1
|
Erdogan BR, Arioglu-Inan E. SGLT2 inhibitors: how do they affect the cardiac cells. Mol Cell Biochem 2025; 480:1359-1379. [PMID: 39160356 DOI: 10.1007/s11010-024-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
The first sodium-glucose cotransporter-2 inhibitor (SGLT2I), canagliflozin, was approved by the U.S. Food and Drug Administration for the treatment of type 2 diabetes in 2013. Since then, other members of this drug class (such as dapagliflozin, empagliflozin, and ertugliflozin) have become widely used. Unlike classical antidiabetic agents, these drugs do not interfere with insulin secretion or action, but instead promote renal glucose excretion. Since their approval, many preclinical and clinical studies have been conducted to investigate the diverse effects of SGLT2Is. While originally introduced as antidiabetic agents, the SGLT2Is are now recognized as pillars in the treatment of heart failure and chronic kidney disease, in patients with or without diabetes. The beneficial cardiac effects of this class have been attributed to several mechanisms. Among these, SGLT2Is inhibit fibrosis, hypertrophy, apoptosis, inflammation, and oxidative stress. They regulate mitochondrial function and ion transport, and stimulate autophagy through several underlying mechanisms. This review details the potential effects of SGLT2Is on cardiac cells.
Collapse
Affiliation(s)
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Emniyet District, Dogol Street, No:4, 06560, Yenimahalle, Ankara, Turkey.
| |
Collapse
|
2
|
Liu J, Wu G, Li S, Cheng L, Ye X. The genetic association between hyperthyroidism and heart failure: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1344282. [PMID: 38681769 PMCID: PMC11045892 DOI: 10.3389/fendo.2024.1344282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
Background and aims Hyperthyroidism is an endocrine disease with multiple etiologies and manifestations. Heart failure (HF) is a common, costly, and deadly medical condition in clinical practice. Numerous studies have suggested that abnormal thyroid function can induce or aggravate the development of heart disease. However, no study has demonstrated a causal relationship between hyperthyroidism and heart failure. Therefore, the purpose of this study was to explore the causal link between hyperthyroidism and HF. Methods Summary data for genetically predicted hyperthyroidism were obtained from a genetic association study. The data examined for genetically determined all-cause heart failure came from 218,208 individuals from the FinnGen Consortium. Two-sample Mendelian randomization (MR) analysis was used to estimate the causal link between hyperthyroidism and heart failure. Statistical analyses were conducted using the inverse variance-weighted, weighted median, simple median, weighted mode, MR-PRESSO (number of distribution = 5000), MR-Egger, and leave-one-out. Results The results of the inverse-variance weighted analysis indicated a causal association between hyperthyroidism and an increased risk of all-cause heart failure (IVW: β=0.048, OR=1.049, 95%CI: [1.013 to 1.087], P=0.007). Similarly, the weighted median approach demonstrated a positive correlation between hyperthyroidism and all-cause heart failure (OR=1.049, [95% CI, 1.001-1.100]; P=0.044). Additionally, no horizontal pleiotropy or heterogeneity was observed. The leave-one-out analysis revealed that the majority of the SNP-driven associations were not influenced by a single genetic marker. Conclusion Our study observed a causal relationship between hyperthyroidism and all-cause heart failure. Hyperthyroidism may associate with heart failure genetically.
Collapse
Affiliation(s)
- Jun Liu
- Department of Health Management, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuqi Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Cheng
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Xinping Ye
- Department of Health Management, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Zúñiga D, Balasubramanian S, Mehmood KT, Al-Baldawi S, Zúñiga Salazar G. Hypothyroidism and Cardiovascular Disease: A Review. Cureus 2024; 16:e52512. [PMID: 38370998 PMCID: PMC10874251 DOI: 10.7759/cureus.52512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Hypothyroidism is an endocrine disorder more commonly in older adults. Simultaneously, this population has an increased incidence of cardiovascular risk factors and disease, which remains the leading cause of death worldwide. Thyroid hormones (THs) promote adequate function of the cardiovascular system as they exert their effects through receptors located in the myocardium and the vasculature. In hypothyroidism, this homeostasis is disrupted, which leads to the emergence of pathogenic pathways that accelerate the progression of cardiovascular disease and aggravate its outcomes in these individuals. This article has reviewed existing literature on the relationship between hypothyroidism and cardiovascular disease (CVD). We have explored the pathogenic mechanisms linking both conditions and highlighted the prevalence of cardiovascular risk factors as well as the increased incidence of cardiovascular events in overt and subclinical diseases. Furthermore, indications of hormone replacement therapy in subclinical disease and its efficacy in reducing CVD morbidities in a particular subset of patients have been discussed.
Collapse
Affiliation(s)
- Diego Zúñiga
- Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | | | | | | | | |
Collapse
|
4
|
Singh T, Joshi S, Kershaw LE, Dweck MR, Semple SI, Newby DE. Manganese-Enhanced Magnetic Resonance Imaging of the Heart. J Magn Reson Imaging 2023; 57:1011-1028. [PMID: 36314991 PMCID: PMC10947173 DOI: 10.1002/jmri.28499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 02/23/2023] Open
Abstract
Manganese-based contrast media were the first in vivo paramagnetic agents to be used in magnetic resonance imaging (MRI). The uniqueness of manganese lies in its biological function as a calcium channel analog, thus behaving as an intracellular contrast agent. Manganese ions are taken up by voltage-gated calcium channels in viable tissues, such as the liver, pancreas, kidneys, and heart, in response to active calcium-dependent cellular processes. Manganese-enhanced magnetic resonance imaging (MEMRI) has therefore been used as a surrogate marker for cellular calcium handling and interest in its potential clinical applications has recently re-emerged, especially in relation to assessing cellular viability and myocardial function. Calcium homeostasis is central to myocardial contraction and dysfunction of myocardial calcium handling is present in various cardiac pathologies. Recent studies have demonstrated that MEMRI can detect the presence of abnormal myocardial calcium handling in patients with myocardial infarction, providing clear demarcation between the infarcted and viable myocardium. Furthermore, it can provide more subtle assessments of abnormal myocardial calcium handling in patients with cardiomyopathies and being excluded from areas of nonviable cardiomyocytes and severe fibrosis. As such, MEMRI offers exciting potential to improve cardiac diagnoses and provide a noninvasive measure of myocardial function and contractility. This could be an invaluable tool for the assessment of both ischemic and nonischemic cardiomyopathies as well as providing a measure of functional myocardial recovery, an accurate prediction of disease progression and a method of monitoring treatment response. EVIDENCE LEVEL: 5: TECHNICAL EFFICACY: STAGE 5.
Collapse
Affiliation(s)
- Trisha Singh
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh Heart CentreRoyal Infirmary of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - Shruti Joshi
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh Heart CentreRoyal Infirmary of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - Lucy E Kershaw
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - Marc R Dweck
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh Heart CentreRoyal Infirmary of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - Scott I Semple
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - David E Newby
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh Heart CentreRoyal Infirmary of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| |
Collapse
|
5
|
Kadosaka T, Watanabe M, Natsui H, Koizumi T, Nakao M, Koya T, Hagiwara H, Kamada R, Temma T, Karube F, Fujiyama F, Anzai T. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca 2+ handling in ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol 2023; 324:H341-H354. [PMID: 36607794 DOI: 10.1152/ajpheart.00391.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diabetic cardiomyopathy has been reported to increase the risk of fatal ventricular arrhythmia. The beneficial effects of the selective sodium-glucose cotransporter-2 inhibitor have not been fully examined in the context of antiarrhythmic therapy, especially its direct cardioprotective effects despite the negligible SGLT2 expression in cardiomyocytes. We aimed to examine the antiarrhythmic effects of empagliflozin (EMPA) treatment on diabetic cardiomyocytes, with a special focus on Ca2+ handling. We conducted echocardiography and hemodynamic studies and studied electrophysiology, Ca2+ handling, and protein expression in C57BLKS/J-leprdb/db mice (db/db mice) and their nondiabetic lean heterozygous Leprdb/+ littermates (db/+ mice). Preserved systolic function with diastolic dysfunction was observed in 16-wk-old db/db mice. During arrhythmia induction, db/db mice had significantly increased premature ventricular complexes (PVCs) than controls, which was attenuated by EMPA. In protein expression analyses, calmodulin-dependent protein kinase II (CaMKII) Thr287 autophosphorylation and CaMKII-dependent RyR2 phosphorylation (S2814) were significantly increased in diabetic hearts, which were inhibited by EMPA. In addition, global O-GlcNAcylation significantly decreased with EMPA treatment. Furthermore, EMPA significantly inhibited ventricular cardiomyocyte glucose uptake. Diabetic cardiomyocytes exhibited increased spontaneous Ca2+ events and decreased sarcoplasmic reticulum (SR) Ca2+ content, along with impaired Ca2+ transient, all of which normalized with EMPA treatment. Notably, most EMPA-induced improvements in Ca2+ handling were abolished by the addition of an O-GlcNAcase (OGA) inhibitor. In conclusion, EMPA attenuated ventricular arrhythmia inducibility by normalizing the intracellular Ca2+ handling, and we speculated that this effect was, at least partly, due to the inhibition of O-GlcNAcylation via the suppression of glucose uptake into cardiomyocytes.NEW & NOTEWORTHY SGLT2is are known to improve cardiovascular outcomes regardless of the presence of diabetes and decrease traditional cardiovascular risk factors. We demonstrated, for the first time, that EMPA inhibited PVCs by normalizing Ca2+ handling in diabetic mice. Our data suggest that the effects of SGLT2is on calcium handling may occur because of suppression of O-GlcNAcylation through inhibition of glucose uptake and not because of NHE inhibition, as previously suggested.
