1
|
Song W, Li M, Liu W, Xu W, Zhou H, Wei S, Chi J. Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma. Clin Exp Med 2025; 25:42. [PMID: 39826024 PMCID: PMC11742861 DOI: 10.1007/s10238-024-01543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood. Therefore, it is essential to investigate the importance of immune cell homeostasis in HCC. Additionally, understanding the molecular mechanisms and biological functions underlying tumor-immune cell interactions is increasingly recognized as vital for improving therapeutic outcomes in clinical settings. Methods A total of 790 HCC samples were selected from public databases and real-world independent clinical cohorts. Machine learning methods, focusing on immune-related indicators, were applied to these samples. The Boruta algorithm was employed to develop an ICI score, which was used to assess patient prognosis and predict responses to immunotherapy. Additionally, a new immune subtype analysis of HCC was performed. Cellular-level experiments confirmed the interaction between TME-related factors and the tumor microenvironment in HCC. To further validate the predictive power of the ICI score, a clinical cohort study was conducted at an independent clinical center. Results By evaluating immune gene expression levels, immune cell abundance, Immunescore, and Stromalscore, we initially identified three distinct immune subtypes of HCC, each showing significant differences in survival rates and heterogeneity. Subsequently, DEGs from 1022 immune subtypes were used to classify HCC samples into three immune genotypes, each characterized by distinct prognosis and tumor immune microenvironment (TIME) profiles. Furthermore, we developed the ICI score, a novel immunophenotyping method for HCC, which revealed significant variations based on gender, stage, progression, and DNA mutation profiles (p < 0.05). The ICI score also effectively predicted responses to immunotherapies, particularly through the chemokine signaling, focal adhesion, and JAK/STAT signaling pathways. Conclusion This research demonstrated that TME and immunophenotyping clusters can enhance prognostic accuracy for HCC patients. The independent prognostic indicators identified underscore the connection between tumor phenotype and the immune environment in HCC.
Collapse
Affiliation(s)
- Weihua Song
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wangrui Liu
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wenhao Xu
- Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hongyun Zhou
- Department of Radiology, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Shiyin Wei
- Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Jiachang Chi
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
2
|
Nakamoto-Matsubara R, Nardi V, Horick N, Fukushima T, Han RS, Shome R, Ochi K, Panaroni C, Fulzele K, Rexha F, Branagan AR, Cirstea D, Yee AJ, Scadden DT, Raje NS. Integration of clinical outcomes and molecular features in extramedullary disease in multiple myeloma. Blood Cancer J 2024; 14:224. [PMID: 39715752 DOI: 10.1038/s41408-024-01190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Multiple myeloma (MM) remains incurable despite novel therapeutics. A major contributor to the development of relapsed/refractory and resistant MM is extraosseous extramedullary disease (EMD), whose molecular biology is still not fully understood. We analyzed 528 MM patients who presented to our institution between 2014 and 2021 and who had undergone molecular testing. We defined EMD as organ plasmacytoma distinct from bones and evaluated patients for the development of EMD with the goal of defining their molecular characteristics. Here, we show that RAS/BRAF mutations are likely essential for the development of EMD. Our results also indicate that the underlying reason for the negative outcomes in patients with poor prognostic factors such as duplication 1q and deletion 17p is largely due to the development of EMD. However, the presence of TP53 mutation remains a poor prognostic factor regardless of EMD development. Furthermore, mutation sites of TP53 were different between EMD versus non-EMD patients, with gain-of-function mutations enriched in patients with EMD. Our data highlights distinct molecular abnormalities in patients with EMD and provides potential mechanistic insights for novel therapeutic targets for the future.
Collapse
Affiliation(s)
- Rie Nakamoto-Matsubara
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nora Horick
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tsuyoshi Fukushima
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan S Han
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rajib Shome
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kiyosumi Ochi
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cristina Panaroni
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Keertik Fulzele
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Farah Rexha
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Andrew R Branagan
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Diana Cirstea
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Andrew J Yee
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noopur S Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Herrera-Abreu MT, Guan J, Khalid U, Ning J, Costa MR, Chan J, Li Q, Fortin JP, Wong WR, Perampalam P, Biton A, Sandoval W, Vijay J, Hafner M, Cutts R, Wilson G, Frankum J, Roumeliotis TI, Alexander J, Hickman O, Brough R, Haider S, Choudhary J, Lord CJ, Swain A, Metcalfe C, Turner NC. Inhibition of GPX4 enhances CDK4/6 inhibitor and endocrine therapy activity in breast cancer. Nat Commun 2024; 15:9550. [PMID: 39500869 PMCID: PMC11538343 DOI: 10.1038/s41467-024-53837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
CDK4/6 inhibition in combination with endocrine therapy is the standard of care for estrogen receptor (ER+) breast cancer, and although cytostasis is frequently observed, new treatment strategies that enhance efficacy are required. Here, we perform two independent genome-wide CRISPR screens to identify genetic determinants of CDK4/6 and endocrine therapy sensitivity. Genes involved in oxidative stress and ferroptosis modulate sensitivity, with GPX4 as the top sensitiser in both screens. Depletion or inhibition of GPX4 increases sensitivity to palbociclib and giredestrant, and their combination, in ER+ breast cancer models, with GPX4 null xenografts being highly sensitive to palbociclib. GPX4 perturbation additionally sensitises triple negative breast cancer (TNBC) models to palbociclib. Palbociclib and giredestrant induced oxidative stress and disordered lipid metabolism, leading to a ferroptosis-sensitive state. Lipid peroxidation is promoted by a peroxisome AGPAT3-dependent pathway in ER+ breast cancer models, rather than the classical ACSL4 pathway. Our data demonstrate that CDK4/6 and ER inhibition creates vulnerability to ferroptosis induction, that could be exploited through combination with GPX4 inhibitors, to enhance sensitivity to the current therapies in breast cancer.
Collapse
Affiliation(s)
- M T Herrera-Abreu
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - J Guan
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - U Khalid
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - J Ning
- Tumour Modelling Facility, Institute of Cancer Research, London, UK
| | - M R Costa
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - J Chan
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Q Li
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - J-P Fortin
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - W R Wong
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - P Perampalam
- ProCogia Inc. under contract to Hoffmann-La Roche Limited, Toronto, ON, Canada
| | - A Biton
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - W Sandoval
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - J Vijay
- Roche Informatics, Mississauga, ON, Canada
| | - M Hafner
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - R Cutts
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - G Wilson
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - J Frankum
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - T I Roumeliotis
- Functional proteomics team, The Institute of Cancer Research, London, UK
| | - J Alexander
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - O Hickman
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R Brough
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - S Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - J Choudhary
- Functional proteomics team, The Institute of Cancer Research, London, UK
| | - C J Lord
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - A Swain
- Tumour Modelling Facility, Institute of Cancer Research, London, UK
| | - C Metcalfe
- Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - N C Turner
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
- Breast Unit, The Royal Marsden Hospital, London, UK.
| |
Collapse
|
4
|
Xiong X, Wang X, Liu CC, Shao ZM, Yu KD. Deciphering breast cancer dynamics: insights from single-cell and spatial profiling in the multi-omics era. Biomark Res 2024; 12:107. [PMID: 39294728 PMCID: PMC11411917 DOI: 10.1186/s40364-024-00654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
As one of the most common tumors in women, the pathogenesis and tumor heterogeneity of breast cancer have long been the focal point of research, with the emergence of tumor metastasis and drug resistance posing persistent clinical challenges. The emergence of single-cell sequencing (SCS) technology has introduced novel approaches for gaining comprehensive insights into the biological behavior of malignant tumors. SCS is a high-throughput technology that has rapidly developed in the past decade, providing high-throughput molecular insights at the individual cell level. Furthermore, the advent of multitemporal point sampling and spatial omics also greatly enhances our understanding of cellular dynamics at both temporal and spatial levels. The paper provides a comprehensive overview of the historical development of SCS, and highlights the most recent advancements in utilizing SCS and spatial omics for breast cancer research. The findings from these studies will serve as valuable references for future advancements in basic research, clinical diagnosis, and treatment of breast cancer.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
6
|
Xu Y, Ding L, Li C, Hua B, Wang S, Zhang J, Liu C, Guo R, Zhang Y. Molecular alterations and prognosis of breast cancer with cutaneous metastasis. Diagn Pathol 2024; 19:93. [PMID: 38970069 PMCID: PMC11225245 DOI: 10.1186/s13000-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024] Open
Abstract
PURPOSE Cutaneous metastasis (CM) accounts for 5-30% of patients with breast cancer (BC) and presents unfavorable response to treatment and poor prognosis. A better understanding of the molecular alterations involved in metastasis is essential, which would help identify diagnostic and efficacy biomarkers for CM. MATERIALS We retrospectively reviewed a total of 13 patients with histological or cytological diagnosis of breast cancer and CM. Clinical information was extracted from the medical records. The mutational landscape of matched primary tumors with their lymph nodes or CM tissues were analyzed using next-generation sequencing (NGS) of 425 cancer-relevant genes. All tissues were also analyzed by immunohistochemistry (IHC). The association of prognosis with various clinical and molecular factors was also evaluated. RESULTS More than half of the patients were Ki67 low (< 50%, 53.7%). Most patients (12, 92.3%) had other metastasis sites other than skin. The median time from diagnosis to the presentation of CM (T1) was 15 months (range: 0-94 months) and the median time from CM to death (T2) was 13 months (range 1-78). The most frequently altered genes across the three types of tissues were TP53 (69.6%, 16/23), PIK3CA (34.8%, 8/23), and MYC (26.1%). The number of alterations in CM tends to be higher than in primary tumors (median 8 vs. 6, P = 0.077). Copy number loss in STK11, copy number gain in FGFR4, TERT, AR, FLT4 and VEGFA and mutations in ATRX, SRC, AMER1 and RAD51C were significantly enriched in CM (all P < 0.05). Ki67 high group (> 50%) showed significantly shorter T1 than the Ki67 low group (≤ 50%) (median 12.5 vs. 50.0 months, P = 0.036). TP53, PIK3CA mutations, and TERT amplification group were associated with inferior T2 (median 11 vs. 36 months, P = 0.065; 8 vs. 36 months, P = 0.013, 7 vs. 36 months, P = 0.003, respectively). All p values were not adjusted. CONCLUSION We compared the genomic features of primary breast cancer tissues with their corresponding CM tissues and discussed potential genes and pathways that may contribute to the skin metastasis of advanced breast cancers patients. TP53, PIK3CA mutant, and TERT amplification may serve as biomarkers for poor prognosis for CM patients.
Collapse
Affiliation(s)
- Yan Xu
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Li Ding
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chao Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Bin Hua
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Sha Wang
- Geneseeq Research Institute, Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Junli Zhang
- Geneseeq Research Institute, Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Cuicui Liu
- Geneseeq Research Institute, Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Rongyun Guo
- Geneseeq Research Institute, Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - YongQiang Zhang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Wu Y, Li Z, Lee AV, Oesterreich S, Luo B. Liver tropism of ER mutant breast cancer is characterized by unique molecular changes and immune infiltration. Breast Cancer Res Treat 2024; 205:371-386. [PMID: 38427312 DOI: 10.1007/s10549-024-07255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Hotspot estrogen receptor alpha (ER/ESR1) mutations are recognized as the driver for both endocrine resistance and metastasis in advanced ER-positive (ER+) breast cancer, but their contributions to metastatic organ tropism remain insufficiently understood. In this study, we aim to comprehensively profile the organotropic metastatic pattern for ESR1 mutant breast cancer. METHODS The organ-specific metastatic pattern of ESR1 mutant breast cancer was delineated using multi-omics data from multiple publicly available cohorts of ER+ metastatic breast cancer patients. Gene mutation/copy number variation (CNV) and differential gene expression analyses were performed to identify the genomic and transcriptomic alterations uniquely associated with ESR1 mutant liver metastasis. Upstream regulator, downstream pathway, and immune infiltration analysis were conducted for subsequent mechanistic investigations. RESULTS ESR1 mutation-driven liver tropism was revealed by significant differences, encompassing a higher prevalence of liver metastasis in patients with ESR1 mutant breast cancer and an enrichment of mutations in liver metastatic samples. The significant enrichment of AGO2 copy number amplifications (CNAs) and multiple gene expression changes were revealed uniquely in ESR1 mutant liver metastasis. We also unveiled alterations in downstream signaling pathways and immune infiltration, particularly an enrichment of neutrophils, suggesting potential therapeutic vulnerabilities. CONCLUSION Our data provide a comprehensive characterization of the behaviors and mechanisms of ESR1 mutant liver metastasis, paving the way for the development of personalized therapy to target liver metastasis for patients with ESR1 mutant breast cancer.
