1
|
Nowak RJ, Benatar M, Ciafaloni E, Howard JF, Leite MI, Utsugisawa K, Vissing J, Rojavin M, Li Q, Tang F, Wu Y, Rampal N, Cheng S. A Phase 3 Trial of Inebilizumab in Generalized Myasthenia Gravis. N Engl J Med 2025. [PMID: 40202593 DOI: 10.1056/nejmoa2501561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
BACKGROUND Autoimmune generalized myasthenia gravis is a disease that manifests with fluctuating muscle weakness. Inebilizumab is a monoclonal antibody that depletes CD19+ B cells, which are central to disease pathogenesis. METHODS In this phase 3, double-blind, randomized, placebo-controlled trial, we enrolled participants with myasthenia gravis who had anti-acetylcholine receptor antibodies or anti-muscle-specific kinase antibodies. Participants were randomly assigned, in a 1:1 ratio, to receive intravenous inebilizumab (300 mg administered on days 1 and 15 for all, and additionally on day 183 for participants who were acetylcholine receptor antibody-positive) or matching placebo for 52 weeks (in participants who were acetylcholine receptor antibody-positive) or 26 weeks (in those who were muscle-specific kinase antibody-positive). Glucocorticoid therapy was tapered, starting at week 4, to a target of 5 mg per day by week 24. The primary end point was the change from baseline in the score on the Myasthenia Gravis Activities of Daily Living scale (MG-ADL; scores range from 0 to 24, with higher scores indicating greater disease activity) at week 26 in the combined acetylcholine receptor antibody-positive and muscle-specific kinase antibody-positive trial populations. A key secondary end point was the change from baseline in the score on the Quantitative Myasthenia Gravis scale (QMG; scores range from 0 to 39, with higher scores indicating greater disease activity) at week 26 in the combined population. Safety was assessed. RESULTS A total of 238 participants underwent randomization (119 per group). Participants who received inebilizumab had a greater reduction in the MG-ADL score than those who received placebo (least-squares mean change, -4.2 vs. -2.2; adjusted difference, -1.9; 95% confidence interval [CI], -2.9 to -1.0; P<0.001) at week 26. Participants who received inebilizumab had a greater reduction in the QMG score than those who received placebo (least-squares mean change, -4.8 vs. -2.3; adjusted difference, -2.5; 95% CI, -3.8 to -1.2; P<0.001). The most common adverse events with inebilizumab were headache, cough, nasopharyngitis, infusion-related reactions, and urinary tract infections. Inebilizumab was not associated with a higher incidence of serious adverse events. CONCLUSIONS In participants with acetylcholine receptor antibody-positive or muscle-specific kinase antibody-positive generalized myasthenia gravis, inebilizumab improved function and reduced disease severity. (Funded by Amgen; MINT ClinicalTrial.gov number, NCT04524273.).
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Vissing
- Rigshospitalet, University of Copenhagen, Copenhagen
| | | | | | | | | | | | | |
Collapse
|
2
|
Zhou Y, Zhou Q, Yue Y, Luo S, Song J, Yan C, He D, Zhang J, Zhu W, Zhao C, Yang H, Wang Q, Xi J. Efgartigimod for induction and maintenance therapy in muscle-specific kinase myasthenia gravis. Ther Adv Neurol Disord 2025; 18:17562864251326778. [PMID: 40144041 PMCID: PMC11938440 DOI: 10.1177/17562864251326778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background The efficacy of efgartigimod in treating myasthenia gravis (MG) patients with muscle-specific kinase (MuSK) antibodies has not been demonstrated in the clinical trial, existing case reports, or observational studies. Objectives To evaluate the efficacy and safety of efgartigimod combined with immunotherapies such as tacrolimus or B-cell depleting agents, as maintenance treatment for MuSK-MG patients. Design This retrospective study included 14 MuSK-MG patients treated with efgartigimod at three tertiary hospitals from 2023 to 2024. Methods Data on the activities of daily living (ADL) scores, Quantitative Myasthenia Gravis scores, and the time reaching minimal symptom expression (MSE) were collected. The combined use of steroids, immunosuppressants, and rescue therapies, as well as the adverse event incidence, were also recorded. Results The mean age at first efgartigimod treatment was 55 ± 18 years old with a median follow-up time of 28 weeks. From baseline to week 4, MG-ADL scores decreased significantly from 10.1 ± 4.0 to 2.2 ± 3.1 (n = 14, p = 0.001). The majority of patients (92.9%) maintains a reduction of at least 2 points for more than 8 weeks. The median time to achieve MSE was 4 weeks, with 71.4% (10/14) of patients reaching MSE by week 12. In patients receiving CD20 B cell depleting therapy or tacrolimus as maintenance, the time-weighted average dosage of prednisone was 16 mg while that in those with prednisone alone was 37 mg. Of all the 14 patients, one developed an upper respiratory tract infection 4 weeks after rituximab (RTX), and one was infected with herpes zoster virus 13 weeks after RTX. Conclusion A single-cycle efgartigimod as an induction therapy, combined with immunotherapies such as tacrolimus or B cell depleting agents, as maintenance treatment, could benefit MuSK-MG patients.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaoxian Yue
- Department of Neurology, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Jie Song
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Dingxian He
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qinzhou Wang
- Department of Neurology, Qilu Hospital, Shandong University, 107 Wenhua Xilu, Jinan 250012, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| |
Collapse
|
3
|
Binks SNM, Morse IM, Ashraghi M, Vincent A, Waters P, Leite MI. Myasthenia gravis in 2025: five new things and four hopes for the future. J Neurol 2025; 272:226. [PMID: 39987373 PMCID: PMC11846739 DOI: 10.1007/s00415-025-12922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
The last 10 years has brought transformative developments in the effective treatment of myasthenia gravis (MG). Beginning with the randomized trial of thymectomy in myasthenia gravis that demonstrated efficacy of thymectomy in nonthymomatous MG, several new treatment approaches have completed successful clinical trials and regulatory launch. These modalities, including B cell depletion, complement inhibition, and blockade of the neonatal Fc receptor, are now in use, offering prospects of sustained remission and neuromuscular protection in what is a long-term disease. In this review, we update our clinico-immunological review of 2016 with these important advances, examine their role in treatment algorithms, and focus attention on key issues of biomarkers for prognostication and the growing cohort of older patients, both those with long-term disease, and late-onset MG ('LOMG'). We close by expressing our four hopes for the next 5-10 years: improvements in laboratory medicine to facilitate rapid diagnosis, effective strategies for neuromuscular protection, more research into and better understanding of pathophysiology and treatment response in older individuals, and the potentially transformative role of therapies aimed at delivering a durable response such as chimeric antigen receptor (CAR) T cells. Our postscript summarizes some emerging themes in the field of serological and online biomarkers, which may develop greater stature in the next epoch.
Collapse
Affiliation(s)
- S N M Binks
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - I M Morse
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mohammad Ashraghi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
4
|
Tunç A, Elçİ Ö, Akbas A, Oncel S. Concurrent myasthenia gravis and neuromyelitis optica spectrum disorder: a rare intersection of autoimmune pathologies. BMJ Case Rep 2025; 18:e263081. [PMID: 39755557 DOI: 10.1136/bcr-2024-263081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
This case report describes a woman in her 50s with a rare coexistence of neuromyelitis optica spectrum disorder (NMOSD) and myasthenia gravis (MG), highlighting the diagnostic challenges and therapeutic considerations. Initially diagnosed with acetylcholine receptor antibody-positive MG, she later developed progressive visual impairment, leading to a diagnosis of NMOSD. Rituximab treatment was effective in managing both conditions, demonstrating the benefits of targeted therapies in reducing complications related to polypharmacy. This case underscores the importance of clinical vigilance and a multidisciplinary approach in managing overlapping autoimmune disorders, offering insights into their inter-relationships and therapeutic strategies.
Collapse
Affiliation(s)
- Abdulkadir Tunç
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Ömer Elçİ
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Alihan Akbas
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Samet Oncel
- Department of Neurology, Ministry of Health Sakarya Education and Research Hospital, Adapazari, Sakarya, Turkey
| |
Collapse
|
5
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Spagni G, Vincent A, Sun B, Falso S, Jacobson LW, Devenish S, Evoli A, Damato V. Serological Markers of Clinical Improvement in MuSK Myasthenia Gravis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200313. [PMID: 39250722 PMCID: PMC11385952 DOI: 10.1212/nxi.0000000000200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND OBJECTIVES In this retrospective longitudinal study, we aimed at exploring the role of (a) MuSK-immunoglobulin G (IgG) levels, (b) predominant MuSK-IgG subclasses, and (c) antibody affinity as candidate biomarkers of severity and outcomes in MuSK-MG, using and comparing different antibody testing techniques. METHODS Total MuSK-IgGs were quantified with radioimmunoassay (RIA), ELISA, flow cytometry, and cell-based assay (CBA) serial dilutions using HEK293 cells transfected with MuSK-eGFP. MuSK-IgG subclasses were measured by flow cytometry. SAffCon assay was used for determining MuSK-IgG affinity. RESULTS Forty-three serum samples were obtained at different time points from 20 patients with MuSK-MG (median age at onset: 48 years, interquartile range = 27.5-72.5; women, 16/20), with 9 of 20 (45%) treated with rituximab. A strong correlation between MuSK-IgG levels measured by flow cytometry and RIA titers was found (rs = 0.74, 95% CI 0.41-0.89, p = 0.0003), as well as a moderate correlation between CBA end-point titers and RIA titers (rs = 0.47, 95% CI 0.01-0.77, p = 0.0414). A significant correlation was found between MuSK-IgG flow cytometry levels and disease severity (rs = 0.39, 95% CI 0.06-0.64, p = 0.0175; mixed-effects model estimate: 2.296e-06, std. error: 1.024e-06, t = 2.243, p = 0.032). In individual patients, clinical improvement was associated with decrease in MuSK-IgG levels, as measured by either flow cytometry or CBA end-point titration. In all samples, MuSK-IgG4 was the most frequent isotype (mean ± SD: 90.95% ± 13.89). A significant reduction of MuSK-IgG4 and, to a lesser extent, of MuSK-IgG2, was seen in patients with favorable clinical outcomes. A similar trend was confirmed in the subgroup of rituximab-treated patients. In a single patient, MuSK-IgG affinity increased during symptom exacerbation (KD values: 62 nM vs 0.6 nM) while total MuSK-IgG and IgG4 levels remained stable, suggesting that affinity maturation may be a driver of clinical worsening. DISCUSSION Our data support the quantification of MuSK antibodies by flow cytometry. Through a multimodal investigational approach, we showed that total MuSK-IgG levels, MuSK-IgG4 and MuSK-IgG2 levels, and MuSK-IgG affinity may represent promising biomarkers of disease outcomes in MuSK-MG.