Collapse
Affiliation(s)
- Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Fuyuki Karube
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Fumino Fujiyama
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
7
|
Song XW, Zhao F, Yang J, Yuan QN, Zeng ZY, Shen M, Tang Y, Cao M, Shen YF, Li SH, Yang YJ, Wu H, Zhao XX, Hu ST. Cardiovascular-Specific PSEN1 Deletion Leads to Abnormalities in Calcium homeostasis. Cell Biol Int 2021; 46:475-487. [PMID: 34939719 DOI: 10.1002/cbin.11753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022]
Abstract
Mutations of PSEN1 have been reported in dilated cardiomyopathy pedigrees. Understanding the effects and mechanisms of PSEN1 in cardiomyocytes might have important implications for treatment of heart diseases. Here, we showed that PSEN1 was down-regulated in ischemia-induced failing hearts. Functionally, cardiovascular specific PSEN1 deletion led to spontaneous death of the mice due to cardiomyopathy. At the age of 11 months, the ratio of the heart weight/body weight was slightly lower in the Sm22a-PSEN1-KO mice compared with that of the WT mice. Echocardiography showed that the percentage of ejection fraction and fractional shortening was significantly reduced in the Sm22a-PSEN1-KO group compared with the percent of these measures in the WT group, indicating that PSEN1-KO resulted in heart failure. The abnormally regulated genes resulted from PSEN1-KO were detected to be enriched in muscle development and dilated cardiomyopathy. Among them, several genes encode Ca2+ ion channels, promoting us to investigate the effects of PSEN1 KO on regulation of Ca2+ in isolated adult cardiomyocytes. Consistently, in isolated adult cardiomyocytes, PSEN1-KO increased the concentration of cytosolic Ca2+ and reduced Ca2+ concentration inside the sarcoplasmic reticulum (SR) lumen at the resting stage. Additionally, SR Ca2+ was decreased in the failing hearts of WT mice, but with the lowest levels observed in the failing hearts of PSEN1 knockout mice. These results indicate that the process of Ca2+ release from SR into cytoplasm was affected by PSEN1 KO. Therefore, the abnormalities in Ca2+ homeostasis resulted from downregulation of PSEN1 in failing hearts might contribute to aging-related cardiomyopathy, which might had important implications for the treatment of aging-related heart diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Wei Song
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Feng Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Jing Yang
- Department of Cardiology, Changhai Hospital, Shanghai, China.,Department of Physiology, Ningxia Medical University, Yinchuan, China
| | - Qing-Ning Yuan
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Zeng
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ming Shen
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ying Tang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Mi Cao
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Ya-Feng Shen
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Yong-Ji Yang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Shu-Ting Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Yamakawa H, Kato TS, Noh JY, Yuasa S, Kawamura A, Fukuda K, Aizawa Y. Thyroid Hormone Plays an Important Role in Cardiac Function: From Bench to Bedside. Front Physiol 2021; 12:606931. [PMID: 34733168 PMCID: PMC8558494 DOI: 10.3389/fphys.2021.606931] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/28/2021] [Indexed: 01/07/2023] Open
Abstract
Thyroid hormones (THs) are synthesized in the thyroid gland, and they circulate in the blood to regulate cells, tissues, and organs in the body. In particular, they exert several effects on the cardiovascular system. It is well known that THs raise the heart rate and cardiac contractility, improve the systolic and diastolic function of the heart, and decrease systemic vascular resistance. In the past 30 years, some researchers have studied the molecular pathways that mediate the role of TH in the cardiovascular system, to better understand its mechanisms of action. Two types of mechanisms, which are genomic and non-genomic pathways, underlie the effects of THs on cardiomyocytes. In this review, we summarize the current knowledge of the action of THs in the cardiac function, the clinical manifestation and parameters of their hemodynamics, and treatment principles for patients with hyperthyroid- or hypothyroid-associated heart disease. We also describe the cardiovascular drugs that induce thyroid dysfunction and explain the mechanism underlying the thyroid toxicity of amiodarone, which is considered the most effective antiarrhythmic agent. Finally, we discuss the recent reports on the involvement of thyroid hormones in the regulation of myocardial regeneration and metabolism in the adult heart.
Collapse
Affiliation(s)
- Hiroyuki Yamakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko S. Kato
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | | | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Akio Kawamura
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| |
Collapse
|
9
|
Qu Z, Lu X, Qu Y, Tao T, Liu X, Li X. Attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities induced by tunicamycin or hypoxia/reoxygenation in neonatal rat cardiomyocytes by SERCA2a overexpression. Int J Mol Med 2021; 47:113. [PMID: 33907834 PMCID: PMC8075284 DOI: 10.3892/ijmm.2021.4946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of the overexpression of sarco/endoplasmic reticulum Ca2+‑ATPase (SERCA2a) on endoplasmic reticulum (ER) stress (ERS)‑associated inflammation in neonatal rat cardiomyocytes (NRCMs) induced by tunicamycin (TM) or hypoxia/reoxygenation (H/R). The optimal multiplicity of infection (MOI) was 2 pfu/cell. Neonatal Sprague‑Dawley rat cardiomyocytes cultured in vitro were infected with adenoviral vectors carrying SERCA2a or enhanced green fluorescent protein genes, the latter used as a control. At 48 h following gene transfer, the NRCMs were treated with TM (10 µg/ml) or subjected to H/R to induce ERS. The results of electrophoretic mobility shift assay (EMSA) revealed that overexpression of SERCA2a attenuated the upregulation of nuclear factor (NF)‑κB and activator protein‑1 (AP‑1) DNA‑binding activities induced by TM or H/R. Western blot analysis and semi‑quantitative RT‑PCR revealed that the overexpression of SERCA2a attenuated the activation of the inositol‑requiring 1α (IRE1α) signaling pathway and ERS‑associated apoptosis induced by TM. The overexpression of SERCA2a also decreased the level of phospho‑p65 (Ser536) in the nucleus, as assessed by western blot analysis. However, the overexpression of SERCA2a induced the further nuclear translocation of NF‑κB p65 and higher levels of tumor necrosis factor (TNF)‑α transcripts in the NRCMs, indicating the occurrence of the ER overload response (EOR). Therefore, the overexpression of SERCA2a has a 'double‑edged sword' effect on ERS‑associated inflammation. On the one hand, it attenuates ERS and the activation of the IRE1α signaling pathway induced by TM, resulting in the attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities in the nucleus, and on the other hand, it induces EOR, leading to the further nuclear translocation of NF‑κB and the transcription of TNF‑α. The preceding EOR may precondition the NRCMs against subsequent ERS induced by TM. Further studies using adult rat cardiomyocytes are required to prevent the interference of EOR. The findings of the present study may enhance the current understanding of the role of SERCA2a in cardiomyocytes.
Collapse
Affiliation(s)
- Zhigang Qu
- Medical School of Chinese PLA, Beijing 100853, P.R. China
- Department of General Practice, The 900th Hospital of The Joint Logistic Support Force, Fuzhou, Fujian 350025, P.R. China
| | - Xiaochun Lu
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Qu
- Department of Functional Examination, Penglai Traditional Chinese Medicine Hospital, Penglai, Shandong 265600, P.R. China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoying Li
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
10
|
Goerg J, Sommerfeld M, Greiner B, Lauer D, Seckin Y, Kulikov A, Ivkin D, Kintscher U, Okovityi S, Kaschina E. Low-Dose Empagliflozin Improves Systolic Heart Function after Myocardial Infarction in Rats: Regulation of MMP9, NHE1, and SERCA2a. Int J Mol Sci 2021; 22:ijms22115437. [PMID: 34063987 PMCID: PMC8196699 DOI: 10.3390/ijms22115437] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of the selective sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin in low dose on cardiac function were investigated in normoglycemic rats. Cardiac parameters were measured by intracardiac catheterization 30 min after intravenous application of empagliflozin to healthy animals. Empagliflozin increased the ventricular systolic pressure, mean pressure, and the max dP/dt (p < 0.05). Similarly, treatment with empagliflozin (1 mg/kg, p.o.) for one week increased the cardiac output, stroke volume, and fractional shortening (p < 0.05). Myocardial infarction (MI) was induced by ligation of the left coronary artery. On day 7 post MI, empagliflozin (1 mg/kg, p.o.) improved the systolic heart function as shown by the global longitudinal strain (−21.0 ± 1.1% vs. −16.6 ± 0.7% in vehicle; p < 0.05). In peri-infarct tissues, empagliflozin decreased the protein expression of matrix metalloproteinase 9 (MMP9) and favorably regulated the cardiac transporters sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) and sodium hydrogen exchanger 1 (NHE1). In H9c2 cardiac cells, empagliflozin decreased the MMP2,9 activity and prevented apoptosis. Empagliflozin did not alter the arterial stiffness, blood pressure, markers of fibrosis, and necroptosis. Altogether, short-term treatment with low-dose empagliflozin increased the cardiac contractility in normoglycemic rats and improved the systolic heart function in the early phase after MI. These effects are attributed to a down-regulation of MMP9 and NHE1, and an up-regulation of SERCA2a. This study is of clinical importance because it suggests that a low-dose treatment option with empagliflozin may improve cardiovascular outcomes post-MI. Down-regulation of MMPs could be relevant to many remodeling processes including cancer disease.