Collapse
Affiliation(s)
- Yang Wu
- School of Medicine, Tsinghua University, Beijing, China
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Zheqi Li
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Luo
- Department of General Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
8
|
Park BC, Soh JO, Choi HJ, Park HS, Lee SM, Fu HE, Kim MS, Ko MJ, Koo TM, Lee JY, Kim YK, Lee JH. Ultrasensitive and Rapid Circulating Tumor DNA Liquid Biopsy Using Surface-Confined Gene Amplification on Dispersible Magnetic Nano-Electrodes. ACS NANO 2024; 18:12781-12794. [PMID: 38733343 DOI: 10.1021/acsnano.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.
Collapse
Affiliation(s)
- Bum Chul Park
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Jeong Ook Soh
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Joo Choi
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Biomedical Research Institute (HBRI), Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myeong Soo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Radiology, Northwestern University, Chicago, Illinois 60611, United States
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
9
|
Lawrence-Paul MR, Pan TC, Pant DK, Shih NNC, Chen Y, Belka GK, Feldman M, DeMichele A, Chodosh LA. Rare subclonal sequencing of breast cancers indicates putative metastatic driver mutations are predominately acquired after dissemination. Genome Med 2024; 16:26. [PMID: 38321573 PMCID: PMC10848417 DOI: 10.1186/s13073-024-01293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Evolutionary models of breast cancer progression differ on the extent to which metastatic potential is pre-encoded within primary tumors. Although metastatic recurrences often harbor putative driver mutations that are not detected in their antecedent primary tumor using standard sequencing technologies, whether these mutations were acquired before or after dissemination remains unclear. METHODS To ascertain whether putative metastatic driver mutations initially deemed specific to the metastasis by whole exome sequencing were, in actuality, present within rare ancestral subclones of the primary tumors from which they arose, we employed error-controlled ultra-deep sequencing (UDS-UMI) coupled with FFPE artifact mitigation by uracil-DNA glycosylase (UDG) to assess the presence of 132 "metastasis-specific" mutations within antecedent primary tumors from 21 patients. Maximum mutation detection sensitivity was ~1% of primary tumor cells. A conceptual framework was developed to estimate relative likelihoods of alternative models of mutation acquisition. RESULTS The ancestral primary tumor subclone responsible for seeding the metastasis was identified in 29% of patients, implicating several putative drivers in metastatic seeding including LRP5 A65V and PEAK1 K140Q. Despite this, 93% of metastasis-specific mutations in putative metastatic driver genes remained undetected within primary tumors, as did 96% of metastasis-specific mutations in known breast cancer drivers, including ERRB2 V777L, ESR1 D538G, and AKT1 D323H. Strikingly, even in those cases in which the rare ancestral subclone was identified, 87% of metastasis-specific putative driver mutations remained undetected. Modeling indicated that the sequential acquisition of multiple metastasis-specific driver or passenger mutations within the same rare subclonal lineage of the primary tumor was highly improbable. CONCLUSIONS Our results strongly suggest that metastatic driver mutations are sequentially acquired and selected within the same clonal lineage both before, but more commonly after, dissemination from the primary tumor, and that these mutations are biologically consequential. Despite inherent limitations in sampling archival primary tumors, our findings indicate that tumor cells in most patients continue to undergo clinically relevant genomic evolution after their dissemination from the primary tumor. This provides further evidence that metastatic recurrence is a multi-step, mutation-driven process that extends beyond primary tumor dissemination and underscores the importance of longitudinal tumor assessment to help guide clinical decisions.
Collapse
Affiliation(s)
- Matthew R Lawrence-Paul
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tien-Chi Pan
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dhruv K Pant
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie N C Shih
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yan Chen
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - George K Belka
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Feldman
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Angela DeMichele
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA.
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lewis A Chodosh
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA.
- Abramson Family Cancer Research Institute, Philadelphia, USA.
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Darbandi M, Bado IL. Tumor Microenvironment and Epigenetic Implications in Breast Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:15-36. [PMID: 39586991 DOI: 10.1007/978-3-031-66686-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Breast cancer (BC) poses significant challenges, driven by its diverse nature and intricate dynamics. Epigenetic modifications, such as DNA methylation, histone modifications, and noncoding RNAs, have emerged as key regulators of gene expression and BC metastasis plasticity or therapeutic resistance. Targeting epigenetic regulators and pathways associated with therapeutic resistance holds promise for overcoming treatment obstacles and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Mahsa Darbandi
- Department of Oncological Sciences, Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Igor L Bado
- Department of Oncological Sciences, Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
11
|
He J, Luan T, Zhao G, Yang Y. Fusing WGCNA and Machine Learning for Immune-Related Gene Prognostic Index in Lung Adenocarcinoma: Precision Prognosis, Tumor Microenvironment Profiling, and Biomarker Discovery. J Inflamm Res 2023; 16:5309-5326. [PMID: 38026246 PMCID: PMC10658954 DOI: 10.2147/jir.s436431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background The objective is to create an IRGPI (Immune-related genes prognostic index), which could predict the survival and effectiveness of immune checkpoint inhibitor (ICI) treatment for lung adenocarcinoma (LUAD). Methods By applying weighted gene co-expression network analysis (WGCNA), we ascertained 13 genes associated with immune functions. An IRGPI was constructed using four genes through multicox regression, and its validity was assessed in the GEO dataset. Next, we explored the immunological and molecular attributes and advantages of ICI treatment in subcategories delineated by IRGPI. The model genes were also validated by the random forest tree, and functional experiments were conducted to validate it. Results The IRGPI relied on the genes CD79A, IL11, CTLA-4, and CD27. Individuals categorized as low-risk exhibited significantly improved overall survival in comparison to those classified as high-risk. Extensive findings indicated that the low-risk category exhibited associations with immune pathways, significant infiltration of CD8 T cells, M1 macrophages, and CD4 T cells, a reduced rate of gene mutations, and improved sensitivity to ICI therapy. Conversely, the higher-risk group displayed metabolic signals, elevated frequencies of TP53, KRAS, and KEAP1 mutations, escalated levels of NK cells, M0, and M2 macrophage infiltration, and a diminished response to ICI therapy. Additionally, our study unveiled that the downregulation of IL11 effectively impedes the proliferation and migration of lung carcinoma cells, while also inducing cell cycle arrest. Conclusion IRGPI is a biomarker with significant potential for predicting the effectiveness of ICI treatment in LUAD patients and is closely related to the microenvironment and clinicopathological characteristics.
Collapse
Affiliation(s)
- Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Tiankuo Luan
- Department of Anatomy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Gang Zhao
- Department of Gastroenterology, Wushan County People’s Hospital of Chongqing, Chongqing, 404700, People’s Republic of China
| | - Yingxue Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
12
|
Chen Y, Qu W, Tu J, Yang L, Gui X. Prognostic impact of PTK6 expression in triple negative breast cancer. BMC Womens Health 2023; 23:575. [PMID: 37932734 PMCID: PMC10629122 DOI: 10.1186/s12905-023-02736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression of PTK6 in different groups of triple negative breast cancer and its impact on prognosis. METHODS Retrospective study of a total of 209 surgical specimens of breast cancer were identified by IHC or FISH methods as triple negative,and divided into a lymph node metastasis positive (LNM +)group (n = 102) and a lymph node metastasis negative(LNM-) group (n = 107) according to the lymph node status of the surgical specimen. PTK6 expression was detected by IHC technique in all surgical specimens. PTK6 expression and clinicopathological features was explored by Chi-square test. The prognosis of different groups of patients was analyzed by Kaplan-Meier survival analysis and COX analysis. RESULTS The incidence of PTK6 expression in the LNM + group (78.4%) was significantly higher than in the LNM- group (28%). Clinicopathological analysis showed that PTK6 expression in the LNM + group was negatively correlated with the 5-year survival of patients. Kaplan-Meier analysis showed that only PTK6 expression in the LNM + group was negatively correlated with OS and DFS. COX analysis also showed that PTK6 expression and N stage were independent prognostic factors for DFS in the LNM + group. No correlation was observed between HER2 and PTK6 expression in any of the groups. CONCLUSIONS This study suggests that PTK6 promotes tumor development and was associated with poor prognosis in the LNM + group of triple negative breast cancer. Inhibition of PTK6 may be a new approach for the treatment of triple negative breast cancer patients, especially those with metastasis.
Collapse
Affiliation(s)
- Yuexia Chen
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China
| | - Wei Qu
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China
| | - Jianhong Tu
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China
| | - Liu Yang
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China
| | - Xingxing Gui
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China.
| |
Collapse
|
13
|
Wang L, Yue Y, Zhang L, Jing M, Ma M, Liu C, Li Y, Xu S, Wang K, Wang X, Fan J, Zhang M. PAQR5 inhibits the growth and metastasis of clear cell renal cell carcinoma by suppressing the JAK/STAT3 signaling pathway. Cell Oncol (Dordr) 2023; 46:1317-1332. [PMID: 37126128 DOI: 10.1007/s13402-023-00813-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) has a high degree of malignancy and poor overall prognosis in advanced and metastatic patients. Therefore, it is of great significance to find new prognostic biomarkers and therapeutic targets for ccRCC. The expression of progestin and adipoQ receptor family member 5 (PAQR5) is significantly downregulated in ccRCC compared with normal tissues, but its specific mechanism and potential biological function in ccRCC remain unclear. METHODS The expression pattern of PAQR5 and the correlation between the PAQR5 expression and clinicopathological parameters and various survival periods in ccRCC patients were analyzed by using multiple public databases and ccRCC tissues chip. Its prognostic value was analyzed by univariate/multivariate Cox regression. In addition, MTT assay, EdU staining assay, flow cytometry, wound healing assay, transwell migration and invasion assay, colony formation assay, immunofluorescence assay, and a xenograft tumor model were conducted to assess the biological function of PAQR5 in ccRCC in vitro and in vivo. RESULTS Our results indicated that the downregulation of PAQR5 was demonstrated in ccRCC tumor tissues and associated with poorer OS, DSS, and PFI. Meanwhile, the univariate/multivariate Cox regression analysis confirmed that PAQR5 might serve as an independent prognostic factor for ccRCC, and its low expression was tightly correlated with tumor progression and distant metastasis. Mechanistically, a series of gain- and loss-of-function assay revealed that PAQR5 could suppress the ccRCC proliferation, invasion, metastasis, and tumorigenicity in vitro and in vivo by inhibiting the JAK/STAT3 signaling pathway. CONCLUSION Our study revealed the tumor suppressor role of PAQR5 in ccRCC. PAQR5 is a valuable prognostic biomarker for ccRCC and may provide new strategies for clinical targeted therapy.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yangyang Yue
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Minghai Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of education, Xi'an, China.
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
14
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
15
|
Jiang Z, Ju Y, Ali A, Chung PED, Skowron P, Wang DY, Shrestha M, Li H, Liu JC, Vorobieva I, Ghanbari-Azarnier R, Mwewa E, Koritzinsky M, Ben-David Y, Woodgett JR, Perou CM, Dupuy A, Bader GD, Egan SE, Taylor MD, Zacksenhaus E. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer. Nat Commun 2023; 14:4313. [PMID: 37463901 PMCID: PMC10354065 DOI: 10.1038/s41467-023-39935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFβ and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Amjad Ali
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Philip E D Chung
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Huiqin Li
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Jeff C Liu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ethel Mwewa
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | | | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada.