Collapse
Affiliation(s)
- Gregorio Spagni
- From the Department of Neuroscience (G.S., S.F., A.E.), Università Cattolica del Sacro Cuore, Rome, Italy; German Center for Neurodegenerative Diseases (DZNE) Berlin (G.S.), Berlin, Germany; Nuffield Department of Clinical Neurosciences (A.V., B.S., L.W.J.), University of Oxford; Fluidic Analytics Ltd (S.D.), The Paddocks Business Centre, Cambridge, United Kingdom; and Department of Neurosciences (V.D.), Drugs and Child Health, University of Florence, Italy
| | - Angela Vincent
- From the Department of Neuroscience (G.S., S.F., A.E.), Università Cattolica del Sacro Cuore, Rome, Italy; German Center for Neurodegenerative Diseases (DZNE) Berlin (G.S.), Berlin, Germany; Nuffield Department of Clinical Neurosciences (A.V., B.S., L.W.J.), University of Oxford; Fluidic Analytics Ltd (S.D.), The Paddocks Business Centre, Cambridge, United Kingdom; and Department of Neurosciences (V.D.), Drugs and Child Health, University of Florence, Italy
| | - Bo Sun
- From the Department of Neuroscience (G.S., S.F., A.E.), Università Cattolica del Sacro Cuore, Rome, Italy; German Center for Neurodegenerative Diseases (DZNE) Berlin (G.S.), Berlin, Germany; Nuffield Department of Clinical Neurosciences (A.V., B.S., L.W.J.), University of Oxford; Fluidic Analytics Ltd (S.D.), The Paddocks Business Centre, Cambridge, United Kingdom; and Department of Neurosciences (V.D.), Drugs and Child Health, University of Florence, Italy
| | - Silvia Falso
- From the Department of Neuroscience (G.S., S.F., A.E.), Università Cattolica del Sacro Cuore, Rome, Italy; German Center for Neurodegenerative Diseases (DZNE) Berlin (G.S.), Berlin, Germany; Nuffield Department of Clinical Neurosciences (A.V., B.S., L.W.J.), University of Oxford; Fluidic Analytics Ltd (S.D.), The Paddocks Business Centre, Cambridge, United Kingdom; and Department of Neurosciences (V.D.), Drugs and Child Health, University of Florence, Italy
| | - Leslie W Jacobson
- From the Department of Neuroscience (G.S., S.F., A.E.), Università Cattolica del Sacro Cuore, Rome, Italy; German Center for Neurodegenerative Diseases (DZNE) Berlin (G.S.), Berlin, Germany; Nuffield Department of Clinical Neurosciences (A.V., B.S., L.W.J.), University of Oxford; Fluidic Analytics Ltd (S.D.), The Paddocks Business Centre, Cambridge, United Kingdom; and Department of Neurosciences (V.D.), Drugs and Child Health, University of Florence, Italy
| | - Sean Devenish
- From the Department of Neuroscience (G.S., S.F., A.E.), Università Cattolica del Sacro Cuore, Rome, Italy; German Center for Neurodegenerative Diseases (DZNE) Berlin (G.S.), Berlin, Germany; Nuffield Department of Clinical Neurosciences (A.V., B.S., L.W.J.), University of Oxford; Fluidic Analytics Ltd (S.D.), The Paddocks Business Centre, Cambridge, United Kingdom; and Department of Neurosciences (V.D.), Drugs and Child Health, University of Florence, Italy
| | - Amelia Evoli
- From the Department of Neuroscience (G.S., S.F., A.E.), Università Cattolica del Sacro Cuore, Rome, Italy; German Center for Neurodegenerative Diseases (DZNE) Berlin (G.S.), Berlin, Germany; Nuffield Department of Clinical Neurosciences (A.V., B.S., L.W.J.), University of Oxford; Fluidic Analytics Ltd (S.D.), The Paddocks Business Centre, Cambridge, United Kingdom; and Department of Neurosciences (V.D.), Drugs and Child Health, University of Florence, Italy
| | - Valentina Damato
- From the Department of Neuroscience (G.S., S.F., A.E.), Università Cattolica del Sacro Cuore, Rome, Italy; German Center for Neurodegenerative Diseases (DZNE) Berlin (G.S.), Berlin, Germany; Nuffield Department of Clinical Neurosciences (A.V., B.S., L.W.J.), University of Oxford; Fluidic Analytics Ltd (S.D.), The Paddocks Business Centre, Cambridge, United Kingdom; and Department of Neurosciences (V.D.), Drugs and Child Health, University of Florence, Italy
| |
Collapse
|
7
|
Shah K, Leandro M, Cragg M, Kollert F, Schuler F, Klein C, Reddy V. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin Exp Immunol 2024; 217:15-30. [PMID: 38642912 PMCID: PMC11188544 DOI: 10.1093/cei/uxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024] Open
Abstract
B and T cells collaborate to drive autoimmune disease (AID). Historically, B- and T-cell (B-T cell) co-interaction was targeted through different pathways such as alemtuzumab, abatacept, and dapirolizumab with variable impact on B-cell depletion (BCD), whereas the majority of patients with AID including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and organ transplantation benefit from targeted BCD with anti-CD20 monoclonal antibodies such as rituximab, ocrelizumab, or ofatumumab. Refractory AID is a significant problem for patients with incomplete BCD with a greater frequency of IgD-CD27+ switched memory B cells, CD19+CD20- B cells, and plasma cells that are not directly targeted by anti-CD20 antibodies, whereas most lymphoid tissue plasma cells express CD19. Furthermore, B-T-cell collaboration is predominant in lymphoid tissues and at sites of inflammation such as the joint and kidney, where BCD may be inefficient, due to limited access to key effector cells. In the treatment of cancer, chimeric antigen receptor (CAR) T-cell therapy and T-cell engagers (TCE) that recruit T cells to induce B-cell cytotoxicity have delivered promising results for anti-CD19 CAR T-cell therapies, the CD19 TCE blinatumomab and CD20 TCE such as mosunetuzumab, glofitamab, or epcoritamab. Limited evidence suggests that anti-CD19 CAR T-cell therapy may be effective in managing refractory AID whereas we await evaluation of TCE for use in non-oncological indications. Therefore, here, we discuss the potential mechanistic advantages of novel therapies that rely on T cells as effector cells to disrupt B-T-cell collaboration toward overcoming rituximab-resistant AID.
Collapse
Affiliation(s)
| | - Maria Leandro
- Centre for Rheumatology, UCLH, London,UK
- Department of Rheumatology, University College London Hospital, London, UK
| | - Mark Cragg
- University of Southampton Faculty of Medicine, Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Florian Kollert
- Roche Innovation Center Basel, Early Development Immunology, Infectious Diseases & Ophthalmology, Basel, Switzerland
| | - Franz Schuler
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Cancer Immunotherapy Discovery, Oncology Discovery & Translational Area, Schlieren, Switzerland
| | - Venkat Reddy
- Centre for Rheumatology, UCLH, London,UK
- Department of Rheumatology, University College London Hospital, London, UK
| |
Collapse
|
8
|
Kaminski HJ, Sikorski P, Coronel SI, Kusner LL. Myasthenia gravis: the future is here. J Clin Invest 2024; 134:e179742. [PMID: 39105625 DOI: 10.1172/jci179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Myasthenia gravis (MG) stands as a prototypical antibody-mediated autoimmune disease: it is dependent on T cells and characterized by the presence of autoantibodies targeting proteins located on the postsynaptic surface of skeletal muscle, known as the neuromuscular junction. Patients with MG exhibit a spectrum of weakness, ranging from limited ocular muscle involvement to life-threatening respiratory failure. Recent decades have witnessed substantial progress in understanding the underlying pathophysiology, leading to the delineation of distinct subcategories within MG, including MG linked to AChR or MuSK antibodies as well as age-based distinction, thymoma-associated, and immune checkpoint inhibitor-induced MG. This heightened understanding has paved the way for the development of more precise and targeted therapeutic interventions. Notably, the FDA has recently approved therapeutic inhibitors of complement and the IgG receptor FcRn, a testament to our improved comprehension of autoantibody effector mechanisms in MG. In this Review, we delve into the various subgroups of MG, stratified by age, autoantibody type, and histology of the thymus with neoplasms. Furthermore, we explore both current and potential emerging therapeutic strategies, shedding light on the evolving landscape of MG treatment.
Collapse
Affiliation(s)
| | | | | | - Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| |
Collapse
|
9
|
Cavalcante P, Mantegazza R, Antozzi C. Targeting autoimmune mechanisms by precision medicine in Myasthenia Gravis. Front Immunol 2024; 15:1404191. [PMID: 38903526 PMCID: PMC11187261 DOI: 10.3389/fimmu.2024.1404191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a chronic disabling autoimmune disease caused by autoantibodies to the neuromuscular junction (NMJ), characterized clinically by fluctuating weakness and early fatigability of ocular, skeletal and bulbar muscles. Despite being commonly considered a prototypic autoimmune disorder, MG is a complex and heterogeneous condition, presenting with variable clinical phenotypes, likely due to distinct pathophysiological settings related with different immunoreactivities, symptoms' distribution, disease severity, age at onset, thymic histopathology and response to therapies. Current treatment of MG based on international consensus guidelines allows to effectively control symptoms, but most patients do not reach complete stable remission and require life-long immunosuppressive (IS) therapies. Moreover, a proportion of them is refractory to conventional IS treatment, highlighting the need for more specific and tailored strategies. Precision medicine is a new frontier of medicine that promises to greatly increase therapeutic success in several diseases, including autoimmune conditions. In MG, B cell activation, antibody recycling and NMJ damage by the complement system are crucial mechanisms, and their targeting by innovative biological drugs has been proven to be effective and safe in clinical trials. The switch from conventional IS to novel precision medicine approaches based on these drugs could prospectively and significantly improve MG care. In this review, we provide an overview of key immunopathogenetic processes underlying MG, and discuss on emerging biological drugs targeting them. We also discuss on future direction of research to address the need for patients' stratification in endotypes according with genetic and molecular biomarkers for successful clinical decision making within precision medicine workflow.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Antozzi
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Immunotherapy and Apheresis Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
10
|
Ma C, Liu D, Wang B, Yang Y, Zhu R. Advancements and prospects of novel biologicals for myasthenia gravis: toward personalized treatment based on autoantibody specificities. Front Pharmacol 2024; 15:1370411. [PMID: 38881870 PMCID: PMC11177092 DOI: 10.3389/fphar.2024.1370411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disease with a prevalence of 150-250 cases per million individuals. Autoantibodies include long-lived antibodies against the acetylcholine receptor (AChR), mainly of the IgG1 subclass, and IgG4, produced almost exclusively by short-lived plasmablasts, which are prevalent in muscle-specific tyrosine kinase (MuSK) myasthenia gravis. Numerous investigations have demonstrated that MG patients receiving conventional medication today still do not possess satisfactory symptom control, indicating a substantial disease burden. Subsequently, based on the type of the autoantibody and the pathogenesis, we synthesized the published material to date and reached a conclusion regarding the literature related to personalized targeted therapy for MG. Novel agents for AChR MG have shown their efficacy in clinical research, such as complement inhibitors, FcRn receptor antagonists, and B-cell activating factor (BAFF) inhibitors. Rituximab, a representative drug of anti-CD20 therapy, has demonstrated benefits in treatment of MuSK MG patients. Due to the existence of low-affinity antibodies or unidentified antibodies that are inaccessible by existing methods, the treatment for seronegative MG remains complicated; thus, special testing and therapy considerations are necessary. It may be advantageous to initiate the application of novel biologicals at an early stage of the disease. Currently, therapies can also be combined and individualized according to different types of antibodies. With such a wide range of drugs, how to tailor treatment strategies to patients with various conditions and find the most suitable solution for each MG profile are our necessary and urgent aims.