Collapse
Affiliation(s)
- Jana Goerg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Manuela Sommerfeld
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Bettina Greiner
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Dilyara Lauer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
| | - Yasemin Seckin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- Department of Biotechnology, University of Applied Science, 13353 Berlin, Germany
| | - Alexander Kulikov
- Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia;
| | - Dmitry Ivkin
- Saint-Petersburg State Chemical-Pharmaceutical University, 197376 Saint Petersburg, Russia; (D.I.); (S.O.)
| | - Ulrich Kintscher
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Sergey Okovityi
- Saint-Petersburg State Chemical-Pharmaceutical University, 197376 Saint Petersburg, Russia; (D.I.); (S.O.)
| | - Elena Kaschina
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Center for Cardiovascular Research (CCR), 10115 Berlin, Germany; (J.G.); (M.S.); (B.G.); (D.L.); (Y.S.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525-024
| |
Collapse
|
11
|
Arnold ME, Dostmann WR, Martin J, Previs MJ, Palmer B, LeWinter M, Meyer M. SERCA2a-phospholamban interaction monitored by an interposed circularly permutated green fluorescent protein. Am J Physiol Heart Circ Physiol 2021; 320:H2188-H2200. [PMID: 33861144 DOI: 10.1152/ajpheart.00858.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of phospholamban (PLB) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) is a key regulator of cardiac contractility and a therapeutic target in heart failure (HF). PLB-mediated increases in SERCA2a activity improve cardiac function and HF. Clinically, this mechanism can only be exploited by a general activation of the proteinkinase A (PKA), which is associated with side effects and adverse clinical outcomes. A selective interference of the PLB-SERCA2a interaction is desirable but will require novel tools that allow for an integrated assessment of this interaction under both physiological and pathophysiological conditions. A circularly permutated green fluorescent protein (cpGFP) was interposed between SERCA2a and PLB to result into a single SERCA2a-cpGFP-PLB recombinant protein (SGP). Expression, phosphorylation, fluorescence, and function of SGP were evaluated. Expression of SGP-cDNA results in a functional recombinant protein at the predicted molecular weight. The PLB domain of SGP retains its ability to polymerize and can be phosphorylated by PKA activation. This increases the fluorescent yield of SGP by between 10% and 165% depending on cell line and conditions. In conclusion, a single recombinant fusion protein that combines SERCA2a, a circularly permutated green fluorescent protein, and PLB can be expressed in cells and can be phosphorylated at the PLB domain that markedly increases the fluorescence yield. SGP is a novel cellular SERCA2a-PLB interaction monitor.NEW & NOTEWORTHY This study describes the design and characterization of a novel biosensor that can visualize the interaction of SERCA2a and phospholamban (PLB). The biosensor combines SERCA2a, a circularly permutated green fluorescent protein, and PLB into one recombinant protein (SGP). Proteinkinase A activation results in phosphorylation of the PLB domain and is associated with a marked increase in the fluorescence yield to allow for real-time monitoring of the SERCA2a and PLB interaction in cells.
Collapse
Affiliation(s)
- Maren E Arnold
- Department of Medicine and Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, Vermont.,Institute of Experimental and Clinical Pharmacology und Toxicology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Wolfgang R Dostmann
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Jody Martin
- Department of Pharmacology, School of Medicine, Cardiovascular Research Institute, University of California, Davis, California
| | - Michael J Previs
- Department of Medicine and Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Bradley Palmer
- Department of Medicine and Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Martin LeWinter
- Department of Medicine and Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Markus Meyer
- Department of Medicine, Lillehei Heart Institute, University of Minnesota College of Medicine, Minneapolis, Minnesota
| |
Collapse
|
12
|
Li XL, Liao SG, Gao RR, Cheang I, Lu XY, Zhou YL, Zhang HF, Yao WM. Low tri-iodothyronine syndrome improves the risk prediction for mortality in patients with acute heart failure: A prospective observational cohort study. CARDIOLOGY PLUS 2021. [DOI: 10.4103/2470-7511.327243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Goodman JB, Qin F, Morgan RJ, Chambers JM, Croteau D, Siwik DA, Hobai I, Panagia M, Luptak I, Bachschmid M, Tong X, Pimentel DR, Cohen RA, Colucci WS. Redox-Resistant SERCA [Sarco(endo)plasmic Reticulum Calcium ATPase] Attenuates Oxidant-Stimulated Mitochondrial Calcium and Apoptosis in Cardiac Myocytes and Pressure Overload-Induced Myocardial Failure in Mice. Circulation 2020; 142:2459-2469. [PMID: 33076678 PMCID: PMC7752816 DOI: 10.1161/circulationaha.120.048183] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND SERCA [sarco(endo)plasmic reticulum calcium ATPase] is regulated by oxidative posttranslational modifications at cysteine 674 (C674). Because sarcoplasmic reticulum (SR) calcium has been shown to play a critical role in mediating mitochondrial dysfunction in response to reactive oxygen species, we hypothesized that SERCA oxidation at C674 would modulate the effects of reactive oxygen species on mitochondrial calcium and mitochondria-dependent apoptosis in cardiac myocytes. METHODS Adult rat ventricular myocytes expressing wild-type SERCA2b or a redox-insensitive mutant in which C674 is replaced by serine (C674S) were exposed to H2O2 (100 µmol/Lμ). Free mitochondrial calcium concentration was measured in adult rat ventricular myocytes with a genetically targeted fluorescent probe, and SR calcium content was assessed by measuring caffeine-stimulated release. Mice with heterozygous knock-in of the SERCA C674S mutation were subjected to chronic ascending aortic constriction. RESULTS In adult rat ventricular myocytes expressing wild-type SERCA, H2O2 caused a 25% increase in mitochondrial calcium concentration that was associated with a 50% decrease in SR calcium content, both of which were prevented by the ryanodine receptor inhibitor tetracaine. In cells expressing the C674S mutant, basal SR calcium content was decreased by 31% and the H2O2-stimulated rise in mitochondrial calcium concentration was attenuated by 40%. In wild-type cells, H2O2 caused cytochrome c release and apoptosis, both of which were prevented in C674S-expressing cells. In myocytes from SERCA knock-in mice, basal SERCA activity and SR calcium content were decreased. To test the effect of C674 oxidation on apoptosis in vivo, SERCA knock-in mice were subjected to chronic ascending aortic constriction. In wild-type mice, ascending aortic constriction caused myocyte apoptosis, LV dilation, and systolic failure, all of which were inhibited in SERCA knock-in mice. CONCLUSIONS Redox activation of SERCA C674 regulates basal SR calcium content, thereby mediating the pathologic reactive oxygen species-stimulated rise in mitochondrial calcium required for myocyte apoptosis and myocardial failure.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Calcium/metabolism
- Calcium Signaling
- Cells, Cultured
- Disease Models, Animal
- Heart Failure/enzymology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hydrogen Peroxide/toxicity
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/genetics
- Mitochondria, Heart/pathology
- Mutation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxidants/toxicity
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Jena B. Goodman
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Fuzhong Qin
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Robert J. Morgan
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Jordan M. Chambers
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Dominique Croteau
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Deborah A. Siwik
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Ion Hobai
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Marcello Panagia
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Ivan Luptak
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Markus Bachschmid
- Vascular Biology Unit, Boston University School of
Medicine, Boston, MA
| | - XiaoYong Tong
- Vascular Biology Unit, Boston University School of
Medicine, Boston, MA
| | - David R. Pimentel
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Richard A. Cohen
- Vascular Biology Unit, Boston University School of
Medicine, Boston, MA
| | - Wilson S. Colucci
- Cardiovascular Medicine Section, Boston University School
of Medicine, Boston, MA
- Myocardial Biology Unit, Boston University School of
Medicine, Boston, MA
| |
Collapse
|
14
|
van der Pol A, Hoes MF, de Boer RA, van der Meer P. Cardiac foetal reprogramming: a tool to exploit novel treatment targets for the failing heart. J Intern Med 2020; 288:491-506. [PMID: 32557939 PMCID: PMC7687159 DOI: 10.1111/joim.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
As the heart matures during embryogenesis from its foetal stages, several structural and functional modifications take place to form the adult heart. This process of maturation is in large part due to an increased volume and work load of the heart to maintain proper circulation throughout the growing body. In recent years, it has been observed that these changes are reversed to some extent as a result of cardiac disease. The process by which this occurs has been characterized as cardiac foetal reprogramming and is defined as the suppression of adult and re-activation of a foetal genes profile in the diseased myocardium. The reasons as to why this process occurs in the diseased myocardium are unknown; however, it has been suggested to be an adaptive process to counteract deleterious events taking place during cardiac remodelling. Although still in its infancy, several studies have demonstrated that targeting foetal reprogramming in heart failure can lead to substantial improvement in cardiac functionality. This is highlighted by a recent study which found that by modulating the expression of 5-oxoprolinase (OPLAH, a novel cardiac foetal gene), cardiac function can be significantly improved in mice exposed to cardiac injury. Additionally, the utilization of angiotensin receptor neprilysin inhibitors (ARNI) has demonstrated clear benefits, providing important clinical proof that drugs that increase natriuretic peptide levels (part of the foetal gene programme) indeed improve heart failure outcomes. In this review, we will highlight the most important aspects of cardiac foetal reprogramming and will discuss whether this process is a cause or consequence of heart failure. Based on this, we will also explain how a deeper understanding of this process may result in the development of novel therapeutic strategies in heart failure.
Collapse
Affiliation(s)
- A van der Pol
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Perioperative Inflammation and Infection Group, Department of Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - M F Hoes
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R A de Boer
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - P van der Meer
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Braun JL, Hamstra SI, Messner HN, Fajardo VA. SERCA2a tyrosine nitration coincides with impairments in maximal SERCA activity in left ventricles from tafazzin-deficient mice. Physiol Rep 2020; 7:e14215. [PMID: 31444868 PMCID: PMC6708055 DOI: 10.14814/phy2.14215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) is imperative for normal cardiac function regulating both muscle relaxation and contractility. SERCA2a is the predominant isoform in cardiac muscles and is inhibited by phospholamban (PLN). Under conditions of oxidative stress, SERCA2a may also be impaired by tyrosine nitration. Tafazzin (Taz) is a mitochondrial‐specific transacylase that regulates mature cardiolipin (CL) formation, and its absence leads to mitochondrial dysfunction and excessive production of reactive oxygen/nitrogen species (ROS/RNS). In the present study, we examined SERCA function, SERCA2a tyrosine nitration, and PLN expression/phosphorylation in left ventricles (LV) obtained from young (3‐5 months) and old (10‐12 months) wild‐type (WT) and Taz knockdown (TazKD) male mice. These mice are a mouse model for Barth syndrome, which is characterized by mitochondrial dysfunction, excessive ROS/RNS production, and dilated cardiomyopathy (DCM). Here, we show that maximal SERCA activity was impaired in both young and old TazKD LV, a result that correlated with elevated SERCA2a tyrosine nitration. In addition PLN protein was decreased, and its phosphorylation was increased in TazKD LV compared with control, which suggests that PLN may not contribute to the impairments in SERCA function. These changes in expression and phosphorylation of PLN may be an adaptive response aimed to improve SERCA function in TazKD mice. Nonetheless, we demonstrate for the first time that SERCA function is impaired in LVs obtained from young and old TazKD mice likely due to elevated ROS/RNS production. Future studies should determine whether improving SERCA function can improve cardiac contractility and pathology in TazKD mice.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Holt N Messner
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
16
|
Toll-Like Receptor-Mediated Cardiac Injury during Experimental Sepsis. Mediators Inflamm 2020; 2020:6051983. [PMID: 32410859 PMCID: PMC7199613 DOI: 10.1155/2020/6051983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Sepsis is associated with global cardiac dysfunction and with high mortality rate. The development of septic cardiomyopathy is due to complex interactions of damage-associated molecular patters, cytokines, and complement activation products. The aim of this study was to define the effects of sepsis on cardiac structure, gap junction, and tight junction (TJ) proteins. Sepsis was induced by cecal ligation and puncture in male C57BL/6 mice. After a period of 24 h, the expression of cardiac structure, gap junction, and TJ proteins was determined. Murine HL-1 cells were stimulated with LPS, and mRNA expression of cardiac structure and gap junction proteins, intracellular reactive oxygen species, and troponin I release was analyzed. Furthermore, pyrogenic receptor subtype 7 (P2X7) expression and troponin I release of human cardiomyocytes (iPS) were determined after LPS exposure. In vivo, protein expression of connexin43 and α-actinin was decreased after the onset of polymicrobial sepsis, whereas in HL-1 cells, mRNA expression of connexin43, α-actinin, and desmin was increased in the presence of LPS. Expression of TJ proteins was not affected in vivo during sepsis. Although the presence of LPS and nigericin resulted in a significant troponin I release from HL-1 cells. Sepsis affected cardiac structure and gap junction proteins in mice, potentially contributing to compromised cardiac function.