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Fan Y, Zou L, Zhong X, Wang Z, Wang Y, Luo C, Zheng H, Wang Y. Characteristics of DNA macro-alterations in breast cancer with liver metastasis before treatment. BMC Genomics 2023; 24:391. [PMID: 37434117 DOI: 10.1186/s12864-023-09497-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Whole-genome doubling (WGD) has been observed in 30% of cancers, followed by a highly complex rearranged karyotype unfavourable to breast cancer's outcome. However, the macro-alterations that characterise liver metastasis in breast cancer(BC) are poorly understood. Here, we conducted a whole-genome sequencing analysis of liver metastases to explore the status and the time frame model of these macro-alterations in pre-treatment patients with metastatic breast cancer. RESULTS Whole-genome sequencing was conducted in 11 paired primary tumours, lymph node metastasis, and liver metastasis fresh samples from four patients with late-stage breast cancer. We also chose five postoperative frozen specimens from patients with early-stage breast cancer before any treatment as control. Surprisingly, all four liver metastasis samples were classified as WGD + . However, the previous study reported that WGD happened in 30% of cancers and 2/5 in our early-stage samples. WGD was not observed in the two separate primary tumours and one lymph node metastasis of one patient with metastatic BC, but her liver metastasis showed an early burst of bi-allelic copy number gain. The phylogenetic tree proves her 4 tumour samples were the polyclonal origin and only one WGD + clone metastasis to the liver. Another 3 metastatic BC patients' primary tumour and lymph node metastasis experienced WGD as well as liver metastasis, and they all showed similar molecular time-frame of copy number(CN) gain across locations within the same patient. These patients' tumours were of monoclonal origin, and WGD happened in a founding clone before metastasis, explaining that all samples share the CN-gain time frame. After WGD, the genomes usually face instability to evolve other macro-alterations. For example, a greater quantity and variety of complex structural variations (SVs) were detected in WGD + samples. The breakpoints were enriched in the chr17: 39 Mb-40 Mb tile, which contained the HER2 gene, resulting in the formation of tyfonas, breakage-fusion-bridge cycles, and double minutes. These complex SVs may be involved in the evolutionary mechanisms of the dramatic increase of HER2 copy number. CONCLUSION Our work revealed that the WGD + clone might be a critical evolution step for liver metastasis and favoured following complex SV of breast cancer.
Collapse
Affiliation(s)
- Yu Fan
- Breast Center and Multi-Omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, 5 Gongxing Street, Wuhou District, Chengdu, 610041, China
| | - Linglin Zou
- Breast Center and Multi-Omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, 5 Gongxing Street, Wuhou District, Chengdu, 610041, China
| | - Xiaorong Zhong
- Breast Center and Multi-Omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, 5 Gongxing Street, Wuhou District, Chengdu, 610041, China
| | - Zhu Wang
- Breast Center and Multi-Omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, 5 Gongxing Street, Wuhou District, Chengdu, 610041, China
| | - Yu Wang
- Breast Center and Multi-Omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, 5 Gongxing Street, Wuhou District, Chengdu, 610041, China
| | - Chuanxu Luo
- Breast Center and Multi-Omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, 5 Gongxing Street, Wuhou District, Chengdu, 610041, China
| | - Hong Zheng
- Breast Center and Multi-Omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, 5 Gongxing Street, Wuhou District, Chengdu, 610041, China.
| | - Yanping Wang
- Breast Center and Multi-Omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, 5 Gongxing Street, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
17
|
Vázquez-Romo R, Millan-Catalan O, Ruíz-García E, Martínez-Gutiérrez AD, Alvarado-Miranda A, Campos-Parra AD, López-Camarillo C, Jacobo-Herrera N, López-Urrutia E, Guardado-Estrada M, Cantú de León D, Pérez-Plasencia C. Pathogenic variant profile in DNA damage response genes correlates with metastatic breast cancer progression-free survival in a Mexican-mestizo population. Front Oncol 2023; 13:1146008. [PMID: 37182128 PMCID: PMC10174330 DOI: 10.3389/fonc.2023.1146008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
INTRODUCTION Metastatic breast cancer causes the most breast cancer-related deaths around the world, especially in countries where breast cancer is detected late into its development. Genetic testing for cancer susceptibility started with the BRCA 1 and 2 genes. Still, recent research has shown that variations in other members of the DNA damage response (DDR) are also associated with elevated cancer risk, opening new opportunities for enhanced genetic testing strategies. METHODS We sequenced BRCA1/2 and twelve other DDR genes from a Mexican-mestizo population of 40 metastatic breast cancer patients through semiconductor sequencing. RESULTS Overall, we found 22 variants -9 of them reported for the first time- and a strikingly high proportion of variations in ARID1A. The presence of at least one variant in the ARID1A, BRCA1, BRCA2, or FANCA genes was associated with worse progression-free survival and overall survival in our patient cohort. DISCUSSION Our results reflected the unique characteristics of the Mexican-mestizo population as the proportion of variants we found differed from that of other global populations. Based on these findings, we suggest routine screening for variants in ARID1A along with BRCA1/2 in breast cancer patients from the Mexican-mestizo population.
Collapse
Affiliation(s)
- Rafael Vázquez-Romo
- Departamento de Cirugía de Tumores Mamarios, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Erika Ruíz-García
- Laboratorio de Medicina Traslacional y Departamento de Tumores Gastrointestinales, Instituto Nacional de Cancerología, CDMX, Mexico
| | | | - Alberto Alvarado-Miranda
- Departamento de Cirugía de Tumores Mamarios, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Alma D. Campos-Parra
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Eduardo López-Urrutia
- Laboratorio de Genómica, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| | - Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Cantú de León
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| |
Collapse
|
18
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
19
|
Ni Z, Xu S, Yu Z, Ye Z, Li R, Chen C, Yang J, Liu H, Zhou Z, Zhang X. Comparison of dual mTORC1/2 inhibitor AZD8055 and mTORC1 inhibitor rapamycin on the metabolism of breast cancer cells using proton nuclear magnetic resonance spectroscopy metabolomics. Invest New Drugs 2022; 40:1206-1215. [PMID: 36063263 DOI: 10.1007/s10637-022-01268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Dual mTORC1/2 inhibitors may be more effective than mTORC1 inhibitor rapamycin. Nevertheless, their metabolic effects on breast cancer cells have not been reported. We compared the anti-proliferative capacity of rapamycin and a novel mTORC1/2 dual inhibitor (AZD8055) in two breast cancer cell lines (MDA-MB-231 and MDA-MB-453) and analyzed their metabolic effects using proton nuclear magnetic resonance (1H NMR) spectroscopy-based metabolomics. We found that AZD8055 more strongly inhibited breast cancer cell proliferation than rapamycin. The half-inhibitory concentration of AZD8055 in breast cancer cells was almost one-tenth that of rapamycin. We identified 22 and 23 metabolites from the 1H NMR spectra of MDA-MB-231 and MDA-MB-453 cells. The patterns of AZD8055- and rapamycin-treated breast cancer cells differed significantly; we then selected the metabolites that contributed to these differences. For inhibiting glycolysis and reducing glucose consumption, AZD8055 was likely to be more potent than rapamycin. For amino acids metabolism, although AZD8055 has a broad effect as rapamycin, their effects in degrees were not exactly the same. AZD8055 and rapamycin displayed cell-specific metabolic effects on breast cancer cells, a finding that deserves further study. These findings help fill the knowledge gap concerning dual mTORC1/2 inhibitors and provide a theoretical basis for their development.
Collapse
Affiliation(s)
- Zhitao Ni
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaolin Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongjiang Ye
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongqi Li
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuang Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huamin Liu
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziye Zhou
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiuhua Zhang
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
20
|
Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, Masruri M, Widodo N. A Potential Anticancer Mechanism of Finger Root ( Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. SCIENTIFICA 2022; 2022:9130252. [PMID: 36106139 PMCID: PMC9467824 DOI: 10.1155/2022/9130252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer is the most common type of cancer women suffer from worldwide in 2020 and the 4th leading cause of cancer death. Boesenbergia rotunda is an herb with high potential as an anticancer agent. This study explores the potential bioactive compounds in B. rotunda as anti-breast cancer agents using in silico and in vitro approaches. The in silico study was used for active compound analysis, selection of anticancer compound candidates, prediction of target protein, functional annotation, molecular docking, and molecular dynamics simulation, respectively. The in vitro study was conducted by measurement toxicity, rhodamine 123, and apoptosis assays on T47D cells. Based on the KNApSAcK database, B. rotunda contained 20 metabolites, which are dominated by chalcone and flavonoid groups. Seven of them were predicted to have anticancer activity, namely, sakuranetin, cardamonin, alpinetin, 2S-pinocembrin, 7.4'-dihydroxy-5-methoxyflavanone, 5.6-dehydrokawain, and pinostrobin chalcone. These compounds targeted proteins related to cancer progression pathways such as the PI3K/Akt, FOXO, JAK/STAT, and estrogen signaling pathways. Therefore, these compounds are predicted to inhibit growth and induce apoptosis of cancer cells through their interactions with MMP12, MMP13, CDK4, JAK3, VEGFR1, VEGFR2, and KCNA3. Anticancer activity of B. rotunda through in vitro study confirmed that B. rotunda extract is strong cytotoxic and induces apoptosis of breast cancer cell lines. This study concludes that Boesenbergia rotunda has potency as an anticancer candidate.
Collapse
Affiliation(s)
| | - Septian Tri Wicaksono
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Kurnia Rahmawati
- Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
| | - Sapti Puspitarini
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Siti Mariyah Ulfa
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Yoga Dwi Jatmiko
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Masruri Masruri
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| |
Collapse
|
21
|
Yang G, Lu T, Weisenberger DJ, Liang G. The Multi-Omic Landscape of Primary Breast Tumors and Their Metastases: Expanding the Efficacy of Actionable Therapeutic Targets. Genes (Basel) 2022; 13:1555. [PMID: 36140723 PMCID: PMC9498783 DOI: 10.3390/genes13091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC) mortality is almost exclusively due to metastasis, which is the least understood aspect of cancer biology and represents a significant clinical challenge. Although we have witnessed tremendous advancements in the treatment for metastatic breast cancer (mBC), treatment resistance inevitably occurs in most patients. Recently, efforts in characterizing mBC revealed distinctive genomic, epigenomic and transcriptomic (multi-omic) landscapes to that of the primary tumor. Understanding of the molecular underpinnings of mBC is key to understanding resistance to therapy and the development of novel treatment options. This review summarizes the differential molecular landscapes of BC and mBC, provides insights into the genomic heterogeneity of mBC and highlights the therapeutically relevant, multi-omic features that may serve as novel therapeutic targets for mBC patients.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211121, China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
22
|
Wu X, Xiao C, Han Z, Zhang L, Zhao X, Hao Y, Xiao J, Gallagher CS, Kraft P, Morton CC, Li J, Jiang X. Investigating the shared genetic architecture of uterine leiomyoma and breast cancer: A genome-wide cross-trait analysis. Am J Hum Genet 2022; 109:1272-1285. [PMID: 35803233 PMCID: PMC9300879 DOI: 10.1016/j.ajhg.2022.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
Little is known regarding the shared genetic architecture or causality underlying the phenotypic association observed for uterine leiomyoma (UL) and breast cancer (BC). Leveraging summary statistics from the hitherto largest genome-wide association study (GWAS) conducted in each trait, we investigated the genetic overlap and causal associations of UL with BC overall, as well as with its subtypes defined by the status of estrogen receptor (ER). We observed a positive genetic correlation between UL and BC overall (rg = 0.09, p = 6.00 × 10-3), which was consistent in ER+ subtype (rg = 0.06, p = 0.01) but not in ER- subtype (rg = 0.06, p = 0.08). Partitioning the whole genome into 1,703 independent regions, local genetic correlation was identified at 22q13.1 for UL with BC overall and with ER+ subtype. Significant genetic correlation was further discovered in 9 out of 14 functional categories, with the highest estimates observed in coding, H3K9ac, and repressed regions. Cross-trait meta-analysis identified 9 novel loci shared between UL and BC. Mendelian randomization demonstrated a significantly increased risk of BC overall (OR = 1.09, 95% CI = 1.01-1.18) and ER+ subtype (OR = 1.09, 95% CI = 1.01-1.17) for genetic liability to UL. No reverse causality was found. Our comprehensive genome-wide cross-trait analysis demonstrates a shared genetic basis, pleiotropic loci, as well as a putative causal relationship between UL and BC, highlighting an intrinsic link underlying these two complex female diseases.