Collapse
Affiliation(s)
- Chi Ma
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Benqiao Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingying Yang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Zhou Y, Guo R, Xia X, Jing S, Lu J, Ruan Z, Luo S, Huan X, Zhao C, Chang T, Xi J. A predictive nomogram for short-term outcomes of myasthenia gravis patients treated with low-dose rituximab. CNS Neurosci Ther 2024; 30:e14761. [PMID: 38739094 PMCID: PMC11090079 DOI: 10.1111/cns.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND This study aims to establish and validate a predictive nomogram for the short-term clinical outcomes of myasthenia gravis (MG) patients treated with low-dose rituximab. METHODS We retrospectively reviewed 108 patients who received rituximab of 600 mg every 6 months in Huashan Hospital and Tangdu Hospital. Of them, 76 patients from Huashan Hospital were included in the derivation cohort to develop the predictive nomogram, which was externally validated using 32 patients from Tangdu Hospital. The clinical response is defined as a ≥ 3 points decrease in QMG score within 6 months. Both clinical and genetic characteristics were included to screen predictors via multivariate logistic regression. Discrimination and calibration were measured by the area under the receiver operating characteristic curve (AUC-ROC) and Hosmer-Lemeshow test, respectively. RESULTS Disease duration (OR = 0.987, p = 0.032), positive anti-muscle-specific tyrosine kinase antibodies (OR = 19.8, p = 0.007), and genotypes in FCGR2A rs1801274 (AG: OR = 0.131, p = 0.024;GG:OR = 0.037, p = 0.010) were independently associated with clinical response of post-rituximab patients. The nomogram identified MG patients with clinical response with an AUC-ROC (95% CI) of 0.875 (0.798-0.952) in the derivation cohort and 0.741(0.501-0.982) in the validation cohort. Hosmer-Lemeshow test showed a good calibration (derivation: Chi-square = 3.181, p = 0.923; validation: Chi-square = 8.098, p = 0.424). CONCLUSIONS The nomogram achieved an optimal prediction of short-term outcomes in patients treated with low-dose rituximab.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- Huashan Rare Disease Center, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DiseasesShanghaiChina
| | - Rongjing Guo
- Department of Neurology, Tangdu HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Xingyu Xia
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- Huashan Rare Disease Center, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DiseasesShanghaiChina
| | - Sisi Jing
- Department of Neurology, Banan HospitalChongqing Medical UniversityChongqingChina
| | - Jun Lu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- Huashan Rare Disease Center, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DiseasesShanghaiChina
| | - Zhe Ruan
- Department of Neurology, Tangdu HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Sushan Luo
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- Huashan Rare Disease Center, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DiseasesShanghaiChina
| | - Xiao Huan
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- Huashan Rare Disease Center, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DiseasesShanghaiChina
| | - Chongbo Zhao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- Huashan Rare Disease Center, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DiseasesShanghaiChina
| | - Ting Chang
- Department of Neurology, Tangdu HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Jianying Xi
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- Huashan Rare Disease Center, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DiseasesShanghaiChina
| |
Collapse
|
12
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Taubmann J, Müller F, Yalcin Mutlu M, Völkl S, Aigner M, Bozec A, Mackensen A, Grieshaber-Bouyer R, Schett G. CD19 Chimeric Antigen Receptor T Cell Treatment: Unraveling the Role of B Cells in Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:497-504. [PMID: 38114423 DOI: 10.1002/art.42784] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
B cell generation of autoantibodies is a crucial step in the pathogenesis of systemic lupus erythematosus (SLE). After their differentiation in the bone marrow, B cells populate the secondary lymphatic organs, where they undergo further maturation leading to the development of memory B cells as well as antibody-producing plasmablasts and plasma cells. Targeting B cells is an important strategy to treat autoimmune diseases such as SLE, in which B cell tolerance is disturbed and autoimmune B cells and autoantibodies emerge. This review discusses the functional aspects of antibody- and cell-based B cell-depleting therapy in SLE. It thereby particularly focuses on lessons learned from chimeric antigen receptor (CAR) T cell treatment on the role of B cells in SLE for understanding B cell pathology in SLE. CAR T cells model a deep B cell depletion and thereby allow understanding the role of aberrant B cell activation in the pathogenesis of SLE. Furthermore, the effects of B cell depletion on autoantibody production can be better described, ie, explaining the concept of different cellular sources of (auto-) antibodies in the form of short-lived plasmablasts and long-lived plasma cells, which differ in their susceptibility to B cell depletion and require different targeted therapeutic approaches. Finally, the safety of deep B cell depletion in autoimmune disease is discussed.
Collapse
Affiliation(s)
- Jule Taubmann
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Müller
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin Mutlu
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Aigner
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ricardo Grieshaber-Bouyer
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
15
|
Jaime D, Fish LA, Madigan LA, Xi C, Piccoli G, Ewing MD, Blaauw B, Fallon JR. The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt-mTOR signaling. Skelet Muscle 2024; 14:1. [PMID: 38172960 PMCID: PMC10763067 DOI: 10.1186/s13395-023-00329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024] Open
Abstract
Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the mouse soleus, whose predominantly oxidative fiber composition is akin to that of human muscle. To investigate the role of the MuSK-BMP pathway in vivo, we generated mice lacking the BMP-binding MuSK Ig3 domain. These ∆Ig3-MuSK mice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice, myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.
Collapse
Grants
- R41 AG073144 NIA NIH HHS
- T32 MH020068 NIMH NIH HHS
- U01 NS064295, R41 AG073144, R21 NS112743, R21 AG073743, P30 GM103410, P30 RR031153, P20 RR018728, S10 RR02763, R25GM083270, 2T32AG041688, and T32 MH20068 NIH HHS
- P30 GM103410 NIGMS NIH HHS
- T32 AG041688 NIA NIH HHS
- P30 RR031153 NCRR NIH HHS
- U01 NS064295 NINDS NIH HHS
- R21 NS112743 NINDS NIH HHS
- P20 RR018728 NCRR NIH HHS
- R21 AG073743 NIA NIH HHS
- R25 GM083270 NIGMS NIH HHS
- National Institutes of Health
- Carney Institute for Brain Sciences
- ALS Finding a Cure
- AFM-Téléthon
Collapse
Affiliation(s)
- Diego Jaime
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Lauren A Fish
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Laura A Madigan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Chengjie Xi
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Giorgia Piccoli
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Madison D Ewing
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Bert Blaauw
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA.
- Carney Institute for Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Vesperinas-Castro A, Cortés-Vicente E. Rituximab treatment in myasthenia gravis. Front Neurol 2023; 14:1275533. [PMID: 37849836 PMCID: PMC10577386 DOI: 10.3389/fneur.2023.1275533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease mediated by antibodies against post-synaptic proteins of the neuromuscular junction. Up to 10%-30% of patients are refractory to conventional treatments. For these patients, rituximab has been used off-label in the recent decades. Rituximab is a monoclonal antibody against the CD20 protein that leads to B cell depletion and to the synthesis of new antibody-secreting plasma cells. Although rituximab was created to treat B-cell lymphoma, its use has widely increased to treat autoimmune diseases. In MG, the benefit of rituximab treatment in MuSK-positive patients seems clear, but a high variability in the results of observational studies and even clinical trials has been reported for AChR-positive patients. Moreover, few evidence has been reported in seronegative MG and juvenile MG and some questions about regimen of administration or monitoring strategies, remains open. In this review, we intend to revise the available literature on this topic and resume the current evidence of effectiveness of Rituximab in MG, with special attention to results on every MG subtype, as well as the administration protocols, monitoring strategies and safety profile of the drug.
Collapse
Affiliation(s)
- Ana Vesperinas-Castro
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Oh S, Mao X, Manfredo-Vieira S, Lee J, Patel D, Choi EJ, Alvarado A, Cottman-Thomas E, Maseda D, Tsao PY, Ellebrecht CT, Khella SL, Richman DP, O'Connor KC, Herzberg U, Binder GK, Milone MC, Basu S, Payne AS. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol 2023; 41:1229-1238. [PMID: 36658341 PMCID: PMC10354218 DOI: 10.1038/s41587-022-01637-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Muscle-specific tyrosine kinase myasthenia gravis (MuSK MG) is an autoimmune disease that causes life-threatening muscle weakness due to anti-MuSK autoantibodies that disrupt neuromuscular junction signaling. To avoid chronic immunosuppression from current therapies, we engineered T cells to express a MuSK chimeric autoantibody receptor with CD137-CD3ζ signaling domains (MuSK-CAART) for precision targeting of B cells expressing anti-MuSK autoantibodies. MuSK-CAART demonstrated similar efficacy as anti-CD19 chimeric antigen receptor T cells for depletion of anti-MuSK B cells and retained cytolytic activity in the presence of soluble anti-MuSK antibodies. In an experimental autoimmune MG mouse model, MuSK-CAART reduced anti-MuSK IgG without decreasing B cells or total IgG levels, reflecting MuSK-specific B cell depletion. Specific off-target interactions of MuSK-CAART were not identified in vivo, in primary human cell screens or by high-throughput human membrane proteome array. These data contributed to an investigational new drug application and phase 1 clinical study design for MuSK-CAART for the treatment of MuSK autoantibody-positive MG.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuming Mao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Eun Jung Choi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Y Tsao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sami L Khella
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Richman
- Department of Neurology, University of California - Davis, Davis, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Pham MC, Masi G, Patzina R, Obaid AH, Oxendine SR, Oh S, Payne AS, Nowak RJ, O'Connor KC. Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathol 2023; 146:319-336. [PMID: 37344701 PMCID: PMC11380498 DOI: 10.1007/s00401-023-02603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2βδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.