Collapse
|
17
|
Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells 2020; 9:cells9010242. [PMID: 31963679 PMCID: PMC7016826 DOI: 10.3390/cells9010242] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) is the most rapidly growing cardiovascular health burden worldwide. HF can be classified into three groups based on the percentage of the ejection fraction (EF): heart failure with reduced EF (HFrEF), heart failure with mid-range-also called mildly reduced EF- (HFmrEF), and heart failure with preserved ejection fraction (HFpEF). HFmrEF can progress into either HFrEF or HFpEF, but its phenotype is dominated by coronary artery disease, as in HFrEF. HFrEF and HFpEF present with differences in both the development and progression of the disease secondary to changes at the cellular and molecular level. While recent medical advances have resulted in efficient and specific treatments for HFrEF, these treatments lack efficacy for HFpEF management. These differential response rates, coupled to increasing rates of HF, highlight the significant need to understand the unique pathogenesis of HFrEF and HFpEF. In this review, we summarize the differences in pathological development of HFrEF and HFpEF, focussing on disease-specific aspects of inflammation and endothelial function, cardiomyocyte hypertrophy and death, alterations in the giant spring titin, and fibrosis. We highlight the areas of difference between the two diseases with the aim of guiding research efforts for novel therapeutics in HFrEF and HFpEF.
Collapse
|
18
|
Li S, Chopra A, Keung W, Chan CWY, Costa KD, Kong CW, Hajjar RJ, Chen CS, Li RA. Sarco/endoplasmic reticulum Ca2+-ATPase is a more effective calcium remover than sodium-calcium exchanger in human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2019; 317:H1105-H1115. [DOI: 10.1152/ajpheart.00540.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human pluripotent stem cell (hPSCs)-derived ventricular (V) cardiomyocytes (CMs) display immature Ca2+–handing properties with smaller transient amplitudes and slower kinetics due to such differences in crucial Ca2+-handling proteins as the poor sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump but robust Na+-Ca2+ exchanger (NCX) activities in human embryonic stem cell (ESC)-derived VCMs compared with adult. Despite their fundamental importance in excitation-contraction coupling, the relative contribution of SERCA and NCX to Ca2+-handling of hPSC-VCMs remains unexplored. We systematically altered the activities of SERCA and NCX in human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs) and their engineered microtissues, followed by examining the resultant phenotypic consequences. SERCA overexpression in hESC-VCMs shortened the decay of Ca2+ transient at low frequencies (0.5 Hz) without affecting the amplitude, SR Ca2+ content and Ca2+ baseline. Interestingly, short hairpin RNA-based NCX suppression did not prolong the transient decay, indicating a compensatory response for Ca2+ removal. Although hESC-VCMs and their derived microtissues exhibited negative frequency-transient/force responses, SERCA overexpression rendered them less negative at high frequencies (>2 Hz) by accelerating Ca2+ sequestration. We conclude that for hESC-VCMs and their microtissues, SERCA, rather than NCX, is the main Ca2+ remover during diastole; poor SERCA expression is the leading cause for immature negative-frequency/force responses, which can be partially reverted by forced expression. Combinatorial approach to mature calcium handling in hESC-VCMs may help shed further mechanistic insights. NEW & NOTEWORTHY In this study of human pluripotent stem cell-derived cardiomyocytes, we studied the role of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+-Ca2+ exchanger (NCX) in Ca2+ handling. Our data support the notion that SERCA is more effective in cytosolic calcium removal than the NCX.
Collapse
Affiliation(s)
- Sen Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Anant Chopra
- Department of Bioengineering, Boston University, Boston, Massachusetts
- Harvard Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Camie W. Y. Chan
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Kevin D. Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York
| | - Chi-Wing Kong
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York
| | - Christopher S. Chen
- Department of Bioengineering, Boston University, Boston, Massachusetts
- Harvard Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Ronald A. Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| |
Collapse
|
19
|
Lackner I, Weber B, Baur M, Haffner-Luntzer M, Eiseler T, Fois G, Gebhard F, Relja B, Marzi I, Pfeifer R, Halvachizadeh S, Lipiski M, Cesarovic N, Pape HC, Kalbitz M. Midkine Is Elevated After Multiple Trauma and Acts Directly on Human Cardiomyocytes by Altering Their Functionality and Metabolism. Front Immunol 2019; 10:1920. [PMID: 31552013 PMCID: PMC6736577 DOI: 10.3389/fimmu.2019.01920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Post-traumatic cardiac dysfunction often occurs in multiply injured patients (ISS ≥ 16). Next to direct cardiac injury, post-traumatic cardiac dysfunction is mostly induced by the release of inflammatory biomarkers. One of these is the heparin-binding factor Midkine, which is elevated in humans after fracture, burn injury and traumatic spinal cord injury. Midkine is associated with cardiac pathologies but the exact role of Midkine in the development of those diseases is ambiguous. The systemic profile of Midkine after multiple trauma, its effects on cardiomyocytes and the association with post-traumatic cardiac dysfunction, remain unknown. Experimental Approach: Midkine levels were investigated in blood plasma of multiply injured humans and pigs. Furthermore, human cardiomyocytes (iPS) were cultured in presence/absence of Midkine and analyzed regarding viability, apoptosis, calcium handling, metabolic alterations, and oxidative stress. Finally, the Midkine filtration capacity of the therapeutic blood absorption column CytoSorb ®300 was tested with recombinant Midkine or plasma from multiply injured patients. Key Results: Midkine levels were significantly increased in blood plasma of multiply injured humans and pigs. Midkine acts on human cardiomyocytes, altering their mitochondrial respiration and calcium handling in vitro. CytoSorb®300 filtration reduced Midkine concentration ex vivo and in vitro depending on the dosage. Conclusion and Implications: Midkine is elevated in human and porcine plasma after multiple trauma, affecting the functionality and metabolism of human cardiomyocytes in vitro. Further examinations are required to determine whether the application of CytoSorb®300 filtration in patients after multiple trauma is a promising therapeutic approach to prevent post-traumatic cardiac disfunction.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Meike Baur
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | | | - Tim Eiseler
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | | | - Miriam Lipiski
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | | | - Miriam Kalbitz
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | | |
Collapse
|
20
|
Zhang Z, Lu C, Meng Y, Wang Q, Guan X, Yu J. Effects of Tetrahydrobiopterin Combined with Nebivolol on Cardiac Diastolic Function in SHRs. Biol Pharm Bull 2019; 42:1102-1111. [PMID: 30867344 DOI: 10.1248/bpb.b18-00691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the effects of combined use of tetrahydrobiopterin (BH4) and nebivolol on cardiac diastolic dysfunction in spontaneously hypertensive rats (SHRs). Twelve-week-old male SHRs were treated with BH4, nebivolol, or a combination of both. Left ventricle function was evaluated, and reactive oxygen species (ROS) production (including dihydroethidium (DHE) and 3-nitrotyrosine (3-NT)), nitric oxide synthase (NOS) activity and the level of NO in myocardial tissue were determined. The expression levels of endothelial NOS (eNOS), phospholamban (PLN), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), β3-adrenoceptor, cyclic guanosine monophosphate (cGMP), and protein kinase G (PKG) were assayed. Treatment with BH4, nebivolol, or both reversed the noninvasive indexes of diastolic function, including E/E' and E'/A', and the invasive indexes, including time constant of isovolumic left ventricle (LV) relaxation (tau), -dP/dtmin, -dP/dtmin/LV systolic pressure (LVSP), and LV end-diastolic pressure (LVEDP) in SHRs. mRNA and protein expression levels of eNOS dimer, phosphorylated PLN, SERCA2a, cGMP, and PKG in the myocardium of treated SHRs were significantly up-regulated compared with those in control rats (p < 0.05 or p < 0.01). The expression levels of 3-NT and DHE were reduced in all treated groups (p < 0.05 or p < 0.01). Notably, combined use of BH4 and nebivolol had better cardioprotective effects than monotherapies. BH4 or nebivolol has a protective effect on diastolic dysfunction in SHRs, and BH4 combined with nebivolol may exert a synergistically cardioprotective effect through activation of β3-adrenoceptor and the NO/cGMP/PKG signaling pathway.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Changhong Lu
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Ying Meng
- Cardiac Hospital, Lanzhou University Second Hospital
| | | | - Xiaoli Guan
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Jing Yu
- Cardiac Hospital, Lanzhou University Second Hospital
| |
Collapse
|
21
|
|
22
|
Liu G, Li SQ, Hu PP, Tong XY. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy. Diab Vasc Dis Res 2018; 15:322-335. [PMID: 29762054 DOI: 10.1177/1479164118774313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Si Qi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Samuel TJ, Rosenberry RP, Lee S, Pan Z. Correcting Calcium Dysregulation in Chronic Heart Failure Using SERCA2a Gene Therapy. Int J Mol Sci 2018; 19:ijms19041086. [PMID: 29621141 PMCID: PMC5979534 DOI: 10.3390/ijms19041086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Chronic heart failure (CHF) is a major contributor to cardiovascular disease and is the leading cause of hospitalization for those over the age of 65, which is estimated to account for close to seventy billion dollars in healthcare costs by 2030 in the US alone. The successful therapies for preventing and reversing CHF progression are urgently required. One strategy under active investigation is to restore dysregulated myocardial calcium (Ca2+), a hallmark of CHF. It is well established that intracellular Ca2+ concentrations are tightly regulated to control efficient myocardial systolic contraction and diastolic relaxation. Among the many cell surface proteins and intracellular organelles that act as the warp and woof of the regulatory network controlling intracellular Ca2+ signals in cardiomyocytes, sarco/endoplasmic reticulum Ca2+ ATPase type 2a (SERCA2a) undoubtedly plays a central role. SERCA2a is responsible for sequestrating cytosolic Ca2+ back into the sarcoplasmic reticulum during diastole, allowing for efficient uncoupling of actin-myosin and subsequent ventricular relaxation. Accumulating evidence has demonstrated that the expression of SERCA2a is downregulated in CHF, which subsequently contributes to severe systolic and diastolic dysfunction. Therefore, restoring SERCA2a expression and improving cardiomyocyte Ca2+ handling provides an excellent alternative to currently used transplantation and mechanical assist devices in the treatment of CHF. Indeed, advancements in safe and effective gene delivery techniques have led to the emergence of SERCA2a gene therapy as a potential therapeutic choice for CHF patients. This mini-review will succinctly detail the progression of SERCA2a gene therapy from its inception in plasmid and animal models, to its clinical trials in CHF patients, highlighting potential avenues for future work along the way.