Collapse
Affiliation(s)
- Xueyao Wu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenghan Xiao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhitong Han
- Department of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xunying Zhao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Hao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinyu Xiao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - C Scott Gallagher
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PL, UK
| | - Jiayuan Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xia Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden; Program in Genetic Epidemiology and Statistical Genetics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
23
|
Bennett C, Carroll C, Wright C, Awad B, Park JM, Farmer M, Brown E(B, Heatherly A, Woodard S. Breast Cancer Genomics: Primary and Most Common Metastases. Cancers (Basel) 2022; 14:3046. [PMID: 35804819 PMCID: PMC9265113 DOI: 10.3390/cancers14133046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Specific genomic alterations have been found in primary breast cancer involving driver mutations that result in tumorigenesis. Metastatic breast cancer, which is uncommon at the time of disease onset, variably impacts patients throughout the course of their disease. Both the molecular profiles and diverse genomic pathways vary in the development and progression of metastatic breast cancer. From the most common metastatic site (bone), to the rare sites such as orbital, gynecologic, or pancreatic metastases, different levels of gene expression indicate the potential involvement of numerous genes in the development and spread of breast cancer. Knowledge of these alterations can, not only help predict future disease, but also lead to advancement in breast cancer treatments. This review discusses the somatic landscape of breast primary and metastatic tumors.
Collapse
Affiliation(s)
- Caroline Bennett
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Caleb Carroll
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Cooper Wright
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Barbara Awad
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| | - Jeong Mi Park
- Department of Radiology, The University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249, USA;
| | - Meagan Farmer
- Department of Genetics, Marnix E. Heersink School of Medicine, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA; (M.F.); (A.H.)
| | - Elizabeth (Bryce) Brown
- Laboratory Genetics Counselor, UAB Medical Genomics Laboratory, Kaul Human Genetics Building, 720 20th Street South, Suite 332, Birmingham, AL 35294, USA;
| | - Alexis Heatherly
- Department of Genetics, Marnix E. Heersink School of Medicine, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA; (M.F.); (A.H.)
| | - Stefanie Woodard
- Department of Radiology, The University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249, USA;
| |
Collapse
|
24
|
Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer. Int J Mol Sci 2022; 23:ijms23116271. [PMID: 35682953 PMCID: PMC9181003 DOI: 10.3390/ijms23116271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis formation and metastatic outgrowth. Whole-genome sequencing analyses of primary BC and metastases revealed that BC metastatization is a non-genetically selected trait, rather the result of transcriptional and metabolic adaptation to the unfavorable microenvironmental conditions which cancer cells are exposed to (e.g., hypoxia, low nutrients, endoplasmic reticulum stress and chemotherapy administration). In this regard, the latest multi-omics analyses unveiled intra-tumor phenotypic heterogeneity, which determines the polyclonal nature of breast tumors and constitutes a challenge for clinicians, correlating with patient poor prognosis. The present work reviews BC classification and epidemiology, focusing on the impact of metastatic disease on patient prognosis and survival, while describing general principles and current in vitro/in vivo models of the BC metastatic cascade. The authors address here both genetic and phenotypic intrinsic heterogeneity of breast tumors, reporting the latest studies that support the role of the latter in metastatic spreading. Finally, the review illustrates the mechanisms underlying adaptive stress responses during BC metastatic progression.
Collapse
|
25
|
Mirzaei M, Sheikholeslami SA, Jalili A, Bereimipour A, Sharbati S, Kaveh V, Salari S. Investigating the molecular mechanisms of Tamoxifen on the EMT pathway among patients with breast cancer. J Med Life 2022; 15:835-844. [PMID: 35928368 PMCID: PMC9321501 DOI: 10.25122/jml-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Tamoxifen is one of the most used drugs for breast cancer. This study aimed to investigate the effect of the Tamoxifen mechanism on the epithelial-mesenchymal transition (EMT) pathway among breast cancer patients due to its resistance to breast cancer cells. We selected the appropriate datasets from the GEO database using continuous and integrated bioinformatics analysis. We examined the signaling pathways, gene ontology, and protein association of genes after classifying the gene expression profile. Finally, we confirmed the candidate genes using the GEPIA database. Two groups were defined for gene expression profiles. The first group in which the expression profile of genes increased after Tamoxifen was evaluated using the expression profile of genes that decreased in the EMT pathway. The second group was the opposite of the first group. 253 genes in the first group and 302 genes in the second group were shared. The genes in the first group were involved in various pathways of cell death, focal adhesion, and cellular aging. The second group was more involved in different phases of the cell cycle. Finally, MYLK, SOCS3, and STAT5B proteins from the first group and BIRC5, PLK1, and RAPGAP1 proteins from the second group were selected as candidate proteins in connection with the effect of Tamoxifen on the EMT pathway. We evaluated Tamoxifen's effect on the EMT pathway more accurately. However, for a closer look at Tamoxifen, more studies need to be done on target genes and proteins to clarify their role.
Collapse
Affiliation(s)
- Mohammadhossein Mirzaei
- Visveswarapura Institute of Pharmaceutical Sciences, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Seyed Amir Sheikholeslami
- Hematology and Oncology Department, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arsalan Jalili
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,Department of Basic Medical Sciences, Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Ahmad Bereimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Sheida Sharbati
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kaveh
- Hematology and Oncology Department, Iran University of Medical Sciences, Tehran, Iran,Corresponding Author: Sina Salari, Hematology and Oncology Department, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. E-mail:
| | - Sina Salari
- Hematology and Oncology Department, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Vahid Kaveh, Hematology and Oncology Department, Iran University of Medical Sciences, Tehran, Iran. E-mail:
| |
Collapse
|
26
|
Li Z, Spoelstra NS, Sikora MJ, Sams SB, Elias A, Richer JK, Lee AV, Oesterreich S. Mutual exclusivity of ESR1 and TP53 mutations in endocrine resistant metastatic breast cancer. NPJ Breast Cancer 2022; 8:62. [PMID: 35538119 PMCID: PMC9090919 DOI: 10.1038/s41523-022-00426-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Both TP53 and ESR1 mutations occur frequently in estrogen receptor positive (ER+) metastatic breast cancers (MBC) and their distinct roles in breast cancer tumorigenesis and progression are well appreciated. Recent clinical studies discovered mutual exclusivity between TP53 and ESR1 mutations in metastatic breast cancers; however, mechanisms underlying this intriguing clinical observation remain largely understudied and unknown. Here, we explored the interplay between TP53 and ESR1 mutations using publicly available clinical and experimental data sets. We first confirmed the robust mutational exclusivity using six independent cohorts with 1,056 ER+ MBC samples and found that the exclusivity broadly applies to all ER+ breast tumors regardless of their clinical and distinct mutational features. ESR1 mutant tumors do not exhibit differential p53 pathway activity, whereas we identified attenuated ER activity and expression in TP53 mutant tumors, driven by a p53-associated E2 response gene signature. Further, 81% of these p53-associated E2 response genes are either direct targets of wild-type (WT) p53-regulated transactivation or are mutant p53-associated microRNAs, representing bimodal mechanisms of ER suppression. Lastly, we analyzed the very rare cases with co-occurrences of TP53 and ESR1 mutations and found that their simultaneous presence was also associated with reduced ER activity. In addition, tumors with dual mutations showed higher levels of total and PD-L1 positive macrophages. In summary, our study utilized multiple publicly available sources to explore the mechanism underlying the mutual exclusivity between ESR1 and TP53 mutations, providing further insights and testable hypotheses of the molecular interplay between these two pivotal genes in ER+ MBC.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon B Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Elias
- School of Medicine, Division of Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Tang H, You T, Sun Z, Bai C, Wang Y. Extracellular Matrix-Based Gene Expression Signature Defines Two Prognostic Subtypes of Hepatocellular Carcinoma With Different Immune Microenvironment Characteristics. Front Mol Biosci 2022; 9:839806. [PMID: 35402515 PMCID: PMC8990864 DOI: 10.3389/fmolb.2022.839806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Accumulating evidence has suggested that the extracellular matrix (ECM) plays a vital role in the development and progression of cancer, and could be recognized as a biomarker of the response to immunotherapy. However, the effect of the ECM signature in hepatocellular carcinoma (HCC) is not well understood. Methods: HCC patients derived from the TCGA-LIHC dataset were clustered according to the ECM signature. The differences in prognosis, functional enrichment, immune infiltration, and mutation characteristics between distinct molecular clusters were examined, and its predictive value on the sensitivities to chemotherapy and immunotherapy was further analyzed. Then, a prognostic model was built based on the ECM-related gene expression pattern. Results: HCC patients were assigned into two molecular subtypes. Approximately 80% of HCC patients were classified into cluster A with poor prognosis, more frequent TP53 mutation, and lower response rate to immunotherapy. In contrast, patients in cluster B had better survival outcomes and higher infiltration levels of dendritic cells, macrophages, and regulatory T cells. The prognostic risk score model based on the expression profiles of six ECM-related genes (SPP1, ADAMTS5, MMP1, BSG, LAMA2, and CDH1) demonstrated a significant association with higher histologic grade and advanced TNM stage. Moreover, the prognostic risk score showed good performance in both the training dataset and validation dataset, as well as improved prognostic capacity compared with TNM stage. Conclusions: We characterized two HCC subtypes with distinct clinical outcomes, immune infiltration, and mutation characteristics. A novel prognostic model based on the ECM signature was further developed, which may contribute to individualized prognostic prediction and aid in clinical decision-making.
Collapse
|
28
|
Kavan S, Kruse TA, Vogsen M, Hildebrandt MG, Thomassen M. Heterogeneity and tumor evolution reflected in liquid biopsy in metastatic breast cancer patients: a review. Cancer Metastasis Rev 2022; 41:433-446. [PMID: 35286542 DOI: 10.1007/s10555-022-10023-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is a spatially and temporally dynamic disease in which differently evolving genetic clones are responsible for progression and clinical outcome. We review tumor heterogeneity and clonal evolution from studies comparing primary tumors and metastasis and discuss plasma circulating tumor DNA as a powerful real-time approach for monitoring the clonal landscape of breast cancer during treatment and recurrence. We found only a few early studies exploring clonal evolution and heterogeneity through analysis of multiregional tissue biopsies of different progression steps in comparison with circulating tumor DNA (ctDNA) from blood plasma. The model of linear progression seemed to be more often reported than the model of parallel progression. The results show complex routes to metastasis, however, and plasma most often reflected metastasis more than primary tumor. The described patterns of evolution and the polyclonal nature of breast cancer have clinical consequences and should be considered during patient diagnosis and treatment selection. Current studies focusing on the relevance of clonal evolution in the clinical setting illustrate the role of liquid biopsy as a noninvasive biomarker for monitoring clonal progression and response to treatment. In the clinical setting, circulating tumor DNA may be an ideal support for tumor biopsies to characterize the genetic landscape of the metastatic disease and to improve longitudinal monitoring of disease dynamics and treatment effectiveness through detection of residual tumor after resection, relapse, or metastasis within a particular patient.