Collapse
Affiliation(s)
- Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
| | - Gianvito Masi
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rosa Patzina
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Abeer H Obaid
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA
| | - Seneca R Oxendine
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
19
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Koseoglu E, Sungur N, Muhtaroglu S, Zararsiz G, Eken A. The Beneficial Clinical Effects of Teriflunomide in Experimental Autoimmune Myasthenia Gravis and the Investigation of the Possible Immunological Mechanisms. Cell Mol Neurobiol 2023; 43:2071-2087. [PMID: 36219379 PMCID: PMC11412195 DOI: 10.1007/s10571-022-01286-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease characterized by skeletal muscle weakness exacerbated with exercise. There is a need for novel drugs effective in refractory MG. We aimed to test the potential of teriflunomide, an immunomodulatory drug currently used in rheumatoid arthritis and multiple sclerosis treatment, in a murine experimental autoimmune myasthenia gravis (EAMG) model. EAMG was induced by immunizations with recombinant acetylcholine receptor (AChR). Teriflunomide treatment (10 mg/kg/day, intraperitoneal) was initiated to one group of mice (n = 21) following the third immunization and continued for 5 weeks. The disease control group (n = 19) did not receive medication. Naïve mice (n = 10) received only mock immunization. In addition to the clinical scorings, the numbers of B cells and T cells, and cytokine profiles of T cells were examined by flow cytometry. Anti-AChR-specific antibodies in the peripheral blood serum were quantified by ELISA. Teriflunomide significantly reduced clinical disease scores and the absolute numbers of CD4+ T cells and some of their cytokine-producing subgroups (IFN-γ, IL 2, IL22, IL-17A, GM-CSF) in the spleen and the lymph nodes. The thymic CD4+ T cells were also significantly reduced. Teriflunomide mostly spared CD8+ T cells' numbers and cytokine production, while reducing CD138+CD19+lambda+ plasma B cells' absolute numbers and CD138 mean fluorescent intensities, probably decreasing the number of IgG secreting more mature plasma cells. It also led to some selective changes in the measurements of anti-AChR-specific antibodies in the serum. Our results showed that teriflunomide may be beneficial in the treatment of MG in humans.
Collapse
Affiliation(s)
- Emel Koseoglu
- Department of Biochemistry, Erciyes University School of Medicine, Kayseri, Turkey.
- Department of Neurology, Erciyes University School of Medicine, Kayseri, Turkey.
| | - Neslihan Sungur
- Department of Biochemistry, Erciyes University School of Medicine, Kayseri, Turkey
| | | | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University School of Medicine, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Ahmet Eken
- Department of Medical Biology, Erciyes University School of Medicine, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| |
Collapse
|
21
|
Granit V, Benatar M, Kurtoglu M, Miljković MD, Chahin N, Sahagian G, Feinberg MH, Slansky A, Vu T, Jewell CM, Singer MS, Kalayoglu MV, Howard JF, Mozaffar T. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol 2023; 22:578-590. [PMID: 37353278 PMCID: PMC10416207 DOI: 10.1016/s1474-4422(23)00194-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells are highly effective in treating haematological malignancies, but associated toxicities and the need for lymphodepletion limit their use in people with autoimmune disease. To explore the use of CAR T cells for the treatment of people with autoimmune disease, and to improve their safety, we engineered them with RNA (rCAR-T)-rather than the conventional DNA approach-to target B-cell maturation antigen (BCMA) expressed on plasma cells. To test the suitability of our approach, we used rCAR-T to treat individuals with myasthenia gravis, a prototypical autoantibody disease mediated partly by pathogenic plasma cells. METHODS MG-001 was a prospective, multicentre, open-label, phase 1b/2a study of Descartes-08, an autologous anti-BCMA rCAR-T therapy, in adults (ie, aged ≥18 years) with generalised myasthenia gravis and a Myasthenia Gravis Activities of Daily Living (MG-ADL) score of 6 or higher. The study was done at eight sites (ie, academic medical centres or community neurology clinics) in the USA. Lymphodepletion chemotherapy was not used. In part 1 (phase 1b), participants with Myasthenia Gravis Foundation of America (MGFA) disease class III-IV generalised myasthenia gravis received three ascending doses of Descartes-08 to determine a maximum tolerated dose. In part 2 (phase 2a), participants with generalised myasthenia gravis with MGFA disease class II-IV received six doses at the maximum tolerated dose in an outpatient setting. The primary objective was to establish safety and tolerability of Descartes-08; secondary objectives were to assess myasthenia gravis disease severity and biomarkers in participants who received Descartes-08. This trial is registered with clinicaltrials.gov, NCT04146051. FINDINGS We recruited 16 individuals for screening between Jan 7, 2020 and Aug 3, 2022. 14 participants were enrolled (n=3 in part 1, n=11 in part 2). Ten participants were women and four were men. Two individuals did not qualify due to low baseline MG-ADL score (n=1) or lack of generalised disease (n=1). Median follow-up in part 2 was 5 months (range 3-9 months). There was no dose-limiting toxicity, cytokine release syndrome, or neurotoxicity. Common adverse events were headache (six of 14 participants), nausea (five of 14), vomiting (three of 14), and fever (four of 14), which resolved within 24 h of infusion. Fevers were not associated with increased markers of cytokine release syndrome (IL-6, IL-2, and TNF). Mean improvements from baseline to week 12 were -6 (95% CI -9 to -3) for MG-ADL score, -7 (-11 to -3) for Quantitative Myasthenia Gravis score, -14 (-19 to -9) for Myasthenia Gravis Composite score, and -9 (-15 to -3) for Myasthenia Gravis Quality of Life 15-revised score. INTERPRETATION In this first study of an rCAR-T therapy in individuals with an autoimmune disease, Descartes-08 appeared to be safe and was well tolerated. Descartes-08 infusions were followed by clinically meaningful decreases on myasthenia gravis severity scales at up to 9 months of follow-up. rCAR-T therapy warrants further investigation as a potential new treatment approach for individuals with myasthenia gravis and other autoimmune diseases. FUNDING Cartesian Therapeutics and National Institute of Neurological Disorders and Stroke of the National Institutes of Health.
Collapse
Affiliation(s)
- Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | | | - Nizar Chahin
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | | - Tuan Vu
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | | | | | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Laurent SA, Strauli NB, Eggers EL, Wu H, Michel B, Demuth S, Palanichamy A, Wilson MR, Sirota M, Hernandez RD, Cree BAC, Herman AE, von Büdingen HC. Effect of Ocrelizumab on B- and T-Cell Receptor Repertoire Diversity in Patients With Relapsing Multiple Sclerosis From the Randomized Phase III OPERA Trial. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200118. [PMID: 37094998 PMCID: PMC10136682 DOI: 10.1212/nxi.0000000000200118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/22/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AND OBJECTIVES The B cell-depleting anti-CD20 antibody ocrelizumab (OCR) effectively reduces MS disease activity and slows disability progression. Given the role of B cells as antigen-presenting cells, the primary goal of this study was to evaluate the effect of OCR on the T-cell receptor repertoire diversity. METHODS To examine whether OCR substantially alters the molecular diversity of the T-cell receptor repertoire, deep immune repertoire sequencing (RepSeq) of CD4+ and CD8+ T-cell receptor β-chain variable regions was performed on longitudinal blood samples. The IgM and IgG heavy chain variable region repertoire was also analyzed to characterize the residual B-cell repertoire under OCR treatment. RESULTS Peripheral blood samples for RepSeq were obtained from 8 patients with relapsing MS enrolled in the OPERA I trial over a period of up to 39 months. Four patients each were treated with OCR or interferon β1-a during the double-blind period of OPERA I. All patients received OCR during the open-label extension. The diversity of the CD4+/CD8+ T-cell repertoires remained unaffected in OCR-treated patients. The expected OCR-associated B-cell depletion was mirrored by reduced B-cell receptor diversity in peripheral blood and a shift in immunoglobulin gene usage. Despite deep B-cell depletion, longitudinal persistence of clonally related B-cells was observed. DISCUSSION Our data illustrate that the diversity of CD4+/CD8+ T-cell receptor repertoires remained unaltered in OCR-treated patients with relapsing MS. Persistence of a highly diverse T-cell repertoire suggests that aspects of adaptive immunity remain intact despite extended anti-CD20 therapy. TRIAL REGISTRATION INFORMATION This is a substudy (BE29353) of the OPERA I (WA21092; NCT01247324) trial. Date of registration, November 23, 2010; first patient enrollment, August 31, 2011.
Collapse
Affiliation(s)
- Sarah A Laurent
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Nicolas B Strauli
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Erica L Eggers
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Hao Wu
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Brady Michel
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Stanislas Demuth
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Arumugam Palanichamy
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Michael R Wilson
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Marina Sirota
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Ryan D Hernandez
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Bruce Anthony Campbell Cree
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - Ann E Herman
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA
| | - H-Christian von Büdingen
- From the Department of Neurology (S.A.L., E.L.E., H.W., B.M., S.D., A.P., M.R.W., B.A.C.C., H.-C.B.), Weill Institute for Neurosciences; Biomedical Sciences Graduate Program (N.B.S.); Bakar Computational Health Sciences Institute and Department of Pediatrics (M.S.); Department of Bioengineering and Therapeutic Sciences (R.D.H.), University of California, San Francisco, CA; Department of Human Genetics (R.D.H.), McGill University, Montreal, QC, Canada; and OMNI Biomarker Development (A.E.H.), Genentech, Inc., South San Francisco, CA.
| |
Collapse
|
23
|
McDyer JF, Azimpouran M, Durkalski-Mauldin VL, Clevenger RG, Yeatts SD, Deng X, Barsan W, Silbergleit R, El Kassar N, Popescu I, Dimitrov D, Li W, Lyons EJ, Lieber SC, Stone M, Korley FK, Callaway CW, Dumont LJ, Norris PJ. COVID-19 convalescent plasma boosts early antibody titer and does not influence the adaptive immune response. JCI Insight 2023; 8:e167890. [PMID: 36862515 PMCID: PMC10174456 DOI: 10.1172/jci.insight.167890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Multiple randomized, controlled clinical trials have yielded discordant results regarding the efficacy of convalescent plasma in outpatients, with some showing an approximately 2-fold reduction in risk and others showing no effect. We quantified binding and neutralizing antibody levels in 492 of the 511 participants from the Clinical Trial of COVID-19 Convalescent Plasma in Outpatients (C3PO) of a single unit of COVID-19 convalescent plasma (CCP) versus saline infusion. In a subset of 70 participants, peripheral blood mononuclear cells were obtained to define the evolution of B and T cell responses through day 30. Binding and neutralizing antibody responses were approximately 2-fold higher 1 hour after infusion in recipients of CCP compared with saline plus multivitamin, but levels achieved by the native immune system by day 15 were almost 10-fold higher than those seen immediately after CCP administration. Infusion of CCP did not block generation of the host antibody response or skew B or T cell phenotype or maturation. Activated CD4+ and CD8+ T cells were associated with more severe disease outcome. These data show that CCP leads to a measurable boost in anti-SARS-CoV-2 antibodies but that the boost is modest and may not be sufficient to alter disease course.