Collapse
Affiliation(s)
- T Jake Samuel
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Ryan P Rosenberry
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Seungyong Lee
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Zui Pan
- Department of Graduate Nursing, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
24
|
Peoples JN, Taylor DG, Katchman AN, Ebert SN. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts. Biochem Biophys Res Commun 2018; 495:2547-2552. [PMID: 29288665 DOI: 10.1016/j.bbrc.2017.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022]
Abstract
Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh-/-) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca2+]i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca2+]i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, ICa,L, in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through ICa,L and that aberrant calcium signaling does not likely contribute to the onset of heart failure in this model.
Collapse
Affiliation(s)
- Jessica N Peoples
- Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, United States
| | - David G Taylor
- Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, United States
| | - Alexander N Katchman
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Rd, NW, Washington, DC 20007, United States
| | - Steven N Ebert
- Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, United States.
| |
Collapse
|
25
|
Krishnan B, Massilamany C, Basavalingappa RH, Gangaplara A, Rajasekaran RA, Afzal MZ, Khalilzad-Sharghi V, Zhou Y, Riethoven JJ, Nandi SS, Mishra PK, Sobel RA, Strande JL, Steffen D, Reddy J. Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:523-537. [PMID: 29229678 PMCID: PMC5760440 DOI: 10.4049/jimmunol.1701090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA)2a, a critical regulator of calcium homeostasis, is known to be decreased in heart failure. Patients with myocarditis or dilated cardiomyopathy develop autoantibodies to SERCA2a suggesting that they may have pathogenetic significance. In this report, we describe epitope mapping analysis of SERCA2a in A/J mice that leads us to make five observations: 1) SERCA2a contains multiple T cell epitopes that induce varying degrees of myocarditis. One epitope, SERCA2a 971-990, induces widespread atrial inflammation without affecting noncardiac tissues; the cardiac abnormalities could be noninvasively captured by echocardiography, electrocardiography, and magnetic resonance microscopy imaging. 2) SERCA2a 971-990-induced disease was associated with the induction of CD4 T cell responses and the epitope preferentially binds MHC class II/IAk rather than IEk By creating IAk/and IEk/SERCA2a 971-990 dextramers, the T cell responses were determined by flow cytometry to be Ag specific. 3) SERCA2a 971-990-sensitized T cells produce both Th1 and Th17 cytokines. 4) Animals immunized with SERCA2a 971-990 showed Ag-specific Abs with enhanced production of IgG2a and IgG2b isotypes, suggesting that SERCA2a 971-990 can potentially act as a common epitope for both T cells and B cells. 5) Finally, SERCA2a 971-990-sensitized T cells were able to transfer disease to naive recipients. Together, these data indicate that SERCA2a is a critical autoantigen in the mediation of atrial inflammation in mice and that our model may be helpful to study the inflammatory events that underlie the development of conditions such as atrial fibrillation in humans.
Collapse
Affiliation(s)
- Bharathi Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Rakesh H Basavalingappa
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rajkumar A Rajasekaran
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | | | - Vahid Khalilzad-Sharghi
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588
| | | | - Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Raymond A Sobel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304
| | | | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583;
| |
Collapse
|
26
|
Li Z, Singh S, Suryavanshi SV, Ding W, Shen X, Wijaya CS, Gao WD, McConnell BK. Force development and intracellular Ca 2+ in intact cardiac muscles from gravin mutant mice. Eur J Pharmacol 2017; 807:117-126. [PMID: 28428008 DOI: 10.1016/j.ejphar.2017.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Gravin (AKAP12) is an A-kinase-anchoring-protein that scaffolds protein kinase A (PKA), β2-adrenergic receptor (β2-AR), protein phosphatase 2B and protein kinase C. Gravin facilitates β2-AR-dependent signal transduction through PKA to modulate cardiac excitation-contraction coupling and its removal positively affects cardiac contraction. Trabeculae from the right ventricles of gravin mutant (gravin-t/t) mice were employed for force determination. Simultaneously, corresponding intracellular Ca2+ transient ([Ca2+]i) were measured. Twitch force (Tf)-interval relationship, [Ca2+]i-interval relationship, and the rate of decay of post-extrasysolic potentiation (Rf) were also obtained. Western blot analysis were performed to correlate sarcomeric protein expression with alterations in calcium cycling between the WT and gravin-t/t hearts. Gravin-t/t muscles had similar developed force compared to WT muscles despite having lower [Ca2+]i at any given external Ca2+ concentration ([Ca2+]o). The time to peak force and peak [Ca2+]i were slower and the time to 75% relaxation was significantly prolonged in gravin-t/t muscles. Both Tf-interval and [Ca2+]i-interval relations were depressed in gravin-t/t muscles. Rf, however, did not change. Furthermore, Western blot analysis revealed decreased ryanodine receptor (RyR2) phosphorylation in gravin-t/t hearts. Gravin-t/t cardiac muscle exhibits increased force development in responsiveness to Ca2+. The Ca2+ cycling across the SR appears to be unaltered in gravin-t/t muscle. Our study suggests that gravin is an important component of cardiac contraction regulation via increasing myofilament sensitivity to calcium. Further elucidation of the mechanism can provide insights to role of gravin if any in the pathophysiology of impaired contractility.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Heilongjiang, China
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA
| | - Wengang Ding
- Department of Anesthesiology of 2nd Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Xiaoxu Shen
- Cardiology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Cori S Wijaya
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Zaye Tower 6208, Baltimore, MD 21287, USA.
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA.
| |
Collapse
|
27
|
Chung CS, Hoopes CW, Campbell KS. Myocardial relaxation is accelerated by fast stretch, not reduced afterload. J Mol Cell Cardiol 2017; 103:65-73. [PMID: 28087265 DOI: 10.1016/j.yjmcc.2017.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Fast relaxation of cross-bridge generated force in the myocardium facilitates efficient diastolic function. Recently published research studying mechanisms that modulate the relaxation rate has focused on molecular factors. Mechanical factors have received less attention since the 1980s when seminal work established the theory that reducing afterload accelerates the relaxation rate. Clinical trials using afterload reducing drugs, partially based on this theory, have thus far failed to improve outcomes for patients with diastolic dysfunction. Therefore, we reevaluated the protocols that suggest reducing afterload accelerates the relaxation rate and identified that myocardial relengthening was a potential confounding factor. We hypothesized that the speed of myocardial relengthening at end systole (end systolic strain rate), and not afterload, modulates relaxation rate and tested this hypothesis using electrically-stimulated trabeculae from mice, rats, and humans. We used load-clamp techniques to vary afterload and end systolic strain rate independently. Our data show that the rate of relaxation increases monotonically with end systolic strain rate but is not altered by afterload. Computer simulations mimic this behavior and suggest that fast relengthening quickens relaxation by accelerating the detachment of cross-bridges. The relationship between relaxation rate and strain rate is novel and upends the prevailing theory that afterload modifies relaxation. In conclusion, myocardial relaxation is mechanically modified by the rate of stretch at end systole. The rate of myocardial relengthening at end systole may be a new diagnostic indicator or target for treatment of diastolic dysfunction.
Collapse
Affiliation(s)
- Charles S Chung
- Department of Physiology, Wayne State University, Detroit, MI, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA.
| | - Charles W Hoopes
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Jabbar A, Pingitore A, Pearce SHS, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol 2016; 14:39-55. [PMID: 27811932 DOI: 10.1038/nrcardio.2016.174] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial and vascular endothelial tissues have receptors for thyroid hormones and are sensitive to changes in the concentrations of circulating thyroid hormones. The importance of thyroid hormones in maintaining cardiovascular homeostasis can be deduced from clinical and experimental data showing that even subtle changes in thyroid hormone concentrations - such as those observed in subclinical hypothyroidism or hyperthyroidism, and low triiodothyronine syndrome - adversely influence the cardiovascular system. Some potential mechanisms linking the two conditions are dyslipidaemia, endothelial dysfunction, blood pressure changes, and direct effects of thyroid hormones on the myocardium. Several interventional trials showed that treatment of subclinical thyroid diseases improves cardiovascular risk factors, which implies potential benefits for reducing cardiovascular events. Over the past 2 decades, accumulating evidence supports the association between abnormal thyroid function at the time of an acute myocardial infarction (MI) and subsequent adverse cardiovascular outcomes. Furthermore, experimental studies showed that thyroid hormones can have an important therapeutic role in reducing infarct size and improving myocardial function after acute MI. In this Review, we summarize the literature on thyroid function in cardiovascular diseases, both as a risk factor as well as in the setting of cardiovascular diseases such as heart failure or acute MI, and outline the effect of thyroid hormone replacement therapy for reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Avais Jabbar
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.,Freeman Hospital, Freeman Rd, High Heaton, Newcastle upon Tyne NE7 7DN, UK
| | | | - Simon H S Pearce
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.,Department of Endocrinology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
| | - Azfar Zaman
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.,Freeman Hospital, Freeman Rd, High Heaton, Newcastle upon Tyne NE7 7DN, UK
| | - Giorgio Iervasi
- Clinical Physiology Institute, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Salman Razvi
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.,Gateshead Health NHS Foundation Trust, Saltwell Road South, Gateshead NE8 4YL, UK
| |
Collapse
|
29
|
Kalbitz M, Fattahi F, Herron TJ, Grailer JJ, Jajou L, Lu H, Huber-Lang M, Zetoune FS, Sarma JV, Day SM, Russell MW, Jalife J, Ward PA. Complement Destabilizes Cardiomyocyte Function In Vivo after Polymicrobial Sepsis and In Vitro. THE JOURNAL OF IMMUNOLOGY 2016; 197:2353-61. [PMID: 27521340 DOI: 10.4049/jimmunol.1600091] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/06/2016] [Indexed: 01/12/2023]
Abstract
There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.