Collapse
Affiliation(s)
- Stephanie Kavan
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marianne Vogsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Malene G Hildebrandt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
| |
Collapse
|
29
|
González-Martínez S, Pizarro D, Pérez-Mies B, Caniego-Casas T, Rodríguez-Peralto JL, Curigliano G, Cortés A, Gión M, Cortés J, Palacios J. Differences in the Molecular Profile between Primary Breast Carcinomas and Their Cutaneous Metastases. Cancers (Basel) 2022; 14:cancers14051151. [PMID: 35267459 PMCID: PMC8909188 DOI: 10.3390/cancers14051151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The development of new strategies for the management of cutaneous metastases is a major clinical challenge because of the poor prognosis. To advance in this field, a better understanding of the molecular alterations involved in the metastatic process is needed. In the present study, the clinicopathological characteristics of breast cancer that develop cutaneous metastases were analyzed and the molecular differences between primary breast tumors and their corresponding cutaneous metastases were compared. We observed that the surrogate molecular type of breast cancer with an increased risk to metastasize to the skin was triple negative. In total, 48.5% of the cutaneous metastases presented some additional molecular alteration with respect to the primary tumor. However, no characteristic mutational pattern related to skin metastasis development was observed. Identifying the genes involved in the development of cutaneous metastases is important to gain insights into the biology of the disease and to identify possible diagnostic and therapeutic biomarkers. Abstract Background: The characterization of molecular alterations of primary breast carcinomas (BC) and their cutaneous metastases (CM) to identify genes involved in the metastatic process have not yet been completely accomplished. Methods: To investigate the molecular alterations of BC and their CM, a total of 66 samples (33 BC and 33 CM) from 33 patients were analyzed by immunohistochemical and massive parallel sequencing analyses. In addition, the clinicopathological characteristics of patients and tumors were analyzed. Results: Triple negative (TN) BCs were overrepresented (36.4%) among tumors that developed CM. A change of tumor surrogate molecular type in metastases was found in 15% of patients and 48.5% of the CM presented some additional molecular alteration with respect to the primary tumor, the most frequent were amplification of MYC and MDM4, and mutations in TP53 and PIK3CA. Survival was related to histological grade, tumor surrogate molecular type and TP53 mutations in the univariate analysis but only the tumor surrogate molecular type remained as a prognostic factor in the multivariate analysis. Conclusions: The TN molecular type has a greater risk of developing skin metastases. There are phenotypic changes and additional molecular alterations in skin metastases compared to the corresponding primary breast tumors in nearly half of the patients. Although these changes do not follow a specific pattern and varied from patient to patient, they could impact on the treatment. More studies with larger patient and sample cohorts are needed.
Collapse
Affiliation(s)
- Silvia González-Martínez
- Clinical Research, Ramón y Cajal Hospital, 28034 Madrid, Spain;
- “Contigo Contra el Cáncer de la Mujer” Foundation, 28010 Madrid, Spain
| | - David Pizarro
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
| | - Belén Pérez-Mies
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
- Department of Pathology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain;
- Faculty of Medicine, University of Alcalá, 28801 Madrid, Spain
| | - Tamara Caniego-Casas
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
| | - José Luis Rodríguez-Peralto
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain;
- I+D Institute, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Department of Pathology, Medical School, Complutense University, 28040 Madrid, Spain
| | - Giuseppe Curigliano
- European Institute of Oncology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy;
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Alfonso Cortés
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain; (A.C.); (M.G.)
| | - María Gión
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain; (A.C.); (M.G.)
| | - Javier Cortés
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain;
- Department of Medicine, Faculty of Biomedical and Health Sciences, European University of Madrid, 28670 Madrid, Spain
- International Breast Cancer Center (IBCC), Quironsalud Group, 08017 Barcelona, Spain
- Medica Scientia Innovation Research, 08007 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Correspondence: (J.C.); (J.P.)
| | - José Palacios
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
- Department of Pathology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain;
- Faculty of Medicine, University of Alcalá, 28801 Madrid, Spain
- Correspondence: (J.C.); (J.P.)
| |
Collapse
|
30
|
Collet L, Péron J, Penault-Llorca F, Pujol P, Lopez J, Freyer G, You B. PARP Inhibitors: A Major Therapeutic Option in Endocrine-Receptor Positive Breast Cancers. Cancers (Basel) 2022; 14:599. [PMID: 35158866 PMCID: PMC8833594 DOI: 10.3390/cancers14030599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/01/2023] Open
Abstract
Recently, OlympiAD and EMBRACA trials demonstrated the favorable efficacy/toxicity ratio of PARPi, compared to chemotherapy, in patients with HER2-negative metastatic breast cancers (mBC) carrying a germline BRCA mutation. PARPi have been largely adopted in triple-negative metastatic breast cancer, but their place has been less clearly defined in endocrine-receptor positive, HER2 negative (ER+/ HER2-) mBC. The present narrative review aims at addressing this question by identifying the patients that are more likely benefit from PARPi. Frequencies of BRCA pathogenic variant (PV) carriers among ER+/HER2- breast cancer patients have been underestimated, and many experts assume than 50% of all BRCA1/2 mutated breast cancers are of ER+/HER2- subtype. Patients with ER+/HER2- BRCA-mutated mBC seemed to have a higher risk of early disease progression while on CDK4/6 inhibitors and PARPi are effective especially when prescribed before exposure to chemotherapy. The OLYMPIA trial also highlighted the utility of PARPi in patients with early breast cancers at high risk of relapse and carrying PV of BRCA. PARPi might also be effective in patients with HRD diseases, representing up to 20% of ER+/HER2- breast cancers. Consequently, the future implementation of early genotyping strategies for identifying the patients with high-risk ER+/HER2- HRD breast cancers likely to benefit from PARPi is of high importance.
Collapse
Affiliation(s)
- Laetitia Collet
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Julien Péron
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, CNRS UMR 5558, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Frédérique Penault-Llorca
- Department of Pathology and Biopathology, Jean Perrin Comprehensive Cancer Center, UMR INSERM 1240, University Clermont Auvergne, 63011 Clermont-Ferrand, France;
| | - Pascal Pujol
- Department of Cancer Genetics, CHU Montpellier, UMR IRD 224-CNRS 5290, Université Montpellier, 34295 Montpellier, France;
- Centre de Recherches Écologiques et Évolutives sur le Cancer (CREEC), UMR 224 CNRS-5290, University of Montpellier, 34394 Montpellier, France
| | - Jonathan Lopez
- Biochemistry and Molecular Biology Department, Hopital Lyon Sud, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Gilles Freyer
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Benoît You
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| |
Collapse
|
31
|
Tao C, Liu W, Yan X, Yang M, Yao S, Shu Q, Li B, Zhu R. PAQR5 Expression Is Suppressed by TGFβ1 and Associated With a Poor Survival Outcome in Renal Clear Cell Carcinoma. Front Oncol 2022; 11:827344. [PMID: 35127538 PMCID: PMC8810503 DOI: 10.3389/fonc.2021.827344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundRenal cell carcinoma (RCC) was sex-hormone responsive, and clinical trials using progesterone significantly reduced the incidence of distal metastasis after radical nephrectomy. Recently membrane-bound progesterone receptors (mPRs) were discovered to mediate the non-genomic effect of progesterone. Aberrant expressions of these mPRs were reported in human breast, ovarian, urinary bladder, brain, uterine, and prostate cancers. However, their expression profiles in RCC are yet to be assessed.MethodsMultiple datasets from RNA sequencing (RNA-seq), cDNA microarray, and proteomic analysis were used to compare gene expression between cancerous and normal kidney tissues. Immunohistochemistry was conducted to examine protein expression in kidney tissues. Promoter methylation levels were assessed for correlation analysis with gene expression.ResultsOf the seven membrane-bound progesterone receptor genes, the progestin and adipoQ receptor-5 (PAQR5) gene is predominantly expressed in normal kidney tissue but was significantly downregulated in RCC tissues. PAQR5 downregulation correlated with tumor stage, cancer grade, lymph node invasion, and distal metastasis only in clear cell RCC (ccRCC) tissues. PAQR5 downregulation was associated with an increased promoter DNA methylation and a poor survival outcome in ccRCC patients. In addition, PAQR5 expression inversely correlated with transforming growth factor beta-1 (TGFB1) expression, and TGFβ1 treatment significantly reduced PAQR5 gene expression.ConclusionPAQR5 is a novel prognostic biomarker in ccRCC and is negatively regulated by the TGFβ1 pathway.
Collapse
Affiliation(s)
- Chang Tao
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Xiang Yan
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Min Yang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Si Yao
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Qiang Shu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Runzhi Zhu, ; Benyi Li, ; Qiang Shu,
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Runzhi Zhu, ; Benyi Li, ; Qiang Shu,
| | - Runzhi Zhu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Runzhi Zhu, ; Benyi Li, ; Qiang Shu,
| |
Collapse
|
32
|
Wu CC, Wang YH, Hu SW, Wu WL, Yeh CT, Bamodu OA. MED10 Drives the Oncogenicity and Refractory Phenotype of Bladder Urothelial Carcinoma Through the Upregulation of hsa-miR-590. Front Oncol 2022; 11:744937. [PMID: 35096564 PMCID: PMC8792749 DOI: 10.3389/fonc.2021.744937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Dysfunctional transcription machinery with associated dysregulated transcription characterizes many malignancies. Components of the mediator complex, a principal modulator of transcription, are increasingly implicated in cancer. The mediator complex subunit 10 (MED10), a vital kinase module of the mediator, plays a critical role in bladder physiology and pathology. However, its role in the oncogenicity, metastasis, and disease recurrence in bladder cancer (BLCA) remains unclear. OBJECTIVE Thus, we investigated the role of dysregulated or aberrantly expressed MED10 in the enhanced onco-aggression, disease progression, and recurrence of bladder urothelial carcinoma (UC), as well as the underlying molecular mechanism. METHODS Using an array of multi-omics big data analyses of clinicopathological data, in vitro expression profiling and functional assays, and immunocytochemical staining, we assessed the probable roles of MED10 in the progression and prognosis of BLCA/UC. RESULTS Our bioinformatics-aided gene expression profiling showed that MED10 is aberrantly expressed in patients with BLCA, is associated with high-grade disease, is positively correlated with tumor stage, and confers significant survival disadvantage. Reanalyzing the TCGA BLCA cohort (n = 454), we showed that aberrantly expressed MED10 expression is associated with metastatic and recurrent disease, disease progression, immune suppression, and therapy failure. Interestingly, we demonstrated that MED10 interacts with and is co-expressed with the microRNA, hsa-miR-590, and that CRISPR-mediated knockout of MED10 elicits the downregulation of miR-590 preferentially in metastatic UC cells, compared to their primary tumor peers. More so, silencing MED10 in SW1738 and JMSU1 UC cell lines significantly attenuates their cell proliferation, migration, invasion, clonogenicity, and tumorsphere formation (primary and secondary), with the associated downregulation of BCL-xL, MKI67, VIM, SNAI1, OCT4, and LIN28A but upregulated BAX protein expression. In addition, we showed that high MED10 expression is a non-inferior biomarker of urothelial recurrence compared with markers of cancer stemness; however, MED10 is a better biomarker of local recurrence than any of the stemness markers. CONCLUSION These data provide preclinical evidence that dysregulated MED10/MIR590 signaling drives onco-aggression, disease progression, and recurrence of bladder UC and that this oncogenic signal is therapeutically actionable for repressing the metastatic/recurrent phenotypes, enhancing therapy response, and shutting down stemness-driven disease progression and relapse in patients with BLCA/UC.
Collapse
Affiliation(s)
- Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Su-Wei Hu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Ling Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Hematology and Oncology, Cancer Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
33
|
Zhang H, Lu X, Huang G, Hua M, Zhang W, Wang T, Huang L, Wang Z, Chen Q, Li J, Yang Q, Yang G. A genomic mutation spectrum of collecting duct carcinoma in the Chinese population. BMC Med Genomics 2022; 15:1. [PMID: 34980126 PMCID: PMC8722201 DOI: 10.1186/s12920-021-01143-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Renal collecting duct carcinoma (CDC) is a rare and lethal subtype of renal cell carcinoma (RCC). The genomic profile of the Chinese population with CDC remains unclear. In addition, clinical treatments are contradictory. In this study, we aimed to identify the genomic mutation spectrum of CDC in the Chinese population. METHODS Whole-exome sequencing was performed using the Illumina Novaseq™ 6000 platform. MuTect2 detects single-nucleotide variants (SNVs) and small scale insertions/deletions (INDELs). The identified mutations were annotated with ANNOVAR and validated by Sanger sequencing. Control-FREEC was used to detect copy number variation (CNV), and GISTIC was applied to detect frequently mutated altered regions. These data were compared with associated The Cancer Genome Atlas cohorts. RESULTS Ten normal-matched CDC patients were included. The mean tumour mutation burden was 1.37 Mut/Mb. Six new recurrent somatic mutated genes were identified, including RBM14, MTUS1, GAK, DST, RNF213 and XIRP2 (20% and 2 of 10, respectively), and validated by Sanger sequencing. In terms of common mutated genes, SETD2 was altered in both CDC and other RCC subtypes but not in bladder urothelial carcinoma (BLCA); CDKN2A was a driver gene in both CDC (SNV: 10%, 1 of 10) and BLCA but not in other RCC subtypes. Next, 29 amplifications and 6 deletions of recurrent focal somatic CNVs were identified by GISTIC2.0, which displayed differences from kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP) and BLCA cohorts. Of note, CDKN2A (CNV alteration: 30%, 3 of 10) and CDKN2A-AS1 were the only overlapping genes of these four cohorts. Importantly, the CDKN2A mutation in our cohort differed from previous studies in urinary carcinomas. Moreover, CDKN2A-altered cases had significantly worse overall survival than wild-type cases in both KIRC and KIRP cohorts. In addition, the most frequently altered genomic pathway of our CDC cohort was the CDKN2A-mediated p53/RB1 pathway. CONCLUSIONS Our study offers the first genomic spectrum of the Chinese population with CDC, which differs from that of the Western population. The altered CDKN2A-mediated p53/RB1 pathway might provide new insight into potential therapeutic targets for CDC patients.
