms that are normally in place to prevent autoimmunity but simultaneously prevent rejection of tumor cells. Although tolerance mechanisms that restrict antitumor immunity take place both in the thymus and periphery, only immunotherapies that target peripheral tolerance mechanisms occurring outside of the thymus are currently available. We review here recent gains in our understanding of how thymic tolerance mediated by the autoimmune regulator (Aire) impedes antitumor immunity. It is now clear that transient depletion of Aire-expressing cells in the thymus can be achieved with RANKL blockade. Finally, we discuss key findings that support the repurposing of anti-RANKL as a cancer immunotherapy with a unique mechanism of action.
Collapse
Affiliation(s)
- Maureen A Su
- Microbiology, Immunology, and Medical Genetics and Pediatrics, University of California, Los Angeles, Los Angeles, California.
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
31
|
van Dam PA, Verhoeven Y, Jacobs J, Wouters A, Tjalma W, Lardon F, Van den Wyngaert T, Dewulf J, Smits E, Colpaert C, Prenen H, Peeters M, Lammens M, Trinh XB. RANK-RANKL Signaling in Cancer of the Uterine Cervix: A Review. Int J Mol Sci 2019; 20:E2183. [PMID: 31052546 PMCID: PMC6540175 DOI: 10.3390/ijms20092183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
RANK ligand (RANKL) is a member of the tumor necrosis factor alpha superfamily of cytokines. It is the only known ligand binding to a membrane receptor named receptor activator of nuclear factor-kappa B (RANK), thereby triggering recruitment of tumor necrosis factor (TNF) receptor associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor called osteoprotegerin (OPG), but also has additional more complex levels of regulation. The existing literature on RANK/RANKL signaling in cervical cancer was reviewed, particularly focusing on the effects on the microenvironment. RANKL and RANK are frequently co-expressed in cervical cancer cells lines and in carcinoma of the uterine cervix. RANKL and OPG expression strongly increases during cervical cancer progression. RANKL is directly secreted by cervical cancer cells, which may be a mechanism they use to create an immune suppressive environment. RANKL induces expression of multiple activating cytokines by dendritic cells. High RANK mRNA levels and high immunohistochemical OPG expression are significantly correlated with high clinical stage, tumor grade, presence of lymph node metastases, and poor overall survival. Inhibition of RANKL signaling has a direct effect on tumor cell proliferation and behavior, but also alters the microenvironment. Abundant circumstantial evidence suggests that RANKL inhibition may (partially) reverse an immunosuppressive status. The use of denosumab, a monoclonal antibody directed to RANKL, as an immunomodulatory strategy is an attractive concept which should be further explored in combination with immune therapy in patients with cervical cancer.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Julie Jacobs
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Wiebren Tjalma
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Tim Van den Wyngaert
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Jonatan Dewulf
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Evelien Smits
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Cécile Colpaert
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Gasthuiszusters Antwerpen (GZA) Hospitals, B2610 Wilrijk, Belgium.
| | - Hans Prenen
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Marc Peeters
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Martin Lammens
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| |
Collapse
|
32
|
Sobacchi C, Menale C, Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front Immunol 2019; 10:629. [PMID: 30984193 PMCID: PMC6450200 DOI: 10.3389/fimmu.2019.00629] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification of Receptor activator of nuclear factor kappa B ligand (RANKL) and its cognate receptor Receptor activator of nuclear factor kappa B (RANK) during a search for novel tumor necrosis factor receptor (TNFR) superfamily members has dramatically changed the scenario of bone biology by providing the functional and biochemical proof that RANKL signaling via RANK is the master factor for osteoclastogenesis. In parallel, two independent studies reported the identification of mouse RANKL on activated T cells and of a ligand for osteoprotegerin on a murine bone marrow-derived stromal cell line. After these seminal findings, accumulating data indicated RANKL and RANK not only as essential players for the development and activation of osteoclasts, but also for the correct differentiation of medullary thymic epithelial cells (mTECs) that act as mediators of the central tolerance process by which self-reactive T cells are eliminated while regulatory T cells are generated. In light of the RANKL-RANK multi-task function, an antibody targeting this pathway, denosumab, is now commonly used in the therapy of bone loss diseases including chronic inflammatory bone disorders and osteolytic bone metastases; furthermore, preclinical data support the therapeutic application of denosumab in the framework of a broader spectrum of tumors. Here, we discuss advances in cellular and molecular mechanisms elicited by RANKL-RANK pathway in the bone and thymus, and the extent to which its inhibition or augmentation can be translated in the clinical arena.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Ciro Menale
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Anna Villa
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clin Transl Oncol 2019; 21:977-991. [PMID: 30656607 DOI: 10.1007/s12094-018-02023-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Drug repurposing offers advantages over traditional drug development in terms of cost, speed and improved patient outcomes. The receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) inhibitor denosumab is approved for the prevention of skeletal-related events in patients with advanced malignancies involving bone, including solid tumours and multiple myeloma. Following improved understanding of the role of RANK/RANKL in cancer biology, denosumab has already been repurposed as a treatment for giant cell tumour of bone. Here, we review the role of RANK/RANKL in tumourigenesis, including effects on tumour initiation, progression and metastasis and consider the impact of RANK/RANKL on tumour immunology and immune evasion. Finally, we look briefly at ongoing trials and future opportunities for therapeutic synergy when combining denosumab with anti-cancer agents such as immune checkpoint inhibitors.
Collapse
|
34
|
Constantine GM, Lionakis MS. Lessons from primary immunodeficiencies: Autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Immunol Rev 2019; 287:103-120. [PMID: 30565240 PMCID: PMC6309421 DOI: 10.1111/imr.12714] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
The discovery of the autoimmune regulator (AIRE) protein and the delineation of its critical contributions in the establishment of central immune tolerance has significantly expanded our understanding of the immunological mechanisms that protect from the development of autoimmune disease. The parallel identification and characterization of patient cohorts with the monogenic disorder autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), which is typically caused by biallelic AIRE mutations, has underscored the critical contribution of AIRE in fungal immune surveillance at mucosal surfaces and in prevention of multiorgan autoimmunity in humans. In this review, we synthesize the current clinical, genetic, molecular and immunological knowledge derived from basic studies in Aire-deficient animals and from APECED patient cohorts. We also outline major advances and research endeavors that show promise for informing improved diagnostic and therapeutic approaches for patients with APECED.
Collapse
Affiliation(s)
- Gregory M Constantine
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Ahern E, Smyth MJ, Dougall WC, Teng MWL. Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nat Rev Clin Oncol 2018; 15:676-693. [DOI: 10.1038/s41571-018-0095-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Cheng M, Anderson MS. Thymic tolerance as a key brake on autoimmunity. Nat Immunol 2018; 19:659-664. [PMID: 29925986 PMCID: PMC6370479 DOI: 10.1038/s41590-018-0128-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Although the thymus has long been recognized as a key organ for T cell selection, the intricate details linking these selection events to human autoimmunity have been challenging to decipher. Over the last two decades, there has been rapid progress in understanding the role of thymic tolerance mechanisms in autoimmunity through genetics. Here we review some of the recent progress in understanding key thymic tolerance processes that are critical for preventing autoimmune disease.
Collapse
Affiliation(s)
- Mickie Cheng
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
38
|
Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front Immunol 2017; 8:1898. [PMID: 29312356 PMCID: PMC5743904 DOI: 10.3389/fimmu.2017.01898] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|