Collapse
Affiliation(s)
- Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Todd J Herron
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jamison J Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lawrence Jajou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Hope Lu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
| | - Firas S Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - J Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Sharlene M Day
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mark W Russell
- Department of Pediatric Cardiology, University of Michigan Medical School, Ann Arbor, MI 48109; and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - José Jalife
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
30
|
Ying X, Weiqing L, Guihua L, Juhong Z, Huang Z. Effect of Valsartan on Sarcoplasmic Reticulum Ca2+-ATPase Pump of the Left Ventricular Myocardium in Rats with Heart Failure with Preserved Ejection Fraction. Biomed Hub 2016; 1:1-9. [PMID: 31988887 PMCID: PMC6945928 DOI: 10.1159/000448132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives The aim was to investigate the effects of valsartan on the sarcoplasmic reticulum Ca2+-ATPase pump (SERCA) and L-type Ca2+ channel current (I<sub>CaL</sub>) of the left ventricular myocardium in rats with heart failure with preserved ejection fraction. Methods The 30-week-old male spontaneously hypertensive rats (SHRs) are randomly divided into the non-Valsartan and Valsartan groups, and the 30-week-old male Wistar-Kyoto rats served as control rats. The expression of SERCA is measured by Western blot. The I<sub>CaL</sub> is measured by whole-cell patch clamp. The left ventricular end-diastolic pressure and left ventricular relaxation time constant quantity are measured at the same time. Results The left ventricular end-diastolic pressure is much higher in SHRs compared with that in control rats (p < 0.01). The left ventricular relaxation time constant quantity is markedly extended in SHRs compared with control rats (p < 0.01). Valsartan cannot increase the expression of SERCA nor decrease the density of I<sub>CaL</sub> compared with the non-Valsartan group (p > 0.05). Conclusions Valsartan has no effect on SERCA and I<sub>CaL</sub> of the left ventricular myocardium in rats with heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Xiao Ying
- Department of Anesthesiology, Sun Yat-sen University, Guangzhou, China
| | - Long Weiqing
- Department of Clinical Laboratory, Sun Yat-sen University, Guangzhou, China
| | - Lu Guihua
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhang Juhong
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhibin Huang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Urotensin II induction of neonatal cardiomyocyte hypertrophy involves the CaMKII/PLN/SERCA 2a signaling pathway. Gene 2016; 583:8-14. [DOI: 10.1016/j.gene.2016.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/08/2016] [Accepted: 02/24/2016] [Indexed: 12/16/2022]
|
32
|
Mederle K, Gess B, Pluteanu F, Plackic J, Tiefenbach KJ, Grill A, Kockskämper J, Castrop H. The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a. Cardiovasc Res 2016; 110:359-70. [DOI: 10.1093/cvr/cvw064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/17/2016] [Indexed: 11/14/2022] Open
|
33
|
Prathipati P, Metreveli N, Nandi SS, Tyagi SC, Mishra PK. Ablation of Matrix Metalloproteinase-9 Prevents Cardiomyocytes Contractile Dysfunction in Diabetics. Front Physiol 2016; 7:93. [PMID: 27014091 PMCID: PMC4791405 DOI: 10.3389/fphys.2016.00093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
Elevated expression and activity of matrix metalloproteinase-9 (MMP9) and decreased contractility of cardiomyocytes are documented in diabetic hearts. However, it is unclear whether MMP is involved in the regulation of contractility of cardiomyocytes in diabetic hearts. In the present study, we tested the hypothesis that MMP9 regulates contractility of cardiomyocytes in diabetic hearts, and ablation of MMP9 prevents impaired contractility of cardiomyocytes in diabetic hearts. To determine the specific role of MMP9 in cardiomyocyte contractility, we used 12–14 week male WT (normoglycemic sibling of Akita), Akita, and Ins2+∕−/MMP9−∕− (DKO) mice. DKO mice were generated by cross-breeding male Ins2+∕− Akita (T1D) with female MMP9 knockout (MMP9−∕−) mice. We isolated cardiomyocytes from the heart of the above three groups of mice and measured their contractility and calcium transients. Moreover, we determined mRNA and protein levels of sarco-endoplasmic reticulum calcium ATPase-2a (SERCA-2a), which is involved in calcium handling during contractility of cardiomyocytes in WT, Akita, and DKO hearts using QPCR, Western blotting and immunoprecipitation, respectively. Our results revealed that in Akita hearts where increased expression and activity of MMP9 is reported, the rates of shortening and re-lengthening (±dL/dt) of cardiomyocytes were decreased, time to 90% peak height and baseline during contractility was increased, rate of calcium decay was increased, and calcium transient was decreased as compared to WT cardiomyocytes. However, these changes in Akita were blunted in DKO cardiomyocytes. The molecular analyses of SERCA-2a in the hearts showed that it was downregulated in Akita as compared to WT but was comparatively upregulated in DKO. These results suggest that abrogation of MMP9 gene prevents contractility of cardiomyocytes, possibly by increasing SERCA-2a and calcium transients. We conclude that MMP9 plays a crucial role in the regulation of contractility of cardiomyocytes in diabetic hearts.
Collapse
Affiliation(s)
- Priyanka Prathipati
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Naira Metreveli
- Department of Physiology and Biophysics, University of Louisville Louisville, KY, USA
| | - Shyam Sundar Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville Louisville, KY, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical CenterOmaha, NE, USA; Department of Anesthesiology, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
34
|
Cardiomyocyte-specific overexpression of oestrogen receptor β improves survival and cardiac function after myocardial infarction in female and male mice. Clin Sci (Lond) 2016; 130:365-76. [DOI: 10.1042/cs20150609] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022]
Abstract
The study provides new insights into cardiomyocyte-specific effects of ERβ in the setting of chronic MI using a transgenic mouse model. ERβ-overexpressing mice of both sexes showed improved survival, less maladaptive LV remodelling, better cardiac function and less heart failure development.
Collapse
|
35
|
Roe AT, Frisk M, Louch WE. Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Curr Pharm Des 2015; 21:431-48. [PMID: 25483944 PMCID: PMC4475738 DOI: 10.2174/138161282104141204124129] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 08/06/2014] [Indexed: 12/19/2022]
Abstract
Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease
mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it
plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline
existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic intervention:
the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss
experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic
approaches.
Collapse
Affiliation(s)
| | | | - William E Louch
- Institute for Experimental Medical Research, Kirkeveien 166, 4.etg. Bygg 7, Oslo University Hospital Ullevål, 0407 Oslo, Norway.
| |
Collapse
|
36
|
SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251598. [PMID: 26064889 PMCID: PMC4433638 DOI: 10.1155/2015/251598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Collapse
|
37
|
Clay SA, Domeier TL, Hanft LM, McDonald KS, Krenz M. Elevated Ca2+ transients and increased myofibrillar power generation cause cardiac hypercontractility in a model of Noonan syndrome with multiple lentigines. Am J Physiol Heart Circ Physiol 2015; 308:H1086-95. [PMID: 25724491 PMCID: PMC4551123 DOI: 10.1152/ajpheart.00501.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/22/2015] [Indexed: 01/19/2023]
Abstract
Noonan syndrome with multiple lentigines (NSML) is primarily caused by mutations in the nonreceptor protein tyrosine phosphatase SHP2 and associated with congenital heart disease in the form of pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). Our goal was to elucidate the cellular mechanisms underlying the development of HCM caused by the Q510E mutation in SHP2. NSML patients carrying this mutation suffer from a particularly severe form of HCM. Drawing parallels to other, more common forms of HCM, we hypothesized that altered Ca(2+) homeostasis and/or sarcomeric mechanical properties play key roles in the pathomechanism. We used transgenic mice with cardiomyocyte-specific expression of Q510E-SHP2 starting before birth. Mice develop neonatal onset HCM with increased ejection fraction and fractional shortening at 4-6 wk of age. To assess Ca(2+) handling, isolated cardiomyocytes were loaded with fluo-4. Q510E-SHP2 expression increased Ca(2+) transient amplitudes during excitation-contraction coupling and increased sarcoplasmic reticulum Ca(2+) content concurrent with increased expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase. In skinned cardiomyocyte preparations from Q510E-SHP2 mice, force-velocity relationships and power-load curves were shifted upward. The peak power-generating capacity was increased approximately twofold. Transmission electron microscopy revealed that the relative intracellular area occupied by sarcomeres was increased in Q510E-SHP2 cardiomyocytes. Triton X-100-based myofiber purification showed that Q510E-SHP2 increased the amount of sarcomeric proteins assembled into myofibers. In summary, Q510E-SHP2 expression leads to enhanced contractile performance early in disease progression by augmenting intracellular Ca(2+) cycling and increasing the number of power-generating sarcomeres. This gives important new insights into the cellular pathomechanisms of Q510E-SHP2-associated HCM.