Collapse
Affiliation(s)
| | | | | | | | - Sharon D. Yeatts
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - William Barsan
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert Silbergleit
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nahed El Kassar
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Iulia Popescu
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Wei Li
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Larry J. Dumont
- Vitalant Research Institute, San Francisco, California, USA
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | |
Collapse
|
24
|
Sun Y, Yuan Y, Zhang B, Zhang X. CARs: a new approach for the treatment of autoimmune diseases. SCIENCE CHINA. LIFE SCIENCES 2023; 66:711-728. [PMID: 36346550 PMCID: PMC9641699 DOI: 10.1007/s11427-022-2212-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
The development of chimeric antigen receptor (CAR)-based therapeutic interventions represented a breakthrough in cancer treatment. Following the success of the CAR-T-cell strategy, this novel therapeutic approach has been applied to other diseases, including autoimmune diseases. Using CAR-T cells to deplete pathological immune cells (i.e., B cells, autoreactive B or T cells, and accessory antigen-presenting cells (APCs)) has resulted in favorable outcomes in diseases characterized by excessive autoantibody levels or hyperactive lymphocyte cell numbers. The importance of immunosuppressive regulatory T cells (Tregs) in restoring immune tolerance has been well established, and CAR-Tregs have shown promising therapeutic potential in treating autoimmune diseases. Moreover, prior experience from the cancer field has provided sufficient paradigms for understanding how to optimize the structure and function of CARs to improve their function, persistence, stability and safety. In this review, we describe the potential application of CAR-T cells and CAR-Tregs in the treatment of autoimmune diseases, and we summarize the currently available strategies of gene editing and synthetic biological tools that have improved the practical application of CAR-based therapies.
Collapse
Affiliation(s)
- Yeting Sun
- Graduate School of Peking Union Medical College; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yeshuang Yuan
- Graduate School of Peking Union Medical College; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
25
|
Mori S, Suzuki S, Konishi T, Kawaguchi N, Kishi M, Kuwabara S, Ishizuchi K, Zhou H, Shibasaki F, Tsumoto H, Omura T, Miura Y, Mori S, Higashihara M, Murayama S, Shigemoto K. Proteolytic ectodomain shedding of muscle-specific tyrosine kinase in myasthenia gravis. Exp Neurol 2023; 361:114300. [PMID: 36525997 DOI: 10.1016/j.expneurol.2022.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Autoantibodies to muscle-specific tyrosine kinase (MuSK) proteins at the neuromuscular junction (NMJ) cause refractory generalized myasthenia gravis (MG) with dyspnea more frequently than other MG subtypes. However, the mechanisms via which MuSK, a membrane protein locally expressed on the NMJ of skeletal muscle, is supplied to the immune system as an autoantigen remains unknown. Here, we identified MuSK in both mouse and human serum, with the amount of MuSK dramatically increasing in mice with motor nerve denervation and in MG model mice. Peptide analysis by liquid chromatography-tandem-mass spectrometry (LC-MS/MS) confirmed the presence of MuSK in both human and mouse serum. Furthermore, some patients with MG have significantly higher amounts of MuSK in serum than healthy controls. Our results indicated that the secretion of MuSK proteins from muscles into the bloodstream was induced by ectodomain shedding triggered by neuromuscular junction failure. The results may explain why MuSK-MG is refractory to treatments and causes rapid muscle atrophy in some patients due to the denervation associated with Ab-induced disruption of neuromuscular transmission at the NMJ. Such discoveries pave the way for new MG treatments, and MuSK may be used as a biomarker for other neuromuscular diseases in preclinical studies, clinical diagnostics, therapeutics, and drug discovery.
Collapse
Affiliation(s)
- Shuuichi Mori
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | | | - Naoki Kawaguchi
- Dowa Institute of Clinical Neuroscience, Neurology Clinic Chiba, Chiba, Japan
| | - Masahiko Kishi
- Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Kei Ishizuchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Heying Zhou
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Futoshi Shibasaki
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, TMIG, Tokyo, Japan
| | - Takuya Omura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, TMIG, Tokyo, Japan
| | - Seijiro Mori
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Tokyo (TMGHIG), Japan
| | | | - Kazuhiro Shigemoto
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan.
| |
Collapse
|
26
|
Routh ED, Woodcock MG, Beckabir W, Vensko SP, Serody JS, Vincent BG. Evaluation of tumor antigen-specific antibody responses in patients with metastatic triple negative breast cancer treated with cyclophosphamide and pembrolizumab. J Immunother Cancer 2023; 11:jitc-2022-005848. [PMID: 36882226 PMCID: PMC10008414 DOI: 10.1136/jitc-2022-005848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 03/09/2023] Open
Abstract
The role of B cells in antitumor immunity is becoming increasingly appreciated, as B cell populations have been associated with response to immune checkpoint blockade (ICB) in patients with breast cancer and murine models of breast cancer. Deeper understanding of antibody responses to tumor antigens is needed to clarify the function of B cells in determining response to immunotherapy. We evaluated tumor antigen-specific antibody responses in patients with metastatic triple negative breast cancer treated with pembrolizumab following low-dose cyclophosphamide therapy using computational linear epitope prediction and custom peptide microarrays. We found that a minority of predicted linear epitopes were associated with antibody signal, and signal was associated with both neoepitopes and self-peptides. No association was observed between signal presence and subcellular localization or RNA expression of parent proteins. Patient-specific patterns of antibody signal boostability were observed that were independent of clinical response. Intriguingly, measures of cumulative antibody signal intensity relative to immunotherapy treatment showed that the one complete responder in the trial had the greatest increase in total antibody signal, which supports a potential association between ICB-dependent antibody boosting and clinical response. The antibody boost in the complete responder was largely driven by increased levels of IgG specific to a sequence of N-terminal residues in native Epidermal Growth Factor Receptor Pathway Substrate 8 (EPS8) protein, a known oncogene in several cancer types including breast cancer. Structural protein prediction showed that the targeted epitope of EPS8 was in a region of the protein with mixed linear/helical structure, and that this region was solvent-exposed and not predicted to bind to interacting macromolecules. This study highlights the potential importance of the humoral immune response targeting neoepitopes as well as self epitopes in shaping clinical response to immunotherapy.
Collapse
Affiliation(s)
- Eric D Routh
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Medical Oncology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Wolfgang Beckabir
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Steven P Vensko
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Hematology, Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA .,Department of Microbiology and Immunology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Hematology, Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Computational Medicine Program, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Jaime D, Fish LA, Madigan LA, Ewing MD, Fallon JR. The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt- mTOR signaling. RESEARCH SQUARE 2023:rs.3.rs-2613527. [PMID: 36909467 PMCID: PMC10002845 DOI: 10.21203/rs.3.rs-2613527/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the slow soleus muscle. To investigate the role of the MuSK-BMP pathway in vivo we generated mice lacking the BMP-binding MuSK Ig3 domain. These ΔIg3-MuSKmice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.
Collapse
|
28
|
Behbehani R. Ocular Myasthenia Gravis: A Current Overview. Eye Brain 2023; 15:1-13. [PMID: 36778719 PMCID: PMC9911903 DOI: 10.2147/eb.s389629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Ocular myasthenia gravis (OMG) is a neuromuscular disease characterized by autoantibody production against post-synaptic proteins in the neuromuscular junction. The pathophysiological auto-immune mechanisms of myasthenia are diverse, and this is governed primarily by the type of autoantibody production. The diagnosis of OMG relies mainly on clinical assessment, the use of serological antibody assays for acetylcholine receptors (AchR), muscle-specific tyrosine kinase (MusK), and low-density lipoprotein 4 (LPR4). Other autoantibodies against post-synaptic proteins, such as cortactin and agrin, have been detected; however, their diagnostic value and pathogenic effect are not yet clearly defined. Clinical tests such as the ice test and electrophysiologic tests, particularly single-fiber electromyography, have a valuable role in diagnosis. The treatment of OMG is primarily through cholinesterase inhibitors (pyridostigmine), and steroids are frequently required in cases of ophthalmoplegia. Other immunosuppressive therapies include antimetabolites (azathioprine, mycophenolate mofetil, methotrexate) and biological agents such as B-cell depleting agents (Rituximab) and complement inhibitors (eculizumab). Evidence is scarce on the effect of immunosuppressive therapy on altering the natural course of OMG. Clinicians must be vigilant of a myasthenic syndrome in patients using immune-check inhibitors. Reliable and consistent biomarkers are required to assess disease severity and response to therapy to optimize the management of OMG. The purpose of this review is to summarize the current trends and the latest developments in diagnosing and treating OMG.
Collapse
Affiliation(s)
- Raed Behbehani
- Neuroophthalmology Unit, Ibn Sina Hospital, Kuwait City, Kuwait,Correspondence: Raed Behbehani, Ibn Sina Hospital, P.O Box 1180, Tel +965 2224 2999, Fax +965 2249 2406, Email
| |
Collapse
|
29
|
Duong SL, Prüss H. Molecular disease mechanisms of human antineuronal monoclonal autoantibodies. Trends Mol Med 2023; 29:20-34. [PMID: 36280535 DOI: 10.1016/j.molmed.2022.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
Abstract
Autoantibodies targeting brain antigens can mediate a wide range of neurological symptoms ranging from epileptic seizures to psychosis to dementia. Although earlier experimental work indicated that autoantibodies can be directly pathogenic, detailed studies on disease mechanisms, biophysical autoantibody properties, and target interactions were hampered by the availability of human material and the paucity of monospecific disease-related autoantibodies. The emerging generation of patient-derived monoclonal autoantibodies (mAbs) provides a novel platform for the detailed characterization of immunobiology and autoantibody pathogenicity in vitro and in animal models. This Feature Review focuses on recent advances in mAb generation and discusses their potential as powerful scientific tools for high-resolution imaging, antigenic target identification, atomic-level structural analyses, and the development of antibody-selective immunotherapies.