Collapse
Affiliation(s)
- Huaru Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiaojun Lu
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Gang Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Meimian Hua
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Wenhui Zhang
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Tao Wang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ziwei Wang
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Qing Chen
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Jing Li
- Department of Bioinformatics, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Qing Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Guosheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
34
|
Menck K, Heinrichs S, Wlochowitz D, Sitte M, Noeding H, Janshoff A, Treiber H, Ruhwedel T, Schatlo B, von der Brelie C, Wiemann S, Pukrop T, Beißbarth T, Binder C, Bleckmann A. WNT11/ROR2 signaling is associated with tumor invasion and poor survival in breast cancer. J Exp Clin Cancer Res 2021; 40:395. [PMID: 34911552 PMCID: PMC8672621 DOI: 10.1186/s13046-021-02187-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer has been associated with activation of the WNT signaling pathway, although no driver mutations in WNT genes have been found yet. Instead, a high expression of the alternative WNT receptor ROR2 was observed, in particular in breast cancer brain metastases. However, its respective ligand and downstream signaling in this context remained unknown. METHODS We modulated the expression of ROR2 in human breast cancer cells and characterized their gene and protein expression by RNA-Seq, qRT-PCR, immunoblots and reverse phase protein array (RPPA) combined with network analyses to understand the molecular basis of ROR2 signaling in breast cancer. Using co-immunoprecipitations, we verified the interaction of ROR2 with the identified ligand, WNT11. The functional consequences of WNT11/ROR2 signaling for tumor cell aggressiveness were assessed by microscopy, impedance sensing as well as viability and invasion assays. To evaluate the translational significance of our findings, we performed gene set enrichment, expression and survival analyses on human breast cancer brain metastases. RESULTS We found ROR2 to be highly expressed in aggressive breast tumors and associated with worse metastasis-free survival. ROR2 overexpression induced a BRCAness-like phenotype in a cell-context specific manner and rendered cells resistant to PARP inhibition. High levels of ROR2 were furthermore associated with defects in cell morphology and cell-cell-contacts leading to increased tumor invasiveness. On a molecular level, ROR2 overexpression upregulated several non-canonical WNT ligands, in particular WNT11. Co-immunoprecipitation confirmed that WNT11 indeed interacts with the cysteine-rich domain of ROR2 and triggers its invasion-promoting signaling via RHO/ROCK. Knockdown of WNT11 reversed the pro-invasive phenotype and the cellular changes in ROR2-overexpressing cells. CONCLUSIONS Taken together, our study revealed a novel auto-stimulatory loop in which ROR2 triggers the expression of its own ligand, WNT11, resulting in enhanced tumor invasion associated with breast cancer metastasis.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149, Münster, Germany
- West German Cancer Center, University Hospital Münster, 48149, Münster, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Saskia Heinrichs
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149, Münster, Germany
- West German Cancer Center, University Hospital Münster, 48149, Münster, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Darius Wlochowitz
- Department of Medical Bioinformatics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Maren Sitte
- Department of Medical Bioinformatics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Helen Noeding
- Institute for Physical Chemistry, Georg August University Göttingen, 37075, Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, Georg August University Göttingen, 37075, Göttingen, Germany
| | - Hannes Treiber
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Bawarjan Schatlo
- Department of Neurosurgery, University Medical Center Göttingen, 37099, Göttingen, Germany
| | | | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Tobias Pukrop
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Claudia Binder
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149, Münster, Germany.
- West German Cancer Center, University Hospital Münster, 48149, Münster, Germany.
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099, Göttingen, Germany.
| |
Collapse
|
35
|
Gampenrieder SP, Rinnerthaler G, Tinchon C, Petzer A, Balic M, Heibl S, Schmitt C, Zabernigg AF, Egle D, Sandholzer M, Singer CF, Roitner F, Hager C, Andel J, Hubalek M, Knauer M, Greil R. Landscape of HER2-low metastatic breast cancer (MBC): results from the Austrian AGMT_MBC-Registry. Breast Cancer Res 2021; 23:112. [PMID: 34906198 PMCID: PMC8670265 DOI: 10.1186/s13058-021-01492-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/28/2021] [Indexed: 12/04/2022] Open
Abstract
Background About 50% of all primary breast cancers show a low-level expression of HER2 (HER2-low), defined as immunohistochemically 1+ or 2+ and lack of HER2 gene amplification measured by in situ hybridization. This low HER2 expression is a promising new target for antibody–drug conjugates (ADCs) currently under investigation. Until now, little is known about the frequency and the prognostic value of low HER2-expression in metastatic breast cancer (MBC). Patients and methods The MBC-Registry of the Austrian Study Group of Medical Tumor Therapy (AGMT) is a multicenter nationwide ongoing registry for MBC patients in Austria. Unadjusted, univariate survival probabilities of progression-free survival (PFS) and overall survival (OS) were calculated by the Kaplan–Meier method and compared by the log-rank test. Multivariable adjusted hazard ratios were estimated by Cox regression models. In this analysis, only patients with known HER2 status and available survival data were included. Results As of 11/15/2020, 1,973 patients were included in the AGMT-MBC-Registry. Out of 1,729 evaluable patients, 351 (20.3%) were HER2-positive, 608 (35.2%) were HER2-low and 770 (44.5%) were completely HER2-negative (HER2-0). Low HER2-expression was markedly more frequent in the hormone-receptor(HR)+ subgroup compared to the triple-negative subgroup (40% vs. 23%). In multivariable analysis, low HER2 expression did not significantly influence OS neither in the HR+ (HR 0.89; 95% CI 0.74–1.05; P = 0.171) nor in the triple-negative subgroup (HR 0.92; 95% CI 0.68–1.25; P = 0.585), when compared to completely HER2-negative disease. Similar results were observed when HER2 IHC 2+ patients were compared to IHC 1+ or 0 patients. Conclusion Low-HER2 expression did not have any impact on prognosis of metastatic breast cancer in this real-world population. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01492-x.
Collapse
Affiliation(s)
- Simon Peter Gampenrieder
- Department of Internal Medicine III With Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria.,Laboratory for Immunological and Molecular Cancer Research (LIMCR) and Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg Cancer Research Institute (SCRI), Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Gabriel Rinnerthaler
- Department of Internal Medicine III With Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria.,Laboratory for Immunological and Molecular Cancer Research (LIMCR) and Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg Cancer Research Institute (SCRI), Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Christoph Tinchon
- Internal Medicine - Department for Haemato-Oncology, LKH Hochsteiermark-Leoben, Leoben, Austria
| | - Andreas Petzer
- Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Barmherzige Schwestern - Elisabethinen, Linz, Austria
| | - Marija Balic
- Division of Oncology, Department for Internal Medicine, Medical University Graz, Graz, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen GmbH, Wels, Austria
| | - Clemens Schmitt
- Department of Hematology and Internal Oncology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | | | - Daniel Egle
- Department of Gynaecology, Medical University Innsbruck, Innsbruck, Austria
| | - Margit Sandholzer
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Christian Fridolin Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Florian Roitner
- Department of Internal Medicine II, Hospital Braunau, Braunau, Austria
| | | | - Johannes Andel
- Department of Internal Medicine II, Pyrn-Eisenwurzen Klinikum Steyr, Steyr, Austria
| | - Michael Hubalek
- Department of Gynecology, Breast Health Center Schwaz, Schwaz, Austria
| | - Michael Knauer
- Breast Center Eastern Switzerland, St. Gallen, Switzerland
| | - Richard Greil
- Department of Internal Medicine III With Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria. .,Laboratory for Immunological and Molecular Cancer Research (LIMCR) and Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg Cancer Research Institute (SCRI), Salzburg, Austria. .,Cancer Cluster Salzburg, Salzburg, Austria.
| |
Collapse
|
36
|
Ansari-Pour N, Zheng Y, Yoshimatsu TF, Sanni A, Ajani M, Reynier JB, Tapinos A, Pitt JJ, Dentro S, Woodard A, Rajagopal PS, Fitzgerald D, Gruber AJ, Odetunde A, Popoola A, Falusi AG, Babalola CP, Ogundiran T, Ibrahim N, Barretina J, Van Loo P, Chen M, White KP, Ojengbede O, Obafunwa J, Huo D, Wedge DC, Olopade OI. Whole-genome analysis of Nigerian patients with breast cancer reveals ethnic-driven somatic evolution and distinct genomic subtypes. Nat Commun 2021; 12:6946. [PMID: 34836952 PMCID: PMC8626467 DOI: 10.1038/s41467-021-27079-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Black women across the African diaspora experience more aggressive breast cancer with higher mortality rates than white women of European ancestry. Although inter-ethnic germline variation is known, differential somatic evolution has not been investigated in detail. Analysis of deep whole genomes of 97 breast cancers, with RNA-seq in a subset, from women in Nigeria in comparison with The Cancer Genome Atlas (n = 76) reveal a higher rate of genomic instability and increased intra-tumoral heterogeneity as well as a unique genomic subtype defined by early clonal GATA3 mutations with a 10.5-year younger age at diagnosis. We also find non-coding mutations in bona fide drivers (ZNF217 and SYPL1) and a previously unreported INDEL signature strongly associated with African ancestry proportion, underscoring the need to expand inclusion of diverse populations in biomedical research. Finally, we demonstrate that characterizing tumors for homologous recombination deficiency has significant clinical relevance in stratifying patients for potentially life-saving therapies. Breast cancer heterogeneity and tumour evolutionary trajectories remain largely unknown among women of African ancestry. Here, the authors perform whole genome and transcriptome sequencing of Nigerian breast cancer patients and identify unique evolutionary phenomena.
Collapse
Affiliation(s)
- Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, UK.,MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yonglan Zheng
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Toshio F Yoshimatsu
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ayodele Sanni
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Mustapha Ajani
- Department of Pathology, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Jean-Baptiste Reynier
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Avraam Tapinos
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK
| | - Jason J Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Stefan Dentro
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, CB10 1SD, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Anna Woodard
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.,Department of Computer Science, The University of Chicago, Chicago, IL, 60637, USA
| | - Padma Sheila Rajagopal
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Dominic Fitzgerald
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Andreas J Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, UK.,Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK
| | - Abayomi Odetunde
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Abiodun Popoola
- Oncology Unit, Department of Radiology, Lagos State University, Ikeja, Lagos, Nigeria
| | - Adeyinka G Falusi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Temidayo Ogundiran
- Department of Surgery, University College Hospital, Ibadan, Oyo, Nigeria
| | - Nasiru Ibrahim
- Department of Surgery, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Jordi Barretina
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | | | - Mengjie Chen
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.,Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Oladosu Ojengbede
- Centre for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - John Obafunwa
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Dezheng Huo
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, UK. .,Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
37
|
Corona G, Di Gregorio E, Vignoli A, Muraro E, Steffan A, Miolo G. 1H-NMR Plasma Lipoproteins Profile Analysis Reveals Lipid Metabolism Alterations in HER2-Positive Breast Cancer Patients. Cancers (Basel) 2021; 13:5845. [PMID: 34830999 PMCID: PMC8616511 DOI: 10.3390/cancers13225845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/06/2023] Open
Abstract
The lipid tumour demand may shape the host metabolism adapting the circulating lipids composition to its growth and progression needs. This study aims to exploit the straightforward 1H-NMR lipoproteins analysis to investigate the alterations of the circulating lipoproteins' fractions in HER2-positive breast cancer and their modulations induced by treatments. The baseline 1H-NMR plasma lipoproteins profiles were measured in 43 HER2-positive breast cancer patients and compared with those of 28 healthy women. In a subset of 32 patients, longitudinal measurements were also performed along neoadjuvant chemotherapy, after surgery, adjuvant treatment, and during the two-year follow-up. Differences between groups were assessed by multivariate PLS-DA and by univariate analyses. The diagnostic power of lipoproteins subfractions was assessed by ROC curve, while lipoproteins time changes along interventions were investigated by ANOVA analysis. The PLS-DA model distinguished HER2-positive breast cancer patients from the control group with a sensitivity of 96.4% and specificity of 90.7%, mainly due to the differential levels of VLDLs subfractions that were significantly higher in the patients' group. Neoadjuvant chemotherapy-induced a significant drop in the HDLs after the first three months of treatment and a specific decrease in the HDL-3 and HDL-4 subfractions were found significantly associated with the pathological complete response achievement. These results indicate that HER2-positive breast cancer is characterized by a significant host lipid mobilization that could be useful for diagnostic purposes. Moreover, the lipoproteins profiles alterations induced by the therapeutic interventions could predict the clinical outcome supporting the application of 1H-NMR lipoproteins profiles analysis for longitudinal monitoring of HER2-positive breast cancer in large clinical studies.