Collapse
Affiliation(s)
- Sarah A Clay
- Department of Medical Pharmacology and Physiology/Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology/Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology/Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology/Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology/Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
38
|
Matus M, Kucerova D, Kruzliak P, Adameova A, Doka G, Turcekova K, Kmecova J, Kyselovic J, Krenek P, Kirchhefer U, Mueller FU, Boknik P, Klimas J. Upregulation of SERCA2a following short-term ACE inhibition (by enalaprilat) alters contractile performance and arrhythmogenicity of healthy myocardium in rat. Mol Cell Biochem 2015; 403:199-208. [PMID: 25663023 DOI: 10.1007/s11010-015-2350-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022]
Abstract
Chronic angiotensin-converting enzyme inhibitor (ACEIs) treatment can suppress arrhythmogenesis. To examine whether the effect is more immediate and independent of suppression of pathological remodelling, we tested the antiarrhythmic effect of short-term ACE inhibition in healthy normotensive rats. Wistar rats were administered with enalaprilat (ENA, i.p., 5 mg/kg every 12 h) or vehicle (CON) for 2 weeks. Intraarterial blood pressure in situ was measured in A. carotis. Cellular shortening was measured in isolated, electrically paced cardiomyocytes. Standard 12-lead electrocardiography was performed, and hearts of anaesthetized open-chest rats were subjected to 6-min ischemia followed by 10-min reperfusion to examine susceptibility to ventricular arrhythmias. Expressions of calcium-regulating proteins (SERCA2a, cardiac sarco/endoplasmic reticulum Ca(2+)-ATPase; CSQ, calsequestrin; TRD, triadin; PLB, phospholamban; Thr(17)-PLB-phosphorylated PLB at threonine-17, FKBP12.6, FK506-binding protein, Cav1.2-voltage-dependent L-type calcium channel alpha 1C subunit) were measured by Western blot; mRNA levels of L-type calcium channel (Cacna1c), ryanodine receptor (Ryr2) and potassium channels Kcnh2 and Kcnq1 were measured by qRT-PCR. ENA decreased intraarterial systolic as well as diastolic blood pressure (by 20%, and by 31%, respectively, for both P < 0.05) but enhanced shortening of cardiomyocytes at basal conditions (by 34%, P < 0.05) and under beta-adrenergic stimulation (by 73%, P < 0.05). Enalaprilat shortened QTc interval duration (CON 78 ± 1 ms vs. ENA 72 ± 2 ms; P < 0.05) and significantly decreased the total duration of ventricular fibrillations (VF) and the number of VF episodes (P < 0.05). Reduction in arrhythmogenesis was associated with a pronounced upregulation of SERCA2a (CON 100 ± 20 vs. ENA 304 ± 13; P < 0.05) and complete absence of basal Ca(2+)/calmodulin-dependent phosphorylation of PLB at Thr(17). Short-term ACEI treatment can provide protection against I/R injury-induced ventricular arrhythmias in healthy myocardium, and this effect is associated with increased SERCA2a expression.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Animals
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/diagnostic imaging
- Arrhythmias, Cardiac/physiopathology
- Blotting, Western
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Separation
- Electrolytes/blood
- Enalaprilat/administration & dosage
- Enalaprilat/pharmacology
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Isoproterenol/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocardium/enzymology
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organ Size/drug effects
- Potassium Channels/genetics
- Potassium Channels/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Reperfusion Injury/complications
- Reperfusion Injury/pathology
- Reperfusion Injury/physiopathology
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Ultrasonography
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Marek Matus
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thapa D, Nichols CE, Lewis SE, Shepherd DL, Jagannathan R, Croston TL, Tveter KJ, Holden AA, Baseler WA, Hollander JM. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J Mol Cell Cardiol 2015; 79:212-23. [PMID: 25463274 PMCID: PMC4302057 DOI: 10.1016/j.yjmcc.2014.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
Abstract
Mitofilin, also known as heart muscle protein, is an inner mitochondrial membrane structural protein that plays a central role in maintaining cristae morphology and structure. It is a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex which is important for mitochondrial architecture and cristae morphology. Our laboratory has previously reported alterations in mitochondrial morphology and proteomic make-up during type 1 diabetes mellitus, with mitofilin being significantly down-regulated in interfibrillar mitochondria (IFM). The goal of this study was to investigate whether overexpression of mitofilin can limit mitochondrial disruption associated with the diabetic heart through restoration of mitochondrial morphology and function. A transgenic mouse line overexpressing mitofilin was generated and mice injected intraperitoneally with streptozotocin using a multi low-dose approach. Five weeks following diabetes mellitus onset, cardiac contractile function was assessed. Restoration of ejection fraction and fractional shortening was observed in mitofilin diabetic mice as compared to wild-type controls (P<0.05 for both). Decrements observed in electron transport chain (ETC) complex I, III, IV and V activities, state 3 respiration, lipid peroxidation as well as mitochondria membrane potential in type 1 diabetic IFM were restored in mitofilin diabetic mice (P<0.05 for all). Qualitative analyses of electron micrographs revealed restoration of mitochondrial cristae structure in mitofilin diabetic mice as compared to wild-type controls. Furthermore, measurement of mitochondrial internal complexity using flow cytometry displayed significant reduction in internal complexity in diabetic IFM which was restored in mitofilin diabetic IFM (P<0.05). Taken together these results suggest that transgenic overexpression of mitofilin preserves mitochondrial structure, leading to restoration of mitochondrial function and attenuation of cardiac contractile dysfunction in the diabetic heart.
Collapse
Affiliation(s)
- Dharendra Thapa
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Cody E Nichols
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Sara E Lewis
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Danielle L Shepherd
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Rajaganapathi Jagannathan
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Tara L Croston
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Kevin J Tveter
- West Virginia University School of Medicine, Department of Surgery, Morgantown, WV 26506, USA
| | - Anthony A Holden
- West Virginia University School of Medicine, Department of Surgery, Morgantown, WV 26506, USA
| | - Walter A Baseler
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - John M Hollander
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA.
| |
Collapse
|
40
|
Haghighi K, Bidwell P, Kranias EG. Phospholamban interactome in cardiac contractility and survival: A new vision of an old friend. J Mol Cell Cardiol 2014; 77:160-7. [PMID: 25451386 PMCID: PMC4312245 DOI: 10.1016/j.yjmcc.2014.10.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 01/10/2023]
Abstract
Depressed sarcoplasmic reticulum (SR) calcium cycling, reflecting impaired SR Ca-transport and Ca-release, is a key and universal characteristic of human and experimental heart failure. These SR processes are regulated by multimeric protein complexes, including protein kinases and phosphatases as well as their anchoring and regulatory subunits that fine-tune Ca-handling in specific SR sub-compartments. SR Ca-transport is mediated by the SR Ca-ATPase (SERCA2a) and its regulatory phosphoprotein, phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA2a and phosphorylation by protein kinase A (PKA) or calcium-calmodulin-dependent protein kinases (CAMKII) relieves these inhibitory effects. Recent studies identified additional regulatory proteins, associated with PLN, that control SR Ca-transport. These include the inhibitor-1 (I-1) of protein phosphatase 1 (PP1), the small heat shock protein 20 (Hsp20) and the HS-1 associated protein X-1 (HAX1). In addition, the intra-luminal histidine-rich calcium binding protein (HRC) has been shown to interact with both SERCA2a and triadin. Notably, there is physical and direct interaction between these protein players, mediating a fine-cross talk between SR Ca-uptake, storage and release. Importantly, regulation of SR Ca-cycling by the PLN/SERCA interactome does not only impact cardiomyocyte contractility, but also survival and remodeling. Indeed, naturally occurring variants in these Ca-cycling genes modulate their activity and interactions with other protein partners, resulting in depressed contractility and accelerated remodeling. These genetic variants may serve as potential prognostic or diagnostic markers in cardiac pathophysiology.
Collapse
Affiliation(s)
- Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Philip Bidwell
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
41
|
Gao MH, Lai NC, Miyanohara A, Schilling JM, Suarez J, Tang T, Guo T, Tang R, Parikh J, Giamouridis D, Dillmann WH, Patel HH, Roth DM, Dalton ND, Hammond HK. Intravenous adeno-associated virus serotype 8 encoding urocortin-2 provides sustained augmentation of left ventricular function in mice. Hum Gene Ther 2014; 24:777-85. [PMID: 23931341 DOI: 10.1089/hum.2013.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urocortin-2 (UCn2) peptide infusion increases cardiac function in patients with heart failure, but chronic peptide infusion is cumbersome, costly, and provides only short-term benefits. Gene transfer would circumvent these shortcomings. Here we ask whether a single intravenous injection of adeno-associated virus type 8 encoding murine urocortin-2 (AAV8.UCn2) could provide long-term elevation in plasma UCn2 levels and increased left ventricular (LV) function. Normal mice received AAV8.UCn2 (5×10¹¹ genome copies, intravenous). Plasma UCn2 increased 15-fold 6 weeks and >11-fold 7 months after delivery. AAV8 DNA and UCn2 mRNA expression was persistent in LV and liver up to 7 months after a single intravenous injection of AAV8.UCn2. Physiological studies conducted both in situ and ex vivo showed increases in LV +dP/dt and in LV -dP/dt, findings that endured unchanged for 7 months. SERCA2a mRNA and protein expression was increased in LV samples and Ca²⁺ transient studies showed an increased rate of Ca²⁺ decline in cardiac myocytes from mice that had received UCn2 gene transfer. We conclude that a single intravenous injection of AAV8.UCn2 increases plasma UCn2 and increases LV systolic and diastolic function for at least 7 months. The simplicity of intravenous injection of a long-term expression vector encoding a gene with paracrine activity to increase cardiac function is a potentially attractive strategy in clinical settings. Future studies will determine the usefulness of this approach in the treatment of heart failure.