Collapse
Affiliation(s)
- Sophie L Duong
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany.
| |
Collapse
|
30
|
Fichtner ML, Hoehn KB, Ford EE, Mane-Damas M, Oh S, Waters P, Payne AS, Smith ML, Watson CT, Losen M, Martinez-Martinez P, Nowak RJ, Kleinstein SH, O'Connor KC. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathol Commun 2022; 10:154. [PMID: 36307868 PMCID: PMC9617453 DOI: 10.1186/s40478-022-01454-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disorder of the neuromuscular junction. A small subset of patients (<10%) with MG, have autoantibodies targeting muscle-specific tyrosine kinase (MuSK). MuSK MG patients respond well to CD20-mediated B cell depletion therapy (BCDT); most achieve complete stable remission. However, relapse often occurs. To further understand the immunomechanisms underlying relapse, we studied autoantibody-producing B cells over the course of BCDT. We developed a fluorescently labeled antigen to enrich for MuSK-specific B cells, which was validated with a novel Nalm6 cell line engineered to express a human MuSK-specific B cell receptor. B cells (≅ 2.6 million) from 12 different samples collected from nine MuSK MG patients were screened for MuSK specificity. We successfully isolated two MuSK-specific IgG4 subclass-expressing plasmablasts from two of these patients, who were experiencing a relapse after a BCDT-induced remission. Human recombinant MuSK mAbs were then generated to validate binding specificity and characterize their molecular properties. Both mAbs were strong MuSK binders, they recognized the Ig1-like domain of MuSK, and showed pathogenic capacity when tested in an acetylcholine receptor (AChR) clustering assay. The presence of persistent clonal relatives of these MuSK-specific B cell clones was investigated through B cell receptor repertoire tracing of 63,977 unique clones derived from longitudinal samples collected from these two patients. Clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-mediated remission, predating disease relapse by several months. These findings demonstrate that a reservoir of rare pathogenic MuSK autoantibody-expressing B cell clones survive BCDT and reemerge into circulation prior to manifestation of clinical relapse. Overall, this study provides both a mechanistic understanding of MuSK MG relapse and a valuable candidate biomarker for relapse prediction.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Easton E Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marina Mane-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa L Smith
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
| |
Collapse
|
31
|
Oh S, Payne AS. Engineering Cell Therapies for Autoimmune Diseases: From Preclinical to Clinical Proof of Concept. Immune Netw 2022; 22:e37. [PMID: 36381961 PMCID: PMC9634148 DOI: 10.4110/in.2022.22.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
Autoimmune diseases are caused by a dysfunction of the acquired immune system. In a subset of autoimmune diseases, B cells escaping immune tolerance present autoantigen and produce cytokines and/or autoantibodies, resulting in systemic or organ-specific autoimmunity. Therefore, B cell depletion with monoclonal Abs targeting B cell lineage markers is standard care therapy for several B cell-mediated autoimmune disorders. In the last 5 years, genetically-engineered cellular immunotherapies targeting B cells have shown superior efficacy and long-term remission of B cell malignancies compared to historical clinical outcomes using B cell depletion with monoclonal Ab therapies. This has raised interest in understanding whether similar durable remission could be achieved with use of genetically-engineered cell therapies for autoimmunity. This review will focus on current human clinical trials using engineered cell therapies for B cell-associated autoimmune diseases.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee S. Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review summarizes recent insights into the immunopathogenesis of autoimmune myasthenia gravis (MG). Mechanistic understanding is presented according to MG disease subtypes and by leveraging the knowledge gained through the use of immunomodulating biological therapeutics. RECENT FINDINGS The past two years of research on MG have led to a more accurate definition of the mechanisms through which muscle-specific tyrosine kinase (MuSK) autoantibodies induce pathology. Novel insights have also emerged from the collection of stronger evidence on the pathogenic capacity of low-density lipoprotein receptor-related protein 4 autoantibodies. Clinical observations have revealed a new MG phenotype triggered by cancer immunotherapy, but the underlying immunobiology remains undetermined. From a therapeutic perspective, MG patients can now benefit from a wider spectrum of treatment options. Such therapies have uncovered profound differences in clinical responses between and within the acetylcholine receptor and MuSK MG subtypes. Diverse mechanisms of immunopathology between the two subtypes, as well as qualitative nuances in the autoantibody repertoire of each patient, likely underpin the variability in therapeutic outcomes. Although predictive biomarkers of clinical response are lacking, these observations have ignited the development of assays that might assist clinicians in the choice of specific therapeutic strategies. SUMMARY Recent advances in the understanding of autoantibody functionalities are bringing neuroimmunologists closer to a more detailed appreciation of the mechanisms that govern MG pathology. Future investigations on the immunological heterogeneity among MG patients will be key to developing effective, individually tailored therapies.
Collapse
Affiliation(s)
- Gianvito Masi
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
33
|
Hagag NA, El-Agamy OA, Elshanshory MR, Saad MA, El-Hawary EE. Assessment of plasmablast cells in immune thrombocytopenic purpura in children. Pediatr Hematol Oncol 2022; 39:508-516. [PMID: 35171075 DOI: 10.1080/08880018.2021.2024928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Primary immune thrombocytopenic purpura (ITP) is an autoimmune disorder with platelet destruction due to B- and T-cell dysregulation and antiplatelet autoantibodies production. Flow cytometry can be used to further characterize the B- and T-cell compartments involved in platelet destruction. This case-control study was to enumerate plasmablast cells in pediatric ITP patients and to correlate their levels with disease course. This study included 30 ITP patients and 10 controls. Identification and enumeration of Plasmablast were done by multicolor flow cytometry using specific antibody panels (CD19, CD27 & CD38) and sequential gating using FACSCanto flow cytometer and FlowJo software. We found that lymphocytes subpopulation in ITP patients and controls revealed increase in frequency of CD19 (B lymphocytes) in acute, persistent, and chronic ITP patients in comparison with controls (p < 0.001, 0.023, 0.001) respectively. Plasmablast cells could play a role in the pathogenesis of ITP and might guide therapy in ITP patients in the future.
Collapse
Affiliation(s)
- Nagwa A Hagag
- Department of Pediatrics, Faculty of Medicine, Kafr Elsheikh University
| | - Osama A El-Agamy
- Department of Pediatrics, Faculty of Medicine, Kafr Elsheikh University
| | | | - Mohamed A Saad
- Department of Clinical Pathology, Faculty of Medicine, Tanta University
| | - Eslam E El-Hawary
- Pediatric Hematology/Oncology and Bone Marrow Transplantation Unit, Department of Pediatrics, Faculty of Medicine, Tanta University
| |
Collapse
|
34
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
35
|
Vanoli F, Mantegazza R. Antibody Therapies in Autoimmune Neuromuscular Junction Disorders: Approach to Myasthenic Crisis and Chronic Management. Neurotherapeutics 2022; 19:897-910. [PMID: 35165857 PMCID: PMC9294078 DOI: 10.1007/s13311-022-01181-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is a neurological autoimmune disorder characterized by muscle weakness and fatigue. It is a B cell-mediated disease caused by pathogenic antibodies directed against various components of the neuromuscular junction (NMJ). Despite the wide range of adverse effects, current treatment is still based on non-specific immunosuppression, particularly on long-term steroid usage. The increasing knowledge regarding the pathogenic mechanisms of MG has however allowed to create more target-specific therapies. A very attractive therapeutic approach is currently offered by monoclonal antibodies (mAbs), given their ability to specifically and effectively target different immunopathological pathways, such as the complement cascade, B cell-related cluster of differentiation (CD) proteins, and the human neonatal Fc receptor (FcRn). Up to now, eculizumab, a C5-directed mAb, has been approved for the treatment of generalized MG (gMG) and efgartigimod, a FcRn inhibitor, has just been approved by the U.S. Food and Drug Administration for the treatment of anti-acetylcholine receptor (AChR) antibody positive gMG. Other mAbs are currently under investigation with encouraging preliminary results, further enriching the new range of therapeutic possibilities for MG. This review article provides an overview of the present status of mAb-based therapies for MG, which offer an exciting promise for better outcomes by setting the basis of a precision medicine approach.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
36
|
Stathopoulos P, Dalakas MC. Evolution of Anti-B Cell Therapeutics in Autoimmune Neurological Diseases. Neurotherapeutics 2022; 19:691-710. [PMID: 35182380 PMCID: PMC9294112 DOI: 10.1007/s13311-022-01196-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
B cells have an ever-increasing role in the etiopathology of a number of autoimmune neurological disorders, acting as antigen-presenting cells facilitating antibody production but also as sensors, coordinators, and regulators of the immune response. In particular, B cells can regulate the T cell activation process through their participation in antigen presentation, production of proinflammatory cytokines (bystander activation or suppression), and contribution to ectopic lymphoid aggregates. Such an important interplay between B and T cells makes therapeutic depletion of B cells an attractive treatment strategy. The last decade, anti-B cell therapies using monoclonal antibodies against B cell surface molecules have evolved into a rational approach for successfully treating autoimmune neurological disorders, even when T cells seem to be the main effector cells. The paper summarizes basic aspects of B cell biology, discusses the roles of B cells in neurological autoimmunities, and highlights how the currently available or under development anti-B cell therapeutics exert their action in the wide spectrum and immunologically diverse neurological disorders. The efficacy of the various anti-B cell therapies and practical issues on induction and maintenance therapy is specifically detailed for the treatment of patients with multiple sclerosis, neuromyelitis-spectrum disorders, autoimmune encephalitis and hyperexcitability CNS disorders, autoimmune neuropathies, myasthenia gravis, and inflammatory myopathies. The success of anti-B cell therapies in inducing long-term remission in IgG4 neuroautoimmunities is also highlighted pointing out potential biomarkers for follow-up infusions.