Collapse
Affiliation(s)
- Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
- Department of Molecular Science and Nano Systems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172 Venice, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, 50019 Sesto Fiorentino, Italy
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy;
| |
Collapse
|
38
|
Li J, Xu X, Liu C, Xi X, Wang Y, Wu X, Li H. miR-181a-2-3p Stimulates Gastric Cancer Progression via Targeting MYLK. Front Bioeng Biotechnol 2021; 9:687915. [PMID: 34733825 PMCID: PMC8558245 DOI: 10.3389/fbioe.2021.687915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The abnormal expression of miRNAs facilitates tumorigenesis and development. miR-181a-2-3p is up-regulated in various cancers, yet its mechanism in gastric cancer (GC) remains elusive. Objective: To understand mechanism of miR-181a-2-3p stimulating GC cell progression via targeting Myosin Light Chain Kinase (MYLK) expression. Methods: Downstream genes of miRNA of interest were predicted in TargetScan and miRTarBase. qRT-PCR and western blot were applied to assess miR-181a-2-3p and MYLK expression in GC cells and normal cells. Dual-luciferase and RIP assays were completed to assess binding of miR-181a-2-3p and MYLK. Cell Counting Kit-8 (CCK-8) assay was conducted for detecting viability of AGS and SNU-1 cells, while Transwell tested migratory and invasive abilities of cells. Nude mouse transplantation tumor experiment was performed to assay tumor growth in vivo. Results: miR-181a-2-3p was notably increased in human GC cell lines, while MYLK was remarkably down-regulated. RIP and dual-luciferase assay disclosed that miR-181a-2-3p targeted MYLK and repressed MYLK. Forced miR-181a-2-3p expression fostered GC cell proliferation, invasion, migration, and fostered tumor growth in vivo. Promoting effect of miR-181a-2-3p on GC cells was reversed when miR-181a-2-3p and MYLK were simultaneously overexpressed. Conclusion: miR-181a-2-3p facilitated GC cell progression by targeting MYLK, and it may be a pivotal prognostic biomarker in investigating molecular mechanism of GC.
Collapse
Affiliation(s)
- Jianjie Li
- Department of Gastrointestinal Surgery, Tangshan Central Hospital, Tangshan, China
| | - Xiaoyue Xu
- Department of Gastrointestinal Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Chunhui Liu
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xiaoxue Xi
- Department of Gastrointestinal Surgery, Tangshan Central Hospital, Tangshan, China
| | - Yang Wang
- Department of Gastrointestinal Surgery, Tangshan Central Hospital, Tangshan, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Hua Li
- Department of Gastrointestinal Surgery, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
39
|
Miranda F, Prazeres H, Mendes F, Martins D, Schmitt F. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: the most promising predictive biomarkers. Mol Biol Rep 2021; 49:717-733. [PMID: 34739691 DOI: 10.1007/s11033-021-06863-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most common cancer in women. It is a heterogeneous disease, encompassing different biological subtypes that differ in histological features, outcomes, clinical behaviour and different molecular subtypes. Therapy has progressed substantially over the past years with a reduction both for locoregional and systemic therapy. Endocrine therapies have considerably reduced cancer recurrence and mortality. Despite the major diagnostic and therapeutic innovations, resistance to therapy has become a main challenge, especially in metastatic breast cancer, and became a major factor limiting the use of endocrine therapeutic agents in ER positive breast cancers. Approximately 50% of patients with ER positive metastatic disease achieve a complete or partial response with endocrine therapy. However, in the remaining patients, the benefit is limited due to resistance, intrinsic or acquired, resulting in disease progression and poor outcome.Tumour heterogeneity as well as acquired genetic changes and therapeutics pressure have been involved in the endocrine therapy resistance. Nowadays, targeted sequencing of genes involved in cancer has provided insights about genomic tumour evolution throughout treatment and resistance driver mutations. Several studies have described multiple alterations in receptor tyrosine kinases, signalling pathways such as Phosphoinositide-3-kinase-protein kinase B/Akt/mTOR (PI3K/Akt/mTOR) and Mitogen-activated protein kinase (MAPK), cell cycle machinery and their implications in endocrine treatment failure.One of the current concern in cancer is personalized therapy. The focus has been the discovery of new potentially predictive biomarkers capable to identify reliably the most appropriate therapy regimen and which patients will experience disease relapse. The major concern is also to avoid overtreatment/undertreatment and development of resistance.This review focuses on the most promising predictive biomarkers of resistance in estrogen receptor-positive breast cancer and the emerging role of circulating free-DNA as a powerful tool for longitudinal monitoring of tumour molecular profile throughout treatment.
Collapse
Affiliation(s)
- Flávia Miranda
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,U-Monitor Lda, Porto, Portugal.,Department of Molecular Pathology, Portuguese Institute of Oncology, Coimbra, Portugal
| | - Fernando Mendes
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,European Association for Professions in Biomedical Sciences, Brussels, Belgique
| | - Diana Martins
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal. .,i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal. .,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal. .,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal. .,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Fernando Schmitt
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
40
|
González-Martínez S, Pizarro D, Pérez-Mies B, Caniego-Casas T, Curigliano G, Cortés J, Palacios J. Clinical, Pathological, and Molecular Features of Breast Carcinoma Cutaneous Metastasis. Cancers (Basel) 2021; 13:5416. [PMID: 34771579 PMCID: PMC8582578 DOI: 10.3390/cancers13215416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous metastases (CMs) account for 2% of all skin malignancies, and nearly 70% of CMs in women originate from breast cancer (BC). CMs are usually associated with poor prognosis, are difficult to treat, and can pose diagnostic problems, such as in histopathological diagnosis when occurring long after development of the primary tumor. In addition, the molecular differences between the primary tumors and their CMs, and between CMs and metastases in other organs, are not well defined. Here, we review the main clinical, pathological, and molecular characteristics of breast cancer CMs. Identifying molecular markers in primary BC that predict CM and can be used to determine the molecular differences between primary tumors and their metastases is of great interest for the design of new therapeutic approaches.
Collapse
Affiliation(s)
- Silvia González-Martínez
- Clinical Researcher, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Fundación Contigo contra el Cáncer de la Mujer, 28010 Madrid, Spain
| | - David Pizarro
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
| | - Belén Pérez-Mies
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
| | - Tamara Caniego-Casas
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, 20141 Milan, Italy;
- Departament of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Javier Cortés
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
- International Breast Cancer Center (IBCC), Quironsalud Group, 08017 Barcelona, Spain
- Medica Scientia Innovation Research, 08007 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - José Palacios
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
| |
Collapse
|
41
|
Gao Y, Lyu Q, Luo P, Li M, Zhou R, Zhang J, Lyu Q. Applications of Machine Learning to Predict Cisplatin Resistance in Lung Cancer. Int J Gen Med 2021; 14:5911-5925. [PMID: 34588799 PMCID: PMC8473573 DOI: 10.2147/ijgm.s329644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Lung cancer, mainly lung adenocarcinoma, lung squamous cell carcinoma and small cell lung cancer, has the highest incidence and cancer-related mortality worldwide. Platinum-based chemotherapy plays an important role in the treatment of various lung cancer subtypes, but not all patients benefit from this treatment regimen; thus, it is worth identifying lung cancer patients who are resistant or sensitive to platinum-based therapy. Methods The drug response and sequencing data of 170 lung cancer cell lines were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) database, and support vector machines (SVMs) and beam search were used to select an optimal gene panel that can predict the sensitivity of cell lines to cisplatin. Then, we used available cell line data to explore the potential mechanisms. Results In this work, the drug response and sequencing data of 170 lung cancer cell lines were downloaded from the GDSC database, and SVMs and beam search were used to screen a panel of genes related to lung cancer cell line resistance to cisplatin. A final panel of nine genes (PLXNC1, KIAA0649, SPTBN4, SLC14A2, F13A1, COL5A1, SCN2A, PLEC, and ALMS1) was identified, and achieved an area under the curve (AUC) of 0.873 ± 0.004. The natural logarithm of the half maximal inhibitory concentration (lnIC50) values of the mutant-type (panel-MT) group was significantly higher than that of the wild-type (panel-WT) group, regardless of the lung cancer subtype. The differentially expressed pathways between the two groups may explain this difference. Conclusion In this study, we found that a panel of nine genes can accurately predict sensitivity to cisplatin, which may provide individualized treatment recommendations to improve the prognosis of patients with lung cancer.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Radiotherapy, Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiong Lyu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mujiao Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China
| | - Rui Zhou
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
42
|
PAQR6 Upregulation Is Associated with AR Signaling and Unfavorite Prognosis in Prostate Cancers. Biomolecules 2021; 11:biom11091383. [PMID: 34572596 PMCID: PMC8465620 DOI: 10.3390/biom11091383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Progesterone-induced rapid non-genomic signaling events have been confirmed through several membrane progesterone receptors (mPR). Some mPRs were reported to correlate with cancer progression and patient prognosis. In this study, we conducted a comprehensive analysis of all progesterone receptor (PGR)-related genes in prostate cancer tissues and examined the correlations of their expression levels with disease progression and patient survival outcomes. We utilized multiple RNA-seq and cDNA microarray datasets to analyze gene expression profiles and performed logistics aggression and Kaplan-Meier survival analysis after stratifying patients based on tumor stages and Gleason scores. We also used NCBI GEO datasets to examine gene expression patterns in individual cell types of the prostate gland and to determine the androgen-induced alteration of gene expression. Spearman coefficient analysis was conducted to access the correlation of target gene expression with treatment responses and disease progression status. The classic PGR was mainly expressed in stromal cells and progestin and adipoQ receptor (PAQR) genes were the predominant genes in prostate epithelial cells. Progesterone receptor membrane component-1 (PGRMC1) was significantly higher than PGRMC2 in all prostate cell types. In prostate cancer tissues, PAQR6 expression was significantly upregulated, while all other genes were largely downregulated compared to normal prostate tissues. Although both PAQR6 upregulation and PAQR5 downregulation were significantly correlated with tumor pathological stages, only PAQR6 upregulation was associated with Gleason score, free-prostate-specific antigen (fPSA)/total-PSA (tPSA) ratio, and patient overall survival outcomes. In addition, PAQR6 upregulation and PGR/PGRMC1 downregulation were significantly associated with a quick relapse. Conversely, in neuroendocrinal prostate cancer (NEPC) tissues, PAQR6 expression was significantly lower, but PAQR7/8 expression was higher than castration-resistant prostate cancer (CRPC) tissues. PAQR8 expression was positively correlated with androgen receptor (AR) score and AR-V7 expression levels but inversely correlated with NEPC score in metastatic CRPC tumors. This study provides detailed expression profiles of membrane progesterone receptor genes in primary cancer, CRPC, and NEPC tissues. PAQR6 upregulation in primary cancer tissues is a novel prognostic biomarker for disease progression, overall, and progression-free survival in prostate cancers. PAQR8 expression in CRPC tissues is a biomarker for AR activation.