Collapse
Affiliation(s)
- Mei Hua Gao
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shareef MA, Anwer LA, Poizat C. Cardiac SERCA2A/B: Therapeutic targets for heart failure. Eur J Pharmacol 2014; 724:1-8. [DOI: 10.1016/j.ejphar.2013.12.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023]
|
43
|
Wang J, Song J, Gao E, Zhang XQ, Gu T, Yu D, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of phospholemman S68E mutant improves cardiac contractility and mortality after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2014; 306:H1066-77. [PMID: 24486513 DOI: 10.1152/ajpheart.00861.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM), when phosphorylated at Ser(68), inhibits cardiac Na+ / Ca2+ exchanger 1 (NCX1) and relieves its inhibition on Na+ -K+ -ATPase. We have engineered mice in which expression of the phosphomimetic PLM S68E mutant was induced when dietary doxycycline was removed at 5 wk. At 8-10 wk, compared with noninduced or wild-type hearts, S68E expression in induced hearts was ∼35-75% that of endogenous PLM, but protein levels of sarco(endo)plasmic reticulum Ca2+ -ATPase, α1- and α2-subunits of Na+ -K+ -ATPase, α1c-subunit of L-type Ca2+ channel, and phosphorylated ryanodine receptor were unchanged. The NCX1 protein level was increased by ∼47% but the NCX1 current was depressed by ∼34% in induced hearts. Isoproterenol had no effect on NCX1 currents but stimulated Na+ -K+ -ATPase currents equally in induced and noninduced myocytes. At baseline, systolic intracellular Ca2+ concentrations ([Ca2+]i), sarcoplasmic reticulum Ca2+ contents, and [Ca(2+)]i transient and contraction amplitudes were similar between induced and noninduced myocytes. Isoproterenol stimulation resulted in much higher systolic [Ca2+]i, sarcoplasmic reticulum Ca2+ content, and [Ca2+]i transient and contraction amplitudes in induced myocytes. Echocardiography and in vivo close-chest catheterization demonstrated similar baseline myocardial function, but isoproterenol induced a significantly higher +dP/dt in induced compared with noninduced hearts. In contrast to the 50% mortality observed in mice constitutively overexpressing the S68E mutant, induced mice had similar survival as wild-type and noninduced mice. After ischemia-reperfusion, despite similar areas at risk and left ventricular infarct sizes, induced mice had significantly higher +dP/dt and -dP/dt and lower perioperative mortality compared with noninduced mice. We propose that phosphorylated PLM may be a novel therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Ca²⁺ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca²⁺ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca²⁺ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca²⁺ homeostatic and structural proteins, ion channels, and enzymes. This review focuses on the molecular mechanisms of defective Ca²⁺ cycling in heart failure and considers how fundamental understanding of these pathways may translate into novel and innovative therapies.
Collapse
Affiliation(s)
- Min Luo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
45
|
Gomes AC, Falcão-Pires I, Pires AL, Brás-Silva C, Leite-Moreira AF. Rodent models of heart failure: an updated review. Heart Fail Rev 2013; 18:219-49. [PMID: 22446984 DOI: 10.1007/s10741-012-9305-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heart failure (HF) is one of the major health and economic burdens worldwide, and its prevalence is continuously increasing. The study of HF requires reliable animal models to study the chronic changes and pharmacologic interventions in myocardial structure and function and to follow its progression toward HF. Indeed, during the past 40 years, basic and translational scientists have used small animal models to understand the pathophysiology of HF and find more efficient ways of preventing and managing patients suffering from congestive HF (CHF). Each species and each animal model has advantages and disadvantages, and the choice of one model over another should take them into account for a good experimental design. The aim of this review is to describe and highlight the advantages and drawbacks of some commonly used HF rodents models, including both non-genetically and genetically engineered models, with a specific subchapter concerning diastolic HF models.
Collapse
Affiliation(s)
- A C Gomes
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
46
|
Pleger ST, Brinks H, Ritterhoff J, Raake P, Koch WJ, Katus HA, Most P. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113:792-809. [PMID: 23989720 PMCID: PMC11848682 DOI: 10.1161/circresaha.113.300269] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023]
Abstract
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Collapse
Affiliation(s)
- Sven T. Pleger
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Henriette Brinks
- Department of Cardiac and Vascular Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Julia Ritterhoff
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Philip Raake
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University, Philadelphia, PA 19122, USA
| | - Hugo A. Katus
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrick Most
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| |
Collapse
|
47
|
Hohendanner F, Ljubojević S, MacQuaide N, Sacherer M, Sedej S, Biesmans L, Wakula P, Platzer D, Sokolow S, Herchuelz A, Antoons G, Sipido K, Pieske B, Heinzel FR. Intracellular dyssynchrony of diastolic cytosolic [Ca²⁺] decay in ventricular cardiomyocytes in cardiac remodeling and human heart failure. Circ Res 2013; 113:527-38. [PMID: 23825358 DOI: 10.1161/circresaha.113.300895] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Synchronized release of Ca²⁺ into the cytosol during each cardiac cycle determines cardiomyocyte contraction. OBJECTIVE We investigated synchrony of cytosolic [Ca²⁺] decay during diastole and the impact of cardiac remodeling. METHODS AND RESULTS Local cytosolic [Ca²⁺] transients (1-µm intervals) were recorded in murine, porcine, and human ventricular single cardiomyocytes. We identified intracellular regions of slow (slowCaR) and fast (fastCaR) [Ca²⁺] decay based on the local time constants of decay (TAUlocal). The SD of TAUlocal as a measure of dyssynchrony was not related to the amplitude or the timing of local Ca²⁺ release. Stimulation of sarcoplasmic reticulum Ca²⁺ ATPase with forskolin or istaroxime accelerated and its inhibition with cyclopiazonic acid slowed TAUlocal significantly more in slowCaR, thus altering the relationship between SD of TAUlocal and global [Ca²⁺] decay (TAUglobal). Na⁺/Ca²⁺ exchanger inhibitor SEA0400 prolonged TAUlocal similarly in slowCaR and fastCaR. FastCaR were associated with increased mitochondrial density and were more sensitive to the mitochondrial Ca²⁺ uniporter blocker Ru360. Variation in TAUlocal was higher in pig and human cardiomyocytes and higher with increased stimulation frequency (2 Hz). TAUlocal correlated with local sarcomere relengthening. In mice with myocardial hypertrophy after transverse aortic constriction, in pigs with chronic myocardial ischemia, and in end-stage human heart failure, variation in TAUlocal was increased and related to cardiomyocyte hypertrophy and increased mitochondrial density. CONCLUSIONS In cardiomyocytes, cytosolic [Ca²⁺] decay is regulated locally and related to local sarcomere relengthening. Dyssynchronous intracellular [Ca²⁺] decay in cardiac remodeling and end-stage heart failure suggests a novel mechanism of cellular contractile dysfunction.
Collapse
Affiliation(s)
- Felix Hohendanner
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sen S, Kundu BK, Wu HCJ, Hashmi SS, Guthrie P, Locke LW, Roy RJ, Matherne GP, Berr SS, Terwelp M, Scott B, Carranza S, Frazier OH, Glover DK, Dillmann WH, Gambello MJ, Entman ML, Taegtmeyer H. Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. J Am Heart Assoc 2013; 2:e004796. [PMID: 23686371 PMCID: PMC3698799 DOI: 10.1161/jaha.113.004796] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose-6-phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6-phosphate (G6P) accumulation. METHODS AND RESULTS We subjected the working rat heart ex vivo to a high workload in the presence of different energy-providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4-phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2-deoxy-d-glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro-PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers. CONCLUSIONS We propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load-induced mTOR activation and ER stress.
Collapse
Affiliation(s)
- Shiraj Sen
- Division of Cardiology, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Haddad R, Kasneci A, Sebag IA, Chalifour LE. Cardiac structure/function, protein expression, and DNA methylation are changed in adult female mice exposed to diethylstilbestrol in utero. Can J Physiol Pharmacol 2013; 91:741-9. [PMID: 23984849 DOI: 10.1139/cjpp-2013-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The detrimental effects of in utero exposure to the non-steroidal estrogen diethylstilbestrol (DES) are particularly marked in women. Fetal hearts express estrogen receptors, making them potentially responsive to DES. To examine whether gestational exposure to DES would impact the heart, we exposed pregnant C57bl/6n dams to DES (0.1, 1.0, and 10.0 μg·(kg body mass)(-1)·day(-1)) on gestation days 11.5-14.5, and examined the measured cardiac structure/function and calcium homeostasis protein expression in adult females. At baseline, echocardiography revealed eccentric hypertrophy in mice treated with 10.0 μg·(kg body mass)(-1)·day(-1) DES, and immunoblots showed increased SERCA2a in all DES-treated mice. Mice were swim-trained to assess cardiac remodeling. Swim-trained vehicle-treated mice developed eccentric hypertrophy without changing SERCA2 or calsequestrin 2 expression. In contrast, no DES-treated mice hypertrophied, and all increased in SERCA2a and calsequestrin 2 expression after training. To determine whether DES-induced changes in DNA methylation is part of the mechanism for its long-term effects, we measured DNA methyltransferase expression and DNA methylation. Global DNA methylation and DNA methyltransferase 3a expression were unchanged. However, DES-treated mice had increased DNA methylation in the calsequestrin 2 promoter. Thus, gestational exposure to DES altered female ventricular DNA, cardiac structure/function, and calcium homeostasis protein expression. We conclude that gestational exposure to estrogenizing compounds may impact cardiac structure/function in adult females.
Collapse
Affiliation(s)
- Rami Haddad
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Sainte Catherine, Montréal, QC H3T 1E2, Canada
| | | | | | | |
Collapse
|
50
|
Tang T, Hammond HK. Gene transfer for congestive heart failure: update 2013. Transl Res 2013; 161:313-20. [PMID: 23261978 PMCID: PMC3602385 DOI: 10.1016/j.trsl.2012.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 01/08/2023]
Abstract
Congestive heart failure is a major cause of morbidity and mortality with increasing social and economic costs. There have been no new high impact therapeutic agents for this devastating disease for more than a decade. However, many pivotal regulators of cardiac function have been identified using cardiac-directed transgene expression and gene deletion in preclinical studies. Some of these increase function of the failing heart. Altering the expression of these pivotal regulators using gene transfer is now either being tested in clinical gene transfer trials, or soon will be. In this review, we summarize recent progress in cardiac gene transfer for clinical congestive heart failure.
Collapse
Affiliation(s)
- Tong Tang
- Department of Medicine, University of California San Diego, and VA San Diego Healthcare System, San Diego, Calif., USA
| | | |
Collapse
|