Collapse
Affiliation(s)
- Panos Stathopoulos
- 1st Department of Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
37
|
Vakrakou AG, Tzanetakos D, Evangelopoulos ME, Fragoulis GE, Kazakou P, Lekka E, Kafasi N, Tzartos JS, Andreadou E, Koutsis G, Gialafos E, Dimitrakopoulos A, Zampeli E, Rontogianni D, Theocharis S, Zapanti E, Stathopoulos PA, Anagnostouli M, Stefanis L, Kilidireas C. IgG4-related autoimmune manifestations in Alemtuzumab-treated multiple sclerosis patients. J Neuroimmunol 2021; 361:577759. [PMID: 34742035 DOI: 10.1016/j.jneuroim.2021.577759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
We aimed to determine whether Alemtuzumab-induced immune reconstitution affects immunoglobulin and complement levels in the serum of Relapsing-Remitting Multiple Sclerosis (RRMS) patients. IgG4-levels were increased 24-months after treatment initiation compared to baseline levels in twenty-nine patients. Alemtuzumab-treated patients with the highest IgG4-levels were more prone to thyroid-related autoimmune manifestations and specific autoimmune adverse events such as Crohn's disease, Graves' disease, and hemolytic anemia. Compared to baseline, total IgG-levels showed a trend towards reduced levels following two-courses of Alemtuzumab, but no significant change of C3 and/or C4-levels was observed. In conclusion, monitoring of IgG4-levels can serve as a marker for secondary autoimmunity risk in multiple sclerosis patients treated with Alemtuzumab.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece.
| | - Dimitrios Tzanetakos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Maria-Eleptheria Evangelopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - George E Fragoulis
- Department of Propaedeutic Internal Medicine, Medical School, Rheumatology Unit, "Laiko" General Hospital, National and Kapodistrian University of Athens, Greece
| | - Paraskevi Kazakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Eleni Lekka
- Department of Immunology, Laiko General Hospital, 17 Agiou Thoma str, Athens 11527, Greece
| | - Nikolitsa Kafasi
- Department of Immunology, Laiko General Hospital, 17 Agiou Thoma str, Athens 11527, Greece
| | - John S Tzartos
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece; Tzartos NeuroDiagnostics, Neuroimmunology, Eslin street 3, 115 23 Athens, Greece
| | - Elissavet Andreadou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Koutsis
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Elias Gialafos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Antonios Dimitrakopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Evanthia Zampeli
- Gastroenterology Department, "Alexandra" Hospital, Athens, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Panos-Alexis Stathopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Maria Anagnostouli
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Leonidas Stefanis
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Constantinos Kilidireas
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
38
|
Zhao C, Pu M, Chen D, Shi J, Li Z, Guo J, Zhang G. Effectiveness and Safety of Rituximab for Refractory Myasthenia Gravis: A Systematic Review and Single-Arm Meta-Analysis. Front Neurol 2021; 12:736190. [PMID: 34721267 PMCID: PMC8548630 DOI: 10.3389/fneur.2021.736190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: Myasthenia gravis (MG) is an autoimmune neuromuscular disease. Nearly 10-30% of patients with MG are refractory to conventional therapy. Rituximab (RTX), a monoclonal antibody targeting CD20, is increasingly used in autoimmune disorders. We performed a systematic review and meta-analysis to evaluate the effectiveness and safety of RTX for refractory MG. Methods: Studies published between January 1, 2000 and January 17, 2021 were searched in PubMed, EMBASE, Cochrane Library, and ClincalTrails.gov. Primary outcomes included proportion of patients achieving minimal manifestation status (MMS) or better and quantitative MG (QMG) score change from baseline. Secondary outcomes were glucocorticoids (GC) doses change from baseline and proportion of patients discontinuing oral immunosuppressants. Results: A total of 24 studies involving 417 patients were included in the meta-analysis. An overall 64% (95% confidence interval, 49-77%) of patients achieved MMS or better. The estimated reduction of QMG score was 1.55 (95% confidence interval, 0.88-2.22). The mean reduction of GC doses was 1.46 (95% confidence interval, 1.10-1.82). The proportion of patients discontinuing oral immunosuppressants was 81% (95% confidence interval, 66-93%). Subgroup analyses showed that the proportion of patients achieving MMS or better and discontinuing oral immunosuppressants was higher in MuSK-MG group than those in AChR-MG group. Improvement was more pronounced in patients with mild to moderate MG compared to those with severe MG. Moreover, the efficacy appeared to be independent of the dose of RTX. 19.6% of patients experienced adverse events, most of which were mild to moderate. Only one patient developed progressive multifocal leukoencephalopathy. Conclusions: RTX can alleviate the symptom of weakness, decrease QMG score and reduce the doses of steroids and non-steroid immunosuppressive agents in refractory MG. It is well-tolerated with few severe adverse events. Randomized controlled trials are urgently needed to study the efficacy of RTX in treating refractory MG and to identify the characteristics of patients who might respond well to RTX.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China
| | - Meng Pu
- Department of Hepatobiliary Surgery, Air Force Medical Center of PLA, Beijing, China
| | - Dawei Chen
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China
| | - Jin Shi
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Guangyun Zhang
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China
| |
Collapse
|
39
|
Mandel-Brehm C, Fichtner ML, Jiang R, Winton VJ, Vazquez SE, Pham MC, Hoehn KB, Kelleher NL, Nowak RJ, Kleinstein SH, Wilson MR, DeRisi JL, O'Connor KC. Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes. THE JOURNAL OF IMMUNOLOGY 2021; 207:2005-2014. [PMID: 34544801 DOI: 10.4049/jimmunol.2100225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.
Collapse
Affiliation(s)
- Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Neil L Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL.,Department of Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Pathology, Yale University School of Medicine, New Haven, CT.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA; and
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT; .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
40
|
Increasing numbers of CD19 + CD24 highCD38 high regulatory B cells and pre-germinal center B cells reflect activated autoimmunity and predict future treatment response in patients with untreated immune thrombocytopenia. Int J Hematol 2021; 114:580-590. [PMID: 34309815 DOI: 10.1007/s12185-021-03192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of immune thrombocytopenia (ITP) is poorly understood, particularly aspects regarding abnormal homeostasis and dysregulation of B cells. In this study, we analyzed peripheral lymphocyte subsets in patients with untreated ITP and healthy controls, and examined correlations between cell percentages/counts and titers of serum cytokines and antibodies. We also compared ITP patients who later required second-line therapies and those who did not. The percentages of CD19 + CD24highCD38high regulatory B cells, pre-germinal center (GC) B cells, and plasmablast-like B cells were significantly higher in ITP patients than in healthy controls. Absolute counts of regulatory B cells and pre-GC B cells were significantly higher in those who needed second-line therapies. In addition, serum B cell-activating factor belonging to the tumor necrosis factor family (BAFF) levels and platelet-associated immune globulin G antibody titers correlated positively with regulatory B cell, pre-GC B cell, and auto-reactive B cell counts. Serum interferon-α (IFN-α) levels were elevated in four ITP patients with high auto-reactive B cell counts. These results indicate that increases in regulatory B cells and pre-GC B cells may reflect activated autoimmunity induced by BAFF and/or IFN-α. Consequently, evaluation of B cell subsets in untreated ITP patients may predict treatment response.
Collapse
|
41
|
Evoli A, Spagni G, Monte G, Damato V. Heterogeneity in myasthenia gravis: considerations for disease management. Expert Rev Clin Immunol 2021; 17:761-771. [PMID: 34043932 DOI: 10.1080/1744666x.2021.1936500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Myasthenia gravis is a rare disease of the neuromuscular junction and a prototype of B cell-driven immunopathology. Pathogenic antibodies target post-synaptic transmembrane proteins, most commonly the nicotinic acetylcholine receptor and the muscle-specific tyrosine kinase, inducing end-plate alterations and neuromuscular transmission impairment. Several clinical subtypes are distinct on the basis of associated antibodies, age at symptom onset, thymus pathology, genetic factors, and weakness distribution. These subtypes have distinct pathogenesis that can account for different responses to treatment. Conventional therapy is based on the use of symptomatic agents, steroids, immunosuppressants and thymectomy. Of late, biologics have emerged as effective therapeutic options.Areas covered: In this review, we will discuss the management of myasthenia gravis in relation to its phenotypic and biological heterogeneity, in the light of recent advances in the disease immunopathology, new diagnostic tools, and results of clinical trialsExpert opinion: Clinical management is shaped on serological subtype, and patient age at onset, lifestyle and comorbidities, balancing therapeutic needs and safety. Although reliable biomarkers predictive of clinical and biologic outcome are still lacking, recent developments promise a more effective and safe treatment. Disease subtyping according to serological testing and immunopathology is crucial to the appropriateness of clinical management.
Collapse
Affiliation(s)
- Amelia Evoli
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gregorio Spagni
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gabriele Monte
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Valentina Damato
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
42
|
Zografou C, Vakrakou AG, Stathopoulos P. Short- and Long-Lived Autoantibody-Secreting Cells in Autoimmune Neurological Disorders. Front Immunol 2021; 12:686466. [PMID: 34220839 PMCID: PMC8248361 DOI: 10.3389/fimmu.2021.686466] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts (SLPBs) are produced by a primary extrafollicular response, followed by the generation of memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur parallel to IgE, in response to chronic stimulation by allergens and helminths. Although IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding and cause a wide range of autoimmune disorders including neurological autoimmunity. In myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase (MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab commonly leads to long-term remission and a marked reduction in autoantibody titer, pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic inflammatory demyelinating polyneuropathy and autoimmune encephalitis with autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-mediated neurological disorders can also respond well to rituximab induction therapy in combination with an autoantibody titer drop, remission tends to be less long-lasting and cases where titers are refractory tend to occur more often than in IgG4 autoimmunity. Moreover, presence of GC-like structures in the thymus of myasthenic patients with predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to generate LLPCs. Here, we review available information on the short-and long-lived nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and highlight common mechanisms as well as differences, all of which can inform therapeutic strategies and personalized medical approaches.
Collapse
Affiliation(s)
- C Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - A G Vakrakou
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - P Stathopoulos
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
43
|
Cagdas D, Halacli SO, Tan C, Esenboğa S, Karaatmaca B, Cetinkaya PG, Balcı-Hayta B, Ayhan A, Uner A, Orhan D, Boztug K, Özen S, Topaloğlu R, Sanal O, Tezcan İ. Diversity in STK4 Deficiency and Review of the Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3752-3766.e4. [PMID: 34146746 DOI: 10.1016/j.jaip.2021.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Serine-threonine kinase-4 (STK4) deficiency is an autosomal recessive (AR) combined immunodeficiency (CID). OBJECTIVE We aimed to define characteristic clinical and laboratory features to aid the differential diagnosis and determine the most suitable therapy. METHODS In addition to nine patients diagnosed, we reviewed 15 patients from medical literature. We compared B lymphocyte subgroups of our cohort with age-matched healthy controls. RESULTS In our cohort, the median age at symptom onset and age of diagnosis are 6years-8months (mo)(6-248mo) and 7years-5mo (6-260mo), respectively. The main clinical findings were infections (9/9), autoimmune/inflammatory diseases (7/9), and atopy (4/9). CD4 lymphopenia (9/9), lymphopenia (7/9), intermittent eosinophilia (4/9), transient neutropenia (3/9), low immunoglobulin (Ig) M (4/9), and high IgE (4/9) were common. Decreased recent thymic emigrants, naive and central memory T cells, albeit increased effector memory T cells were present. The increase in plasmablasts (p=0.003) and the decrease in switched memory B cells (p=0.022) were significant. Out of a total of 24 patients, cutaneous viral infections (n=20), recurrent pneumonia (n=18), Epstein Barr Virus (EBV)-associated lymphoproliferation (n=11), atopic dermatitis (n=10), autoimmune cytopenia (n=7), and lymphoma (n=6) were frequently seen. Lymphopenia, CD4 lymphopenia, high Ig G, A, and E were the most common laboratory characteristics. CONCLUSION The differential diagnosis with AR-hyperimmunoglobulin E syndrome is crucial as atopy and CD4 lymphopenia are prominent in both diseases. Immunoglobulins and antibacterial/antiviral prophylaxis are the mainstays of treatment. Clinicians may use immunomodulatory therapies during inflammatory/autoimmune complications. However, more data is needed to recommend hematopoietic stem cell transplantation (HSCT) as a safe therapy.