Collapse
|
43
|
Teng Y, Loveless R, Benson EM, Sun L, Shull AY, Shay C. SHOX2 cooperates with STAT3 to promote breast cancer metastasis through the transcriptional activation of WASF3. J Exp Clin Cancer Res 2021; 40:274. [PMID: 34465361 PMCID: PMC8406721 DOI: 10.1186/s13046-021-02083-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastasis is most often the root cause of cancer-related death. Human short stature homeobox 2 (SHOX2), a homeodomain transcription factor, is a novel inducer of epithelial-to-mesenchymal transition in breast cancer cells, though its exact role and underlying mechanisms in metastasis are not well understood. METHODS TCGA analysis was performed to identify the clinical relevance of SHOX2 in breast cancer. Gene depletion was achieved by short hairpin RNA and small interfering RNA. Molecular regulations and alterations were assessed by Western blotting, immunoprecipitation, immunohistochemistry, qRT-PCR, chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR), and ChIP/re-ChIP. The impact of SHOX2 signaling on tumor growth and metastasis was evaluated in orthotopic breast tumor mice. RESULTS The expression level of SHOX2 is strongly associated with poor distant metastasis-free survival in breast cancer patients and inactivation of SHOX2 suppresses breast tumor growth and metastasis in mice. In breast cancer cells, SHOX2 directly activates Wiskott-Aldridge syndrome protein family member 3 (WASF3), a metastasis-promoting gene, at the transcriptional level, leading to a significant increase in metastatic potential. Mechanistically, SHOX2 activates signal transducer and activator of transcription 3 (STAT3) and recruits it to the WASF3 promoter, where STAT3 cooperates with SHOX2 to form a functional immunocomplex to promote WASF3 transcriptional activity in breast cancer cells. WASF3 knockdown abrogates SHOX2-induced metastasis, but not SHOX2-dependent tumorigenesis. CONCLUSIONS These findings provide a critical link between the SHOX2-STAT3-WASF3 signaling axis and metastasis and suggest that the targeting of this signaling node may represent a valuable alternative strategy for combating breast cancer metastasis.
Collapse
Affiliation(s)
- Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, GA, 30322, Atlanta, USA.
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, 30912, Augusta, GA, USA.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, 30912, Augusta, GA, USA
| | - Elayne M Benson
- Department of Biology, Presbyterian College, 29325, Clinton, SC, USA
| | - Li Sun
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, 30912, Augusta, GA, USA
| | - Austin Y Shull
- Department of Biology, Presbyterian College, 29325, Clinton, SC, USA
| | - Chloe Shay
- Emory Children's Center, Emory University School of Medicine, 30322, Atlanta, GA, USA
| |
Collapse
|
44
|
Mannion AJ, Odell AF, Taylor A, Jones PF, Cook GP. Tumour cell CD99 regulates transendothelial migration via CDC42 and actin remodelling. J Cell Sci 2021; 134:jcs240135. [PMID: 34374417 PMCID: PMC8403985 DOI: 10.1242/jcs.240135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Metastasis requires tumour cells to cross endothelial cell (EC) barriers using pathways similar to those used by leucocytes during inflammation. Cell surface CD99 is expressed by healthy leucocytes and ECs, and participates in inflammatory transendothelial migration (TEM). Tumour cells also express CD99, and we have analysed its role in tumour progression and cancer cell TEM. Tumour cell CD99 was required for adhesion to ECs but inhibited invasion of the endothelial barrier and migratory activity. Furthermore, CD99 depletion in tumour cells caused redistribution of the actin cytoskeleton and increased activity of the Rho GTPase CDC42, known for its role in actin remodelling and cell migration. In a xenograft model of breast cancer, tumour cell CD99 expression inhibited metastatic progression, and patient samples showed reduced expression of the CD99 gene in brain metastases compared to matched primary breast tumours. We conclude that CD99 negatively regulates CDC42 and cell migration. However, CD99 has both pro- and anti-tumour activity, and our data suggest that this results in part from its functional linkage to CDC42 and the diverse signalling pathways downstream of this Rho GTPase. This article has an associated First Person interview with the first author of the paper.
Collapse
|
45
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
46
|
Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021; 13:2922. [PMID: 34208071 PMCID: PMC8230691 DOI: 10.3390/cancers13122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Up to one third of all breast cancers are classified as the aggressive HER2-positive subtype, which is associated with a higher risk of recurrence compared to HER2-negative breast cancers. The HER2 hyperactivity associated with this subtype drives tumor growth by up-regulation of mechanistic target of rapamycin (mTOR) pathway activity and a metabolic shift to glycolysis. Although inhibitors targeting the HER2 receptor have been successful in treating HER2-positive breast cancer, anti-HER2 therapy is associated with a high risk of recurrence and drug resistance due to stimulation of the PI3K-Akt-mTOR signaling pathway and glycolysis. Combination therapies against HER2 with inhibition of mTOR improve clinical outcomes compared to HER2 inhibition alone. Here, we review the role of the HER2 receptor, mTOR pathway, and glycolysis in HER2-positive breast cancer, along with signaling mechanisms and the efficacy of treatment strategies of HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
47
|
Akcakanat A, Zheng X, Cruz Pico CX, Kim TB, Chen K, Korkut A, Sahin A, Holla V, Tarco E, Singh G, Damodaran S, Mills GB, Gonzalez-Angulo AM, Meric-Bernstam F. Genomic, Transcriptomic, and Proteomic Profiling of Metastatic Breast Cancer. Clin Cancer Res 2021; 27:3243-3252. [PMID: 33782032 PMCID: PMC8172429 DOI: 10.1158/1078-0432.ccr-20-4048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE Metastatic breast cancer (MBC) is not curable and there is a growing interest in personalized therapy options. Here we report molecular profiling of MBC focusing on molecular evolution in actionable alterations. EXPERIMENTAL DESIGN Sixty-two patients with MBC were included. An analysis of DNA, RNA, and functional proteomics was done, and matched primary and metastatic tumors were compared when feasible. RESULTS Targeted exome sequencing of 41 tumors identified common alterations in TP53 (21; 51%) and PIK3CA (20; 49%), as well as alterations in several emerging biomarkers such as NF1 mutations/deletions (6; 15%), PTEN mutations (4; 10%), and ARID1A mutations/deletions (6; 15%). Among 27 hormone receptor-positive patients, we identified MDM2 amplifications (3; 11%), FGFR1 amplifications (5; 19%), ATM mutations (2; 7%), and ESR1 mutations (4; 15%). In 10 patients with matched primary and metastatic tumors that underwent targeted exome sequencing, discordances in actionable alterations were common, including NF1 loss in 3 patients, loss of PIK3CA mutation in 1 patient, and acquired ESR1 mutations in 3 patients. RNA sequencing in matched samples confirmed loss of NF1 expression with genomic NF1 loss. Among 33 patients with matched primary and metastatic samples that underwent RNA profiling, 14 actionable genes were differentially expressed, including antibody-drug conjugate targets LIV-1 and B7-H3. CONCLUSIONS Molecular profiling in MBC reveals multiple common as well as less frequent but potentially actionable alterations. Genomic and transcriptional profiling demonstrates intertumoral heterogeneity and potential evolution of actionable targets with tumor progression. Further work is needed to optimize testing and integrated analysis for treatment selection.
Collapse
Affiliation(s)
- Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christian X Cruz Pico
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tae-Beom Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vijaykumar Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily Tarco
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gopal Singh
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Cell, Developmental and Cancer Biology, Department of Medicine, Oregon Health and Science University, Portland, Oregon
- Precision Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Ana Maria Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
48
|
Tian C, Liu S, Wang Y, Song X. Prognosis and Genomic Landscape of Liver Metastasis in Patients With Breast Cancer. Front Oncol 2021; 11:588136. [PMID: 33777740 PMCID: PMC7991092 DOI: 10.3389/fonc.2021.588136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Objective The prognosis of breast cancer liver metastasis (BCLM) is poor, and its molecular mechanism is unclear. We aimed to determine the factors that affect the prognosis of patients with BCLM and investigate the genomic landscape of liver metastasis (LM). Methods We described the prognosis of patients with BCLM and focused on prognosis prediction for these patients based on clinicopathological factors. Nomogram models were constructed for progression-free survival (PFS) and overall survival (OS) by using a cohort of 231 patients with BCLM who underwent treatment at Shandong Cancer Hospital and Institute (SCHI). We explored the molecular mechanism of LM and constructed driver genes, mutation signatures by using a targeted sequencing dataset of 217 samples of LM and 479 unpaired samples of primary breast cancer (pBC) from Memorial Sloan Kettering Cancer Center (MSKCC). Results The median follow-up time for 231 patients with BCLM in the SCHI cohort was 46 months. The cumulative incidence of LM at 1, 2, and 5 years was 17.5%, 45.0%, and 86.8%, respectively. The median PFS and OS were 7 months (95% CI, 6-8) and 22 months (95% CI, 19-25), respectively. The independent factors that increased the progression risk of patients with LM were Karnofsky performance status (KPS) ≤ 80, TNBC subtype, grade III, increasing trend of CA153, and disease-free interval (DFS) ≤ 1 year. Simultaneously, the independent factors that increased the mortality risk of patients with LM were Ki-67 ≥ 30%, grade III, increasing trend of CA153, pain with initial LM, diabetes, and DFI ≤ 1 year. In the MSKCC dataset, the LM driver genes were ESR1, AKT1, ERBB2, and FGFR4, and LM matched three prominent mutation signatures: APOBEC cytidine deaminase, ultraviolet exposure, and defective DNA mismatch repair. Conclusion This study systematically describes the survival prognosis and characteristics of LM from the clinicopathological factors to the genetic level. These results not only enable clinicians to assess the risk of disease progression in patients with BCLM to optimize treatment options, but also help us better understand the underlying mechanisms of tumor metastasis and evolution and provide new therapeutic targets with potential benefits for drug-resistant patients.
Collapse
Affiliation(s)
- Chonglin Tian
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Sujing Liu
- Department of Radiation Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yongsheng Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xianrang Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
49
|
Progression to Metastasis of Solid Cancer. Cancers (Basel) 2021; 13:cancers13040717. [PMID: 33578666 PMCID: PMC7916396 DOI: 10.3390/cancers13040717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
|
50
|
Fujisawa F, Kunimasa K, Kano-Fujiwara R, Sato Y, Kusama H, Nishio M, Matsui S, Yoshinami T, Kittaka N, Nakamura H, Nagata S, Honma K, Yagi T, Nakayama T, Tamaki Y, Imamura F. STK11 loss drives rapid progression in a breast cancer patient resulting in pulmonary tumor thrombotic microangiopathy. Breast Cancer 2021; 28:765-771. [PMID: 33389615 DOI: 10.1007/s12282-020-01200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022]
Abstract
We experienced a case of breast cancer in which liver metastases spread rapidly and the patient died of pulmonary tumor thrombotic microangiopathy (PTTM). PTTM is a fatal cancer-associated respiratory complication disease. To reveal genetic alterations of the clinical course, we performed next generation sequencing of the serial specimens using the Ion AmpliSeqTM Comprehensive Cancer Panel and RNA sequencing for transcriptomic data, followed by gene set analysis. The analysis revealed an oncogenic TP53 R213* mutation in all specimens and STK11 loss in tissues sampled after disease progression. Immunohistochemistry with an anti-STK11 antibody confirmed no STK11 expression in the samples after progression. Transcriptome analysis showed a significant downregulation of proteins associated with apoptosis in the specimens with STK11 loss. STK11 loss may have triggered the rapid progression of PTTM from a comprehensive genomic analysis.
Collapse
Affiliation(s)
- Fumie Fujisawa
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka, 541-8567, Japan.
| | - Rieko Kano-Fujiwara
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | | | - Hiroki Kusama
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Minako Nishio
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Saki Matsui
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Tetsuhiro Yoshinami
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Nobuyoshi Kittaka
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Harumi Nakamura
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
| | - Shigenori Nagata
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Toshinari Yagi
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takahiro Nakayama
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhiro Tamaki
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Fumio Imamura
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|