Collapse
Affiliation(s)
- Deniz Cagdas
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology.
| | - Sevil Oskay Halacli
- Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - Cagman Tan
- Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - Saliha Esenboğa
- Hacettepe University Medical School, Department of Pediatric Immunology
| | - Betül Karaatmaca
- Hacettepe University Medical School, Department of Pediatric Immunology
| | | | | | - Arzu Ayhan
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Aysegul Uner
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Diclehan Orhan
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | - Seza Özen
- Hacettepe University Medical School, Department of Pediatric Rheumatology
| | - Rezan Topaloğlu
- Hacettepe University Medical School, Department of Pediatric Nephrology
| | - Ozden Sanal
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - İlhan Tezcan
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| |
Collapse
|
44
|
Gastaldi M, Scaranzin S, Businaro P, Mobilia E, Benedetti L, Pesce G, Franciotta D. Improving laboratory diagnostics in myasthenia gravis. Expert Rev Mol Diagn 2021; 21:579-590. [PMID: 33970749 DOI: 10.1080/14737159.2021.1927715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Myasthenia gravis (MG) is a prototypical autoimmune disease, characterized by pathogenic autoantibodies targeting structures of the neuromuscular junction. Radioimmunoprecipitation assays (RIPAs) represent the gold standard for their detection. However, new methods are emerging to complement, or overcome RIPAs, also with the perspective of eliminating the use of radioactive reagents.Areas covered: We discuss advances in laboratory methods, prompted especially by cell-based assays (CBAs), for the detection of the autoantibodies of MG diagnostics, above all those to the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low molecular-weight receptor-related low-density lipoprotein-4 (LRP4).Expert opinion: CBA technology makes AChRs aggregate on cell membranes, thus allowing to detect autoantibodies to clustered AChRs, with reduction of seronegative MG cases. The diagnostic relevance of RIPA/CBA-measurable LRP4 antibodies is still unclear, in Caucasian patients at least. Live CBAs for the detection of AChR, MuSK, and LRP4 antibodies might represent an alternative to RIPAs, but first require full validation. CBAs could be used as screening tests, limiting RIPAs for antibody quantification. To this end, ELISAs might be an alternative.Fixation procedures preserving enough degree of antigen conformationality could yield AChR and MuSK CBAs suitable for a wide use in clinical-chemistry laboratories.
Collapse
Affiliation(s)
- Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Businaro
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Emanuela Mobilia
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luana Benedetti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giampaola Pesce
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine (Dimi), University of Genova, Genova, Italy
| | - Diego Franciotta
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
45
|
Zhou Y, Yan C, Gu X, Zhou L, Lu J, Zhu W, Huan X, Luo S, Zhong H, Lin J, Lu J, Zhao C, Xi J. Short-term effect of low-dose rituximab on myasthenia gravis with muscle-specific tyrosine kinase antibody. Muscle Nerve 2021; 63:824-830. [PMID: 33745138 DOI: 10.1002/mus.27233] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION/AIMS The study aims to investigate the short-term efficacy of low-dose rituximab and its effect on immunological biomarker levels in myasthenia gravis (MG) patients with antibodies against muscle-specific tyrosine kinase (MuSK-MG). METHODS Twelve MuSK-MG patients were enrolled in this prospective, open-label, self-controlled pilot study. Clinical severity was evaluated at baseline and 6 mo after a single rituximab treatment (600 mg). B lymphocyte subtypes, MuSK antibody titers, together with levels of immunoglobulins, serum B-cell activating factor (BAFF), a proliferation-inducing ligand (APRIL), soluble CD40L, and four exosomal microRNAs were evaluated. A correlation matrix to reveal pairwise relationships among above variables was also generated. RESULTS The single rituximab treatment significantly lowered the clinical severity scores and reduced daily dosage of prednisone (P = .032) at 6 mo. MuSK antibody titers decreased (P = .035) without significant changes in immunoglobulin levels. Serum BAFF level increased (P = .010), which negatively correlated with the percentages of B cells in lymphocytes as well as clinical severity. Additionally, serum exosomal miR-151a-3p showed a reduction of 28.1% (P = .031). DISCUSSION We confirmed the clinical efficacy of low-dose rituximab in MuSK-MG, accompanied by a decrease in MuSK antibody titers and an increase in serum BAFF. Serum BAFF levels negatively correlated with B-cell counts as well as clinical severity.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyu Gu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Huan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huahua Zhong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Ruetsch-Chelli C, Bresch S, Seitz-Polski B, Rosenthal A, Desnuelle C, Cohen M, Brglez V, Ticchioni M, Lebrun-Frenay C. Memory B Cells Predict Relapse in Rituximab-Treated Myasthenia Gravis. Neurotherapeutics 2021; 18:938-948. [PMID: 33768513 PMCID: PMC8423951 DOI: 10.1007/s13311-021-01006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Myasthenia gravis can be efficiently treated with rituximab but there is no consensus regarding administration and dose schedules in this indication. No marker has yet been described to predict the clinical relapse of patients. Our objective was to identify the B cell subpopulations predicting clinical relapse in patients suffering from generalized myasthenia gravis and treated with rituximab. Clinical and biological data of 34 patients followed between 2016 and 2019 were prospectively collected every 3 months. Using multiparameter flow cytometry, we assessed the percentage in leucocytes of lymphocytes and several B cell subpopulations measured in residual disease conditions. CD19+ were also measured in non-residual disease conditions. Clinical examinations were performed by neurologists using the Osserman score. Clinical relapse occurred in 14 patients (41%). No patients required ICU or ventilatory assistance. The mean improvement of the Osserman score was 17.18 (3-45) after the first rituximab treatment (p < 0.0001). The mean delay between the first rituximab maintenance cycle and clinical relapse was 386.8 days. At the time of relapse, CD27+ increased (p = 0.0006) with AUC = 0.7654, while CD19+ did not. At a threshold of 0.01%, the sensitivity and specificity of CD19+CD27+ were 75.8% and 72.8%, respectively, and the positive and negative predictive values were 28.0% and 95.6%, respectively. The percentage of memory B cells in whole blood cells can accurately predict clinical relapse in myasthenia gravis patients treated with rituximab. This monitoring allows physicians to tailor rituximab administration and to decrease the number of infusions over time.
Collapse
Affiliation(s)
- Caroline Ruetsch-Chelli
- Laboratoire d'Immunologie, CHU de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Université Côte d'Azur, Nice Côte d'Azur University, Archet Hospital, 151, route Saint-Antoine de Ginestière CS 23079 -, 06202, Nice, France
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Saskia Bresch
- Service de Neurologie, Pasteur2, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Barbara Seitz-Polski
- Laboratoire d'Immunologie, CHU de Nice, Université Côte d'Azur, Nice, France
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | | | - Claude Desnuelle
- Service de Neurologie, Pasteur2, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Mikael Cohen
- Service de Neurologie, Pasteur2, CHU de Nice, Université Côte d'Azur, Nice, France
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Vesna Brglez
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Michel Ticchioni
- Laboratoire d'Immunologie, CHU de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Université Côte d'Azur, Nice Côte d'Azur University, Archet Hospital, 151, route Saint-Antoine de Ginestière CS 23079 -, 06202, Nice, France
| | - Christine Lebrun-Frenay
- Service de Neurologie, Pasteur2, CHU de Nice, Université Côte d'Azur, Nice, France.
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France.
| |
Collapse
|
47
|
Fichtner ML, Vieni C, Redler RL, Kolich L, Jiang R, Takata K, Stathopoulos P, Suarez PA, Nowak RJ, Burden SJ, Ekiert DC, O'Connor KC. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. J Exp Med 2021; 217:152036. [PMID: 32820331 PMCID: PMC7953735 DOI: 10.1084/jem.20200513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogenic muscle-specific tyrosine kinase (MuSK)–specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient–derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm–exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Casey Vieni
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY.,Medical Scientist Training Program, New York University School of Medicine, New York, NY
| | - Rachel L Redler
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ljuvica Kolich
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kazushiro Takata
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pablo A Suarez
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven J Burden
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Damian C Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
48
|
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021; 20:179-199. [PMID: 33324003 PMCID: PMC7737718 DOI: 10.1038/s41573-020-00092-2] [Citation(s) in RCA: 378] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
In the past 15 years, B cells have been rediscovered to be not merely bystanders but rather active participants in autoimmune aetiology. This has been fuelled in part by the clinical success of B cell depletion therapies (BCDTs). Originally conceived as a method of eliminating cancerous B cells, BCDTs such as those targeting CD20, CD19 and BAFF are now used to treat autoimmune diseases, including systemic lupus erythematosus and multiple sclerosis. The use of BCDTs in autoimmune disease has led to some surprises. For example, although antibody-secreting plasma cells are thought to have a negative pathogenic role in autoimmune disease, BCDT, even when it controls the disease, has limited impact on these cells and on antibody levels. In this Review, we update our understanding of B cell biology, review the results of clinical trials using BCDT in autoimmune indications, discuss hypotheses for the mechanism of action of BCDT and speculate on evolving strategies for targeting B cells beyond depletion.
Collapse
Affiliation(s)
- Dennis S W Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
49
|
Zou A, Ramanathan S, Dale RC, Brilot F. Single-cell approaches to investigate B cells and antibodies in autoimmune neurological disorders. Cell Mol Immunol 2021; 18:294-306. [PMID: 32728203 PMCID: PMC8027387 DOI: 10.1038/s41423-020-0510-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Autoimmune neurological disorders, including neuromyelitis optica spectrum disorder, anti-N-methyl-D-aspartate receptor encephalitis, anti-MOG antibody-associated disorders, and myasthenia gravis, are clearly defined by the presence of autoantibodies against neurological antigens. Although these autoantibodies have been heavily studied for their biological activities, given the heterogeneity of polyclonal patient samples, the characteristics of a single antibody cannot be definitively assigned. This review details the findings of polyclonal serum and CSF studies and then explores the advances made by single-cell technologies to the field of antibody-mediated neurological disorders. High-resolution single-cell methods have revealed abnormalities in the tolerance mechanisms of several disorders and provided further insight into the B cells responsible for autoantibody production. Ultimately, several factors, including epitope specificity and binding affinity, finely regulate the pathogenic potential of an autoantibody, and a deeper appreciation of these factors may progress the development of targeted immunotherapies for patients.
Collapse
Affiliation(s)
- Alicia Zou
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia.
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Discipline of Applied Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
50
|
Kushlaf H. Immune profiling beyond antibodies in double seronegative and acetylcholine receptor antibody positive myasthenia gravis: What do we learn? Muscle Nerve 2021; 63:439-441. [PMID: 33434293 DOI: 10.1002/mus.27167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Hani Kushlaf
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|